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Abstract Low-income proportion is an important index in describing the inequality
of an income distribution. It has been widely used by governments in measuring social
stability around the world. Established inferential methods for this index are based on
the empirical estimator of the index. It may have poor finite sample performances
when the real income data are skewed or has outliers. In this paper, based on a smooth
estimator for the low-income proportion, we propose a smoothed jackknife empirical
likelihood approach for inferences of the low-income proportion. Wilks theorem is
obtained for the proposed jackknife empirical likelihood ratio statistic. Various confi-
dence intervals based on the smooth estimator are constructed. Extensive simulation
studies are conducted to compare the finite sample performances of the proposed inter-
vals with some existing intervals. Finally, the proposed methods are illustrated by a
public income dataset of the professors in University System of Georgia.

Keywords Bootstrap · Confidence interval · Cross-validation · Empirical likelihood ·
Jackknife · Low-income proportion

1 Introduction

Low-income proportion (LIP) is an important index in describing the inequality of an
income distribution. It is often used to evaluate the social economic and poverty status
of a population. A low-income proportion is defined as the proportion of the population
income below a given fraction α (0 < α < 1) of the βth (0 < β < 1) quantile
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of an income distribution. Let X ∈ [0,∞) be an income variable with cumulative
distribution function F(x) and density function f (x), and denote ξβ as theβth quantile
F−1(β) of F . Then, the α fraction of the βth quantile αξβ is the income line, and the
low-income proportion is

θαβ = P(X ≤ αξβ) = F(αξβ).

As a general social economic indicator, the low-income proportion may provide
meaningful information to government regulators, business owners, and individual
researchers. Low-income proportion has been found in extensive applications by gov-
ernment. For example, based in Luxembourg, Eurostat (2000) provides EU member
states with reliable statistics that allow comparisons across countries. It targets at
offering a wide range of high-quality data and statistics at country level to gov-
ernment, commercial business, education institute, non-profit organization and other
public department. According to Eurostat 2012 (Bezzina 2012), low-wage earners
are defined as those employees who earn two thirds (α = 2

3 ) or less of the national
median (β = 0.5) hourly earnings. For example, there are 17 % of employees in EU
categorized as low-wage earners. The top five countries with the highest proportions
of low-wage earners are Latvia (27.8 %), Lithuania (27.2 %), Romania (25.6 %),
Poland (24.2 %), and Estonia (23.8 %), while the top five countries that own the
lowest proportions of low-wage earners are Sweden (2.5 %), Finland (5.9 %), France
(6.1 %), Belgium (6.4 %) and Denmark (7.7 %). A government should be on alert
for a high value of low-income proportion because it indicates a potentially unstable
social structure due to relative social wealth inequality.

Not only being widely used in government, the low-income proportion has also
caused great interests of individual researchers. Preston (1995) discussed the relia-
bility to estimate a low-income proportion based on simple random sample. Rongve
(1997) proposed statistical inferences for the poverty index with fixed poverty lines.
Zheng (2001) proved that the poverty estimators are asymptotically and normally
distributed. Yves and Chris (2003) showed how a linearization method of variance
estimation can be applied to low-income proportion based on Family Expenditure
Survey data. However, most of the existing inferential methods are based on the sim-
ple empirical estimator and its asymptotic normal distribution. Most income data
are highly right skewed due to a small percent of individuals having extremely high
salaries. Established statistical inference methods based on the simple empirical esti-
mator may have poor finite-sample performances because of the skewness of the real
income data. In regard to this challenge, recent efforts have yielded new statistical
inferences for a low-income proportion (Yang et al. 2011).

Empirical likelihood (EL), introduced by Owen (1988, 1990), has been shown to
have diverse advantages in statistical inference. For example, the EL method can be
used to construct a confidence interval without choosing a parametric distribution; the
EL-based confidence region is shaped by samples, especially in higher order asymp-
totic analysis, while the normal approximation method would assume a symmetrical
shape for a confidence region; the EL-based method is able to construct confidence
interval without variance estimation. Thus, EL-based method may have advantages
in developing statistical inferences with skewed data. For instance, Zhou et al. (2006)
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Inferences for low-income proportions 601

developed a new EL-based inference method in censored cost regression models and
showed that the EL method outperforms existing methods in analyzing highly skewed
health care cost data. Some recent developments of empirical likelihood include infer-
ences for risk measures (Wei et al. 2009; Wei and Zhu 2010; Li et al. 2011) and
survey data (Rao and Wu 2010). Recently, Yang et al. (2011) developed a plug-in EL
method for a low-income proportion and showed that the plug-in EL-based inference
achieved good performance on skewed income data. However, their empirical likeli-
hood ratio statistic follows a scaled Chi-square distribution, which requires estimation
of an unknown scale constant. To bypass the estimation of the unknown scale con-
stant, we propose a jackknife empirical likelihood (JEL) method for a low-income
proportion in this paper. The JEL was originally proposed by Jing et al. (2009) for
U-statistics. The general idea of the JEL is to construct a jackknife sample which is
shown to be asymptotically independent, then to implement standard EL on these jack-
knife pseudo-values (Quenouille 1956). Gong et al. (2010) extended the JEL method
with a smoothed ROC curve estimation, and showed that the JEL method results in
shorter intervals than the naive bootstrap intervals in most cases.

The remaining sections are organized as follows: in Sect. 2, a kernel estimator is
proposed for a low-income proportion, and this estimator is proved to be asymptoti-
cally normal. In Sect. 3, a smoothed jackknife empirical likelihood for a low-income
proportion is defined, and Wilks theorem is proven to be held for the proposed jack-
knife empirical likelihood ratio statistic. In Sect. 4, multiple confidence intervals for a
low-income proportion are constructed based on normal approximation, bootstrap and
jackknife empirical likelihood methods, respectively. In Sect. 5, extensive simulation
studies are conducted to evaluate the finite sample performances of the proposedmeth-
ods, and an income data set in 2012 for professors at University System of Georgia is
used to illustrate the recommended methods. Proofs of main theorems will be given
in the Appendix.

2 The smoothed low-income proportion

2.1 The smoothed estimator

Let X1, X2, . . . , Xn be a simple random sample drawn from the population X with
cumulative distribution function F(x). The empirical estimate for θαβ is defined as

θ̂αβ = Fn(αξ̂β) = 1

n

n∑

i=1

I (Xi ≤ αξ̂β),

where Fn(x) is the empirical distribution function of X1, X2, . . . , Xn , and ξ̂β =
F−1
n (β) is the βth quantile of Fn(x).
Since the empirical estimator θ̂αβ is a non-smoothing estimator for θαβ , while θαβ =

F(αξβ) is a function of the smoothing income distribution F in many applications.
Instead of using the non-smoothing estimator θ̂αβ , we apply kernel method to develop
a smoothed estimator for θαβ . Extensive literature has shown the advantage of kernel
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estimation. Falk (1983, 1985) concluded that for a distribution function F(x), or its
quantile function F−1(x), their corresponding kernel-based estimators asymptotically
dominate the empirical estimators.

The kernel estimator for the low-income proportion θαβ is defined as follows:

T̂n(α, β) = 1

n

n∑

i=1

K

(
αξ̂β − Xi

h

)
, (1)

where the kernel function K (x) = ∫ x−∞ ω(y)dy, ω(·) is a known probability density
function, and h is a pre-selected bandwidth.

