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Abstract In this paper, we consider how to select both the fixed effects and the
random effects in linear mixed models. To make variable selection more efficient for
such models in which there are high correlations between covariates associated with
fixed and random effects, a novel approach is proposed, which orthogonalizes fixed
and random effects such that the two sets of effects can be separately selected with
less influence on one another. Also, unlike most of existing methods with parametric
assumptions, the new method only needs fourth order moments of involved random
variables. The oracle property is proved. the performance of our method is examined
by a simulation study.

Keywords Linear mixed-effects models · Fixed and random effects selection ·
Orthogonality

1 Introduction

Let the observations {yi , xi , zi , li }ni=1 follow from the linear mixed-effects model

yi = xiβ + zi bi + εi , i = 1, . . . , n, (1)
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628 P. Wu et al.

where yi = (yi1, . . . , yili )
τ is the response for group i , li is the number of observations

in the i th group, xi and zi are, respectively, the given between-individuals and within-
individuals design matrices of dimensions li × p and li ×q for the fixed effects vector
β and the random effects vector bi with zero mean and covariance matrix D, and
εi = (εi1, . . . , εili )

τ is the i th individual error with zero mean and covariance matrix
σ 2 Ili . Here Il means an identitymatrix of l×l. Assume that b1, . . . , bn are independent
and identically distributed (i.i.d.), εi1, . . . , εili are also i.i.d. for every group i , and
are independent with {b1, . . . , bn}. When there are many fixed and random effects,
and actually some (maybe most) of them are unimportant for the response, variable
selection is a natural and important topic.

To handle this problem, penalization-based approaches are useful. Under the nor-
mality assumption, examples include the following. Pu and Niu (2006) extended the
generalized information criterion (Rao and Wu 1989) to select linear mixed-effects
models. Bondell et al. (2010) suggested a joint log likelihood-based adaptive LASSO
(Zou 2006). Ibrahim et al. (2011) developed another maximum penalized likelihood
procedure for general mixed-effects models, but which was mainly used for linear
mixed-effects models. Fan and Li (2012) applied a class of nonconcave penalized
profile likelihood methods for selecting and estimating important fixed effects, and
proposed a group variable selection strategy to simultaneously select and estimate
important random effects. These likelihood-based approaches rely on the normal-
ity assumption that can at most be relaxed to parametric distribution, and cannot be
applied to the cases without parametric assumptions. To relax parametric distribution
assumption, Jiang and Rao (2003) proposed an alternative two-stage procedure. In
their paper, the fixed effects are simply selected through marginal models that ignore
the impact from the random effects. Jiang et al. (2008) proposed a ‘fence’ method to
simultaneously select both the fixed and random effects for a general mixed model.
As their simulations suggested, their method works well numerically for selecting the
fixed effects. However, it is not clear whether it works well for selecting the random
effects. Peng and Lu (2012) suggested an iterative estimating method with the SCAD
penalty (Fan and Li 2001) to overcome the above issue. See Fan and Li (2012) for the
recent developments on variable selection for linear mixed models.

There is another particularly important issue for variable selection in mixed-effects
models. We know that the characteristics and roles that the fixed and random effects
play are very different. The covariate, say, for an unimportant fixed effect may highly
correlate with the covariate(s) for some important random effect(s) and vice versa.
Therefore, when we have prior information on which are fixed effects and which are
random effects, it should be a good strategy, via a separation selection approach, to
avoid the impact from one set of effects when we select effects in the another set. How-
ever, how to achieve this goal is a challenge. All existing approaches of simultaneous
selection are to transfer the selection for both the effects to a fixed effects selection
in a conditional sense, particularly for the random effects, by using a sophisticated
penalty such as the LASSO (Ibrahim et al. 2011). Note that for a successful selec-
tion, all existing penalized-based methods require strong constraint on the correlation
between important and unimportant covariates. However, high correlation is just a
case particularly for mixed-effects models.
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New variable selection for linear mixed-effects models 629

Accounting for these issues, we develop an orthogonalization-based approach to
separately select both the fixed and random effects. It is very easy to implement as
all selection steps are based on the least squares, and requires no specific distribution
assumption other than the existence of fourth order moments. The method is also two-
stage: selecting the fixed effects first and the random effects next. However, unlike
Jiang and Rao (2003), we do not simply usemarginal models to select the fixed effects,
which simply regards the random effects as error terms in this stage. Our procedure
is as follows. First, a QR decomposition (see Gentle 1998) of the design matrices
zi is applied to constructing a simple homogeneous linear regression model [in (2)
in the next section], which does not depend on the random effects. The resulting
homogeneous linear model is regarded as a first-stage initial working model. The
selection for the fixed effects is then based on this newly defined model. Second,
after the important fixed effects are selected to form a second-stage working model,
selecting the random effects from this working model is then implemented. Note that
to remove random effects from amodel, we need to eliminate the corresponding entire
rows and columns of D to form the final working model. This is the main difficulty
in this stage. To solve this problem, a corrected Kronecker tensor product of model
residuals is defined. When the first-stage initial working model and the second-stage
working model are defined, the fixed and random effects are separately selected by a
sophisticated variable selection approach. In this paper, we use the SCAD penalty for
models (2) and (12) below to select the two kinds of effects successively. Of course,
one can also use other penalties such as the adaptive LASSO (Zou 2006) which has
the oracle property too. With this method, the following results are acquired:

