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Abstract In the present paper, we discuss and compare several two-step estimation
procedures for inhomogeneous shot-noise Cox processes. The intensity function is
parametrized by the inhomogeneity parameters while the pair-correlation function is
parametrized by the interaction parameters. The suggested procedures are based on a
combination of Poisson likelihood estimation of the inhomogeneity parameters in the
first step and an adaptation of a method from the homogeneous case for estimation of
the interaction parameters in the second step. The adaptedmethods, based onminimum
contrast estimation, composite likelihood and Palm likelihood, are compared both
theoretically and by means of a simulation study. The general conclusion from the
simulation study is that the three estimation methods have similar performance. Two-
step estimation with Palm likelihood has not been considered before and is motivated
by the superior performance of the Palm likelihood in the stationary case for estimation
of certain parameters of interest. Asymptotic normality of the two-step estimator with
Palm likelihood is proved.
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1 Introduction

Cox point processes (sometimes also called doubly stochastic point processes) are
the preferred point process models for analysis of clustered point patterns (Cox 1955;
Matérn 1971; Daley and Vere-Jones 2003; Diggle 2003; Møller and Waagepetersen
2003, 2007; Daley and Vere-Jones 2008; Illian et al. 2008; Chiu et al. 2013). These
processes are able to model clustering of different strength on different scales as well
as inhomogeneity dependent on spatial covariates. As such they are used in a large
spectrum of applications, e.g., in biology, ecology and epidemiology.

Spatial Cox point process models include two large classes—the log-Gaussian Cox
processes and the shot-noise Cox processes. Since these two classes have somewhat
different properties they are usually considered separately in the literature and their sta-
tistical inference is based on different methods (see e.g., Møller and Waagepetersen
2003). In the present paper, we will consider the shot-noise Cox processes and the
problem of parameter estimation of inhomogeneous models coming from this class.
The shot-noise Cox processes were introduced in Møller (2003) and further gener-
alized in Hellmund et al. (2008) without discussing the statistical inference for this
model class. Note that the class of shot-noise Cox processes includes the very popular
Poisson Neyman–Scott processes such as the Thomas process (see e.g., Thomas 1949;
Illian et al. 2008, Section 6.3.2).

Maximum likelihood estimation for these processes is computationally very inten-
sive (even more so for inhomogeneous models) and involves the development of a
special MCMC numerical algorithm for each particular model, see e.g., Møller and
Waagepetersen (2007, Section 7.3) for an example. Therefore, the easier-to-compute
moment estimation methods (even though less efficient than the maximum likelihood
estimation) are often preferred in applications.

Several moment estimation methods applicable to the stationary shot-noise Cox
processes are available in the literature: minimum contrast estimation (Diggle 1983,
Chapter 6), composite likelihood (Guan 2006), Palm likelihood (Tanaka et al. 2007;
Prokešová and Jensen 2013). According to simulation studies, as the ones presented
in Guan (2006) and Dvořák and Prokešová (2012), the efficiency of the different
estimators on middle-sized observation windows depends on the considered model
and the parameter of main interest. There is no uniformly best estimator.

For the nonstationary case (which is much more interesting from an applied point
of view) a two-step estimation procedure was introduced in Waagepetersen and Guan
(2009) where first the first-order intensity function λ(u) is estimated and then, con-
ditionally on λ(u), the inhomogeneous K -function is used for the minimum contrast
estimation of the interaction parameters of the Cox process. In Guan (2009), the same
two-step estimation procedure was investigated with minimum contrast based on the
pair-correlation function in the second step. These two-step estimation procedures
work for inhomogeneous spatial point processes which are second-order intensity-
reweighted stationary (SOIRS). Thismodel class, introduced in Baddeley et al. (2000),
is characterized by a translation-invariant pair-correlation function. Accordingly, the
second-order intensity function can for SOIRS processes be decomposed as

λ(2)(u, v) = λ(u)λ(v)g(v − u).
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Two-step estimation for inhomogeneous Cox processes 515

However, this decomposition enables a generalization of the other estimation methods
from the stationary case to the SOIRS case as well. In the recent paper (Jalilian et al.
2013), two-step composite likelihood was discussed.

In the present paper, we investigate the above-mentioned two-step estimation pro-
cedures for SOIRS inhomogeneous shot-noise Cox processes, including conditions
for the validity of asymptotic results for these two-step estimation procedures. Fur-
ther, we generalize the Palm likelihood estimation to a two-step estimation procedure
for SOIRS inhomogeneous Cox processes and derive conditions for consistency and
asymptotic normality of the estimators. Finally, we compare the efficiency of all the
considered two-step estimation procedures on middle-sized observation windows in
a simulation study.

The paper is organized as follows. Basic notions relating to spatial point processes
are given in Sect. 2, while shot-noise Cox processes are introduced in Sect. 3. An
overview of moment estimation methods for stationary Cox processes is given in Sect.
4. Thesemethods are adapted to the inhomogeneous case in Sect. 5. In Sect. 6, the focus
is on two-step estimation with Palm likelihood and in Sect. 7 asymptotic normality
of this two-step estimator with Palm likelihood is proved. The performance of the
developed two-step estimation methods is compared in a simulation study presented
in Sect. 8. Conclusions and perspectives are found in Sect. 9.

2 Background

In this section, we briefly introduce the notation relating to spatial point processes
used in the following. For more detailed information, see standard references such as
Daley and Vere-Jones (2008) and Chiu et al. (2013).

LetB(Rd) = Bd be the Borel subsets ofRd . Let X be a point process onX ∈ Bd .
For A ∈ Bd , |A|will denote the volume of A and |X∩A| the number of points from X
in A (we use the notation | · | for the suitable Hausdorff measure of the set). For R > 0,
B(o, R) is the ball centered at the origin owith radius R and A⊕ R = ⋃

x∈A B(x, R).
The Euclidean norm of the vector x ∈ R

d is denoted by ‖x‖ and I is the indicator
function.

Throughout this paper, we consider point processes for which the intensity function
λ and the second-order intensity function λ(2) exist. For a stationary point process
X , the intensity function is constant, λ(u) = λ, say, and the second-order intensity
function can be decomposed as

λ(2)(u, v) = λ(2)(0, v − u) = λλo(v − u). (1)

The function λo is the (first-order) intensity function of the Palm distribution of X ,
sometimes called the Palm intensity. The Palm distribution may be interpreted as the
distribution of X conditioned by the occurrence of a point from X at the origin.

The interaction between points may be described by the pair-correlation function

g(u, v) = λ(2)(u, v)

λ(u)λ(v)
,
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516 M. Prokešová et al.

also called the g-function. For stationary point processes, the g-function is translation
invariant, g(u, v) = g(v − u), say. Alternatively, the interaction between points in
a stationary point process may be described by Ripley’s K -function. For A ∈ Bd

with 0 < |A| < ∞, the K -function satisfies

λK (r) = 1

λ|A| E
∑

u∈X∩A

∑

v∈X\{u}
I (‖u − v‖ ≤ r), r > 0. (2)

Note that the right-hand side of (2) does not depend on A. Since λ|A| is the mean
number of points in A, λK (r) may be interpreted as the mean number of further
points of the point process at distance at most r from a typical point of the point
process. The g- and K - functions are related in the following way

K (r) =
∫

B(o,r)
g(u)du, r > 0. (3)

In the following, we will also consider inhomogeneous point processes that are
second-order intensity-reweighted stationary (SOIRS); see Baddeley et al. (2000).
These processes are characterized by a translation-invariant g-function, but they may
have a nonconstant intensity function. They can be obtained by location-dependent
thinning of a stationary process. Under SOIRS, we can decompose λ(2) as follows:

λ(2)(u, v) = λ(u)λ(v)g(v − u) = λ(u)λu(v) = λ(v)λv(u), (4)

where λu(v) is the intensity function at v of the Palm distribution of X conditioned by
the event that a point of X occurs at location u. This possibility of decomposing λ(2)

in a multiplicative way will be important for the estimation procedures developed in
Sects. 5 and 6.

In the analysis of SOIRS processes, the so-called inhomogeneous K -function is
used. This function is defined by the relation (3) used in the stationary case.

3 Shot-noise Cox processes

The focus of this paper is on shot-noise Cox processes driven by a random field of the
form

�(u) =
∑

(r,v)∈�ϒ

rk(u, v), u ∈ X , (5)

where �ϒ is a Poisson process on R
+ × R

d with intensity measure ϒ and k is
a smoothing kernel, i.e., a non-negative function integrable in both coordinates; see
Møller (2003) and Hellmund et al. (2008) for further details.

The shot-noise Cox process X is stationary if the kernel k is translation invariant
k(u, v) = k(v − u) and the measure ϒ has the form ϒ(d(r, v)) = μV (dr)dv, where
μ > 0 and V (dr) is an arbitrarymeasure onR+ satisfying the integrability assumption∫
R+ min(1, r)V (dr) < ∞. A large variety of models may be obtained according to
the choice of V . The popular class of Poisson cluster processes is obtained when V is
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Two-step estimation for inhomogeneous Cox processes 517

Fig. 1 Realizations of (from left to right) a stationary Thomas process, a stationary gamma shot-noise Cox
process and an inhomogeneous gamma shot-noise Cox process. For details, see the text

equal to the Dirac measure, V (dr) = δ1(dr). Figure 1, left panel, shows a realization
of such a Poisson cluster process with Gaussian kernel. This process is a stationary
Thomas process (Thomas 1949).