Theorem 2.1 Assume that the probability density function ω(·) of the kernel function
K (·) has a bounded support, its first derivative ω

′
(·) exists and is bounded on its

supporting set, and
∫∞
−∞ |ω′

(y)|dy < ∞. If h = h(n) → 0,
√
nh → ∞ as n → ∞,

then

√
n{T̂n(α, β) − θαβ} d−→ N (0, σ 2

αβ),

where σ 2
αβ = α2β(1−β) f 2(αξβ))

f 2(ξβ )
− 2α(1 − β)θαβ

f (αξβ)

f (ξβ )
+ θαβ(1 − θαβ).

Remark 1 It is noticed that this smoothed estimator and the empirical estimate θ̂αβ have
the same asymptotic variance. However, with finite sample size, the smoothed estima-
tor seems a good alternative to the empirical estimator for the low-income proportion.
We observed that T̂n(α, β) has slightly smaller MSE than θ̂αβ (see Table 1). This
smoothed estimator is also needed in the definition of the smoothed jackknife empir-
ical likelihood for the low-income proportion. Our simulation results (not reported
here) showed that the jackknife empirical likelihood does not work without smooth-
ing. We believe that the main reason for the failure is that the empirical estimator θ̂αβ

for the low-income proportion is a non-smoothing function of sample quantile ξ̂β . It
is well known that the jackknife method can fail if the statistic is not smooth; one such
example is the sample quantile (see Shao and Tu 1995).

2.2 Bandwidth selection

One of the difficulties in the calculation of the smoothed estimator T̂n(α, β) is to
choose a bandwidth h for the kernel estimator. Extensive simulation analyses have
shown that the choice of the kernel function K will not change the estimate much.
However, as in many kernel methods, the choice of the bandwidth h may influence
the performance of the proposed kernel estimate. Many methods have been proposed
for selecting the bandwidth for kernel estimators (e.g., Bowman et al. 1998). In our
study, we apply a cross-validation (CV) method for bandwidth selection. To ease the
implementation, we utilize the twofold cross-validation method. The bandwidth h is
suggested to be h = cn−1/3, based on our simulation analyses. Then, the choice of h
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Table 1 Bias and MSE of empirical estimator and kernel estimator for LIPs with F = χ2
3

Sample size β Bias
θ̂αβ

BiasT̂n (α,β)
MSE

θ̂αβ
MSET̂n (α,β)

500 0.2 0.000027 0.001541 0.000094 0.000046

0.3 0.000001 0.001877 0.000145 0.000085

0.4 0.000411 0.002508 0.000210 0.000135

0.5 0.000591 0.003359 0.000268 0.000185

0.6 0.000180 0.004814 0.000324 0.000232

0.7 0.000844 0.007711 0.000365 0.000286

0.8 0.000595 0.015540 0.000424 0.000464

800 0.2 0.000229 0.001241 0.000059 0.000031

0.3 0.000341 0.001527 0.000094 0.000057

0.4 0.000304 0.001996 0.000129 0.000084

0.5 0.000346 0.002718 0.000151 0.000114

0.6 0.000569 0.003612 0.000194 0.000148

0.7 0.000175 0.005004 0.000242 0.000187

0.8 0.000976 0.009472 0.000265 0.000253

1000 0.2 0.000122 0.001060 0.000052 0.000028

0.3 0.000950 0.001616 0.000080 0.000051

0.4 0.000576 0.001870 0.000101 0.000072

0.5 0.000046 0.001870 0.000132 0.000098

0.6 0.000603 0.002295 0.000166 0.000122

0.7 0.000644 0.003832 0.000191 0.000148

0.8 0.000525 0.008100 0.000238 0.000210

is controlled by the constant c. Here and thereafter, we denote T̂n,c(α, β) = T̂n(α, β).
For a given β, we select c by minimizing the Mean Squared Error (MSE):

MSE(c) = E[T̂n,c(α, β) − θαβ ]2.

For this purpose, we randomly split the sample into two equal parts, where the first
part is treated as the training sample, and the other part is as the validation sample. The
kernel estimate T̂ (1)

n,c (α, β) for the low-income proportion is constructed based on the
training sample, while the empirical estimate θ̂

(2)
αβ is constructed from the validation

sample. After repeating this random split L times (L ≥ 30 is suggested based on
our extensive simulation studies), we obtain a set of kernel estimates and empirical
estimates {(T̂ (1,l)

n,c (α, β), θ̂
(2,l)
αβ ) : L = 1, . . . , L} for the low-income proportion, and

the following cross-validation estimate of the MSE:

CVc = 1

L

L∑

l=1

[T̂ (1,l)
n,c (α, β) − θ̂

(2,l)
αβ ]2.
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Fig. 1 Bandwidth selection by MSE

Then, the value of c is chosen as the constant that minimizes CVc.
Figure 1 is a simulation example to illustrate the relationship betweenMSE and the

constant c, which actually affects the bandwidth h. The value of h corresponding to
the lowest point of MSE will be the optimal bandwidth.

Alternatively, if we focus on the overall performance of the smoothed estimator for
low-income proportions across all β, we can use a similar cross-validation procedure
for selecting c by minimizing the Average Mean Squared Error (AMSE):

AMSE(c) = E

{
1

M

M∑

m=1

[T̂n,c(α, βm) − θαβm ]2
}

,

where βm is a fine grid of (0, 1), and M is the number of grid points.
Therefore, the cross-validation estimate of the AMSE is:

ACVc = 1

L

1

M

L∑

l=1

M∑

m=1

[T̂ (1,l)
n,c (α, βm) − θ̂

(2,l)
αβm

]2.

Again, c is chosen as the one that minimizes ACVc.
Figure 2 illustrates the relationship between bandwidth and AMSE, and how we

choose the constant c for bandwidth h.
Similarly, we choose the value of h corresponding to the lowest point of AMSE.

This twofold cross-validation method by minimizing AMSE is applied in our study.
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Fig. 2 Bandwidth selection by AMSE

3 Smoothed jackknife empirical likelihood for a low-income proportion

A smoothed version of jackknife empirical likelihood for the low-income proportion is
defined in this section. Based on Tukey (1958), we define the jackknife pseudo-values
for a low-income proportion as

V̂k(α, β) = nT̂n(α, β) − (n − 1)T̂n−1,k(α, β), k = 1, 2, . . . , n,

where T̂n−1,k(α, β) = 1
n−1

∑n
j 	=k K (

αξ̂β,−k−X j
h ) is the given statistics T̂n−1(α, β) but

computed on n − 1 observations X1, X2, . . . , Xk−1, Xk+1, . . . , Xn , and ξ̂β,−k =
F−1
n,−k(β) is the βth quantile of Fn,−k(x) = 1

n−1

∑n
j 	=k I (X j ≤ x) which is the

empirical distribution of these n − 1 observations.
Then, the jackknife empirical likelihood for θαβ can be defined as follows:

L(θαβ)=sup

{
n∏

k=1

npk : p1 > 0, . . . , pn > 0,
n∑

k=1

pk = 1,
n∑

k=1

pk V̂k(α, β)=θαβ

}
.