• Orthogonalization makes submodel (2) below be a simple homogeneous linear
regression model without the random effects. Only the second order moment of
the error is needed for us to define the SCAD penalized least squares estimate
β̂ of β with the oracle property. The estimation procedure is very simple to be
implemented and then not affected by the random effects.

• The method is ready to handle nonlinear/semiparametric/non-parametric models
in which the fixed and random effects are of an additive structure.

The rest of the article is organized as follows. The main selection and estimation
procedures are described in Sect. 2. Section 3 provides the asymptotic properties of
the resulting estimates. Section 4 reports the simulation results. Some discussion is
given in Sect. 5. All technical details are relegated to Appendix.

2 Methodology development

2.1 Selection of fixed effects

It is obvious that if we want to select the fixed effects with less impact from the
random effects, a direct way is to remove the random effects from the model such that
the selection is based on a working model without them. To this end, we assume with
no loss of generality that the design matrices zi are of full column rank. Recalling the
definitionof theQRdecompositionof amatrix, the designmatrix zi canbedecomposed
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as zi = Qi

(
Ri

0

)
,where Qi is an orthogonal matrix and Rzi an upper triangular one.

Partition Qi to be Qi = (Qi1, Qi2), where Qi1 is a li×qmatrix and Qi2 is a li×(li−q)

matrix. It is easy to check that zi = Qi1Ri , Qτ
i2Qi1 = 0 and then Qτ

i2zi = 0; see
Gentle (1998) ( Sect. 3.2.2, pp. 95–97) for more details. Frommodel (1), we have that,
for i = 1, . . . , n,

Qτ
i2yi = Qτ

i2xiβ + Qτ
i2εi . (2)

Note that model (2) is constructed in the orthogonal column space of the design
matrices of zi , and thus does not depend on the random effects. SeeWu and Zhu (2010)
for details. Define Q2 = diag(Q12, . . . , Qn2), X = (xτ

1 , . . . , xτ
n )τ , Y = (Y1, . . . ,Yn)

and ε = (ετ
1 , . . . , ε

τ
n )

τ . Then we can rewrite model (2) in matrix form as

Qτ
2Y = Qτ

2Xβ + Qτ
2ε. (3)

Define N = ∑n
i=1 li . It follows from E(Qτ

2εε
τ Qτ

2) = σ 2 IN−nq that model (3) is
homogeneous. One can easily obtain the best linear unbiased estimation of β via
minimizing the sum of squared residual errors. Furthermore, for selection, one can
minimize this sum with a penalized function on β to decide whether to include or
exclude some fixed effects.

In this paper, SCAD (Fan and Li 2001) is applied to selecting effects. Of course,
other selection methods are also feasible. We use SCAD due to its merits resulting
in an estimate with unbiasedness, sparsity an continuity. The SCAD penalized least
squares is as follows:

S1(β) = 1

2
(Y − Xβ)τ Pzτ (Y − Xβ)τ + N1

p∑
j=1

pλ1(|β j |), (4)

where N1 = N − nq, Pzτ = Q2Qτ
2 = diag(Pzτ1 , . . . , Pzτn ), and the function pλ(x)

has the first derivative p′
λ(x) at any value λ as follows:

p′
λ(x) = λ

{
I (x ≤ λ) + (aλ − x)+

(a − 1)λ
I (x > λ)

}
. (5)

Here λ and a in (4) are tuning parameters and need to be selected in practice. However,
in Fan and Li (2001), the selection of a, by data-driven method, cannot improve the
performance significantly, and a = 3.7 was suggested and then we use it throughout
our study. In Sect. 3, we will suggest how to apply the GCV criterion to choose the
tuning parameter.