All shot-noise Cox processes can be viewed as generalized cluster processes. The
measure V determines the distribution of the number of points in the clusters. By
choosing an appropriate measure V , we can obtain very variable number of points in
the clusters.

Example 1 (Gamma shot-noise Cox process) Let V (dr) = r−1 exp(−θr)dr , where
θ > 0 is a parameter. Note that V is not integrable in the neighborhood of 0. As a
consequence, the corresponding shot-noise Cox process X is not a cluster process in
the classical sense (Illian et al. 2008, Section 6.3) since the number of “clusters” in any
compact set is infinite. However, because the weights of the majority of the clusters
are very small, X is still a well-defined Cox process. The name gamma shot-noise
Cox process refers to the fact that V is the Lévy measure of a gamma distributed
random variable (Hellmund et al. 2008, Section 4). Figure 1, middle panel, shows
a realization of a stationary gamma shot-noise Cox process. The point process has the
same Gaussian kernel k and intensity as the Thomas process in Fig. 1, left panel, but
has clearly larger variability in the cluster sizes.

The moment properties of the shot-noise Cox processes are easily available (Hell-
mund et al. 2008, Section 4). In particular, for the intensity function we have

λ(u) = μ

∫

R+
r V (dr)

∫

Rd
k(u, v)dv,

and for the pair-correlation function

g(u, v) = 1 + μ
∫
R+ r2V (dr)

∫
Rd

∫
Rd k(u, w)k(v,w)dw

λ(u) λ(v)
.

Note that in both equations, a product of separate integrals for V and k appears—this
will be important in the estimation procedures developed in Sects. 5 and 6. More-
over, for parametric forms of V such as V (dr) = r−1 exp(−θr)dr , both integrals
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with respect to V are simple functions of the parameters,
∫
R+ r V (dr) = 1/θ and

∫
R+ r2V (dr) = 1/θ2.
If we apply location-dependent thinning to a stationary shot-noise Cox process

specified byμ, V and k, a new shot-noise Cox process is obtained with the sameμ and
V , but with different kernel function. The process is second-order intensity-reweighted
stationary (SOIRS). An example of a realization of such a process is shown in Fig. 1,
right panel. It is obtained by location-dependent thinning of the point process shown
in Fig. 1, middle panel. For a more detailed description of the process, see Sect. 8.

4 Estimation in the stationary case

In this sectionwegive an overviewof themoment estimationmethods for the stationary
Cox process models, available in the literature. All of them are based on the second-
order intensity function λ(2) or on characteristics derived from this function.

LetW denote a compact observationwindowonwhichwe observe the point process
X . We will assume a parametric model for X . The vector of unknown parameters will
be denoted by η. Particularly, we assume that the stationary Cox point process X
is characterized by its second-order intensity function λ(2)(·; η) (or by some other
equivalent characteristic like K , g or λo). As explained in the previous section, these
characteristics are for many shot-noise Cox process models available in a reason-
ably tractable form as functions of the parameter η and thus the maximization of the
respective estimation criteria is numerically feasible.

4.1 Minimum contrast

This estimation method was in the context of spatial statistics described as early as
in Diggle (1983, Chapter 5). It can be based either on the K -function or the pair-
correlation function g; see e.g., Diggle (2003, Chapter 6). In the version based on the
g-function it is required that the process X is isotropic as well as stationary. Under
isotropy, the g-function is a function of a scalar argument.

The vector of parameters η is estimated by minimizing the discrepancy measure

∫ R

r

[
K̂ q(u) − Kq(u; η)

]2
du or

∫ R

r

[
ĝq(u) − gq(u; η)

]2 du (6)

between the nonparametric estimate K̂ or ĝ and the theoretical value K (·; η) or g(·; η),
respectively.

The constants q, r and R are used to control the sampling fluctuations in the esti-
mators of K and g. Recommendations concerning the choice of tuning parameters
and other practical aspects can be found in Diggle (2003, Section 6.1.1). Asymptotic
properties of the minimum contrast estimator, based on the K -function, are discussed
in Heinrich (1992) and Guan and Sherman (2007) for the stationary case. In Heinrich
(1992) strong consistency and asymptotic normality for minimum contrast estima-
tors, based on the K -function, was proved for stationary Poisson cluster processes.
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In Guan and Sherman (2007) asymptotic normality for minimum contrast estimators,
based on the K -function, was shown for stationary processes, fulfilling a strongmixing
assumption.

4.2 Composite likelihood

The composite likelihood approach is a general statistical methodology (Lindsay
1988). In the context of point processes it is based on adding together individual
log-likelihoods for single points or pairs of points of the process X to form a compos-
ite log-likelihood. Several versions of composite likelihood have been suggested for
estimation of different types of spatial point processes (Baddeley et al. 2000; Guan
2006; Møller and Waagepetersen 2007). Composite likelihood suitable for estimation
of Cox processes was introduced in Guan (2006). It uses the second-order intensity
function λ(2)(·; η) to obtain the probability density for two points of X occurring at
locations x and y

f (x, y; η) = λ(2)(y − x; η)
∫
W

∫
W λ(2)(u − v; η)dudv

. (7)

After adding the individual log-likelihoods, the composite log-likelihood is
obtained

logCL(η) =
∑

x,y∈X∩W, 0<‖y−x‖<R

[

log λ(2)(y − x; η)

− log

(∫

W

∫

W
λ(2)(u − v; η)I (‖u − v‖ < R)dudv

) ]

. (8)

Here, only pairs of points with distance less than R are considered. Disregarding the
pairs of points separated by distance R or larger is motivated by the fact that pairs
of points far apart are often nearly independent. They do not carry much information
about the parameter η, but increase the variability of the estimator. Consistency and
asymptotic normality of the composite likelihood estimator in the stationary case are
proved in Guan (2006) under suitable mixing assumptions.

Note that in the stationary case the squared intensity λ2 cancels out in (7) so that

f (x, y; η) = g(y − x; η)
∫
W

∫
W g(u − v; η)dudv

,

and (8) can be used with g instead of λ(2).

4.3 Palm likelihood

The Palm likelihood estimator for isotropic stationary point processes was introduced
in Tanaka et al. (2007) and uses a very “geometrical” approach. It is based on the
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process of differences between the points of the observed point process X . Let

Y (R) = {y − x : x �= y ∈ X ∩ W, ‖y − x‖ < R}

be the point process of differences of points in X observed onW with mutual distance
smaller than R. Evidently, Y (R) is a point process contained in B(o, R). The intensity
function of this point process can be derived as follows. Let A be a Borel subset of
B(o, R). Then,

E(|Y (R) ∩ A|)=
∫

W

∫

W
I (y − x ∈ A)λλo(y − x; η)dx dy=

∫

A
γW (u)λλo(u; η)du,

where γW (u) = |W ∩ (W + u)| is the set covariance of the window W, see Chiu et al.
(2013, p. 17) for further details. The point process Y (R) has thus an intensity function
concentrated on B(o, R) of the form

λR(u) = γW (u)λλo(u; η), u ∈ B(o, R).

The Palm log-likelihood

log LP (η) =
∑

x �=y∈X∩W
(y−x)∈B(o,R)

log (|X ∩ W |λo(y − x; η))

−|X ∩ W |
∫

B(o,R)

λo(r; η)dr (9)

is obtained by treating Y (R) as an inhomogeneous Poisson process with intensity
functionλR(u), replacing the intensityλof the original point process X by the observed
intensity |X ∩ W |/|W | and approximating γW (u), u ∈ B(o, R), by |W |. This is
a reasonable approximation for R substantially smaller than the size of the observation
window W .

An alternative way of arriving at the Palm likelihood goes as follows. Let

Yx = {y − x, x �= y ∈ X}, x ∈ X ∩ W.

Each Yx is an inhomogeneous point process with intensity function equal to the Palm
intensity λo(·; η) of the original process X . Ignoring the interactions in the process
Yx , i.e., approximating Yx by a Poisson process, the log-likelihood of Yx ∩ B(o, R) is
(up to a constant) the following:

∑

y∈X∩W,0<||x−y||<R

log λo(x − y; η) −
∫

Rd
I (||u|| < R)λo(u; η)du.

By treating all the Yx , x ∈ X ∩W, as independent, identically distributed replications
(and ignoring the edge effects caused by a bounded observation window W ), we can
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Two-step estimation for inhomogeneous Cox processes 521

sum the individual log-likelihoods over x ∈ X ∩ W and get an equivalent version of
the Palm log-likelihood

log LP (η) =
∑

x �=y∈X∩W,||x−y||<R

log λo(x−y; η)−|X∩W |
∫

B(o,R)

λo(r; η)dr. (10)

Note that even though the Palm likelihood estimation was derived by using the
process of differences, it is a second-order moment method because it is based on the
second-order characteristic λo of the observed point process X . Strong consistency
and asymptotic normality of the Palm likelihood estimator are proved for stationary
Cox processes in Prokešová and Jensen (2013) under suitable mixing assumptions.