(2)

Using the Lagrange multiplier method, we obtain the maximization for (2) at

pk = 1

n
{1 + λ[V̂k(α, β) − θαβ ]}−1, k = 1, . . . , n,

where λ = λ(α, β, θαβ) is the solution to

1

n

n∑

k=1

V̂k(α, β) − θαβ

1 + λ(V̂k(α, β) − θαβ)
= 0. (3)
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Since
∏n

k=1 pk is subject to
∑n

k=1 pk = 1, pk ≥ 0, k = 1, 2, . . . , n, L(θαβ)will attain
its maximum n−n at pk = n−1. Thus, the jackknife empirical likelihood ratio statistic
for θαβ can be defined as

Ln(θαβ) =
n∏

k=1

(npk) =
n∏

k=1

{1 + λ(V̂k(α, β) − θαβ)}−1,

and the log jackknife empirical likelihood ratio statistic is

ln(θαβ) = −2 log Ln(θαβ) = 2
n∑

k=1

log{1 + λ(V̂k(α, β) − θαβ)}. (4)

We conjecture that the pseudo-values V̂i (α, β), i = 1, . . . , n could be treated
as though they were i.i.d, and V̂i (α, β) has approximately the same variance as√
nT̂n(α, β). Therefore, the variance of

√
nT̂n(α, β), denoted as var(

√
nT̂n(α, β)),

can be estimated by the sample variance of {V̂1(α, β), . . . , V̂n(α, β)}. The jackknife
variance estimator of T̂n(α, β) is thus defined as follows:

υJACK(α, β) = 1

n(n − 1)

n∑

i=1

⎛

⎝V̂i (α, β) − 1

n

n∑

j=1

V̂ j (α, β)

⎞

⎠
2

= n − 1

n

n∑

i=1

⎛

⎝T̂n−1,i (α, β) − 1

n

n∑

j=1

T̂n−1, j (α, β)

⎞

⎠
2

.

The following theorem shows that this jackknife variance estimator is a consistent
estimator for the asymptotic variance σ 2

αβ .

Theorem 3.1 Under the conditions of Theorem 2.1, we have

υJACK(α, β)
p−→ σ 2

αβ,

where σ 2
αβ is defined in Theorem 2.1.

Then, the Wilks theorem for ln(θαβ) is obtained in the following theorem.

Theorem 3.2 Under the conditions of Theorem 3.1, if
√
nh2 −→ ∞, we have

ln(θαβ)
d−→ χ2(1).

Detailed proofs for Theorems 3.1 and 3.2 will be given in Appendix. In the next
section, wewill discussmethods for constructing confidence intervals of a low-income
proportion.

123



Inferences for low-income proportions 607

4 Confidence intervals for a low-income proportion

4.1 Normal approximation-based confidence intervals

One of the most popular methods to construct a confidence interval for an unknown
parameter is normal approximation. To construct a normal approximation-based confi-
dence interval for θαβ , we need to first obtain an appropriate estimator for θαβ , and then
derive its asymptotic normal distribution. Based on Preston (1995), the empirical esti-
mate θ̂αβ for the low-income proportion is asymptotically normal with variances σ 2

v ,

i.e.,
√
n(θ̂αβ −θαβ) −→ N (0, σ 2

v ),where σ 2
v = θαβ(1−θαβ)−2α(1−β)θαβ

f (αξβ)

f (ξβ )
+

α2β(1 − β)[ f (αξβ)

f (ξβ )
]2. Therefore, the first (1 − α) level normal approximation-based

(NA1) confidence interval for θαβ can be constructed as

(l1, u1) =
(

θ̂αβ − z1− α
2
σ̂v√
n

, θ̂αβ + z1− α
2
σ̂v√
n

)
,

where z1− α
2
is the (1 − α

2 )th quantile of the standard normal distribution. σ̂ 2
v is a

consistent estimate for σ 2
v and is defined as

σ̂ 2
v = θ̂αβ(1 − θ̂αβ) − 2α(1 − β)θ̂αβ

f̂ (αξβ)

f̂ (ξβ)
+ α2β(1 − β)

[
f̂ (αξβ)

f̂ (ξβ)

]2
,

with f̂ (.) being the kernel density function estimate defined in Preston (1995).
As in Theorem 3.1, the jackknife variance estimator υJACK(α, β) is a consistent

estimator for σ 2
αβ . Thus, the second (1− α) level normal approximation-based (NA2)

confidence interval for θαβ can be constructed as

(l2, u2) =
(
T̂n(α, β) − z1− α

2

√
υJACK(α, β)√

n
, T̂n(α, β) + z1− α

2

√
υJACK(α, β)√

n

)
.

4.2 Bootstrap-based confidence intervals

The normal approximation-based confidence intervals may have poor performance
since the income data are skewed or has outliers. Introduced byEfron (1979), bootstrap
is a powerful non-parametric approach for constructing confidence intervals when the
asymptotic variance of an estimator is unknown and of a complex form. Although
υJACK(α, β) can be used to estimate the asymptotic variance of the kernel estimator
T̂n(α, β), we would also like to compare it with the bootstrap method that can estimate
σ 2

αβ . Inspired by the bootstrap intervals based on the empirical estimator by Yang et al.
(2011), we construct bootstrap intervals for θαβ based on the kernel estimator.
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Let {X∗
1, . . . , X

∗
n} be a bootstrap sample drawn from the original data {X1, . . . , Xn}.

The bootstrap version of T̂n(α, β) is

T̂ ∗(α, β) = 1

n

n∑

i=1

K

(
αξ̂∗

β − X∗
i

h

)
.

After repeating this bootstrap procedure B (B ≥ 500) times, B bootstrap copies
of T̂n(α, β) are obtained, denoted as {T̂ ∗

b , b = 1, 2, . . . , B}. The bootstrap sample

variance of T̂ ∗
b s is

V ∗
T = 1

B − 1

B∑

b=1

(T̂ ∗
b − T̄ ∗)2,

where T̄ ∗ = 1
B

∑B
b=1 T̂

∗
b . V

∗
T can be used to estimate the asymptotic variance of

T̂n(α, β). Two bootstrap confidence intervals based on the kernel estimator can be
constructed as follows:

1. BT1 interval:

(l3, u3) =
(
T̂n(α, β) − z1−α/2

√
V ∗
T , T̂n(α, β) + z1−α/2

√
V ∗
T

)
.

2. BT2 interval:

(l4, u4) =
(
T̄ ∗ − z1−α/2

√
V ∗
T , T̄ ∗ + z1−α/2

√
V ∗
T

)
.

Another non-parametric method to construct a confidence interval for θαβ is the
bootstrap bias correction and acceleration (BCa) method, which does not need a
variance estimation.

3. BCa interval:

(l5, u5) =
(
T̂ ∗

([Bβ1]), T̂ ∗
([Bβ2])

)
,

where

β1 = �

(
b + b + zα/2

1 − a(b + zα/2)

)
, β2 = �

(
b + b + z1−α/2

1 − a(b + z1−α/2)

)

with correction constants a and b defined by

a = 1

6

n∑

i=1

ϕ3
i /

(
n∑

i=1

ϕ2
i

) 3
2

, b = �−1

(
1

B

B∑

b=1

I (T̂ ∗
b ≤ T̂n(α, β))

)

where ϕi = T̂(.) − T̂(−i), and T̂(−i) is the T̂n(α, β) computed by deleting the i th
observation in original data, and T̂(.) = 1

n

∑n
i=1 T̂(−i).
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4.3 Smoothed jackknife empirical likelihood-based confidence interval

The proposed smoothed jackknife empirical likelihood (SJEL) based on the kernel
estimator can be used to make inference for θαβ . Based on Theorem 3.2, an SJEL-
based confidence interval for θαβ can be constructed as

(l6, u6) = {θ : ln(θ) ≤ χ2
1,1−α},

where χ2
1,1−α is the (1 − α)th quantile of χ2

1 .