Note that the penalized function in (5) is singular at the origin, and it does not
have continuous second order derivative. Hence there not exist an exact solution by
minimizing the objective function (4). The following approximation is used to solve
this optimization problem, up to some constant terms:

2S1(β) ∝ (Y − Xβ)τ Pzτ (Y − Xβ)τ + N1β
τ�λ1(β0)β,
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New variable selection for linear mixed-effects models 631

where

�(λ1, β) = diag
{
p′
λ1

(|β1|)/|β1|, . . . , p′
λ1

(|βp|)/|βp|
}
. (6)

See Fan and Li (2001) for details. Use the orthogonalization-based least squares esti-
mate, as an initial estimate, β̂obe = (X τ Pzτ X)−1 X τ Pzτ Y , which is defined inWu and
Zhu (2010). Then the (k + 1)th iterative quadratic minimization problem in (4) can
be solved by computing the ridge estimation

β̂
(k+1)
obpe =

[
X τ Pzτ X + N1�(λ1, β̂

(k)
obpe)

]−1
X τ Pzτ Y. (7)

Now we study the asymptotic theory of β̂obpe. Rewrite β = (βτ
1 , βτ

2 )τ . Without
loss of generality, we assume that β2 = 0. Correspondingly, we have xi = (xi1, xi2)
and X = (X1, X2). Let s denote the number of nonzero components of β1. Denote
β1 = (β11, . . . , β1s)

τ and let

an(λ1) = max
{
p′
λ1

(|β1 j |), j = 1, . . . , s
}
. (8)

Then the following theorem states that β̂obpe converges at the rate Op(n−1/2+an(λ1)).

Theorem 1 Assume that the moments up to fourth order of the errors exist and con-
ditions (C1) − (C3) in Appendix hold. When

max
{|p′′

λ1
(|β1 j |)| : j = 1, . . . , s

} → 0, (9)

there exists a local minimizer β̂obpe of S1(β) such that ‖ β̂obpe − β ‖= Op(n−1/2 +
an(λ1)).

Let β̂jobpe be the corresponding orthogonalization-based penalized estimates of
β j for j = 1, 2. We can prove the oracle property that β̂2obpe = 0 and β̂1obpe is
asymptotically normal. Define

�1 = diag
(
p′′
λ1

(|β11|), . . . , p′′
λ1

(|β1s |)
)
,

and

ω1 = (
p′
λ1

(|β11|)sgn(β11), . . . , p
′
λ1

(|β1s |)sgn(β1s)
)τ

.

In the following we have the root n consistency and asymptotic normality of β̂obpe.

Theorem 2 In addition to the conditions in Theorem 1, assume that

lim inf
n→∞ lim inf

β→0+ p′
λ1

(β)/λ1 > 0. (10)

If λ1 → 0 and
√
nλ1 → ∞ as n → ∞, then with a probability tending to 1, the

root-n consistent local minimizers β̂obpe = (β̂τ
1obpe, β̂

τ
2obpe)

τ in Theorem 1 satisfy:
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(a) Sparsity: β̂2obpe = 0. Further, we have
(b) Asymptotic normality: as n → ∞,

√
n(�11 + m1�1)(β̂1obpe − β1 + (�11 + m1�1)

−1ω1)
L−→ N (0, σ 2�11),

where �11 = lim
n→∞X τ

1 Pzτ X1/n.

2.2 Selection of random effects

Now we turn to selecting the random effects. Write D = (di j ). Since the random
effects bi have zero mean, the zero variance d j j = 0 means that the j th component bi j
has the degenerate distributionwithmass 1 at the origin and the corresponding row and
column are also zero. Then it is sufficient to select the nonzero diagonal components
of D.

From Theorem 2, we have β̂2obpe = 0 with a probability tending to one, and β̂1obpe
is asymptotically normal with the bias (�11 +m1�1)

−1ω1 tending to zero as n → ∞.
Let β̂1obe be the corresponding orthogonalization-based least squares estimate of β1.
Define Vi = E(yi − xiβ)(yi − xiβ)τ = zi Dzτi + σ 2 Ili . Straightforwardly one can
solve the following minimization problem to estimate D and σ 2:

W ∗
2 (D, σ 2) = 1

2

n∑
i=1

(
(yi − xi β̂1obe) ⊗ (yi − xi β̂1obe) − vec(Vi )

)τ

×
(
(yi − xi β̂1obe) ⊗ (yi − xi β̂1obe) − vec(Vi )

)
.

Here and throughout this paper a vector vec(A) is formed by stacking the complete
columns of any matrix A, and ⊗ stands for the Kronecker tensor product. However,
for fixed i ,

E(yi − xi β̂1obe)(yi − xi β̂1obe)
τ

= Vi − σ 2Pzτi xi1(X
τ
1 Pzτ X1)

−1xτ
i1 − σ 2xi1(X

τ
1 Pzτ X1)

−1xτ
i1Pzτi

+ σ 2xi1(X
τ
1 Pzτ X1)

−1xτ
i1.