5 Estimation in the inhomogeneous case

For the inhomogeneous (nonstationary) point processes the methods reviewed in the
previous section cannot be used directly. Nevertheless, under the SOIRS assumption
they can be adapted to the inhomogeneous case due to the product structure (4) of
λ(2).

Following these ideas,Waagepetersen andGuan (2009) introduced for SOIRS point
processes a two-step estimation procedure where first the first-order intensity function
λ(u) is estimated and then, conditionally on λ(u), the inhomogeneous K -function
is used in a minimum contrast estimation of the interaction parameters of the Cox
process. Alternatively, Guan (2009) used minimum contrast estimation with the pair-
correlation function g in the second step.

The minimum contrast estimation based on the K -function (MCK ) is definitely
the most frequently used method in the stationary case, but this method is actually
not necessarily the most efficient. Simulation studies in Guan (2006) and Dvořák and
Prokešová (2012) show that in many cases, minimum contrast estimation with the
g-function (MCg) is superior to MCK .

In some cases, composite likelihood estimation (CL) is more efficient than any of
the MC methods for estimation of interaction parameters, such as the scale of the
kernel function in the cluster process. This applies in particular to cases where the
total number of points observed in different clusters is very variable. Examples are
log-Gaussian Cox processes with exponential correlation kernel or shot-noise Cox
processes with nonatomic shape measure V . On the other hand, Palm likelihood is
often superior to any other method when estimating the parameter μ for a Thomas
process.

Since MCK and MCg are in the stationary case in some situations inferior to CL
or PL it is natural also to consider the two-step estimators for the inhomogeneous case
based on the CL and PL methods. Composite likelihood was done in a recent paper
(Jalilian et al. 2013). For the Palm likelihood, we will introduce the new two-step
estimator in Sect. 6.

In the remaining part of this section, we review the estimation of the inhomogeneity
parameters in the first step and of the interaction parameters in the second step by
minimum contrast estimation or composite likelihood estimation.
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Throughout the section, X will be a SOIRSCox process with second-order intensity
function of the form

λ(2)(u, v) = λβ(u)λβ(v)gη(v − u).

Here, η ∈ R
q is a vector of interaction parameters that parametrizes the pair-correla-

tion function g andβ ∈ R
t is the vector of inhomogeneity parameters that parametrizes

the first-order intensity function λ(u). Thus, the full model is parametrized by ψ =
(β, η) ∈ � ⊂ R

t+q , and we assume that it is possible to separate the inhomogeneity
and interaction parameters, so that the model is not overspecified. Below, we give an
example of such a model.

Example 2 Let X be the stationary gamma shot-noise Cox process in R
2 with para-

meters μ, θ > 0 and smoothing kernel density k equal to the bivariate Gaussian
density

kσ 2(u) = 1

2πσ 2 exp

(−‖u‖2
2σ 2

)

, u ∈ R
2.

Suppose we observe X in a compact windowW . Furthermore, let hβ∗(u) be a noncon-
stant function, parametrized by the vector parameter β∗ = (β1, . . . βt−1), and let each

point x of the process X be independently thinned with the probability
hβ∗ (x)

maxv∈W hβ∗ (v)
.

If we let β0 = log(μ
θ
/maxv∈W hβ∗(v)) and β = (β0, β

∗), then the intensity function
of the resulting inhomogeneous shot-noise Cox process Y is parametrized by β and
takes the form

λβ(u) = exp(β0)hβ∗(u).

The pair-correlation function is unchanged by the thinning

g(σ,μ)(v − u) = 1 + 1

4πσ 2μ
exp

(−‖v − u‖2
4σ 2

)

and parametrized by the interaction parameter η = (σ, μ). In applications, a log-linear
form of the intensity is often used

λβ(u) = exp(z(u)βT ), u ∈ W,

where z(u) is a vector of covariates observed at the location u.

The two-step estimation procedure in Waagepetersen and Guan (2009) can be
described as follows. At first, the inhomogeneity parameter β is estimated by dis-
regarding the interactions in the model, using the Poisson log-likelihood

log L1(β) =
∑

x∈X∩W
log λβ(x) −

∫

W
λβ(u)du (11)
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only. The value β̂ at which L1 attains its maximal value is then taken to be the estimate
of β.

In the second step, the interaction parameters η are estimated with the intensity
function λ̂ = λ

β̂
taken as fixed. The inhomogeneous K -function can be estimated by

K̂ (r) =
∑

x,y∈W∩X

I (0 < ‖x − y‖ < r)

λ̂(x)λ̂(y)
wx,y, r > 0,

where wx,y is an edge correction weight (see Baddeley et al. 2000). Analogously, it
is possible to estimate the pair-correlation function by kernel smoothing of the diffe-
rences between the observed points from X , reweighted by the reciprocal of λ̂(x)λ̂(y);
see Guan (2009) for the exact formula. Of course, the precision of the estimators of
K and g depends heavily on the precision of λ̂. Under an appropriate parametric
model λ = λβ , the estimates of K and g will be more stable than in the case where a
nonparametric estimate of λ, obtained by kernel smoothing, is used.

Now theminimum contrast (6) can be employed for the estimation of the interaction
parameters η in the same way as for the homogeneous case.

In Waagepetersen (2007), it was shown that the estimate of the inhomogeneity
parameter β obtained by the Poisson likelihood L1 differs negligibly from the esti-
mate obtained by a more complicated and computationally much more demanding
second-order estimation equation, which corresponds to the score equation of the full
composite likelihood (8) in the inhomogeneous case. This finding supports the use of
the first-order intensity function in L1 for the estimation of β and it appears reasonable
to estimate the interaction parameter η conditionally on β̂ being fixed.

The two-step composite likelihood estimationwas suggested in Jalilian et al. (2013).
Here, formula (8) is rewritten as

logCL(η) =
∑

x,y∈X∩W, 0<‖x−y‖<R

[

log(λ̂(x)λ̂(y)gη(y − x))

− log

(∫

W

∫

W
λ̂(u)λ̂(v)gη(u − v)I (‖u − v‖ < R)dudv

)]

, (12)

and maximized with respect to the interaction parameter η for fixed λ̂. As in the
homogeneous case, R > 0 is a tuning parameter. This two-step maximization is
computationally much less demanding than maximization of the full composite like-
lihood (8) with respect to the complete parameter ψ .

6 Two-step estimation with Palm likelihood

In this section, we generalize the Palm likelihood estimator from the stationary case to
a two-step estimation procedure for SOIRS inhomogeneous shot-noise Cox processes.
The first step is the same as in the previous section so the inhomogeneity parameter
β is still estimated using the Poisson likelihood (11). However, in order to estimate
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the interaction parameter, we need to generalize the Palm likelihood (10) to the inho-
mogeneous case and this is not a straightforward problem. There are, in fact, several
possibilities.

The first option is to mimic formula (10) closely and just plug-in instead of
λo(y − x) the inhomogeneous version of the Palm intensity λx (y) = λ(y)g(y − x)
which now depends on both locations x and y. As a consequence, the quantity |X∩W |
must be replaced by a sum over x ∈ X ∩ W and we get

log LP1(η) =
∑

x,y∈X∩W
0<‖x−y‖<R

log(λ̂(y)gη(y − x)) −
∑

x∈X∩W

∫

B(x,R)

λ̂(u)gη(u − x)du.

(13)
Note that log LP1 can also be rewritten as

log LP1(η)=
∑

x∈X∩W

( ∑

z∈((X∩W )−x)
0<‖z‖<R

log(λ̂(x + z)gη(z))−
∫

B(x,R)

λ̂(u)gη(u−x)du

)

.

Thus, LP1 is actually equal to the composite log-likelihood composed from thePoisson
likelihoods of the difference processes Yx = {y − x : y ∈ X ∩W, 0 < ‖y − x‖ < R}
with intensity functions (apart from edge effects) equal to λx (u). This corresponds to
the second method of derivation of the homogeneous Palm likelihood.

The second option is to use the whole process of differences Y = {x − y : x �= y ∈
X ∩W }∩ B(o, R) viewed for the purpose of approximate inference as a superposition
of independent Poisson processes Yx , x ∈ X ∩ W . The intensity of the difference
process Y is (again apart from edge effects) equal to

∑
x∈X∩W λ(x + u)g(u). Thus,

the Palm likelihood LP2 defined as the Poisson likelihood of the process Y can be
expressed as

log LP2(η) =
∑

z=w−y:w,y∈X∩W
0<‖z‖<R

log

(
∑

x∈X∩W
λ̂(x + z)gη(z)

)

−
∫

B(o,R)

∑

x∈X∩W
λ̂(x + u)gη(u)du. (14)

However, note that the second term in (13) and (14) is actually the same and since
λ̂ does not depend on η, both (13) and (14) may be written as

C +
∑

z=w−y:w,y∈X∩W
0<‖z‖<R

log gη(z) −
∑

x∈X∩W

∫

B(x,R)

λ̂(u)gη(u − x)du,

as a function of η (for a suitably chosen constant C). Thus, the two derivations lead
to the same Palm likelihood estimation which we will denote LP1 in the sequel.
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The third option for generalization of the Palm likelihood is based on the following
observation for the homogeneous case: the normalized number of points |X ∩W |/|W |
is an unbiased estimator of the constant intensity λ of a stationary process X . Thus,
the complete version of the homogeneous Palm likelihood (9) can be expressed as

log LP (η) =
∑

x �=y∈X∩W
‖y−x‖<R

log (|X ∩ W |λo(y − x; η))

−|X ∩ W |
∫

Rd
I (‖u‖ < R)λo(u; η)du

=
∑

x �=y∈X∩W
‖y−x‖<R

log
(
λ̂|W |λo(y − x; η)

)
−

∫

Rd
λ̂|W |I (‖u‖ < R)λo(u; η)du.

