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Abstract We consider Bayesian estimation of the location parameter θ of a random
vector X having a unimodal spherically symmetric density f (‖x − θ‖2) for a spher-
ically symmetric prior density π(‖θ‖2). In particular, we consider minimaxity of the
Bayes estimator δπ (X) under quadratic loss. When the distribution belongs to the
Berger class, we show that minimaxity of δπ (X) is linked to the superharmonicity
of a power of a marginal associated to a primitive of f . This leads to proper Bayes
minimax estimators for certain densities f (‖x − θ‖2).
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544 D. Fourdrinier et al.

1 Introduction

Let X be a random vector in Rp with spherically symmetric density

f (‖x − θ‖2) (1)

around an unknown location parameter θ that we wish to estimate. Any estimator δ is
evaluated under the squared error loss

‖δ − θ‖2, (2)

through the corresponding quadratic risk Eθ [‖δ(X) − θ‖2], where Eθ denotes the
expectation with respect to the density in (1). As soon as E0[‖X‖2] < ∞, the standard
estimator X is minimax, and has constant risk (actually, equal to E0[‖X‖2]), which
entails that minimaxity of δ will be obtained by proving that the risk of δ is less than
or equal to the risk of X , that is, if Eθ [‖δ(X) − θ‖2] ≤ E0[‖X‖2] for any θ ∈ R

p

(domination of δ over X being obtained if, furthermore, this inequality is strict for some
θ ). Note that, as X is admissible for p ≤ 2, we will assume, in the following, that
p ≥ 3. For a proof of the minimaxity of X in that spherical context, see e.g., Ralescu
(2002). For a general discussion of Bayes, minimaxity and admissibility issues, see,
e.g., Lehmann and Casella (1998).

In this paper, we consider generalized Bayes estimators of θ for a spherically
symmetric prior density, that is, of the form

π(‖θ‖2). (3)

As recalled in Fourdrinier and Strawderman (2008), denoting by ∇ the gradient oper-
ator, the generalized Bayes estimator is the posterior mean and can be written as

δπ (X) = X + ∇M(‖X‖2)
m(‖X‖2) (4)

where

m(‖x‖2) =
∫
Rp

f (‖x − θ‖2) π(‖θ‖2) dθ (5)

is the marginal density and

M(‖x‖2) =
∫
Rp

F(‖x − θ‖2) π(‖θ‖2) dθ (6)

with

F(t) = 1

2

∫ ∞

t
f (u) du (7)

for t ≥ 0.
It is shown in Fourdrinier et al. (2013) that the finiteness risk condition of X , that

is, μ2 = E0[‖X‖2] < ∞, is equivalent to γ = ∫
Rp F(‖x‖2) dx < ∞ (actually,

123



A Bayes minimax result for spherical distributions 545

γ = μ2/p). It is also worth noting that, when the prior density π(‖θ‖2) in (3) is
superharmonic, this condition is sufficient to guarantee the finiteness of the risk of the
generalized Bayes estimator δπ (X) in (4) (see Fourdrinier et al. 2012). We will see, in
Sect. 2, that this superharmonicity condition can be weakened to include all unimodal
prior densities.

Here, we are interested in minimaxity of generalized Bayes estimators in (4) when
the sampling density in (1) belongs to the Berger class, that is, when there exists a
positive constant c such that

∀t ≥ 0
F(t)

f (t)
≥ c (8)

(see Berger 1975). Fourdrinier and Strawderman (2008) proved, provided that

Eθ

[∥∥∥∥∇M(‖X‖2)
m(‖X‖2)

∥∥∥∥
2
]

< ∞, (9)

the risk difference between δπ (X) and X is bounded above by

Eθ

[
2 c

�M(‖X‖2)
m(‖X‖2) − 2 c

∇M(‖X‖2) · ∇m(‖X‖2)
m2(‖X‖2) +

∥∥∇M(‖X‖2)∥∥2
m2(‖X‖2)

]
(10)

where · denotes the inner product in Rp. Thus, the generalized Bayes estimator in (4)
will be minimax as soon as, for all x ∈ R

p,

Oc(‖x‖2) = 2 c
�M(‖x‖2)
m(‖x‖2) − 2 c

∇M(‖x‖2) · ∇m(‖x‖2)
m2(‖x‖2) +

∥∥∇M(‖x‖2)∥∥2
m2(‖x‖2) ≤ 0.

(11)
Then, thanks to the superharmonicity of π(‖θ‖2), superharmonicity of M was guar-
anteed as well and, getting rid of the Laplacian term in (11), they were led to prove
that

∀x ∈ R
p − 2 c

∇M(‖x‖2) · ∇m(‖x‖2)
m2(‖x‖2) +

∥∥∇M(‖x‖2)∥∥2
m2(‖x‖2) ≤ 0

to demonstrate the above risk difference is nonpositive. Doing that, the scope of Bayes
minimax estimators is reduced; for instance, proper Bayes minimax estimators are
excluded. Our goal, here, is to provide a different expression for (11) which allows to
preserve the Laplacian term and to not impose superharmonicity of the prior.

Throughout this paper we will assume that the functions f and π in (1) and (3) are
absolutely continuous. In addition, we will typically assume that π is non constant
to avoid the undetermined form 0/0. Note that when π is constant, the generalized
Bayes estimator δπ (X) in (4) corresponds to the usual estimator X which is already
minimax.

In Sect. 2, we show that unimodality of the sampling and prior densities in (1) and
(3) is the basic condition for the generalized Bayes estimator δπ (X) in (4) to be a
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546 D. Fourdrinier et al.

shrinkage estimator (i.e., ‖δπ (X)‖ ≤ ‖X‖), which guarantees that it has finite risk as
soon as E0[‖X‖2] < ∞. In Sect. 3, we propose an upper bound for (11) in terms of
the marginal M only, which allows to derive sufficient conditions for minimaxity of
δπ (X). In Sect. 4, we show that, if there exists β ≤ 1 such that Mβ is superharmonic,
then the generalized Bayes estimator in (4) is minimax, retrieving the result of Stein
(1981) in the normal case for which M = m and β = 1/2. For β < 1, we demonstrate
that the generalized Bayes estimator may in fact be proper Bayes. Examples illustrate
the theory. Finally, we give technical results in an Appendix.