This means that the estimates are biased as the last three terms are not zero. To make
a bias correction, we define

ỹi = (yi − xi1β̂obe1) ⊗ (yi − xi1β̂obe1) + σ̂ 2
obe

[
Pzτi xi1(X

τ
1 Pzτ X1)

−1xτ
i1 (11)

+ xi1(X
τ
1 Pzτ X1)

−1xτ
i1Pzτi − xi1(X

τ
1 Pzτ X1)

−1xτ
i1)

]
,

where

σ̂ 2
obe = (Y − X1β̂obe1)

τ Pzτ (Y − X1β̂obe1)/(N1 − s)
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can be proved to be an unbiased estimate of the variance σ 2. Let the vector vech(A)

be formed by stacking the columns under the diagonal line of A. Define Bl be an
l2 × (l2 + l)/2 permutation matrix such that vec(A) = Blvech(A) for any l × l
symmetric matrix A. Define ui = (vec(Ili ), (zi ⊗ zi )Bq) and θ = (σ 2, vech(D)τ )τ .
Then we can construct the following working model:

ỹi = uiθ + ε∗
i , (12)

where the ε∗
i = (zi bi + εi ) ⊗ (zi bi + εi ) − vech(Vi ) are independent random vectors

with zero mean. Define Ỹ = (ỹτ
1 , . . . , ỹτ

n )τ and U = (uτ
1, . . . , u

τ
n)

τ . Again, one can
estimate θ by the least squares:

θ̂lse = (U τU )−1U τ Ỹ .

It is easy to check that θ̂lse is an unbiased and consistent estimate of θ . Rewrite
Vi (θ) = Vi . Note that V−1/2

i (zi bi + εi ) are independent with mean zero and
covariance matrix Ili . Moreover, the covariance matrix of ε∗

i is unknown. By tak-
ing W = diag(W1, . . . ,Wn) with Wi = Vi ⊗ Vi as a weighted matrix, we suggest the
following algorithm to estimate θ :

Step 1. Take θ̂lse as an initial estimate of θ

Step 2. Compute V̂i = zi D̂lsezτi + σ̂ 2
lse Ili .

Step 3. Compute the orthogonalization-based weighted penalized least squares esti-
mate θ̂ by minimizing the following objective function with the SCAD
penalty:

S2(θ) = 1

2

n∑
i=1

(Ỹ − uiθ)τ (V̂i ⊗ V̂i )
−1(Ỹ − uiθ) + N2

(q2+q)/2+1∑
j=1

pλ2(|θ j |) (13)

with N2 = ∑n
i=1 l

2
i .

Step 4. Replace D̂lse by D̂ in Step 2. Repeat steps 2 and 3 until convergence.

Recall that the objective function (13) is solved by iteratively computing the ridge
estimation of (7). Similarly, we can obtain the following (k + 1)th iterative ridge
estimate of θ in Step 3

θ̂k+1 =
[
U τ Ŵ−(k)U + N2�λ2(θ̂

k)
]−1

U τ Ŵ−(k)Ỹ , (14)

where Ŵ (k) is the kth iterative plug-in estimate of W with θ̂kobwpe replacing θ , and
�λ2(θ) = diag(0, p′

λ2
(|θ1|)/|θ1|, . . . , p′

λ2
(|θ(q2+q)/2|)/|θ(q2+q)/2|).

Without loss of generality,we assume that the first t randomeffects bi1 have nonzero
variances and the last q − t random effects bi2 are degenerate at 0. Correspondingly,
rewrite zi = (zi1, zi2) and θ = (θτ

1 , θτ
2 )τ , where θ2 = 0. Moreover, denote U1 =
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(uτ
i1, . . . , u

τ
n1)

τ with u j1 = (z j1 ⊗ z j1)Bt . Rewrite θ1 = (θ11, . . . , θ1r )
τ with r =

t (2q − t + 1)/2 + 1. Define

bn(λ2) = max
{
p′
λ2

(|θ1 j |), j = 2, . . . , r
}
. (15)

Then the penalized weighted least squares estimate θ̂ defined in the above procedure
converges at the rate Op(n−1/2 + bn(λ2)).

Theorem 3 Assume that the moments up to fourth order of the random effects and
errors exist and conditions (C1) − (C7) are satisfied. If

max
{|p′′

λ2
(|θ1 j |)|, j = 1, . . . , r

} → 0 (16)

holds, then there exists a local minimizer θ̂ of the corresponding S2(θ) such that
‖ θ̂ − θ ‖= Op(n−1/2 + bn(λ2)).

Let θ̂ be the corresponding orthogonal-based penalized estimate θ j for j = 1, 2.
Define

�2 = diag(0, p′′
λ2

(|θ12|), . . . , p′′
λ2

(|θ1r |)),

ω2 = (0, p′
λ2

(|θ12|)sgn(θ12), . . . , p′
λ2

(|θ1r |)sgn(θ1r ))τ .

The following theorem states the oracle property of θ̂ .