5 Simulation studies and a real example

In this section, we first compare the proposed kernel estimator with the empirical
estimator in terms of Bias andMean Square Error (MSE). Then, we present results for
the coverage probability and the average length of NA1, NA2, BT1, BT2, BCa, EL
and SJEL intervals for the low-income proportion discussed in previous section, where
EL is the plug-in EL method proposed by Yang et al. (2011). Finally, the proposed
methods are illustrated by a real example.

5.1 Simulation studies

5.1.1 Point estimator evaluation

It is interesting to compare the finite sample performances of the kernel estimator
T̂n(α, β) with those of the empirical estimator θ̂αβ . The evaluation criteria used here

are Bias andMean Square Error (MSE). TheMSE of θ̂αβ isMSE
θ̂αβ

= E[θ̂αβ − θαβ ]2,
and theMSEof T̂n(α, β) isMSET̂n(α,β)

= E[T̂n(α, β) − θαβ ]2.MSEcan be composed
by two parts, the square of bias, which measures the accuracy, and the variance, which
measures the precision of the estimator. Minimizing MSE can achieve the balance
between the bias and the variance.

The evaluation of the kernel estimator and empirical estimator is conducted by sim-
ulation studies. The simulation setting is as follows: the fraction α of the low-income
proportion is fixed at 0.5. To see how the comparisons perform across different quan-
tiles, β = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 are considered. Monte Carlo simulations
are employed to simulate samples from theChi-square distributionwith degree of free-
dom 3. The sample sizes n are chosen to be 500, 800, and 1000. One thousand random
samples are generated from the above distribution. Bias andMSE are calculated based
on the simulated samples.

Table 1 lists Bias and MSE for the kernel estimator and the empirical estimator.
Bias

θ̂αβ
is the bias calculated for the empirical estimator, while BiasT̂n(α,β)

is the
bias for the kernel estimator. From this table, we observe that the proposed kernel
estimator has smaller MSE than the empirical estimator, although the bias of the
kernel estimator is larger than the bias of the empirical estimator. This observation
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is as expected because the kernel estimator is not an unbiased estimator for the low-
income proportion. This point estimation comparison results show that our proposed
kernel estimator is a competitive estimator in terms of MSE.

5.1.2 Interval estimation evaluation

In this section, we will evaluate NA1, NA2, BT1, BT2, BCa, EL and SJEL con-
fidence intervals proposed in Sect. 4 under the same simulation settings used for the
point estimation evaluation, except that Monte Carlo samples are generated from a
Chi-square distribution with degree of freedom 3, and a standard Log normal dis-
tribution log N (0, 1). 90 and 95 % confidence intervals for θαβ are constructed with
β = 0.5, 0.6, 0.7, 0.8.Triweight kernel density functionω(t) = 35

32 (1−t2)2 I (|t | ≤ 1)
is selected for the kernel estimator, and the constant c for the bandwidth h = cn−1/3 is
chosen via the proposed cross-validationmethod. For the bootstrap variance estimates,
500 bootstrap samples are drawn with replacement from the original sample.

Tables 2 and 3 display coverage probabilities and average lengths of various confi-
dence intervals for low-income proportions with F = χ2

3 at 90 and 95 % confidence

Table 2 Coverage probabilities and average lengths of 90 % level confidence intervals for LIPs with
F = χ2

3

Size Method β = 50 % β = 60 % β = 70 % β = 80 %

Coverage Length Coverage Length Coverage Length Coverage Length

500 NA1 0.872 0.039 0.923 0.047 0.936 0.055 0.926 0.049

NA2 0.890 0.038 0.910 0.042 0.906 0.044 0.923 0.045

BT1 0.911 0.039 0.899 0.042 0.885 0.045 0.897 0.045

BT2 0.918 0.039 0.906 0.042 0.897 0.045 0.900 0.045

BCa 0.715 0.038 0.728 0.041 0.703 0.044 0.706 0.044

EL 0.906 0.045 0.898 0.046 0.864 0.051 0.866 0.041

SJEL 0.908 0.040 0.896 0.043 0.905 0.046 0.908 0.046

800 NA1 0.872 0.034 0.867 0.039 0.864 0.040 0.889 0.038

NA2 0.893 0.031 0.920 0.034 0.916 0.036 0.906 0.039

BT1 0.906 0.031 0.898 0.034 0.911 0.036 0.902 0.037

BT2 0.922 0.031 0.905 0.034 0.912 0.036 0.910 0.037

BCa 0.734 0.031 0.763 0.034 0.752 0.036 0.721 0.037

EL 0.906 0.033 0.918 0.036 0.894 0.038 0.852 0.038

SJEL 0.898 0.032 0.894 0.035 0.899 0.037 0.904 0.038

1000 NA1 0.878 0.032 0.875 0.037 0.871 0.038 0.871 0.041

NA2 0.923 0.030 0.903 0.031 0.927 0.033 0.876 0.034

BT1 0.894 0.028 0.892 0.031 0.896 0.033 0.902 0.034

BT2 0.892 0.028 0.898 0.031 0.898 0.033 0.910 0.034

BCa 0.738 0.028 0.756 0.031 0.748 0.033 0.732 0.033

EL 0.892 0.028 0.908 0.031 0.886 0.033 0.872 0.033

SJEL 0.902 0.029 0.904 0.032 0.901 0.034 0.908 0.035
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Table 3 Coverage probabilities and average lengths of 95 % level confidence intervals for LIPs with
F = χ2