Since |W | in the first term does not change the maximum of LP , it can be omitted and
we get

log LP (η) =
∑

x �=y∈X∩W
‖y−x‖<R

log
(
λ̂λo(y − x; η)

)
−

∫

W
λ̂

∫

B(v,R)

λo(u − v; η)dudv.

If we now in the inhomogeneous case use λ̂(x) instead of λ̂, decompose the Palm
intensity λx (u) = λ(u)g(u − x) and change the order of integration in the second
term, we get a third version of the inhomogeneous Palm likelihood

log LP3(η) =
∑

x �=y∈Y∩W
‖x−y‖<R

log
(
λ̂(x)λ̂(y)gη(y − x)

)

−
∫

B(o,R)

∫

W∩(W−u)

λ̂(v)λ̂(v + u)gη(u)dvdu. (15)

Finding the estimate (β̂, η̂) by the two-step estimation corresponds to solving the
score equation

U (β, η) = (U1(β),U2(β, η)) = 0, (16)

where

U1(β) =
∑

x∈X∩W

λ′
β(x)

λβ(x)
−

∫

W
λ′

β(u)du
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is the score function for the Poisson log-likelihood (11),

U2(β, η)= d log LP1(η)

dη
=

∑

x �=y∈X∩W
‖y−x‖<R

g′
η(y−x)

gη(y − x)
−

∑

x∈X∩W

∫

B(x,R)

λβ(u)g′
η(u−x)du

is the score function for log LP1 and

U2(β, η) = d log LP3(η)

dη
=

∑

x �=y∈X∩W,‖y−x‖<R

g′
η(y − x)

gη(y − x)

−
∫

B(o,R)

∫

W∩(W−u)

λβ(v)λβ(v + u)g′
η(u)dvdu

is the score function for log LP3. Here, λ′
β and g′

η denote the derivatives of the intensity
function and the pair-correlation function with respect to β and η, respectively.

Note that (16) is an unbiased estimating equation for LP3. To get an unbiased
estimating equation also for LP1, we would need to include an edge correction into
the integrals in the second term of (13), obtaining the following unbiased version

log LP1(η) =
∑

x,y∈X∩W
0<‖x−y‖<R

log(λ̂(y)gη(y− x))−
∑

x∈X∩W

∫

B(x,R)∩W
λ̂(u)gη(u− x)du.

(17)
As in the stationary case, R is a user-specified tuning constant that may influence

the efficiency of the estimator. Obviously, if ρ is the (practical) interaction range of
the process, we have g(u) = 1 (or g(u) ≈ 1) for ‖u‖ > ρ. Thus, by using R > ρ, we
only introduce additional variance into the estimation of the interaction parameter η.
Moreover, using too large a R may lead to numerical instability of the maximization
procedure; see Sect. 8 for details. Thus, we recommend to use R somewhat smaller
than the likely interaction range of the analyzed point pattern. For a more detailed
discussion of the influence of the choice of R on the estimation for a selection of
shot-noise Cox process models, see Sect. 8.

7 Asymptotic properties

In Waagepetersen and Guan (2009), asymptotic normality of the estimators from the
two-step estimation procedure with the minimum contrast based on the K -function is
proved under certain moment and mixing conditions. Fulfillment of these conditions
is discussed for Poisson Neyman–Scott processes and log-Gaussian Cox processes.
These conditions are also satisfied for shot-noise Cox processes as we show in the two
following lemmas.

Lemma 1 Let X be a stationary shot-noise Cox process satisfying
∫
R+ rkV (dr) < ∞

for some k ∈ N. Then, X has well-defined moment measures up to the kth order and
all reduced factorial cumulant measures up to the kth order have finite total variation.
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Proof The first statement follows from Theorem 3 and Proposition 2 in Hellmund
et al. (2008). It is well-known for cluster processes (see e.g., Heinrich 1988) that if
the parent process has reduced factorial cumulant measures of finite total variation
up to order k and the distribution of the number of points in the clusters has finite
moments up to order k, then also all reduced factorial cumulant measures of the cluster
process up to order k have finite total variation. For any shot-noise Cox process X , it is
possible to define an approximating shot-noise Cox process with only a finite number
of clusters in a bounded region, i.e., with

∫
R+ V (dr) < ∞, and with the samemoment

measures up to the order k. The construction is based on Proposition 3 in Hellmund
et al. (2008). This approximating process is then just a standard cluster process with
stationary Poisson distribution of parents and as such with reduced factorial cumulant
measures up to the kth order of finite total variation. Since these reduced factorial
cumulant measures are identical to those of the original shot-noise Cox process X , the
second statement follows. 
�
Lemma 2 Let X be a stationary shot-noise Cox process inRd with

∫
R+ rV (dr) < ∞

so that the first-order moment measure is well-defined. Let

αp1,p2(m) = sup{α(F X (A),F X (B)) : d(A, B) ≥ m, |A| ≤ p1, |B| ≤ p2}, (18)

where p1, p2 > 0, F X (A) denotes the σ -algebra generated by X ∩ A, d(A, B)

denotes the Hausdorff distance between A and B, the supremum is taken over all sets
A, B inBd and

α(F1,F2) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ F1, B ∈ F2}

denotes the standard strong mixing coefficient.
If there exists a function h such that k(c, v) = h(v − c) and an ε > 0 such that

h(v) = O(|v|−(2d+ε)), as |v| → ∞, then
αp,p(m)

max(p,1) ≤ O(m−d−ε).

Proof Let us rewrite X as
⋃

(r,v)∈�ϒ
Xv , where Xv is the cluster centered around

a point located at v with intensity function rk(·, v). Denote X1 = ⋃
(r,v)∈�ϒ,v∈A Xv .

Then, using the fact that E(X1 ∩ B) = μ
∫
R+ rV (dr)

∫
A

∫
B k(v, u)dudv for any

A, B ∈ Bd , the proof is exactly the same as the proof of Lemma 1 in Prokešová and
Jensen (2013).

Asymptotic normality of the estimators obtained by the two-step estimation proce-
dure with the composite likelihood in the second step, based on the formula (12), is
briefly discussed in Section 6.3 of Jalilian et al. (2013).

For the two-step estimation procedure with Palm likelihood in the second step,
consistency and asymptotic normality can be shown along the same lines as in
Waagepetersen and Guan (2009, Theorem 1). In particular, Theorem 1 below cov-
ers all the point process models considered in Waagepetersen and Guan (2009). For
simplicity we restrict ourselves to the case of Rd = R

2.
We will consider an expanding window asymptotics such that X is observed on

a sequence of windows {Wn} expanding to R
2. The estimators obtained from X ∩
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Wn by the two-step estimation with either LP1 (17) or LP3 (15) are denoted β̂n

and η̂n . The corresponding score functions obtained for X ∩ Wn are Un(β, η) =
(Un,1(β),Un,2(β, η)). Further,wedenote byβ0 andη0 the true values of the parameters
to be estimated.

Let �n = |Wn|−1 Var(Un(β0, η0)) be the information matrix for the considered
score function and let us define

In =
(
In,11 In,12
0 In,22

)

= 1

|Wn|

(

−E
dUn(β, η)

d(β, η)T

∣
∣
∣
∣
(β,η)=(β0,η0)

)

,

where

In,11 = 1

|Wn|
∫

Wn

(λ′
β0

(u))T λ′
β0

(v)

λβ0(u)
du (19)

and

In,22 = 1

|Wn|
∫

Wn

∫

B(v,R)∩Wn

(g′
η0

(u − v))T g′
η0

(u − v)

gη0(u − v)
λβ0(u)λβ0(v)dudv (20)

are the same for LP1 and LP3, while

In,12 = 1

|Wn|
∫

Wn

λβ0(v)

∫

B(v,R)∩Wn

(λ′
β0

(u))T g′
η0

(u − v)dudv (21)

for LP1 and a double of this matrix for LP3.