Theorem 4 In addition to the conditions in Theorem 3, assume that

lim inf
n→∞ lim inf

θ→0+ p′
λ2

(θ)/λ1 > 0. (17)

If λ2 → 0 and
√
nλ2 → ∞ as n → ∞, then with a probability tending to 1, the

root-n consistent local minimizer θ̂ in Theorem 3 satisfies:

(a) Sparsity: θ̂2 = 0.
Further, we have

(b) Asymptotic normality: as n → ∞,

√
n(�21 + m1�2)(θ̂1 − θ1 + (�21 + m2�2)

−1ω2)
L−→ N (0, σ 2�1),

where �21 and �1 are defined similarly to �2 (in condition (C2)) and � (in
condition (C5)) by using zi1 to replace zi .
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3 Selection of tuning parameters

Note that properly choosing the tuning parameters λ1 in (9) and λ2 in (15) is crucial
for implementation. In the literature, cross-validation (CV) and generalized cross-
validation (GCV) are often used. In this paper, we adopt the idea of GCV. Refer to
Fan and Li (2001) for details.

For the fixed effects, recall that we have used the homogeneous model (2) to get
the orthogonalization-based penalized least squares estimate that is the minimizer of
the quadratic function S1(β) of (4) with the SCAD penalty. The estimate of β relative
to the fixed effects is obtained by computing the ridge estimation (7) iteratively. In the
(k + 1)th iterative step, the fitted value of Qτ

2Y is Qτ
2X β̂

(k+1)
obe . Let

P(λ1, β) = (
X τ Pzτ X + (N − nq)�(λ1, β)

]−1
X τ Pzτ X.

It follows that tr(P(λ1, β)) is the number of effective parameters in the penalized
least squares of (4). Therefore, the corresponding GCV score is defined as

GCV(λ1) = 1

N1

(Y − X β̂
(k+1)
obe )τ Pzτ (Y − X β̂

(k+1)
obe )

|1 − 1
N−nq tr(P(λ1, β̂

(k+1)
obe ))|2

.

For the random effects, by regressing Ỹ (σ̂ 2
obe) on U, we have used the iterative

generalized penalized estimation procedure which satisfies (13). Similarly, the corre-
sponding GCV score in the (k + 1)th iterative step can be defined as

GCV(λ2) = 1

N2

(Ỹ (σ̂ 2) −U θ̂ (k+1))τW−(k)(Ỹ (σ̂ 2) −U θ̂ (k+1))

|1 − 1
N2
tr(P(λ2, θ̂ (k+1)))|2

,

where P(λ2, θ) = [
U τW−1U + λ2�λ2(θ)

]−1
U τW−1U.

4 Simulation study

In this section, some simulation studies are carried out to assess the finite sample per-
formance of the proposed orthogonal-based SCAD (O-SCAD) method. We also make
a comparison with other methods: M-ALASSO, ALASSO, and B-SCAD suggested
by Bondell et al. (2010), Ibrahim et al. (2011), and Peng and Lu (2012), respectively.
The first two examples are in favor of M-ALASSO, ALASSO, and B-SCAD. Note
that Peng and Lu (2012) showed some advantages of B-SCAD when compared with
M-ALASSO and ALASSO in the settings they considered. We thus use their settings
such that a comparison can be made to see what our method loses and gains. It is
worth saying that we do not include a real data example in this section, because we
mainly focus on the comparison between our method and existing ones to examine
the performance when correlation between fixed and random effects is fairly high.
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Example 1 Generate 100 datasets from the linear mixed-effects model

yi j =
9∑

k=1

xi jkβk + bi0 +
3∑

k=1

zi jkbik + εi j ,

where i = 1, . . . , n, j = 1, . . . , li , and εi j ∼ N(0, 1). However, all the covariates xi jk
and zi jl independently come from the uniform distribution U (−2, 2), the true value
of the nonzero fixed effects β10 is (1, 1)τ , and the first three efficient random effects
are independently generated from the 3-dimensional multivariate normal distribution
with zero-mean and covariance matrix

D =
⎛
⎝ 9 4.8 0.6
4.8 4 1
0.6 1 1

⎞
⎠ .

Then we consider two combinations:
I = (n = 30, li ≡ 5); and
I I = (n = 60, li ≡ 10), for i = 1, . . . , n.

Example 2 Consider two sample sizes n = 10 and 20, and li ≡ 10; the dimension of
the fixed effects p = 5 with β = (1, 0.5, 1, 0, 0). The model errors and covariates are
all generated from the standard normal distribution. Generate 100 datasets from this
linear mixed-effects model yi j = ∑5

k=1 xi jkβk + ∑4
k=1 zi jkbik + εi j , where the first

two random effects are active with the covariance matrix D =
(
0.5 0.345
0.345 1

)
, and

the distributions of the corresponding ones are separately:

(2.1) N (0, D);
(2.2)

√
3
2 t (8, D); and

(2.3) Ct (8, ρ, �(0.5, 1) − 0.5, �(1, 1) − 1) that is a two-dimensional t copula dis-

tribution with degree 8 of freedom, correlation matrix ρ =
(
1 0.5006
0.5006 1

)
,

and the marginal distributions are two different Gamma ones.