2 Conditions for Bayes estimators to be shrinkage estimators

In this section,we show that the generalizedBayes estimator δπ (X) in (4) is a shrinkage
estimator as soon as the sampling andprior densities are unimodal and E0[‖X‖2] < ∞,
which guarantees its risk finiteness.

Theorem 1 Let f (‖x−θ‖2) be a sampling density as in (1) such that E0[‖X‖2] < ∞
and π(‖θ‖2) a generalized prior density as in (3). Assume that, for any x ∈ R

p,

∫
Rp

‖θ‖2 f (‖x − θ‖2) π(‖θ‖2) dθ < ∞ (12)

so that the posterior expected value

∫
Rp θ f (‖x − θ‖2) π(‖θ‖2) dθ∫
Rp f (‖x − θ‖2) π(‖θ‖2) dθ (13)

exists and the posterior risk is finite. We have the following results.

(a) The generalized Bayes estimator δπ (X) in (4) can be written as

δπ (X) = (1 − a(‖X‖2)) X, (14)

for some function a from R+ into R.
(b) If the sampling density f (‖x − θ‖2) is unimodal then a(‖X‖2) ≤ 1.
(c) If the prior density π(‖θ‖2) is unimodal then a(‖X‖2) ≥ 0.
(d) If f (‖x − θ‖2) and π(‖θ‖2) are unimodal then 0 ≤ 1 − a(‖X‖2) ≤ 1, so that

δπ (X) is a shrinkage estimator, i.e.,

‖δπ (X)‖ ≤ ‖X‖, (15)

and δπ (X) has finite risk.

Proof (a) As δπ (X) is the posterior expected value expressed in (13) and as, according
to part (a) of Lemma 4,

∫
Rp

θ f (‖x − θ‖2) π(‖θ‖2) dθ = �(‖X‖2) X
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A Bayes minimax result for spherical distributions 547

for some function �, it follows from (5) that δπ (X) = �(‖X‖2)/m(‖X‖2) X , so
that (14) is satisfied with a(‖X‖2)) = 1 − �(‖X‖2)/m(‖X‖2).

(b) It also follows from Lemma 4 and from (13) that, as the denominator of (13) is
positive, 1 − a(‖x‖2) has the sign of π(‖θ‖2), that is, a(‖x‖2) ≤ 1.

(c) ApplyingLemma3with g(θ) = π(‖θ‖2), part (c) follows from the representation

∫
Rp (θ − x) f (‖x − θ‖2) π(‖θ‖2) dθ∫

Rp f (‖x − θ‖2) π(‖θ‖2) dθ = 2

∫
Rp θ F(‖x − θ‖2) π ′(‖θ‖2) dθ∫
Rp f (‖x − θ‖2) π(‖θ‖2) dθ

and part (b) of Lemma 4, since F is nonincreasing and since π ′(‖θ‖2) ≤ 0 by
unimodality of π(‖θ‖2).

(d) Part (d) follows from (b) and (c).

3 Risk difference upper bounds and minimaxity

Note that, from the definition of the marginals in (5) and (6), we have

∇m(‖x‖2) =
∫
Rp

(θ − x) (−2 f ′)(‖x − θ‖2) π(‖θ‖2) dθ (16)

and

∇M(‖x‖2) =
∫
Rp

(θ − x) f (‖x − θ‖2) π(‖θ‖2) dθ (17)

so that Lemma 4 clearly applies and there exist two functions γ (‖x‖2) and 	(‖x‖2)
such that

∇m(‖x‖2) = γ (‖x‖2) x and ∇M(‖x‖2) = 	(‖x‖2) x . (18)

In the following lemma, we give an expression for the functions γ (‖x‖2) and
	(‖x‖2). This is essentially Lemma 3.1 of Fourdrinier and Strawderman (2008) where
the function H in (17) of Fourdrinier and Strawderman (2008) is H(r2, ‖x‖2) =
‖x‖2 μr (‖x‖2)/2 r p+1, where μr (‖x‖2) is given in Formula (21).

Lemma 1 For any x ∈ R
p,

γ (‖x‖2) =
∫ ∞

0
μr (‖x‖2) (−2 f ′)(r2) dr (19)

and

	(‖x‖2) =
∫ ∞

0
μr (‖x‖2) f (r2) dr (20)

where

μr (‖x‖2) = 1

‖x‖2
∫
Sr,x

x · (θ − x) π(‖θ‖2) dσr,x (θ) = 2 r

‖x‖2
∫
Br,x

x · θ π ′(‖θ‖2) dθ ,

(21)
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548 D. Fourdrinier et al.

where σr,x is the uniform measure on the sphere Sr,x of radius r and centered at x (see
the reminder before Lemma 4 in the Appendix).

In addition, μr (‖x‖2) ≤ 0 as soon as the prior π(‖θ‖2) in (3) is unimodal, so that
	(‖x‖2) ≤ 0 and, when the density in (1) is unimodal, γ (‖x‖2) ≤ 0. Furthermore,
when the Laplacian �π(‖θ‖2) is a nondecreasing function of ‖θ‖2, for any x 
= 0,
μr (‖x‖2)/r p+1 is a nondecreasing function of r .