Theorem 1 Let X be a SOIRS Cox process in R2 whose kth-order intensity functions
λ

(k)
β satisfy

λ
(k)
β (u1, . . . , uk) = λ(k)(u1, . . . uk)

k∏

i=1

λβ(ui ), k ∈ N, (22)

where λβ is the first-order intensity function of X and λ(k) are kth-order intensity
functions of a stationary Cox process. Let {Wn}∞n=1 be a sequence of observation
windows Wn = [an, bn]×[cn, dn], where (b−a) > 0, (d−c) > 0 and 0 ∈ I nt (Wn).
For s > 0 let Ai, j = [is, (i + 1)s) × [ js, ( j + 1)s) ⊕ R, i, j ∈ Z

2, and

αF
p1,p2(m) = sup

{

α(F X (B1),F
X (B2)) : B1 =

⋃

M1

Ai, j , B2 =
⋃

M2

Ai, j ,

|M1| ≤ p1, |M2| ≤ p2, d(M1, M2) ≥ m, M1, M2 ⊂ Z
2
}

,

where d(M1, M2) denotes the minimal distance between M1 and M2 in the grid Z
2

and α(F1,F2) is the standard strong mixing coefficient.
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Assume

(A0) λβ(u) = f (z(u)βT ) for some strictly increasing positive differentiable function
f and ‖z(u)‖ < K1, u ∈ R

2, for some K1 > 0 (bounded covariates);
(A1) λ(2) and λ(3) are bounded and there exists K2 so that∫ |λ(3)(0, v, v + u1) − λ(1)(0)λ(2)(0, u1)|dv < K2 and∫ |λ(4)(0, u1, v, v+u2)−λ(2)(0, u1)λ(2)(0, u2)|dv < K2 for all u1, u2 ∈ R

2;
(A2) λβ(u) and gη(u) have well-defined first and second derivatives with respect to

β and η, and these are continuous functions of (u, β) and (u, η), respectively;
(A3) lim infn→∞(λn,i i ) > 0, i = 1, 2, where λn,11 and λn,22 are the smallest eigen-

values of In,11 and In,22, respectively. The information matrices �n converge
to a positive definite matrix � as n → ∞;

(A4) λ(4+2ν)(u1, . . . , u4+2ν) < ∞ for some ν ∈ N;
(A5) There exists an s > 0 such that αF

2,∞(m) = O(m−δ) for some δ > 2(2+ ν)/ν.

Then, there exists a sequence {(β̂n, η̂n)}n≥1 for whichUn(β̂n, η̂n) = 0with probability
converging to 1 and

|Wn|1/2{(β̂n, η̂n) − (β0, η0)}In�−1/2
n

D−→ N (0, 1),

where N (0, 1) is the standard normal (t + q)-dimensional distribution.

Proof The proof is analogous to the proof of Waagepetersen and Guan (2009, The-
orem 1) for the two-step estimation with minimum contrast for the K -function.
However, we have used a different mixing assumption (A5) formulated directly for
the mixing coefficient of a random field. Our assumption is weaker than the one in
Waagepetersen and Guan (2009) and it suffices for the application of the central limit
theorem 3.3.1 in Guyon (1991) for random fields, which is needed in the proof. 
�
Remark If the kernel k of a stationary shot-noise Cox process is bounded and the
assumption of Lemma 1 is satisfied, then it follows from the formulae for λ(k) in
Hellmund et al. (2008, Section 4) that these are bounded and continuous. So are the
densities of the reduced factorial cumulant measures up to order k. Moreover, since the
kth order reduced factorial cumulant measures have finite total variation, it follows
that the integrals of the densities of the reduced factorial cumulant measures up to
order k are bounded. Thus, Lemma 1 for k = 4 implies assumption (A1).

Remark InWaagepetersen andGuan (2009, Theorem1) a strongermixing assumption
is used

(Av) there exist constants a > 8R2 and δ > 2(2 + ν)/ν such that αa,∞(m) =
O(m−δ).

This assumption is formulated for the mixing coefficient of the point process X and
as such it implies our assumption (A5). However, it is unnecessarily strong and no
simple conditions are available for Poisson Neyman–Scott processes or shot-noise
Cox processes which would ensure fulfillment of (Av). The assumption

sup
w∈[−m/2,m/2]2

{∫

R2\[−m,m]2
k(v − w)dv

}

= O(m−δ−2) (23)
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presented in Waagepetersen and Guan (2009, Appendix E) is not sufficient for (Av).
Nevertheless it is sufficient for assumption (A5), as the following lemma shows.

Lemma 3 Let X be a stationary shot-noise Cox process in R
2 with well-defined

first-order moment measure and kernel function k, satisfying (23). Then X satisfies
condition (A5).

Proof For a given s, let n = ms − s
2 − R > 0, and consider the sets E1 = A0,0 −

(s/2, s/2), E2 = R
2\[−n, n]2 and E3 = [−n/2, n/2]2. Further, using the cluster

representation of X , let X1 = ⋃
(r,v)∈�ϒ,v∈E3

Xv , X2 = X\X1. Then X1, X2 are
independent cluster processes and by standard arguments, like those inWaagepetersen
and Guan (2009, Appendix E), we get

α(F X (E1),F
X (E2)) ≤ 5(E |X1 ∩ E2| + E |X2 ∩ E1|)

≤ 5μ
∫

R+
rV (dr)

( ∫

[− n
2 , n2 ]2

∫

R2\[−n,n]2
k(u − v)dudv

+
∫

R2\[− n
2 , n2 ]2

∫

E1

k(u − v)dudv

)

≤ const

(

|E3| sup
v∈[− n

2 , n2 ]2

∫

R2\[−n,n]2
k(u − v)dudv

+|E1| sup
v∈E1

∫

R2\[− n
2 , n2 ]2

k(u − v)dudv

)

.

If m is sufficiently large such that E1 ⊂ [−n/4, n/4]2 we get from (23) that both
terms on the right-hand side are O(m−δ). This implies (A5) for αF

1,∞(m).

For αF
2,∞(m) we just need to consider for some (i, j) ∈ Z

2:

E1 = (A0,0 ∪ Ai, j ) − (s/2, s/2)

E2 = (R2\[−n, n]2)\([−n, n]2 + (is, js))

E3 = [−n/2, n/2]2 ∪ ([−n/2, n/2]2 + (is, js)).

We get by similar arguments as the ones given above

α(F X (E1),F
X (E2)) ≤ const

(

|E3| sup
v∈[− n

2 , n2 ]2

∫

R2\[−n,n]2
k(u − v)dudv

+|E1| sup
v∈(A0,0−(s/2,s/2))

∫

R2\[− n
2 , n2 ]2

k(u − v)dudv

)

,

where we have used the stationarity of X . Thus, again if s
2 + R < n

4 holds, we get
from (23) that both terms on the right-hand side are O(m−δ). This implies (A5) for
αF
2,∞(m). 
�
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The inhomogeneous shot-noise Cox process, as defined at the end of Sect. 3,
inherits the mixing properties of the unthinned homogeneous process, since the
inhomogeneous process was constructed by location-dependent thinning. Therefore,
condition (23) for the homogeneous kernel k ensures that (A5) is fulfilled also for the
inhomogeneous shot-noise Cox process X .

Remark The incomplete argument in Waagepetersen and Guan (2009, Appendix E)
stems from the fact that a set E1 = [−h, h]2 was considered for some h > 0 and
it was assumed that whatever Borel set A with fixed volume a will fit into such E1.
However, for αa,∞(m) to be of order O(m−δ), a universal set E1 would be needed,
which could cover all Borel sets of volume ≤ a. Unfortunately, this is not possible,
since the set A may be arbitrarily “thin” and so there will always exist some set A
which is not a subset of any fixed square E1. Therefore, the tail condition (23) can
only assure (A5) for the mixing coefficient of the random field and not (Av) for the
mixing coefficient of the point process X .

It is possible to use Theorem 1 to derive approximate confidence intervals for the
parameter estimates, if we are able to compute the information matrix �n . Below, we
give the formulae for the submatrices of the block representation, corresponding to
the decomposition into the following two parts of the score function

�n = |Wn|−1 Var(Un,1(β0),Un,2(β0, η0)) =
(

�n,11 �n,12

�T
n,12 �n,22

)

.

For both LP1 and LP3, we obtain the same expression

�n,11 = In,11 + 1

|Wn|
∫

Wn

∫

Wn

(λ′
β0

(u))T λ′
β0

(v)
(
g′
η0

(u − v) − 1
)
dudv.

For LP1 we get

�n,12 = 1

|Wn|
[ ∫

W 3
n

(λ′
β0

(w))T

λβ0(w)
g′
η0

(u − v)I (‖u − v‖ < R)

×
(

λ
(3)
β0

(w, u, v)

gη0(u − v)
− λβ0(u)λ

(2)
β0

(w, v)

)

dwdudv

+
∫

W 2
n

(λ′
β0

(u))T g′
η0

(u − v)I (‖u − v‖ < R)λβ0(v)dudv

]

and for LP3

�n,12 = 1

|Wn|
[ ∫

W 3
n

(λ′
β0

(w))T

λβ0(w)

g′
η0

(u − v)

gη0(u − v)
I (‖u − v‖ < R)
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×
(

λ
(3)
β0

(w, u, v) − λβ0(w)λ
(2)
β0

(u, v)

)

dwdudv

+ 2
∫

W 2
n

(λ′
β0

(u))T g′
η0

(u − v)I (‖u − v‖ < R)λβ0(v)dudv

]

.