3

Size Method β = 50 % β = 60 % β = 70 % β = 80 %

Coverage Length Coverage Length Coverage Length Coverage Length

500 NA1 0.892 0.046 0.911 0.059 0.929 0.060 0.967 0.065

NA2 0.953 0.046 0.946 0.051 0.936 0.054 0.950 0.053

BT1 0.951 0.046 0.936 0.050 0.948 0.053 0.943 0.054

BT2 0.955 0.046 0.946 0.050 0.956 0.053 0.950 0.054

BCa 0.791 0.044 0.809 0.049 0.789 0.052 0.785 0.052

EL 0.956 0.048 0.958 0.049 0.932 0.059 0.916 0.058

SJEL 0.950 0.047 0.945 0.051 0.944 0.054 0.953 0.055

800 NA1 0.934 0.044 0.935 0.043 0.930 0.044 0.920 0.048

NA2 0.940 0.038 0.940 0.041 0.950 0.045 0.970 0.045

BT1 0.965 0.037 0.946 0.041 0.955 0.043 0.946 0.044

BT2 0.966 0.037 0.949 0.041 0.958 0.043 0.949 0.044

BCa 0.818 0.036 0.835 0.040 0.829 0.042 0.801 0.043

EL 0.952 0.041 0.952 0.043 0.918 0.048 0.914 0.047

SJEL 0.947 0.038 0.950 0.042 0.956 0.044 0.951 0.045

1000 NA1 0.924 0.039 0.932 0.040 0.929 0.041 0.929 0.045

NA2 0.963 0.034 0.960 0.037 0.933 0.040 0.940 0.041

BT1 0.948 0.034 0.932 0.037 0.950 0.039 0.954 0.040

BT2 0.950 0.034 0.936 0.037 0.950 0.039 0.962 0.040

BCa 0.794 0.033 0.828 0.036 0.840 0.039 0.820 0.038

EL 0.952 0.036 0.952 0.039 0.928 0.042 0.912 0.041

SJEL 0.949 0.035 0.945 0.038 0.950 0.040 0.954 0.041

levels, and Tables 4 and 5 display coverage probabilities and average lengths for
low-income proportions with F = log N (0, 1) at 90 and 95 % confidence levels,
respectively. According to these simulation results, we observe that all the confidence
intervals perform better when sample size increases. The coverage probabilities of
the newly proposed NA2 intervals based on the kernel estimator are closer to the
nominal confidence levels than those of the NA1 intervals based on the empirical esti-
mator. Among the three bootstrap-based BT1, BT2 and BCa intervals, BT1 and BT2
intervals have similar performances, and perform much better than the BCa interval.
Meanwhile, compared with the plug-in empirical likelihood (EL) interval proposed by
Yang et al. (2011), SJEL has comparable coverage probabilities and interval lengths
in most cases, and has better coverage accuracy in some cases. Out of the 7 confidence
intervals, the proposed SJEL-based confidence intervals are observed to achieve the
best performance in terms of coverage probability in most cases considered here. The
smoothed bootstrap-based confidence intervals (BT1 and BT2) have good finite sam-
ple performances next to the EL and SJEL intervals. Since the SJEL interval has a
great advantage over the EL interval to avoid estimating the unknown scale constant,

123



612 S. Luo, G. Qin

Table 4 Coverage probabilities and average lengths of 90 % level confidence intervals for LIPs with
F = log N (0, 1)

Size Method β = 50 % β = 60 % β = 70 % β = 80 %

Coverage Length Coverage Length Coverage Length Coverage Length

500 NA1 0.842 0.048 0.888 0.057 0.857 0.060 0.883 0.061

NA2 0.886 0.051 0.896 0.057 0.920 0.061 0.883 0.062

BT1 0.897 0.050 0.912 0.056 0.904 0.061 0.886 0.061

BT2 0.905 0.050 0.919 0.056 0.912 0.061 0.895 0.061

BCa 0.778 0.050 0.764 0.056 0.763 0.060 0.723 0.060

EL 0.894 0.055 0.898 0.055 0.892 0.061 0.884 0.062

SJEL 0.892 0.051 0.901 0.057 0.892 0.061 0.892 0.062

800 NA1 0.869 0.038 0.856 0.047 0.865 0.042 0.864 0.054

NA2 0.910 0.041 0.910 0.045 0.900 0.049 0.896 0.050

BT1 0.952 0.046 0.952 0.052 0.948 0.058 0.939 0.060

BT2 0.954 0.046 0.953 0.052 0.954 0.058 0.946 0.060

BCa 0.882 0.048 0.860 0.053 0.876 0.057 0.813 0.058

EL 0.882 0.043 0.894 0.048 0.896 0.058 0.882 0.057

SJEL 0.901 0.041 0.900 0.046 0.910 0.050 0.901 0.051

1000 NA1 0.878 0.033 0.865 0.031 0.871 0.032 0.881 0.031

NA2 0.913 0.036 0.936 0.041 0.883 0.044 0.906 0.045

BT1 0.914 0.033 0.894 0.041 0.890 0.039 0.904 0.041

BT2 0.918 0.033 0.902 0.041 0.900 0.039 0.912 0.041

BCa 0.800 0.036 0.808 0.040 0.792 0.044 0.752 0.044

EL 0.892 0.037 0.894 0.036 0.908 0.035 0.888 0.032

SJEL 0.902 0.029 0.904 0.032 0.901 0.034 0.908 0.035

we recommend the smoothed jackknife empirical likelihood (SJEL) interval for the
interval estimation of low-income proportions.

5.2 Georgia Public University employee income data example

Georgia Department of Audits and Accounts compiled annually updated salary infor-
mation for all employees from each department, office, institution, board, commission,
authority and agency of the State government; every university or college in the
University System of Georgia; any regional educational service agency; the General
Assembly including all legislative offices and agencies; offices of the Judicial Branch;
local boards of education, etc. Each record has ending periods in June 30, 2008, June
30, 2009, June 30, 2010, June 30, 2011 and June 30, 2012. These income data include
a list of employee’s name, title or functional area, salary and travel reimbursement.
The purpose of these income files is to strengthen the transparency of the Georgia
government. Our analysis will be based on these individual’s annual income data.

The salary information for part-time or temporary employee does not meet our
annual salary definition. To minimize the downward bias introduced by those types
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Table 5 Coverage probabilities and average lengths of 95 % level confidence intervals for LIPs with
F = log N (0, 1)

Size Method β = 50 % β = 60 % β = 70 % β = 80 %

Coverage Length Coverage Length Coverage Length Coverage Length

500 NA1 0.903 0.067 0.896 0.076 0.930 0.078 0.930 0.087

NA2 0.930 0.061 0.963 0.067 0.953 0.072 0.950 0.073

BT1 0.940 0.060 0.957 0.067 0.950 0.072 0.940 0.073

BT2 0.943 0.060 0.963 0.067 0.956 0.072 0.949 0.073

BCa 0.849 0.059 0.842 0.066 0.832 0.071 0.805 0.070

EL 0.961 0.068 0.932 0.076 0.904 0.073 0.942 0.052

SJEL 0.947 0.061 0.948 0.068 0.941 0.073 0.944 0.074

800 NA1 0.897 0.045 0.890 0.054 0.901 0.048 0.881 0.068

NA2 0.963 0.049 0.956 0.054 0.953 0.058 0.950 0.059

BT1 0.952 0.048 0.952 0.054 0.948 0.058 0.939 0.060

BT2 0.954 0.048 0.953 0.054 0.954 0.058 0.946 0.060

BCa 0.882 0.048 0.860 0.053 0.876 0.057 0.813 0.058

EL 0.942 0.050 0.952 0.056 0.946 0.060 0.956 0.060

SJEL 0.949 0.049 0.949 0.055 0.951 0.059 0.946 0.060

1000 NA1 0.883 0.040 0.932 0.040 0.929 0.041 0.929 0.045

NA2 0.940 0.043 0.943 0.048 0.940 0.052 0.923 0.053

BT1 0.954 0.043 0.952 0.042 0.942 0.042 0.956 0.044

BT2 0.958 0.043 0.958 0.042 0.950 0.042 0.956 0.044

BCa 0.888 0.043 0.882 0.048 0.852 0.052 0.850 0.052

EL 0.930 0.046 0.940 0.046 0.948 0.041 0.955 0.050

SJEL 0.949 0.045 0.945 0.038 0.950 0.040 0.954 0.041

of employee, a homogeneous income group with relatively evenly distributed income
is thus created for all faculty positions of universities and colleges in Georgia. In our
analysis, we limit the income data to all titles with Professor, Associate Professor and
Assistant Professor from Units of University System and Georgia Military College
from 2012 fiscal year. There are 10,332 individuals obtained initially. However, we
observe some records having abnormally low salary, and we infer that those types
of professors are not working full time during 2012. It may be caused by several
reasons. First of all, there are some newly hired professors in 2012, who did not work
for the whole 2012 fiscal year. After dropping those professors who did not have
salary record in 2011, 9229 observations are kept. Second of all, some professors may
not be in full-time service in 2012, who may possibly either take leave or transfer
to another organization. We filter this type of records out by dropping those whose
income in 2012 is far less than that in 2011. Therefore, 6195 observations are kept.
Then, we drop the part-time professors whose salary is less than $20,000. Finally,
there remain 5921 observations in the analysis. By taking above steps, we create a
relatively homogeneous income group by retaining professors who are more likely to
provide full-time service during 2012 fiscal year. All the real example analyses are
based on these 5921 observations.
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Fig. 3 Income distribution for Georgia Professors in 2012

We plot the histogram of 2012 annual salary for these professors in Fig. 3. It
is observed that the income data are highly right skewed. Next, we present some
basic statistics of annual income by job title. There are 2266 Assistant Professors
recorded in 2012 with median salary $68,618 and mean salary $81,055. The number
of recorded Associate Professors in Georgia is 1891. Their median salary is $80,675
and mean salary is $91,760. While for the 1764 Professors, the median salary is
$109,044 and mean salary is $129,640. The maximum recorded salary for Assistant
Professors, Associate Professors and Professors is $507,500, $633,260, and $949,419,
respectively.