Wegive now an upper bound forOc(‖x‖2) in (11), provided that γ (‖x‖2)/	(‖x‖2)
is appropriately bounded from below. Note that, from (8), it follows that

∀x ∈ R
p M(‖x‖2)

m(‖x‖2) ≥ c. (22)

Theorem 2 Assume that (8) is satisfied and that, for any x ∈ R
p,

γ (‖x‖2)
	(‖x‖2) ≥ 1

2 c
, (23)

where the functions γ (‖x‖2) and 	(‖x‖2) are defined through (18). Then, for any
x ∈ R

p, an upper bound for Oc(‖x‖2) in (11) is given by

Oc(‖x‖2) ≤ 2 c
M(‖x‖2)
m(‖x‖2)

[
�M(‖x‖2)
M(‖x‖2) +

{
1

2
− c

γ (‖x‖2)
	(‖x‖2)

}∥∥∥∥∇M(‖x‖2)
M(‖x‖2)

∥∥∥∥
2
]

.

(24)
Furthermore we have

Oc(‖x‖2) ≤ 2 c2
[

�M(‖x‖2)
M(‖x‖2) +

{
1

2
− c

γ (‖x‖2)
	(‖x‖2)

} ∥∥∥∥∇M(‖x‖2)
M(‖x‖2)

∥∥∥∥
2
]

, (25)

as soon as the bracketed term in (24) is nonpositive.

Proof Factorizing Oc(‖x‖2) in (11) as

2 c
M(‖x‖2)
m(‖x‖2)

[
�M(‖x‖2)
M(‖x‖2) − ∇M(‖x‖2) · ∇m(‖x‖2)

M(‖x‖2)m(‖x‖2) + 1

2 c

‖∇M(‖x‖2)‖2
M(‖x‖2)m(‖x‖2)

]

and using

∇M(‖x‖2) · ∇m(‖x‖2) = 	(‖x‖2) γ (‖x‖2) ‖x‖2 = γ (‖x‖2)
	(‖x‖2) ‖∇M(‖x‖2)‖2,

thanks to (18), we have

Oc(‖x‖2) = 2 c
M(‖x‖2)
m(‖x‖2)

[
�M(‖x‖2)
M(‖x‖2) +

{
1

2 c
− γ (‖x‖2)

	(‖x‖2)
} ‖∇M(‖x‖2)‖2
M(‖x‖2)m(‖x‖2)

]
.
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A Bayes minimax result for spherical distributions 549

Then Inequality (24) immediately follows from (22) and (23).
In the same way, Inequality (25) follows from (22) as soon as the bracketed term

in (24) is nonpositive. ��
Condition (23) is a condition on the model. Note that, in the normal case with

f (t) ∝ exp(−t/2 σ 2), we have c = σ 2 and γ (‖x‖2)/	(‖x‖2) = 1/σ 2 so that
Condition (23) is clearly satisfied.

The main interest of Inequalities (24) and (25) is that their common bracketed term
depends only on the marginal M . Thus, when Condition (23) is satisfied and this
bracketed term is nonpositive, the Bayes estimator δπ (X) is minimax as soon as the
marginal M is superharmonic. More precisely, we have the following corollary.

Corollary 1 Assume that the sampling density f (‖x − θ‖2) in (1) and the prior
density π(‖θ‖2) in (3) are unimodal. Under the conditions of Theorem 2, if M is
superharmonic, then

Oc(‖x‖2) ≤ 2 c2
�M(‖x‖2)
M(‖x‖2) ≤ 0

so that the Bayes estimator δπ (X) in (4) is minimax. In particular, if the prior π(‖θ‖2)
in (3) is superharmonic, then δπ (X) is minimax.

Proof Thanks to (d) in Theorem 1, δπ (X) has finite risk. From (24) and (23), it follows
that

Oc(‖x‖2) ≤ 2 c
M(‖x‖2)
m(‖x‖2)

�M(‖x‖2)
M(‖x‖2)

≤ 2 c2
�M(‖x‖2)
M(‖x‖2) ,

according to (22) since, by superharmonicity assumption, �M(‖x‖2) ≤ 0. Then the
corollary is immediate. ��

As noted above, Fourdrinier and Strawderman (2008) studied minimaxity for esti-
mation of θ for spherically symmetric distributions. In particular, their main result
(Theorem 3.1) implied minimaxity under the following conditions:

I) conditions onπ(‖θ‖2): the priorπ(‖θ‖2) is superharmonic (and hence unimodal)
and its Laplacian �(π(‖θ‖2)) is nondecreasing in ‖θ‖2;

II) conditions on f : f (‖x − θ‖2) is unimodal, f ′(t)/ f (t) is nondecreasing,
F(t)/ f (t) ≥ c > 0 and (with a change of variable r2 = t)

∫ ∞
0 (−2 f ′(r2)) r p+1 dr∫ ∞

0 f (r2) r p+1 dr
≥ 1

2 c
. (26)

In the course of the proof (after Eq. 22), they essentially demonstrate that

γ (‖x‖2)
	(‖x‖2) ≥

∫ ∞
0 (−2 f ′(r2)) r p+1 dr∫ ∞

0 f (r2) r p+1 dr
≥ 1

2 c
. (27)
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Hence, it follows that Condition (23) of this paper is satisfied as soon as (26)
holds and that minimaxity follows from (27) and Theorem 2. However, Fourdrinier
and Strawderman (2008) require the above monotonicity conditions on π(‖θ‖2), on
�(π(‖θ‖2)) and on f ′(t)/ f (t), and these are essential in establishing (27).

Theorem 2, in contrast, requires only F(t)/ f (t) ≥ c > 0 and γ (‖x‖2)/	(‖x‖2) ≥
1/2 c along with superharmonicity of π(‖θ‖2), and makes no monotonicity assump-
tion on F(t)/ f (t) (and hence on f ′(t)/ f (t)). Therefore, its potential applicability is
broader than Fourdrinier and Strawderman (2008).

The next corollary gives a class of examples where minimaxity follows from Theo-
rem 2, but where Fourdrinier and Strawderman (2008) is not applicable in those cases
where ψ(t) = F(t)/ f (t) is not monotone.