Finally,

�n,22,LP3 = 1

|Wn|
[

2
∫

W 2
n

(g′
η0

(u − v))T g′
η0

(u − v)I (‖u − v‖ < R)

gη0(u − v)

λβ0(u)λβ0(v)dudv

+ 4
∫

W 3
n

(g′
η0

(u − v))T g′
η0

(v − w)

gη0(u − v)gη0(v − w)
I (‖u − v‖, ‖v − w‖ < R)

λβ0(u)λβ0(v)λβ0(w)λ(3)(u, v, w)dudvdw

+
∫

W 4
n

(g′
η0

(u − v))T g′
η0

(w − z)

gη0(u − v)gη0(w − z)
I (‖u − v‖, ‖w − z‖ < R)

(

λ
(4)
β0

(u, v, w, z) − λ
(2)
β0

(u, v)λ
(2)
β0

(w, z)

)

dudvdwdz

]

and for LP1

�n,22,LP1 = �n,22,LP3 + 1

|Wn|
[

− 3
∫

W 3
n

(g′
η0

(u − v))T g′
η0

(v − w)I (‖u − v‖, ‖v − w‖ < R)

λβ0(u)λβ0(v)λβ0(w)dudvdw

+
∫

W 4
n

(g′
η0

(u − v))T g′
η0

(w − z)I (‖u − v‖, ‖w − z‖ < R)

(

λ
(2)
β0

(v, z)λβ0(u)λβ0(w) − 2
λ(3)(v, u, z)

gη0(u − v)
λβ0(w)

)

dudvdwdz

]

.

See Sect. 8.3 for more details about the computation of the approximate confidence
intervals in practice.

8 Simulation study

8.1 Design of the simulation study

To compare the performance of the developed two-step estimation methods and to
assess the influence of the choice of the tuning constant R for the PL and CL methods
we applied theMCK , MCg, CL and PL estimation procedures to realizations from the
inhomogeneous gamma shot-noise Cox process (see Example 2) with parameters μ
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and θ , observed on the unit square W = [0, 1]2. We chose the smoothing kernel k(u)

to be the Gaussian kernel function with standard deviation σ (density of a zero-mean
bivariate radially symmetric normal distribution).

First, we have generated realizations of a homogeneous version of the process
(with the intensity μ

θ
) and then applied the location-dependent thinning, using the

inhomogeneity function

f (x) = exp(β1x1 − max(β1, 0)), x = (x1, x2) ∈ W.

Note that f is properly scaled to fulfill the condition maxW f = 1. The intensity
function of the thinned process is therefore μ

θ
f (x), x ∈ W . We can express the

intensity function as

λβ(x) = exp(β0 + β1x1), x ∈ W,

where β0 = logμ − log θ − max(β1, 0) and the interaction parameter is η = (μ, σ ).
The mean number of points in W is thus

E |X ∩ W | =
∫

W
λβ(x)dx = μ

θ · |β1| (1 − exp(−|β1|)). (24)

In the first estimation step, we used the Poisson log-likelihood function (11) to
estimate the parameter β = (β0, β1). The estimation was performed by means of the
function ppm from the R package Spatstat (Baddeley and Turner 2005; Baddeley
et al. 2015). The vector of interaction parameters η = (μ, σ ) was estimated in the
second step by the methods described in Sects. 5 and 6.

The minimum contrast estimation, using the inhomogeneous K -function (MCK )
and the pair-correlation function (MCg), was performed by a Spatstat routine.
The value of the tuning parameter r , see Eq. (6), was chosen as the minimal observed
interpoint distance in the given point pattern (which is a standard choice in similar
situations in the literature) while the value of the tuning parameter R was 4σ . The
value of 4σ corresponds to the practical range of interaction in the considered point
process. Using larger values of R would result in no further gain of information,
only in larger variability of the estimates. The variance stabilizing exponent q was
chosen to be 1/4 for MCK and 1/2 for MCg, based on our previous studies Dvořák
and Prokešová (2012) and Prokešová and Dvořák (2014). This established choice of
tuning constants can be considered an advantage of the minimum contrast methods
in this simulation study while for the composite likelihood (CL) and Palm likelihood
(PL) methods the influence of the tuning parameter R has not been studied before and
no recommendation is available.

The CL and PL estimates were obtained by a grid search for σ combined with
numerical maximization in μ (combination of golden section search and successive
parabolic interpolation performed by the R function optimize). Simultaneous ma-
ximization for the complete vector (μ, σ ) by various optimization algorithms turned
out to be numerically unstable. In order to investigate the influence of the tuning
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μ = 25, θ = 1 20 μ = 25, θ = 1 30 μ = 50, θ = 1 10 μ = 50, θ = 1 20

Fig. 2 Realizations of the point processes used in the simulation study. For details, see Sect. 8.1

parameter R for the CL and PL methods, the estimates were computed using three
different values of R = 0.1, 0.2 and 0.3.

Finally, the remaining parameter θ was estimated from (24) where E |X ∩ W | was
replaced by the actual number of observed points in W and μ and β1 were similarly
replaced by their respective estimates.

To study properties of the estimators under different cluster size distributions we
chose the values ofμ and θ to be 25 or 50 and 1/10, 1/20 or 1/30, respectively. Different
degree of clustering was obtained by taking the values of σ to be 0.01, 0.02 or 0.03.
For the inhomogeneity function we use the parameter value β1 = 1.

We disregarded the two extreme combination of parameters (μ = 25, θ = 1/10
andμ = 50, θ = 1/30). The remaining combinations of parameter values result in the
mean number of points in X∩W ranging from approx. 310–630. For each combination
of parameters we generated 500 independent realizations from our model and re-
estimated the parameters. All the estimation procedures were applied to the same
set of simulated patterns. Figure 2 shows realizations of the point processes for the
considered combinations of parameters.

8.2 Results of the simulation study

Tables 1, 2 and 3 show relative mean squared errors (MSEs) of the estimators and rel-
ative mean biases. Relative quantities are for MSEs obtained by dividing by the square
of the true value of the estimated parameter while in case of biases we have divided
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Table 1 Relative mean squared errors (upper row) and relative mean biases (lower row) of the estimators of
σ , determined by simulation of the point process models with the specified combinations of the parameters
μ, θ and σ , shown in the left column

μ θ σ MCK MCg CL PL1 PL3

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

25 1/20 0.01 0.004 0.006 0.007 0.020 0.013 0.009 0.009 0.009 0.011 0.011 0.011

0.003 −0.047 0.005 0.013 0.009−0.019−0.019−0.019−0.001 −0.001 −0.001

25 1/20 0.02 0.007 0.009 0.006 0.020 0.041 0.015 0.016 0.016 0.015 0.023 0.023

−0.010 −0.045 0.002 0.015 0.024−0.072−0.072−0.072−0.016−0.009−0.009

25 1/20 0.03 0.017 0.017 0.020 0.022 0.041 0.029 0.034 0.034 0.019 0.057 0.124

−0.021 −0.048 0.021 0.016 0.031−0.124−0.147−0.147−0.027−0.006 0.013

25 1/30 0.01 0.003 0.005 0.009 0.038 0.043 0.018 0.019 0.019 0.023 0.025 0.025

−0.004 −0.048 0.006 0.024 0.026−0.011−0.011−0.011 0.008 0.009 0.009

25 1/30 0.02 0.006 0.008 0.005 0.020 0.036 0.016 0.017 0.017 0.016 0.038 0.056

−0.009 −0.039 0.001 0.020 0.030−0.069−0.069−0.069−0.012 0.001 0.003

25 1/30 0.03 0.011 0.013 0.013 0.016 0.034 0.027 0.033 0.033 0.014 0.040 0.108

−0.034 −0.057 0.012 0.005 0.013−0.131−0.154−0.154−0.035−0.023−0.008

50 1/10 0.01 0.007 0.007 0.010 0.013 0.012 0.008 0.008 0.008 0.010 0.010 0.010

0.003 −0.045 0.012 0.014 0.012−0.020−0.020−0.020 0.003 0.003 0.003

50 1/10 0.02 0.012 0.013 0.010 0.021 0.054 0.020 0.022 0.022 0.018 0.051 0.069

−0.017 −0.052−0.001 0.006 0.023−0.098−0.098−0.098−0.019−0.003−0.001

50 1/10 0.03 0.020 0.023 0.040 0.023 0.049 0.046 0.052 0.052 0.021 0.055 NA

−0.038 −0.066 0.044 0.006 0.017−0.018−0.020−0.020−0.041−0.022 NA

50 1/20 0.01 0.003 0.005 0.005 0.011 0.011 0.008 0.008 0.008 0.009 0.009 0.009

−0.002 −0.046 0.002 0.004 0.004−0.026−0.026−0.026−0.006−0.006−0.006

50 1/20 0.02 0.006 0.008 0.005 0.016 0.028 0.015 0.016 0.016 0.012 0.043 0.074

−0.007 −0.038 0.006 0.013 0.018−0.090−0.090−0.090−0.010 0.007 0.011

50 1/20 0.03 0.012 0.013 0.014 0.020 0.041 0.038 0.045 0.045 0.016 0.037 0.057

−0.021 −0.045 0.018 0.018 0.038−0.166−0.190−0.190−0.021−0.008 0.001

The estimation methods considered are MCK , MCg, CL, PL1 and PL3. For the three latter methods with
tuning parameter R = 0.1, 0.2 and 0.3, respectively. The value closest to 0 in each row is indicated in
boldface

by the true parameter value. The overall conclusion is that there is no uniformly best
estimator. The performance of the different estimators depends both on the particu-
lar parameter which is to be estimated and on the tuning parameter R. However, the
performance (according to the MSE) of the four estimators MCK , MCg, CL (with
properly chosen R) and PL3 (with properly chosen R) is quite similar. Let us discuss
the results for each of the parameters in more detail.