Example 3 In this example, we generate 200 datasets from the following model

yi j =
4∑

k=1

xi jkβk +
4∑

k=1

zi jkbik + εi j , i = 1, . . . , 40, j = 1, . . . , 10,

where β = (1,−1, 0, 0)τ , the first two efficient random effects follow a joint normal
distribution with zero mean and covariance matrix D defined in Example 2, and the
errors are generated from the standard normal distribution independently. Moreover,
the covariates xi jk and zi jk are designed in the following two cases:
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Table 1 For Example 1, the
results of CM, CF, and CR

Case Method % CM % CF % CR

I O-SCAD 84 95.5 87

M-ALASSO 71 73 79

ALASSO 62 63 68

B-SCAD 19 43 20

I I O-SCAD 95 100 95

M-ALASSO 83 83 89

ALASSO 74 75 81

B-SCAD 80 80 86

(3.1) For k = 1, 2, 3, 4, (xi jk, zi jk)τ ∼i.i.d N (0,C1) with C1 =
(
1 ρ

ρ 1

)
with ρ =

0, 0.85;
(3.2) For |k1 − k2| = 2, (xi jk1 , zi jk2)

′ ∼i.i.d N (0,C1).

The results for Example 1 with the following different measures are reported in
Table 1: the percentage of the times of which the correct model is selected (CM); the
percentage of times of which the correct fixed effects are selected (CF); the percentage
of times ofwhich the correct randomeffects are selected (CR). The comparison ismade
withM-ALASSO (Bondell et al. 2010), ALASSO (Ibrahim et al., 2011), and B-SCAD
(Peng and Lu, 2012). For Example 2, the results are tabulated in Tables 2 and 3. In
Table 2, the values are the numbers of correctly and incorrectly selected fixed and
random effects by O-SCAD, M-ALASSO, ALASSO, and B-SCAD. In Table 3, we
report the median of biases and of absolute deviation of the estimation of the nonzero
fixed and random effects. Finally, Table 4 reports that the results for Example 3. R
codes from Bondell et al. (2010) and Ibrahim et al. (2011) andMatlab code from Peng
and Lu (2012) are used to implement their methods.

From Table 1, it is easy to see that our method performs efficiently. As the sample
size grows, the number of correctly selecting the fixed and random effects reasonably
grows. In the limited simulations, our method outperforms all the competitors.

Whether the normality assumption of the random effects is true or not, the results in
Table 2 indicate that our method always performs best for selecting the fixed effects;
ALASSO performs best to select the active random effects, but performs worst to
remove the insignificant random effects; O-SCAD’s performance is just opposite to
that of ALASSO. Moreover, the performance of O-SCAD and A-LASSO are compa-
rable in estimating the random effects.

As for the performance of parameter estimation, Table 3 shows that all of the
methods perform satisfactorily. However, there are so many active random effects are
estimated wrongly, the medians of B-SCAD estimates of Di j are zero. For example,
that of D11 is zero for n = 10 in cases (2.1) and (2.3).

Finally, Table 4 shows that our method uniformly outperforms M-ALASSO,
ALASSO, and B-SCAD. A comparison between the results with ρ = 0 and ρ = 0.8
suggests that the performances of the competitors are significantly affected by the cor-
relation between the inefficient fixed effects and efficient random effects. Our method
still works well even when the correlated coefficient ρ increases to 0.8.
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Table 2 For Example 2, in 100 replications, the times that β4, β5, D33, and D44 are correctly selected to
be zero, and the other parameters are incorrectly to be zero