Corollary 2 Let

f (t) ∝ 1

ψ(t)
exp

(
−1

2

∫ t 1

ψ(u)
du

)
(28)

where, for a given c > 0, ψ(t) is a differentiable function such that 0 < c ≤ ψ(t) ≤
2 c < ∞ and ψ ′(t) ≥ −1/2 for all t ≥ 0. Assume that the prior density π(‖θ‖2) is
superharmonic and that �(π(‖θ‖2)) is a nondecreasing function of ‖θ‖2. Then the
Bayes estimator δπ (X) in (4) is minimax.

Proof From (28) we may assume, without loss of generality,
∫
Rp f (‖x −θ‖2) dx = 1

since f (t) ≤ K exp(−t/4 c) for some constant K > 0. Note that the condition
ψ ′(t) ≥ −1/2 suffices to imply f ′(t) ≤ 0, so that the density f (‖x−θ‖2) is unimodal,
since

f ′(t) ∝ −ψ ′(t) + 1/2

ψ2(t)
exp

(
−1

2

∫ t 1

ψ(u)
du

)
.

Note also that, as f (t) = −2 F ′(t) and, for any t0 ≥ 0, limt→∞
∫ t
t0
1/ψ(u) du = ∞

by the boundedness property of ψ , we have

F(t) ∝ exp

(
−1

2

∫ t 1

ψ(u)
du

)

so that

F(t)

f (t)
= ψ(t) > 0.

Now, by construction, F(t)/ f (t) ≥ c and f (t)/F(t) ≥ 1/2 c which implies,
according to Corollary 4, γ (‖x‖2)/	(‖x‖2) ≥ 1/2 c since unimodality of π(‖θ‖2) is
guaranteed by its superharmonicity and since�(π(‖θ‖2)) is a nondecreasing function
of ‖θ‖2. Finally minimaxity of δπ (X) follows from Corollary 1. ��

As noted above,whenψ(t) is chosen to be nonmonotone inCorollary 2,minimaxity
does not follow from Fourdrinier and Strawderman (2008). Here is an example of such
a function.
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Choose ψ(t) = (t2 − 2α t + β)−1 + γ with α ≥ 0, β − α2 ≥ 3/2 and γ > 0.
As β − α2 > 0, the polynomial in the expression of ψ(t) is positive. It follows that
ψ(t) is well defined and is positive for all t ≥ 0 (note that γ > 0). In addition ψ(t) is
nondecreasing for 0 ≤ t ≤ α and nonincreasing for t ≥ α, and hence nonmonotone,
since ψ ′(t) = −2 (t − α) (t2 − 2 α + β)−2. Furthermore, as ψ(0) = 1/β + γ ,
ψ(α) = 1/(β − α2) + γ and limt→∞ ψ(t) = γ , Condition (8) is satisfied with c > 0
such that c ≤ γ and 1/(β − α2) + γ ≤ 2 c (which implies c ≥ 1/(β − α2)). Finally,
we have unimodality of the density f (‖x − θ‖2) since, considering the case where
t ≥ α (when t ≤ α, ψ ′(t) ≥ 0) and setting u = t − α and δ = β − α2, it can be seen
that ψ ′(t) ≥ −1/2 is equivalent to (u2 + δ)2 − 4 u ≥ 0, which is satisfied for u ≥ 0
since δ ≥ 3/4. Indeed (u2 + δ)2 − 4 u ≥ 0 for δ ≥ −u2 + 2

√
u and −u2 + 2

√
u has

a maximum at u = (1/2)2/3 which equals 3/24/3 which is smaller than 3/2.
Explicit examples of densities f (‖x − θ‖2) can also be directly derived (up to

proportionality) that satisfy the conditions of Corollary 2. Indeed, an alternative
expression for f (t) is f (t) = ϕ′(t) exp(−ϕ(t)/2) where ϕ(t) = ∫ t 1/ψ(u) du with
limt→∞ ϕ(t) = ∞, so that F(t)/ f (t) = 1/ϕ′(t). Then the requirements on ϕ are that
ϕ′(t) is positive, but not monotone, and, more precisely, that 1/2c ≤ ϕ′(t) ≤ 1/c. As
for unimodality of f (‖x − θ‖2), the condition is ϕ′′(t) − 1/2 {ϕ′(t)}2 < 0.

As an example, consider

ϕ(t) = a t + b log(1 + t) + b

1 + t

where a and b are two positive constants. Then limt→∞ ϕ(t) = ∞ and

ϕ′(t) = a + b

1 + t
− b

(1 + t)2
= a + b

1 + t

(
1 − 1

1 + t

)
.

From the second expression of ϕ′(t) it is easily seen that ϕ′ is not monotone and that
0 < a ≤ ϕ′(t) ≤ a + b/4 = ϕ′(1), which implies that ϕ(t) ≥ ϕ(0) = b > 0. Hence
we can form

f (t) =
{
a + b

1 + t

(
1 − 1

1 + t

)}
exp

(
−1

2
a t + b log(1 + t) + b

1 + t

)

with the appropriate requirements on ϕ (also with 1/2c ≤ a and a + b/4 ≤ 1/c).
Finally, the unimodality condition is satisfied for b < a2/2 since

ϕ′′(t) = − b

(1 + t)2
+ 2 b

(1 + t)3
= − b

(1 + t)2

(
1 − 2

1 + t

)
< b

implies ϕ′′(t) − {ϕ′(t)}2/2 < b − a2/2 < 0.
Here is another class of examples for which the generating function f is modified

so that ψ(t) = F(t)/ f (t) becomes nonmonotone, but where Theorem 2 implies
minimaxity.We note oncemore that, in each of the above examples (and the one which
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follows), minimaxity of the generalized Bayes estimator follows from Corollary 1 of
this paper, but does not follow from the results of Fourdrinier and Strawderman (2008).