To evaluate annual income by school, out of the 5921 observations, University of
Georgia (UGA), Georgia State University (GSU), Georgia Institute of Technology
(GIT) and Georgia Health Sciences University (GHSU) are the top 4 universities that
have the largest number of recorded professors. According to the low-wage definition
(i.e., α = 2

3 , β = 0.5) by Eurostat 2012, we calculated low-income lines, empirical
estimates and kernel estimates of low-income proportions for UGA, GSU, GIT and
GHSU in Table 6. It is observed that GSU has smaller proportion of low-wage earners
compared with the other three Georgia public universities.

To obtain an interval estimate for the low-income proportion of Georgia professors,
we fix the fraction α at 2

3 , and choose β = 0.5 based on the low-wage definition by
Eurostat 2012. At 95 % confidence level, there are 9.0 to 10.8 % of Georgia professors
in 2012 who can be categorized as low-wage earners based on our recommended SJEL
interval. This finding will provide meaningful information for the government.
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Table 6 Empirical estimate θ̂αβ

and kernel estimate T̂n(α, β) for
LIP, and the estimated
low-income line αξβ in 2012 for
four Georgia research
universities

Organization Empirical
estimate (%)

Kernel
estimate (%)

Low-income
line

UGA 8.16 8.14 $62,987

GSU 7.25 7.34 $62,188

GIT 13.52 13.52 $88,030

GHSU 22.73 22.59 $91,731

6 Discussion

Development of accurate and robust inferences for low-income proportions is increas-
ingly important. In this paper, we have proposed a kernel estimator for a low-income
proportion, and obtained the asymptotic normality of the kernel estimator. Later, the
jackknife empirical likelihood for a low-income proportion is defined, and the log-
jackknife empirical likelihood ratio statistic is proved to be asymptotically a standard
Chi-square distribution.We applied a cross-validationmethod for bandwidth selection
in our study, and there are stillmany other interesting bandwidth selectionmethods. For
example, Bowman et al. (1998) selected bandwidth by introducing a cross-validation
method for the smoothing estimation of distribution function. Our extensive simula-
tion studies have showed that the proposed smoothed estimator has smaller MSE than
the traditional empirical estimator for the low-income proportion. Simulation studies
also indicate that the proposed smoothed jackknife empirical likelihood-based (SJEL)
interval performs better than other intervals considered in this paper, which is not sur-
prising because the proposed SJEL method combines the power of both jackknife and
empirical likelihood. While the proposed bootstrap-based confidence intervals (BT1
and BT2) have good finite sample performances, they are computationally expensive,
particularly when sample size is getting larger. Compared with the existing empiri-
cal likelihood-based intervals (EL) proposed by Yang et al. (2011), the SJEL interval
bypasses the estimation of the scale parameter. It can be directly calculated by imple-
menting the algorithm for computing the standard empirical likelihood interval (Hall
and La Scala 1990). Based on this study, we recommend the use of the proposed SJEL
confidence interval for a low-income proportion.

Appendix: Proof of theorems

The Proof of Theorem 2.1 We have the following decomposition

√
n{T̂n(α, β) − θαβ} = √

n

[
1

n

n∑

i=1

K

(
αξ̂β − Xi

h

)
− 1

n

n∑

i=1

K

(
αξβ − Xi

h

)]

+√
n

[
1

n

n∑

i=1

K

(
αξβ − Xi

h

)
− F(αξβ)

]
≡ I1 + I2. (5)
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I1 from (5) can be written as

I1 =
∫ ∞

−∞

[
K

(
αξ̂β − x

h

)
− K

(
αξβ − x

h

)]
d
[√

n(Fn(x) − F(x))
]

+√
n
∫ ∞

−∞

[
K

(
αξ̂β − x

h

)
− K

(
αξβ − x

h

)]
dF(x) ≡ I11 + I12. (6)

Then using Taylor expansion and the Bahadur’s representation for sample quantile
(Bahadur 1966)

ξ̂β − ξβ = β − 1
n

∑n
i=1 I (Xi ≤ ξβ)

f (ξβ)
+ op(n

− 1
2 ),

I12 from (6) can be written as

I12 = √
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α
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1
n
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dF(x) + op(1)

= −α f (αξβ)Un(β)

f (ξβ)
+ op(1), (7)

where Un(β) = √
n[ 1n

∑n
i=1 I (Xi ≤ ξβ) − β] = √

n[ 1n
∑n

i=1 I (F(Xi ) ≤ β) − β].
Since

√
n[Fn(x) − F(x)] → B(x), which is a Gaussian process,

√
n(ξ̂β − ξβ) =

Op(1), and
√
nh → ∞, we get I11 = op(1). Therefore, I1 = −α f (αξβ)Un(β)

f (ξβ )
+ op(1).

Next, let us consider I2 from (5). We are going to prove

EK
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(
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=
∫ ∞

−∞
I [αξβ > x] f (x) dx =

∫ ∞
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Let {U1,U2, . . . ,Un} be an i.i.d. sample from U (0, 1) (uniform distribution on

[0, 1]) and independent of {X1, X2, . . . , Xn}. Since Ui
d= F(Xi )

i.i.d.∼ U (0, 1) for any
continuous distribution function F , then
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where
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fore,

I1 + I2
d= 1√

n

n∑

i=1

[
−α f (αξβ)

f (ξβ)
(I (Ui ≤ β) − β) + (Wi − EWi )

]
+ op(1).

(12)

123



618 S. Luo, G. Qin

Since
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We need Lemmas 1 and 2 to prove Theorem 3.1.