8.2.1 Estimation of σ

The scale parameter σ of the kernel k is the easiest one to estimate. The relative
MSE of the estimators MCK , MCg, CL (with R = 0.1) and PL3 (with R = 0.1)
is at most 2 % for all the considered models, thus all these four estimators produce
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Table 2 Relative mean squared errors (upper row) and relative mean biases (lower row) of the estimators of
μ, determined by simulation of the point process models with the specified combinations of the parameters
μ, θ and σ , shown in the left column

μ θ σ MCK MCg CL PL1 PL3

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

25 1/20 0.01 0.098 0.111 0.249 0.139 0.126 0.154 0.154 0.154 0.125 0.125 0.125

0.156 0.177 0.089 0.093 0.104 0.229 0.229 0.229 0.183 0.183 0.183

25 1/20 0.02 0.159 0.173 0.263 0.221 0.201 0.325 0.325 0.325 0.197 0.198 0.198

0.183 0.200 0.091 0.102 0.109 0.363 0.363 0.363 0.221 0.218 0.218

25 1/20 0.03 0.277 0.300 0.446 0.261 0.272 0.710 0.766 0.766 0.299 0.326 0.330

0.270 0.289 0.096 0.114 0.120 0.596 0.632 0.632 0.292 0.290 0.287

25 1/30 0.01 0.097 0.102 0.263 0.155 0.133 0.145 0.145 0.145 0.122 0.122 0.122

0.141 0.148 0.089 0.086 0.087 0.207 0.207 0.207 0.162 0.162 0.162

25 1/30 0.02 0.136 0.146 0.233 0.195 0.178 0.344 0.345 0.345 0.208 0.210 0.211

0.183 0.194 0.101 0.091 0.096 0.376 0.376 0.376 0.231 0.227 0.227

25 1/30 0.03 0.223 0.230 0.314 0.293 0.307 0.679 0.733 0.733 0.278 0.293 0.295

0.251 0.260 0.072 0.118 0.150 0.585 0.620 0.620 0.284 0.284 0.281

50 1/10 0.01 0.068 0.082 0.111 0.086 0.086 0.101 0.101 0.101 0.081 0.081 0.081

0.113 0.144 0.061 0.068 0.079 0.175 0.175 0.175 0.125 0.125 0.125

50 1/10 0.02 0.122 0.137 0.180 0.187 0.187 0.314 0.315 0.315 0.166 0.169 0.169

0.148 0.172 0.063 0.091 0.093 0.350 0.351 0.351 0.169 0.164 0.164

50 1/10 0.03 0.255 0.272 0.440 0.276 0.317 1.07 1.12 1.12 0.342 0.362 NA

0.247 0.268 0.040 0.123 0.154 0.742 0.781 0.781 0.288 0.287 NA

50 1/20 0.01 0.065 0.070 0.120 0.088 0.086 0.104 0.104 0.104 0.083 0.083 0.083

0.100 0.110 0.055 0.063 0.069 0.169 0.169 0.169 0.122 0.122 0.122

50 1/20 0.02 0.088 0.095 0.125 0.137 0.132 0.243 0.243 0.243 0.119 0.122 0.123

0.135 0.147 0.064 0.087 0.095 0.331 0.332 0.332 0.153 0.148 0.148

50 1/20 0.03 0.173 0.179 0.240 0.220 0.259 0.810 0.864 0.864 0.238 0.255 0.257

0.191 0.202 0.077 0.100 0.101 0.651 0.692 0.692 0.220 0.220 0.219

The estimation methods considered are MCK , MCg, CL, PL1 and PL3. For the three latter methods with
tuning parameter R = 0.1, 0.2 and 0.3, respectively. The value closest to 0 in each row is indicated in
boldface

very good estimates; see Table 1. Both minimum contrast methods have very similar
performance, butMCK is always slightly better thanMCg.When estimating the kernel
scale parameter σ with CL, it is important to choose a reasonably small value of the
tuning parameter R compared to the cluster size; compare with Fig. 2. Thus, CL with
R = 0.1 performs better than CL with larger values of R. CL with R = 0.1 is also
practically unbiased, the small positive bias is in the majority of cases the smallest
among the biases of all the considered estimators. In contrast, PL1 does not depend
very much on the value of R. For models with looser clusters (σ = 0.02, 0.03), PL1
has the worst performance of all the estimators. It always has a large negative bias. For
σ = 0.02, 0.03, the bias is always substantially larger than for any other estimator.
As for CL, the performance of PL3 depends on R, primarily for loose clusters (σ =
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Table 3 Relative mean squared errors (upper row) and relative mean biases (lower row) of the estimators of
θ , determined by simulation of the point process models with the specified combinations of the parameters
μ, θ and σ , shown in the left column

μ θ σ MCK MCg CL PL1 PL3 β̂1

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

25 1/20 0.01 0.677 0.730 0.792 0.648 0.637 0.799 0.799 0.799 0.719 0.719 0.719 0.498

0.387 0.414 0.293 0.305 0.321 0.460 0.460 0.460 0.409 0.409 0.409 −0.065

25 1/20 0.02 0.690 0.728 0.790 0.705 0.668 1.01 1.01 1.01 0.739 0.737 0.737 0.492

0.363 0.384 0.249 0.269 0.277 0.552 0.553 0.553 0.400 0.397 0.397 −0.008

25 1/20 0.03 1.03 1.07 1.15 0.778 0.800 1.93 2.05 2.05 1.08 1.14 1.14 0.507

0.484 0.506 0.274 0.298 0.310 0.843 0.884 0.884 0.508 0.509 0.505 −0.007

25 1/30 0.01 0.621 0.642 0.800 0.623 0.569 0.670 0.670 0.670 0.611 0.611 0.611 0.541

0.314 0.323 0.254 0.250 0.249 0.367 0.367 0.367 0.329 0.329 0.329 −0.007

25 1/30 0.02 0.635 0.661 0.674 0.644 0.627 0.929 0.931 0.931 0.692 0.690 0.690 0.441

0.318 0.331 0.227 0.217 0.223 0.510 0.510 0.510 0.360 0.354 0.354 0.044

25 1/30 0.03 0.872 0.889 0.897 0.817 0.882 1.88 1.99 1.99 1.07 1.10 1.10 0.511

0.436 0.446 0.237 0.285 0.325 0.806 0.847 0.847 0.480 0.486 0.486 0.002

50 1/10 0.01 0.229 0.262 0.280 0.230 0.235 0.277 0.277 0.277 0.241 0.241 0.241 0.272

0.190 0.224 0.139 0.143 0.154 0.252 0.252 0.252 0.201 0.201 0.201 0.028

50 1/10 0.02 0.320 0.352 0.302 0.363 0.375 0.557 0.559 0.559 0.357 0.361 0.361 0.257

0.210 0.235 0.109 0.150 0.153 0.412 0.413 0.413 0.229 0.224 0.224 0.026

50 1/10 0.03 0.631 0.658 0.776 0.630 0.660 1.82 1.89 1.89 0.808 0.828 NA 0.266

0.328 0.349 0.096 0.195 0.227 0.839 0.879 0.879 0.376 0.375 NA 0.030

50 1/20 0.01 0.198 0.209 0.231 0.198 0.201 0.254 0.254 0.254 0.220 0.220 0.220 0.263

0.180 0.191 0.129 0.137 0.145 0.249 0.249 0.249 0.200 0.200 0.200 −0.024

50 1/20 0.02 0.291 0.304 0.304 0.318 0.323 0.508 0.509 0.509 0.316 0.318 0.318 0.245

0.208 0.221 0.134 0.156 0.165 0.406 0.407 0.407 0.222 0.216 0.216 −0.017

50 1/20 0.03 0.381 0.386 0.366 0.380 0.455 1.17 1.24 1.24 0.457 0.479 0.480 0.245

0.244 0.252 0.121 0.149 0.156 0.711 0.753 0.753 0.275 0.275 0.273 0.025

The estimation methods considered are MCK , MCg, CL, PL1 and PL3. For the three latter methods with
tuning parameter R = 0.1, 0.2 and 0.3, respectively. The value closest to 0 in each row is indicated in
boldface. The last column shows the relative mean squared errors (upper row) and relative mean biases
(lower row) of the estimated inhomogeneity parameter β̂1

0.02, 0.03) where it is important not to choose R too large. In one case, the estimate
of σ cannot be determined for the large value of R = 0.3 due to numerical instability
of the estimation procedure. MCK had the best overall performance (according to
MSE).

8.2.2 Estimation of μ

The parameterμ is harder to estimate than σ and the performance of all the estimators
shows the same trends in the dependence of the model parameter values; see Table 2.
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The MSEs of the estimators increase with looser clusters (growing σ ) and smaller
number of observed points (growing θ or smaller μ). The minimum contrast methods
perform also for μ very similarly, but MCK is always slightly better than MCg. In
particular, MCK is less biased thanMCg. CL has again the smallest bias among all the
methods. The performance of CL depends on the value of the tuning parameter R and,
generally, a higher precision of the estimates of μ is obtained for the larger values of
R = 0.2, 0.3 than for estimation ofσ . PL1does not performwell. In particular, PL1has
a very large bias which grows with the model parameter σ . The performance of PL3 is
comparable to that of CL and always better than that of PL1. Its performance depends
only slightly on the tuning parameter R. The overall best performance (according to
MSE) is again showed by MCK . All the estimators overestimate μ but the bias of
MCK , MCg and PL3 is comparable (smaller than the bias of PL1 and larger than the
bias of CL).