We assume the pair ( f, F) is such that ψ(u) ≥ c and ψ(u) is continuous, and is
strictly monotone increasing on the interval [a, b] where 0 < a < b < ∞. Define

ψ1(t) =
{

ψ(t) for 0 ≤ t ≤ a and b ≤ t < ∞;
ψ∗(t) for a < t < b,

whereψ1(t) is continuous (soψ∗(a) = ψ(a) andψ∗(b) = ψ(b)) and so thatψ∗(t) ≥
c, but ψ∗(t) is not monotone (this can be done in infinitely many ways including a
linear decrease on ]a, d[ from ψ∗(a) = ψ(a) to ψ∗(d) = c and a linear increase on
]d, b[ from ψ∗(d) = c to ψ∗(b) = ψ(b) for any d ∈]a, b[). Then define (for some
k > 0 chosen so that

∫
Rp f1(‖x − θ‖2) dx = 1)

F1(t) = k exp

(
−1

2

∫ t 1

ψ1(u)
du

)

and

f1(t) = k
1

ψ1(t)
exp

(
−1

2

∫ t 1

ψ1(u)
du

)
.

Hence F1(t)/ f1(t) = ψ1(t) ≥ c, but F1(t)/ f1(t) is not monotone increasing (since
ψ1(t) is not monotone increasing).

Nownotewemaychooseψ1(t), for any ε > 0 such that 1−ε ≤ f1(t)/ f (t) ≤ 1+ε

and 1 − ε ≤ F1(t)/F(t) ≤ 1 + ε. Hence, by Corollary 4, setting, with y = ‖x‖2,
L(r, y) =

∣∣∣∫Sr,x x · ∇π(‖θ‖2) dAσr,x (θ)

∣∣∣, we have

γ1(y)

	1(y)
= E∗

x

[
f1(R2)

F1(R2)

]

=
∫ ∞
0 f1(r2) L(r, y) dr∫ ∞
0 F1(r2) L(r, y) dr

=
∫ ∞
0

f1(r2)
f (r2)

f (r2) L(r, y) dr
∫ ∞
0

F1(r2)
F(r2)

F(r2) L(r, y) dr

≥ 1 − ε

1 + ε

∫ ∞
0 f (r2) L(r, y) dr∫ ∞
0 F(r2) L(r, y) dr

= 1 − ε

1 + ε

γ (y)

	(y)
.

Hence, if γ (y)/	(y) > 1/2c, it is possible to choose f1 such that γ1(y)/	1(y) >

1/2c. Therefore, if X ∼ f1(‖x−θ‖2), minimaxity of the generalized Bayes estimator
corresponding to π(‖θ‖2) satisfying the conditions of Corollary 2 is guaranteed. Since
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ψ1 is not monotone, minimaxity does not follow from Fourdrinier and Strawderman
(2008).

It is worth noticing that, if f (t) is a variance mixture of normals, F(t)/ f (t) = ψ(t)
is always strictly monotone increasing provided the mixing distribution is not degen-
erate at a point. In addition, we note that Theorem 3.1 of Fourdrinier and Strawderman
(2008) may be applied to f (t) such that f (t)/(− f ′(t)) is monotone increasing, and
that this implies F(t)/ f (t) is monotone increasing. The results of this paper also apply
to f1(t) constructed above, while the results of Fourdrinier and Strawderman (2008)
do not.

4 Superharmonicity of a power of M and minimaxity

The development in this section is in the spirit of Stein (1981) where he demonstrated,
in the normal case, that, if m1/2(·) is superharmonic, then the corresponding gener-
alized Bayes estimator is minimax. Our results center on proving minimaxity when
Mβ(‖ · ‖2) is superharmonic for some 1/2 ≤ β ≤ 1.

It will be relevant to bound from above the bracketed terms in (24) and in (25) using
a lower bound α for γ (‖x‖2)/	(‖x‖2) greater than or equal to 1/2c. Given such a
bound, an upper bound for Oc(‖x‖2) in (11) may involve the Laplacian of a certain
power of the marginal M(‖x‖2). This is specified in the following theorem.

Theorem 3 Assume that there exists α ∈ R+ such that, for any x ∈ R
p,

γ (‖x‖2)
	(‖x‖2) ≥ α ≥ 1

2 c
. (29)

Then, for any x ∈ R
p, an upper bound for Oc(‖x‖2) in (11) is given by

Oc(‖x‖2) ≤ 2 c

β

M1−β(‖x‖2)
m(‖x‖2) �Mβ(‖x‖2), (30)

where β = 3/2 − c α.

Proof Thanks to (29), Inequality (23) is satisfied so that we are under the conditions
of Theorem 2 . Then it follows from (24) that

Oc(‖x‖2) ≤ 2 c
M(‖x‖2)
m(‖x‖2)

[
�M(‖x‖2)
M(‖x‖2) +

{
1

2
− c α

} ∥∥∥∥∇M(‖x‖2)
M(‖x‖2)

∥∥∥∥
2
]

= 2 c
M(‖x‖2)
m(‖x‖2)

[
�M(‖x‖2)
M(‖x‖2) + {β − 1}

∥∥∥∥∇M(‖x‖2)
M(‖x‖2)

∥∥∥∥
2
]

= 2 c

β

M1−β(‖x‖2)
m(‖x‖2) �Mβ(‖x‖2), (31)

according to the definition of β and to Lemma 6. ��
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It follows from Theorem 3 that a sufficient condition for δπ (X) in (4) to be min-
imax is that Mβ is superharmonic. Note that, as Condition (29) implies that β ≤ 1,
superharmonicity of Mβ is a weaker condition than superharmonicity of the marginal
M itself. When this is the case, the following corollary provides another upper bound
for Oc(‖x‖2).
Corollary 3 Under the conditions of Theorem 3, if Mβ(‖ ·‖2) is superharmonic, then

Oc(‖x‖2) ≤ 2 c2

β

�Mβ(‖x‖2)
Mβ(‖x‖2) ≤ 0 (32)

so that the Bayes estimator in (4) is minimax.

Proof The proof is similar to the proof of Corollary 1. ��
In the normal case where f (t) = 1/(2π)p/2 e−t/2, we have c = 1 and M = m.