Lemma 1 Under the conditions in Theorem 2.1, we have
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So
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Using the Bahadur representation for sample quantile (Bahadur 1966), we get that
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). Under conditions of Theorem 2.1, using Taylor expan-

sion, we get that

I1 = 1

n

n∑

k=1

n∑

i=1

[
K

(
αξ̂β − Xi

h

)
− K

(
αξ̂β,−k − Xi

h

)]

= 1

n

n∑

k=1

n∑

i=1

[
−ω

(
αξ̂β − Xi

h

)
αξ̂β,−k − αξ̂β

h

−1

2
ω

′
(

αξ̂β − Xi

h

)(
αξ̂β,−k − αξ̂β

h

)2
⎤

⎦+ op

(
1

nh

)

= 1

n

n∑

i=1

{
−ω

(
αξ̂β − Xi

h

)
n∑

k=1

αξ̂β,−k − αξ̂β

h

−1

2

n∑

k=1

ω
′
(

αξ̂β − Xi

h

)(
αξ̂β,−k − αξ̂β

h

)2
⎫
⎬

⎭+ op

(
1

nh

)
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= −1

2

1

n

n∑

i=1

n∑

k=1

ω
′
(

αξ̂β − Xi

h

)(
αξ̂β,−k − αξ̂β

h

)2

+ op(n
−1/2) + op

(
1

nh

)

= Op

(
1

nh2

)∫ ∞

−∞
ω

′
(

αξ̂β − x

h

)
dFn(x) + op(n

−1/2) + op

(
1

nh

)

= Op

(
1

nh2

)∫ ∞

−∞
ω

′
(

αξ̂β − x

h

)
dF(x) + op(n

−1/2) + op

(
1

nh

)

= Op

(
1

nh

)∫ ∞

−∞
ω

′
(y) f (αξ̂β − yh)dy + op(n

−1/2) + op

(
1

nh

)

= Op

(
1

nh

)
+ op(n

−1/2). (19)

Meanwhile, I2 from (17) can be written to

I2 =
n∑

k=1

⎡

⎣
(
1

n
− 1

n − 1

) n∑

j=1

K

(
αξ̂β,−k − X j

h

)
+ 1

n − 1
K

(
αξ̂β,−k − Xk

h

)⎤

⎦

= −1

n(n − 1)

n∑

k=1

n∑

j=1

[
K

(
αξ̂β,−k − X j

h

)
− K

(
αξ̂β − X j

h

)]

+ −1

n(n − 1)

n∑

k=1

n∑

j=1

K

(
αξ̂β − X j

h

)

− −1

n − 1

n∑

k=1

[
K

(
αξ̂β,−k − Xk

h

)
− K

(
αξ̂β − Xk

h

)]

− −1

n − 1

n∑

k=1

K

(
αξ̂β − Xk

h

)

= Op

(
1

n(n − 1)h

)
− 1

n(n − 1)

n∑

k=1

n∑

j=1

K

(
αξ̂β − X j

h

)

−Op

(
1

(n − 1)2h

)
+ 1

n − 1

n∑

k=1

K

(
αξ̂β − Xk

h

)

= Op

(
1

n2h

)
. (20)

From (19) and (20), we get I1 + I2 = Op(
1
nh ) + op(n−1/2), which implies that
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1

n

n∑

k=1

V̂k(α, β) = n − 1

n

n∑

k=1

[T̂n(α, β) − T̂n−1,k(α, β)] + T̂n(α, β)

= T̂n(α, β) + Op

(
1

nh

)
+ op(n

−1/2). (21)

Therefore,

√
n

{
1

n

n∑

k=1

V̂k(α, β) − θαβ

}
= √

n[T̂n(α, β) − θαβ ]

+Op

(
1√
nh

)
+ op(1)

d−→ N (0, σ 2
αβ).

Lemma 2 Under the conditions in Theorem 2.1, we have that

1

n

n∑

k=1

{V̂k(α, β) − θαβ}2 p−→ σ 2
αβ. (22)

Proof From Lemma 1, it follows that

1

n

n∑

k=1

{V̂k(α, β) − θαβ}2 = 1

n

n∑

k=1

V̂ 2
k (α, β) − 2θαβ

1

n

n∑

k=1

V̂k(α, β) + 1

n

n∑

k=1

θ2αβ

p−→ 1

n

n∑

k=1

V̂ 2
k (α, β) − 2θαβθαβ + 1

n
nθ2αβ = 1

n

n∑

k=1

V̂ 2
k (α, β) − θ2αβ. (23)

By the definition of the jackknife pseudo-values for the low-income proportion, we
have that

V̂k(α, β) = nT̂n(α, β) − (n − 1)T̂n−1,k(α, β),

=
n∑

i=1

K

(
αξ̂β − Xi

h

)
−

n∑

j 	=k

K

(
αξ̂β,−k − X j

h

)

=
n∑

i=1

[
K

(
αξ̂β − Xi

h

)
− K

(
αξ̂β,−k − Xi

h

)]
+ K

(
αξ̂β,−k − Xk

h

)
,

(24)
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and

V̂ 2
k (α, β)=

{
n∑

i=1

[
K

(
αξ̂β −Xi

h

)
− K

(
αξ̂β,−k−Xi

h

)]}2

+K 2

(
αξ̂β,−k − Xk

h

)

+2K

(
αξ̂β,−k − Xk

h

)
n∑

i=1

[
K

(
αξ̂β − Xi

h

)
− K

(
αξ̂β,−k − Xi

h

)]
.

(25)

Therefore,

1

n

n∑

k=1

V̂ 2
k (α, β) = 1

n

n∑

k=1

{
n∑

i=1

[
K

(
αξ̂β − Xi

h

)
− K

(
αξ̂β,−k − Xi

h

)]}2

+1

n

n∑

k=1

K 2

(
αξ̂β,−k − Xk

h

)

+2

n

n∑

k=1

K

(
αξ̂β,−k − Xk

h

)

×
n∑

i=1

[
K

(
αξ̂β − Xi

h

)
− K

(
αξ̂β,−k − Xi

h

)]

≡ J1 + J2 + J3. (26)

Using Taylor expansion and the Bahadur representation for sample quantile, the
first term J1 in (26) can be written as

J1 = 1

n

n∑

k=1

{
n∑

i=1

[
K

(
αξ̂β − Xi

h

)
− K

(
αξ̂β,−k − Xi

h

)]}2

= 1

n

n∑

k=1

{
n∑

i=1

ω

(
αξ̂β − Xi

h

)
αξ̂β,−k − αξ̂β

h

}2

+ op(1)

= 1

n

n∑

k=1

(
αξ̂β,−k − αξ̂β

h

)2 { n∑

i=1

ω

(
αξ̂β − Xi

h

)}2

+ op(1)

= 1

n

α2

h2

n∑

k=1

(ξ̂β,−k − ξ̂β)2

{
n
∫ ∞

−∞
ω

(
αξ̂β − x

h

)
dFn(x)

}2

+ op(1)

= α2

nh2

n∑

k=1

(ξ̂β,−k − ξ̂β)2

{
n
∫ ∞

−∞
ω

(
αξ̂β − x

h

)
dF(x)

}2

+ op(1)

= nα2

h2

n∑

k=1

(ξ̂β,−k − ξ̂β)2
[∫ ∞

−∞
ω(z)dF(αξβ − zh)

]2
+ op(1)
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= nα2

f 2(ξβ)h2

n∑

k=1

1

(n−1)2

[
I (xk ≤ξβ)I (xk ≤ξβ)−2I (xk ≤ξβ)

1

n

n∑

i=1

I (Xi ≤ξβ)

+ 1

n2

n∑

i=1

I (Xi ≤ ξβ)

n∑

i=1

I (Xi ≤ ξβ)

][∫ ∞

−∞
ω(z)dF(αξβ − zh)

]2
+ op(1)

= n2α2(−h)2

f 2(ξβ)h2(n − 1)2
[Fn(ξβ) − F2

n (ξβ)]
[∫ ∞

−∞
ω(z) f (αξβ − zh) dz

]2
+ op(1)

p−→ α2β(1 − β) f 2(αξβ)

f 2(ξβ)
. (27)