8.2.3 Estimation of θ

The parameter θ governs the distribution of the number of points in the observed
clusters (or the weight of the clusters) and is the parameter hardest to estimate. A large
number of observed points is necessary to estimate it well. For all estimation methods,
θ is computed from Eq. (24), using β̂1 and μ̂. The quality of θ̂ depends on the quality
of μ̂ and β̂1. Table 3 shows in the last column the MSE and bias of β̂1. Note that the
MSE of β̂1 is quite large, especially for point patterns with smaller number of points
and loose clusters. For all the estimators, the precision decreases with looser clusters
(growing σ ) and smaller number of observed points (growing θ or smallerμ). Between
the MC methods, MCK is always slightly better than MCg. The best estimates of θ

are obtained byMCK in three models considered in the simulation study [(μ, θ, σ ) =
(50, 1/10, 0.01), (50, 1/20, 0.01), (50, 1/20, 0.02)], in all the other models CL with
an appropriate value of R produces the best estimates of θ . In most cases, PL3 shows
similar behavior as CL and is superior to PL1. All the methods overestimate the value
of θ , CL has the smallest bias.

8.2.4 Further observations

Even though both LP1 and LP3 lead to unbiased estimating equations, the estimates
of the parameters μ and θ governing the mean number and the distribution of the
weights of the clusters had systematically larger bias for LP1 than for LP3. This
fact can be explained as follows. Formula (13) for LP1 does not acknowledge the
“probability of observing” the difference process Yx around the observed point x ∈ X .
This “probability of observing”Yx is the same as the probability of observing a point of
the process X at location x which is proportional to λ(x). We have a higher probability
of encountering aYx for x fromhigh-intensity subareas ofW . This is not acknowledged
in (13) since all the difference processes Yx have the same weight. Consequently,
since Yx from the high-intensity areas has a smaller weight than the correct one,
we obtain an extra positive bias for μ̂ (“mean number of clusters”) to compensate the
discrepancy between (13) and the data. Formula (15) for LP3 includes the approximate
“probabilities” λ̂(x) of observing Yx . Therefore, we prefer LP3 to LP1, particularly
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for obviously inhomogeneous point process data. Of course, this issue of reweighting
by λ(x) is not encountered in the stationary case described in Sect. 4.3.

As stated in the discussion for the particular parameters, a good choice of the tuning
parameter R is crucial for the performance of PL estimators. The best performance of
the PL1 and PL3 estimators is always obtained with R = 0.1. For larger R = 0.2, 0.3,
themaximization of thePalm likelihoodgets numerically less stable.Wehave observed
a certain number of very large outlier estimates σ̂ of σ . In some cases the procedure
can even diverge. This happened for one-point pattern with the true parameter values
μ = 50, θ = 1/10, σ = 0.03 and PL3 with R = 0.3. Therefore for this case there is
N A in the tables. To a smaller extent the problemwith outlier estimates and numerical
instability also applies to the CL estimates with larger R (in particular R = 0.3).

It is also worth noting that when estimatingμ and θ , the PL3 version is rather robust
w.r.t. the choice of R. When these parameters are of particular interest, one may opt
for the PL3 method with confidence that a possible unlucky choice of R would not
compromise the resulting estimates.

Concerning the overall numerical complexity of the compared estimation methods,
the fastest are the MCK and MCg methods as implemented in Spatstat. CL and
PL estimates are somewhat slower to compute because of the grid search for σ . They
have comparable computation time that increases with increasing value of the tuning
parameter R, since more data from X ∩ W need to be incorporated.

We have also studied the correlation between the estimators. In all cases we get
negative correlation between σ̂ and μ̂. The absolute value of the correlation ranges
between 0.2 and 0.3 for the tight clusters case with σ = 0.01, around 0.5 for σ = 0.02
andgrowsup to 0.6−0.7 for the loose clusterswithσ = 0.03.This is nicely explainable
by the fact thatwith largerσ weobserve “looser” and therefore also less distinguishable
clusters in the point pattern. Thus the larger the estimated size σ̂ of the clusters, the
smaller the estimated number μ̂ of the clusters. The smallest correlation (in absolute
value) is always obtained by theMCK andMCg estimators, the CL and PL estimators
usually have 10 % larger correlation.

Since θ̂ is derived from μ̂, the correlation between σ̂ and θ̂ follows the same
pattern as the correlation between σ̂ and μ̂. The only difference is that it is uni-
formly approximately 10 % smaller in absolute value in all the cases. This loss in
the dependence is explainable by the transformation and the use of the total number
of observed points in X ∩ W (a quantity not used for estimation of the other two
parameters).

8.3 Asymptotic standard deviations for Palm likelihood estimates

In Theorem 1 we have derived the asymptotic normality for the Palm likelihood esti-
mators PL1 and PL3 when the observation windowWn expands towardsR2. To check
the applicability of the asymptotics for finite sample sizes we have computed the
asymptotic standard deviations and the confidence intervals for σ and μ based on
Theorem 1, using the data from the simulation study. We show the results for the PL3
method, since according to the simulation results in the preceding subsection PL3 is
to be preferred.
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Table 4 Approximate asymptotic standard deviations, empirical standard deviations and coverage (cvrg)
of the nominal 95 % approximate confidence interval for the estimates σ̂ and μ̂ computed by the PL3
method

μ θ σ as. sd (σ̂ ) emp. sd (σ̂ ) cvrg (σ ) as. sd (μ̂) emp. sd (μ̂) cvrg (μ)

25 1/20 0.01 0.0008 0.0010 0.95 9.8 7.6 0.97

0.02 0.0033 0.0024 0.98 12 9.6 0.95

0.03 0.0042 0.0040 0.96 11 12 0.90

25 1/30 0.01 0.0010 0.0015 0.95 9.4 7.7 0.97

0.02 0.0026 0.0025 0.96 9.2 9.8 0.90

0.03 0.0041 0.0034 0.98 11 11 0.90

50 1/10 0.01 0.0009 0.0010 0.93 13 13 0.92

0.02 0.0028 0.0027 0.96 17 19 0.89

0.03 0.0045 0.0041 0.97 20 25 0.88

50 1/20 0.01 0.0007 0.0010 0.95 14 13 0.95

0.02 0.0025 0.0022 0.96 16 19 0.93

0.03 0.0044 0.0038 0.98 21 22 0.92

For details see Sect. 8.3

When applying Theorem 1 the information matrix In and the covariance matrix
�n must be computed. The matrix In can be computed by numerical integration from
the formulae (19)–(21). In principle, the covariance matrix �n can be computed by
numerical integration from the formulae at the end of Sect. 7. However, these formulae
include intensity functions of the 3rd and 4th order which are quite complicated or
even unavailable in closed form for a particular model. An alternative is to use the
empirical covariance matrix of the score function based on the simulations. By this
method we obtained the asymptotic standard deviations of σ̂ and μ̂.

In Table 4, the asymptotic standard deviations are compared with the standard
deviations of σ̂ and μ̂ computed from the simulations. Further we have determined
the fraction of the estimates which fall into the approximate 95 % confidence interval,
centered around the theoretical value of the estimated parameter and with length
determined by the asymptotic standard deviation. This fraction is reported as coverage
in Table 4. Note that the parameter θ is not included in Table 4 because Theorem 1
is not directly applicable to this parameter which is estimated using β̂1 and μ̂ in
(24).

The simulation results in Table 4 show good agreement between the empirical
standard deviations and the asymptotic standard deviations from the simulated para-
meter estimates. The coverage of the confidence interval are also close to the nominal
95 %. Note that the results are somewhat better for the easier-to-estimate parameter σ

than for μ.

9 Conclusions and perspectives

The performance of the different two-step estimators has been compared in a simula-
tion study of several inhomogeneous gamma shot-noiseCoxprocesses. The conclusion
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is that the performance of the four methods MCK , MCg, CL and PL3 is nearly equiv-
alent. All of them are able to estimate the interaction parameter σ (the scale of the
kernel k) very precisely. The parameter μ is also estimated well by all the methods.
The worst performance was observed when estimating the distribution of the weights
of the clusters (i.e., parameter θ ).

Further we have investigated how the asymptotic theory derived for the Palm like-
lihood estimator in Sect. 7 applies in the situation of the simulation study. We have
computed the approximate asymptotic standard deviations and confidence intervals
based on the asymptotic normality derived in Theorem 1. They show good agreement
with their empirical counterparts computed directly from the simulations.

The inhomogeneous spatial point process model studied in the present paper is
an example from the most well-known class of inhomogeneous point processes: the
second-order intensity-reweighted stationary processes, originally proposed in Bad-
deley et al. (2000). It is, of course, important to be able to test the fit of such a model.
Permutation and bootstrap tests have recently been developed for this purpose; see
Hahn and Jensen (2015). It is also worth stressing, that is not necessary to use a para-
metric form of the inhomogeneity function if the user feels uncomfortable with that.
Instead, the inhomogeneity function may be estimated directly from data using a non-
parametric estimate of the intensity function. This alternative procedure has been tried
out in Hahn and Jensen (2015).
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