Then Inequalities (30) and (32) which give an upper bound for Oc(‖x‖2) are in fact
equalities for β = 1/2, that is,

Oc(‖x‖2) = 4
�m1/2(‖x‖2)
m1/2(‖x‖2) .

This is the result of Stein (1981).
Not only is superharmonicity of Mβ(‖ · ‖2) weaker than that of M(‖ · ‖2) but,

for 1/2 ≤ β ≤ 1, there is another possible benefit; namely Mβ(‖ · ‖2) may be
superharmonic and simultaneously M(‖ · ‖2) (and hence π(‖ · ‖2)) may be proper if
p is sufficiently large. This allows the possibility, which will be demonstrated in the
example below, that M(‖ · ‖2), and hence π(‖ · ‖2), leads to a proper Bayes minimax
estimator which is automatically admissible.

In particular, if

M(‖x‖2) =
(

1

b + ‖x‖2
)(p−2)/2β

and 1/2 ≤ β ≤ 1, then, for p > 2/(1 − β), it is straightforward to demonstrate
that Mβ(‖ · ‖2) is superharmonic and M(‖ · ‖2) is also integrable (proper). Note, for
β = 1/2, the above gives p > 4 and, for β = 3/4, p > 8, but, for β = 1, there is no p
forwhichM(‖·‖2) is integrable (aswas pointed outmore generally in Fourdrinier et al.
1998). This example is intended to be illustrative of the point that superharmonicity
of Mβ(‖ · ‖2) may be useful. This particular M(‖ · ‖2) may not correspond to any
choice of sampling density or generalized prior.

The followingminimaxity result illustrates the applicability of Corollary 3when the
sampling density in (1) and the prior density in (3) are variance mixtures of normals,
that is,

f (t) =
∫ ∞

0

1

(2π v)p/2
exp

(
− t

2v

)
dG(v), (33)
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where G is the distribution of a random variable V on R+ and when

π(‖θ‖2) =
∫ ∞

0

1

(2π t)p/2
exp

(
−‖θ‖2

2 t

)
h(t) dt (34)

for a certain (possibly improper) mixing density h.

Theorem 4 Assume that 0 < a ≤ V ≤ b < ∞ such that

a

b
≥ 3

2
− β (35)

with 1/2 < β ≤ 1 and that the distribution G of V has a density g such that g(u − t)
has nondecreasing monotone likelihood ratio in t with respect to the parameter u.
Assume also that, for any v ∈ R+,

lim
t→∞ (v + t)−p/2 h(t) = 0 (36)

and that−(t +b) h′(t)/h(t) can be decomposed as l1(t)+ l2(t) where 0 ≤ l1(t) ≤ A
and is nondecreasing while 0 ≤ l2(t) ≤ B.

Then the Bayes estimator δπ (X) in (4) is minimax provided

[
1 − (1 − β)

a

b

]
A + B ≤ (1 − β)

p − 2

2
. (37)

Proof First note that c in (8) can be expressed as

c =
∫ b
a v1−p/2 dG(v)∫ b
a v−p/2 dG(v)

[see (33) in Fourdrinier and Strawderman 2008]. Hence Condition (35) implies 1/b ≥
(3/2 − β)/c so that, as according to Lemma 8, for any x ∈ R

p, γ (‖x‖2)/	(‖x‖2) is
an expectation of V−1 and as V is bounded from above by b,

γ (‖x‖2)
	(‖x‖2) ≥ 1

b
≥ 3/2 − β

c
. (38)

Therefore (29), is satisfied with α = (3/2− β)/c since β ≤ 1 (see comment after the
proof of Theorem 3).

Now we will show that �Mβ(‖x‖2) ≤ 0 so that, according to Corollary 3, the
Bayes estimator δπ (X) in (4) is minimax. By Lemma 9, this is equivalent to

Q + R ≤ (1 − β)
p − 2

2
, (39)
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where

Q = −h(0)

[∫ ∞
0 v1−p/2 exp

(−s
v

)
dG(v)∫ ∞

0 J1+p/2(v) v dG(v)
− (1 − β)

∫ ∞
0 v2−p/2 exp

(−s
v

)
dG(v)∫ ∞

0 Jp/2(v) v dG(v)

]

(40)
and

R =
∫ ∞
0

∫ ∞
0 − h′(t)

(v+t)p/2
exp

( −s
v+t

)
dt v dG(v)∫ ∞

0 J1+p/2(v) v dG(v)

−(1 − β)

∫ ∞
0

∫ ∞
0 − h

′
(t)

(v+t)p/2−1 exp
( −s

v+t

)
dt v dG(v)∫ ∞

0 Jp/2(v) v dG(v)
(41)

with

Jk(v) =
∫ ∞

0
(t + v)−k exp

( −s

t + v

)
h(t) dt.

Inequality (39) will follow from showing that

Q ≤ 0 (42)

and

R ≤ (1 − β)
p − 2

2
. (43)

Using the expression of Q in (40), Inequality (42) can be written as

1 − β ≤
∫ ∞
0 v1−p/2 exp

(−s
v

)
dG(v)∫ ∞

0 v2−p/2 exp
(−s

v

)
dG(v)

∫ ∞
0 Jp/2(v) v dG(v)∫ ∞

0 J1+p/2(v) v dG(v)
. (44)

As β ≥ 1/2 so that 1 − β ≤ 1/2, we will show that the right-hand side of (44)
can be bounded from below by 1/2. Note first that, in the right-hand side of (44), as
a < V < b,

∫ ∞
0 v1−p/2 exp

(−s
v

)
dG(v)∫ ∞

0 v2−p/2 exp
(−s

v

)
dG(v)

= E∗[V−1] ≥ 1

b
(45)

where E∗ is the expectationwith respect to a density proportional tov2−p/2 exp (−s/v)

with respect to G.
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Expressing the second ratio in the right-hand side of (44) as