J2 from (26) can be written as

J2 = 1

n

n∑

k=1

K 2

(
αξ̂β,−k − Xk

h

)

= 1

n

n∑

k=1

[
K 2

(
αξ̂β,−k − Xk

h

)
− K 2

(
αξβ − Xk

h

)]
+ 1

n

n∑

k=1

K 2
(

αξβ − Xk

h

)

= 1

n

n∑

k=1

K 2
(

αξβ − Xk

h

)
+ op(1)

= EK 2
(

αξβ − x

h

)
+ op(1) = θαβ + op(1). (28)

The term J3 from (26) can be written as

J3 = 2

n

n∑

k=1

K

(
αξ̂β,−k − Xk

h

)
n∑

i=1

[
K

(
αξ̂β − Xi

h

)
− K

(
αξ̂β,−k − Xi

h

)]

= −2

n

n∑

k=1

K

(
αξ̂β,−k − Xk

h

)(
αξ̂β,−k − αξ̂β

h

)
n∑

i=1

ω

(
αξ̂β − Xi

h

)
+ op(1)

= −2α

nh

n∑

k=1

K

(
αξ̂β,−k−Xk

h

)
(ξ̂β,−k−ξ̂β)n

∫ ∞

−∞
ω

(
αξ̂β −x

h

)
dF(x)+op(1)

= −2α
n∑

k=1

K

(
αξ̂β,−k − Xk

h

)
(ξ̂β,−k − ξ̂β)

∫ ∞

−∞
ω(z) f (αξβ − zh) dz + op(1)

= −2α
n∑

k=1

K

(
αξ̂β,−k − Xk

h

)
[I (Xk ≤ ξβ) − Fn(ξβ)]

(n − 1) f (ξβ)
f (αξβ) + op(1)

= −2α f (αξβ)

f (ξβ)

1

n − 1

n∑

k=1

[
K

(
αξ̂β,−k − Xk

h

)
− K

(
αξ̂β − Xk

h

)
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+K

(
αξ̂β − Xk

h

)]
[I (Xk ≤ ξβ) − Fn(ξβ)] + op(1)

= −2α f (αξβ)

f (ξβ)

{
1

n − 1

n∑

k=1

[
−ω

(
αξ̂β − Xk

h

)
αξ̂β,−k − αξ̂β

h

]

× [I (Xk ≤ ξβ) − Fn(ξβ)]

+ 1

n − 1

n∑

k=1

K

(
αξ̂β − Xk

h

)
[I (Xk ≤ ξβ) − Fn(ξβ)]

}
+ op(1)

≡ −2α f (αξβ)

f (ξβ)
{M1 + M2} + op(1), (29)

and

M1 = 1

n − 1

n∑

k=1

[
−ω

(
αξ̂β − Xk

h

)
αξ̂β,−k − αξ̂β

h

]
[I (Xk ≤ ξβ) − Fn(ξβ)]

= −α

(n − 1)h

n∑

k=1

ω

(
αξ̂β − Xk

h

)
[I (Xk ≤ ξβ) − Fn(ξβ)]2

(n − 1) f (ξβ)
+ op(1)

= −α

(n − 1)2h f (ξβ)

n∑

k=1

ω

(
αξ̂β − Xk

h

)
[I (Xk ≤ ξβ) − Fn(ξβ)]2 + op(1)

= −nα

(n − 1)2h f (ξβ)

∫ ∞

−∞
ω

(
αξ̂β − x

h

)
[I (F(x) ≤ β) − β]2 dF(x) + op(1)

= op(1), (30)

M2 = 1

n − 1

n∑

k=1

K

(
αξ̂β − Xk

h

)
[I (Xk ≤ ξβ) − Fn(ξβ)]

= n

n − 1

∫ ∞

−∞
K

(
αξβ − x

h

)
[I (F(x) ≤ β) − β] dF(x) + op(1)

= n

n − 1

∫ ∞

−∞

∫ αξβ−x
h

−∞
ω(y) dy[I (F(x) ≤ β) − β]dF(x) + op(1)

=
∫ ∞

−∞
I (F(x) ≤ F(αξβ))[I (F(x) ≤ β) − β] dF(x) + op(1)

= θαβ(1 − β) + op(1). (31)

From (29), (30), and (31), we get J3 = −2α(1 − β)θαβ
f (αξβ)

f (ξβ )
+ op(1). Therefore,

1

n

n∑

k=1

V̂ 2
k (α, β)

p−→ α2β(1 − β) f 2(αξβ)

f 2(ξβ)
+ θαβ − 2α(1 − β)θαβ

f (αξβ)

f (ξβ)
. (32)
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In sum, we have that

1

n

n∑

k=1

{V̂k(α, β) − θαβ}2 p−→ σ 2
αβ.

The Proof of Theorem 3.1 It follows immediately from Lemmas 1 and 2.

The Proof of Theorem 3.2 Let g(λ) = 1
n

∑n
i=1

V̂i (α,β)−θαβ

1+λ(V̂i (α,β)−θαβ )
. It is easy to check

that

0 = |g(λ)| = 1

n

∣∣∣∣∣

n∑

i=1

(V̂i (α, β) − θαβ) − λ

n∑

i=1

(V̂i (α, β) − θαβ)2

1 + λ(V̂i (α, β) − θαβ)

∣∣∣∣∣

≥
∣∣∣∣∣
λ

n

n∑

i=1

(V̂i (α, β) − θαβ)2

1 + λ(V̂i (α, β) − θαβ)

∣∣∣∣∣−
∣∣∣∣∣
1

n

n∑

i=1

(V̂i (α, β) − θαβ

∣∣∣∣∣

≥ |λ|Sn
1 + |λ|Zn

−
∣∣∣∣∣
1

n

n∑

i=1

(V̂i (α, β) − θαβ)

∣∣∣∣∣ , (33)

where Sn = 1
n

∑n
i=1(V̂i (α, β) − θαβ)2 and Zn = max1≤i≤n |V̂i (α, β) − θαβ |.

From Lemmas 1 and 2, we have |λ| = Op(n− 1
2 ). Put γi = λ(V̂i (α, β) − θαβ), then

we have max1≤i≤n |γi | = op(1), and

0 = g(λ) = 1

n

n∑

i=1

(V̂i (α, β) − θαβ)

(
1 − γi + γ 2

i

1 + γi

)

= 1

n

n∑

i=1

(V̂i (α, β) − θαβ) − Snλ + λ2

n

n∑

i=1

(V̂i (α, β) − θαβ)3

1 + γi

= 1

n

n∑

i=1

(V̂i (α, β) − θαβ) − Snλ + op(n
−1/2), (34)

which implies that λ = S−1
n

1
n

∑n
i=1(V̂i (α, β) − θαβ) + βn , where βn = op(n−1/2).

Therefore,

ln(θαβ) = 2
n∑

i=1

log{1 + λ(V̂i (α, β) − θαβ)}

= 2
n∑

i=1

γi −
n∑

i=1

γ 2
i + op(1)

= 2nλ
1

n

n∑

i=1

(V̂i (α, β) − θαβ) − nSnλ
2 + op(1)
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= n{ 1n
∑n

i=1(V̂i (α, β) − θαβ)}2
Sn

− nSnβ
2
n + op(1)

= n{ 1n
∑n

i=1(V̂i (α, β) − θαβ)}2
Sn

+ op(1)
d−→ χ2(1). (35)
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