Distribution Method β1 β2 β3 β4 β5 D11 D22 D33 D44

n = 10

(2.1) O-SCAD 0 0 0 100 100 8 7 92 93

M-ALASSO 0 2 0 90 90 16 0 98 100

ALASSO 0 0 0 55 47 2 0 38 35

B-SCAD 0 0 0 91 93 57 25 97 100

O-SCAD 0 0 0 100 100 2 0 97 98

M-ALASSO 0 0 0 92 92 2 0 98 100

ALASSO 0 0 0 65 67 0 0 44 58

B-SCAD 0 0 0 93 93 35 7 99 99

n = 10

(2.2) O-SCAD 0 0 0 100 100 4 8 93 93

M-ALASSO 0 0 0 92 89 16 8 92 90

ALASSO 0 0 0 63 49 1 1 31 36

B-SCAD 0 0 0 89 90 37 23 100 100

n = 20

O-SCAD 0 0 0 100 100 2 2 96 97

M-ALASSO 0 0 0 94 96 18 11 97 99

ALASSO 0 0 0 63 66 0 0 50 53

B-SCAD 0 0 0 98 93 17 8 97 100

n = 10

(2.3) O-SCAD 0 0 0 100 100 8 2 93 92

M-ALASSO 0 2 0 99 92 31 3 95 92

ALASSO 0 0 0 49 58 4 0 39 34

B-SCAD 0 0 0 85 87 70 35 100 100

n = 20

O-SCAD 0 0 0 100 100 5 1 94 93

M-ALASSO 0 0 0 98 93 7 0 93 90

ALASSO 0 0 0 75 72 1 0 54 59

B-SCAD 0 0 0 95 95 49 18 99 99

5 Discussion

In this paper, we suggested an orthogonalization-based approach to separately select
both the fixed and random effects. It is very easy to implement as all of the selection
steps are based on the least squares, and requires no specific distribution assumption
other than the existence of fourth order moments. However, the orthogonalization
requires a strong condition on the separation of the fixed and randomeffects, otherwise,
it may lead to loss of active efficient fixed effects. Theoretically, when the matrix Q2
in Sect. 2.1 has lower rank, the loss of active fixed effects can occur. This is the case a
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variable is included as both a fixed effect and a random effect at the same time. Once
the fixed effects and random effects are different from each other, the numerical studies
suggest that O-SCAD is very efficient to select the fixed effects. But it is still in need
to study how to improve the efficiency for selecting the insignificant random effect.
Another important issue is how to apply our method when the dimension of fixed
effects (random effects) tends to infinity as sample n goes to infinity. The research is
ongoing.
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6 Appendix

We first assume the following conditions for the results.

(C1) Assume that lim
n→∞N/n = m1 + q, and lim

n→∞N2/n = m2.

(C2) Assume that �1 = lim
n→∞X τ Pzτ X/n and �2 = lim

n→∞U τW−1
0 U/n

(C3) Assume that limn→∞
max1≤i≤n,1≤ j≤li ‖xτ

i j xi j‖√
n

= 0.

(C4) Assume that limn→∞
max1≤i≤n,1≤ j≤q‖zτi j zi j‖√

n
= 0.

(C5) Assume that � = lim
n→∞

1

n
Cov(I1), where Cov(I1) are defined in (23).

Lemma 1 Under the conditions in Theorem 2, we have, as n → ∞,

√
n(β̂1obe − β)

L−→ N (0, σ 2(X τ
1 Pzτ X1)

−1), (18)

and
√
n(σ̂ 2

obe − σ 2) = op(1).

Proof of Theorem 1 Let αn1 = n−1/2 + an(λ1). For any given ε > 0, if there exists a
large constant C such that

P

{
inf‖c‖=C

S1(β0 + αnc) > S1(β0)

}
≥ 1 − ε, (19)

then there exists a local minimizer in the ball {β + αnc : ‖c‖ ≤ C} with a probability
at least 1 − ε. It follows that there exists a local minimizer such that ‖β̂obpe − β‖ =
Op(αn1). Hence it is sufficient to show that (19) is true.
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Let M1(β) = 1
2 (Y − Xβ)τ Pzτ (Y − Xβ). Recalling pλ(0) = 0, we have

S1(β + αn1c) − S1(β) (20)

≥ M1(β + αn1c) − M1(β) + (N − nq)

s∑
j=1

{pλ1(|β1 j + αn1c j |) − pλ1(|β1 j |)}

= −αn1c
τ X τ Pzτ (Y − Xβ) + nα2

n1

2
cτ�1c(1 + op(1))

+
s∑

j=1

(N − nq)

[
αn1 p

′
λ1

(|β1 j |)sgn(β1 j )c j + α2
n1

2
p′′

λ1(|β1 j |)c2j (1 + o(1))

]
.

By model (3), we have X τ Pzτ (Y − Xβ0) = X τ Pzτ ε which is a sum of zero mean
independent random vectors. Under conditions (C2) and (C4), it is not difficult to
verify that the Lindeberg’s condition holds. By the Lindeberg–Feller central limit
theorem, as n → ∞

1√
n
X τ Pzτ (Y − Xβ)

L−→ N (0, σ 2(X τ Pzτ X)−1).

Thus the first term on the right-hand side of (20) is at a rate Op(n1/2αn) = Op(nα2
n).

By choosing a sufficiently largeC , the second term dominates the first term uniformly
in ‖c‖ = C . Note that the third term in (20) is bounded by

(N − nq)

{√
sαnan‖c‖ + 1

2
α2
n max

{|p′′
λn

(|β1 j |)| : β1 j �= 0
} ‖c‖2

}
= Op(nα2

n).