∫ ∞
0 Jp/2(v) v dG(v)∫ ∞

0 Jp/2+1(v) v dG(v)
=

∫ ∞
0 v p/2 Jp/2(v) v1−p/2 dG(v)∫ ∞

0 v p/2+1 Jp/2+1(v) v−p/2 dG(v)

≥
∫ ∞
0 v p/2+1 Jp/2+1(v) v1−p/2 dG(v)∫ ∞
0 v p/2+1 Jp/2+1(v) v−p/2 dG(v)

= E∗∗[V ] (46)

where E∗∗ is the expectation with respect to a density proportional to Jp/2+1(v) v

with respect to G and where the above inequality follows from

vk Jk(v) ≥ vk+1 Jk+1(v)

applied with k = p/2. As V ≥ a, (45) and (46) give that the right-hand side of (42)
is bounded from below by a/b, and hence, by 1/2 since, by assumption 2a ≥ b. Thus
(42), is obtained.

In terms of the density g we can see that N in (41) is expressed as

R = E∗
p/2+1

[
−h

′
(T )

h(T )
(V + T )

]
− (1 − β)E∗

p/2

[
−h

′
(T )

h(T )
(V + T )

]
(47)

where E∗
k is the expectation with respect to the density

fk(t, v) ∝
(

1

t + v

)k

exp

( −s

t + v

)
h(t) v g(v). (48)

Using the decomposition in the statement of the theorem, Equality (47) becomes

R = E∗
p/2+1

[
l1(T )

V + T

b + T
+ l2(T )

V + T

b + T

]

−(1 − β)E∗
p/2

[
l1(T )

V + T

b + T
+ l2(T )

V + T

b + T

]

≤ E∗
p/2+1[l1(T ) + B] − (1 − β) E∗

p/2

[
l1(T )

a

b

]
(49)

since l1 and l2 are nonnegative and 0 < a ≤ V ≤ b < ∞.
Now note that the density in (48) has nonincreasing monotone likelihood ratio in

v + t with respect to k since

fk+1(t, v)

fk(t, v)
= 1

v + t
.

As l1 is nondecreasing and, according to Lemma 7 (note that v g(v) has the same
monotone likelihood property as g(v)), the density of T given T +V does not depend
on k and has monotone likelihood ratio in T + V . Hence (49) becomes
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R ≤ E∗
p/2 [l1(T ) + B] − (1 − β)

a

b
E∗
p/2 [l1(T )]

= E∗
p/2

[{
1 − (1 − β)

a

b

}
l1(T )

]
+ B

≤
{
1 − (1 − β)

a

b

}
A + B (50)

since l1(T ) ≤ A, and therefore, according to (37), we obtain (43), which gives with
(42) the desired result. ��

Theorem 4 is still valid for β = 1/2, the case where the distribution of V is
degenerate, and hence, has no density.

Here is an example illustrating Theorem 4. It gives generalized and proper Bayes
minimax estimators corresponding to Strawderman-type priors (see Fourdrinier et al.
1998) for the class of mixtures of normal sampling distributions of Theorem 4. The
dimension cut-off between proper Bayes minimax and generalized Bayes minimax
estimators depends on β ≥ 3/2− a/b and varies between p = 5, for β = 1/2, to ∞,
for β = 1.

Example 1 Let the sampling mixing density g be any density on [a, b] such that
g(u − t) has nondecreasing monotone likelihood ratio as in Theorem 4 (e.g., the
uniform distribution on [a, b]). Let the prior mixing density h be

h(t) ∝ 1

(b + t)A
(51)

with A ≥ 0 so that −(t + b) h′(t)/h(t) ≡ A. Choosing l1(t) ≡ A and l2(t) ≡ B = 0
in Theorem 4 implies minimaxity for the corresponding generalized (or proper) Bayes
estimator provided β ≥ 3/2 − a/b, 1/2 < β ≤ 1 and, by (37),

[
1 − (1 − β)

a

b

]
A ≤ (1 − β)

p − 2

2
,

or, taking β = 3/2 − a/b,

A ≤ a/b − 1/2

1 − (a/b − 1/2)(a/b)

p − 2

2
. (52)

Note that the mixing density (51) is proper as soon as A > 1. By (52), this is possible
provided 1/2 ≤ a/b < 1 and

p > 2 + 2
1 − (a/b − 1/2)(a/b)

a/b − 1/2
. (53)

For a/b = 1, which corresponds to β = 1/2, minimaxity follows for p > 4. Since,
in this case, the mixing distribution is degenerate, this corresponds to Strawderman’s
result Strawderman (1971) for the normal distribution. It also corresponds to Stein’s
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result (1981) that implies minimaxity in the normal case provided m1/2 is superhar-
monic (recall that m = M in the normal case).

If a/b = 3/4, then β = 3/4 and (53) holds for p > 8.5 so that proper Bayes mini-
maxity results by a choice of A > 1 for p ≥ 9. This corresponds to superharmonicity
of M3/4. If a/b = 1/2, the right-hand side of (53) is infinite and Theorem 4 does not
lead to proper Bayes minimaxity for any dimension. Note, however, that (52) gives
generalized Bayes minimax estimators for all p ≥ 3 provided 1/2 ≤ a/b ≤ 1.

As a last remark, note that, for A = 0, the mixing density in (51) is constant, which
corresponds to π(‖θ‖2) = 1/‖θ‖p−2 the fundamental harmonic function.

5 Concluding remarks

Wehave studiedBayesminimax estimators for the case of a spherically symmetric uni-
modal distribution under squared error loss. Amain result is that spherically symmetric
superharmonic priors with nondecreasing Laplacian lead to minimaxity for unimodal
densities which satisfy 0 < c < F/ f < 2c < ∞. This paper also implies the main
result in Fourdrinier and Strawderman (2008) as well, but goes well beyond that paper
in terms of generality as indicated by the above result when ψ(t) = F(t)/ f (t) is
nonmonotone. We also extend the scope of Fourdrinier and Strawderman (2008) in
that proper Bayes minimax estimators are produced for certain variance mixtures of
normal densities. This possibility arises when Mβ is superharmonic for some β in the
interval (1/2, 1), and when the dimension, p, is larger than 2/(1 − β).