This is also dominated by the second term of (20). Hence, by choosing a sufficiently
large C , (19) holds. This completes the proof of Theorem 1. ��
Proof of Theorem 2 Consider part (a). Let β2 = (β21, . . . , β2(p−s))

τ . Similar to Fan
and Li (2001), it is sufficient to show that with a probability tending to 1 as n → ∞,
for any β1 satisfying β∗

1 − β1 = Op(n−1/2) and for some εn = Cn−1/2 and j =
1, . . . , p − s,

∂S(β)

∂β2 j
> 0 for 0 < β2 j < εn (21)

< 0 for − εn < β2 j < 0. (22)

By the Taylor expansion, we have

∂S1(β∗)
∂βi j

= ∂M1(β
∗)

∂βi j
+ (N − nq)p′

λ1
(|β∗

j |)sgn(β∗
j )

= ∂M1(β)

∂βi j
+

s∑
l=1

∂2M1(β)

∂βi j∂β1l
(β∗∗

l − β1l) +
p−s∑
l=1

∂2M1(β)

∂βi j∂β2l
(β∗∗

l − β2l)
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+(N − nq)p′
λ1

(|β j |)sgn(β j ),

where β∗∗ lies between β∗ and β. By (21), ∂M1(β)
∂β

= Op(n1/2). In view of condition

(C2), ∂2M1(β)
∂β∂βτ = X τ Pzτ X = O(n) follows. If β∗ − β = Op(n−1/2) and N =

m1O(n) + q, we have

∂S1(β)

∂βi j
= nλ1{λ−1

1 m1 p
′
λ1

(|βi j |)sgn(βi j ) + Op(n
−1/2/λ1)}.

In view of

lim inf
n→∞ lim inf

β→0+ p′
λ1

(β)/λ1 > 0

and n−1/2/λ1 → 0, (21) and (22) follow. Thus β̂2 = 0 holds.
Now we prove part (b). It follows from Theorem 1 and the above proof of this

theorem that there exists a root-n consistent local minimizer β̂1 such that

∂S1(β)

∂β1 j

∣∣∣∣
β=(β̂τ

1obpe,0
τ )τ

= 0 for j = 1, . . . , s.

Note that β̂1 is consistent, and

∂M1(β)

∂β1 j

∣∣∣∣
β=(β̂τ

1obpe,0
τ )τ

+ (N − nq)p′
λ1

(|β̂1jobpe|)sgn(β̂1jobpe)

= ∂M11(β1)

∂β1 j
+

s∑
l=1

∂2M11(β1)

∂β1 j∂β1l
(β̂1lobpe − β1l)

+ (N − nq)
[
p′
λ1

(|β1 j |)sgn(β1 j ) + (p′′
λ1(|β1 j |) + op(1))(β̂1jobpe − β1 j )

]
,

whereM11(β1) = (Y−X1β1)
τ Pzτ (Y−X1β1). Then

∂M11(β1)
∂β1

= −X τ
1 Pzτ (Y−X1β1).

Similar to (21), it is easy to verify

1√
n

∂M11(β1)

∂β

L−→ N (0, σ 2�11) as n → ∞.

It follows from the Slutsky theorem that this theorem is proved. ��
Proof of Theorem 3 Let αn2 = n−1/2 + bn(λ2). Similar to the proof of Theorem 1,
it is sufficient to show that, for any given ε > 0, there exists a large constant C such
that

P

{
inf‖c‖=C

S2(θ + αn2c) > S2(θ)

}
≥ 1 − ε.
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Define M2(θ) = 1
2 (Ỹ (σ̂ 2

obe)−Uθ)τW−1(Ỹ (σ̂ 2
obe)−Uθ). In each iterative minimizing

problem (13), the unknown parameter θ in W is replaced by the estimate obtained in
the previous step in iteration. By computing the first derivative on both sides of the
above equation, we have

−∂M2(θ)

∂θ
=

n∑
i=1

uτ
i W

−1
i vec

(
(zi bi + εi )(zi bi + εi )

τ

−(zi Dzτi + σ 2 Ili )
)

+ op(n
−1/2).

Define ξi = V−1/2
i0 (zi bi +εi )which has mean zero, and covariance Ili . It follows that

nVar(I1) = 1

n

n∑
i=1

uτ
i W

−1/2
i vec(ξiξ

τ
i − Ili )vec

τ (ξiξ
τ
i − Ili )W

−1/2
i ui (23)

=
n∑

i=1

uτ
i W

−1/2
i

(
E(ξiξ

τ
i ⊗ ξiξ

τ
i ) − vec(Ili )vec

τ (Ili )
)
W−1/2

i ui .

Under conditions (C1)− (C6) and Lindeberg–Feller Central Limit theorem, we have

∂M22(θ)

∂θ

L−→ N (0, �) as n → ∞.

Similar to the proof of Theorem 1, the proof is concluded. ��
Proof of Theorem 4 Similar to the proof of Theorem 2, one can easily finish this
proof, we then omit the details here.
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