In the process of proving the minimaxity findings, we develop some technical
results which may be of independent interest. In particular, Lemmas 3, 4, 5 and 8 may
have useful applications in shrinkage estimation problems for spherically symmetric
distributions.

Acknowledgements The authors would like to thank the associate editor and the two referees for their
careful reading and for their useful comments.

6 Appendix

We recall below a Stein-type lemma in the framework of spherically symmetric dis-
tributions whose proof can be found in Fourdrinier and Strawderman (2008).

Lemma 2 Let X be a random vector inRp with density as in (1) and let h be a weakly
differentiable function from R

p into R
p. Then

Eθ [(X − θ) · h(X)] = Eθ

[
F(‖X − θ‖2)
f (‖X − θ‖2) divh(X)

]
, (54)

where F is defined in (7), provided these expectations exist.

Lemma 2 leads directly to the following result.
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Lemma 3 Let g be a weakly differentiable function from R
p into R. Then, for f in

(1) and F in (7), we have

∫
Rp

(θ − x) f (‖x − θ‖2) g(θ) dθ =
∫
Rp

∇θg(θ) F(‖x − θ‖2) dθ

= −
∫
Rp

∇θ F(‖x − θ‖2) g(θ) dθ, (55)

provided that one of these integrals exists. In addition,when the function f is absolutely
continuous, we have

∫
Rp

(θ − x) (−2 f ′)(‖x − θ‖2) g(θ) dθ =
∫
Rp

∇θg(θ) f (‖x − θ‖2) dθ

= −
∫
Rp

∇θ f (‖x − θ‖2) g(θ) dθ. (56)

Proof We will only prove (55) since this result only relies on the absolute continuity
of F . Let x = (x1, . . . , xp) ∈ R

p, θ = (θ1, . . . , θp) ∈ R
p and 1 ≤ i ≤ p. Note that

(θi − xi ) g(θ) = (θ − x) · h(i)(θ)

where h(i)(θ) = (0, . . . , 0, g(θ), 0, . . . , 0) is the vector in R
p whose all components

are equal to 0 with the exception of the i th component which is equal to g(θ). Then
we have

∫
Rp

(θi − xi ) f (‖x − θ‖2) g(‖θ‖) dθ = Ex

[
(θ − x) · h(i)(θ)

]

= Ex

[
divθh

(i)(θ)
F(‖x − θ‖2)
f (‖x − θ‖2)

]

= Ex

[
∂g(θ)

∂θi

F(‖x − θ‖2)
f (‖x − θ‖2)

]

=
∫
Rp

∂g(θ)

∂θi
F(‖x − θ‖2) dθ (57)

where, for the second equality, Lemma 2 is applied with h = h(i) (the role of x and θ

being interchanged) and, for the third equality, the fact that divθh(i)(θ) = ∂g(θ)/∂θi
is used. This gives the first equality in (55). Finally, the second equality in (55) is
derived noticing that (θ − x) f (‖x − θ‖2) = −∇θ F(‖x − θ‖2). ��

A main feature of Lemma 3 is that the second equality in (55) is valid under weak
assumptions on g and F while, in the literature, stronger assumptions are needed.
Thus, in Fourdrinier et al. (2012), the function θ �−→ F

(‖x − θ‖2) belongs to a
functional space close to the Schwarz space. Here, only the weak differentiability of
g is needed.
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The next two results are used in Sects. 2 and 3. We use the following notation.
For x ∈ R

p and r ≥ 0, Ur,x and σr,x are, respectively, the uniform distribution and
the uniform measure on the sphere Sr,x = {θ ∈ R

p /‖θ − x‖ = r} of radius r and
centered at x . They are related by the following property. If γ is a Lebesgue integrable
function then

∫
Rp

γ (θ) dθ =
∫ ∞

0

∫
Sr,x

γ (θ) dσr,x dr

=
∫ ∞

0
σr,x (Sr,x )

∫
Sr,x

γ (θ) dUr,x dr (58)

with

σr,x (Sr,x ) = 2π p/2

	(p/2)
r p−1.

It follows from (58) that, if Vr,x is the uniform distribution on the ball Br,x = {θ ∈
R

p /‖θ − x‖ ≤ r} of radius r and centered at x and if λ is the Lebesgue measure on
R

p, we have

∫
Br,x

γ (θ) dVr,x (θ) = 1

λ(Br,x )

∫ r

0

∫
Sτ,x

γ (θ) dστ,x (θ) dτ

= p

r p

∫ r

0

∫
Sτ,x

γ (θ) dUτ,x (θ) τ p−1 dτ. (59)

Lemma 4 Let x ∈ R
p be fixed and let � be a random vector inRp with a spherically

symmetric distribution around x. Let g be a function from R+ into R. Denote by Ex

the expectation with respect to the distribution of �.

(a) If, for r ≥ 0, � has the uniform distribution Ur,x on the sphere Sr,x of radius r
and centered at x, then there exists a function G from R+ into R such that

Ex

[
g(‖�‖2)�

]
= G(‖x‖2) x, (60)

provided this expectation exists. Therefore (60), is valid for any spherically sym-
metric distribution.

(b) If� has a unimodal spherically symmetric density f (‖θ − x‖2) ( f is nonincreas-
ing) and if the function g is nonnegative then the function G in (60) is nonnegative.

Proof We will use the orthogonal decomposition � = x + U = x + α + β with U
spherically symmetric around 0, α ∈ �x and β ∈ �⊥

x where �x denotes the linear
space spanned by x and �⊥

x is its orthogonal subspace in Rp. We have

Ex

[
� g(‖�‖2)

]
= A(x) + B(x) (61)
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where

A(x) = E0[(x + α) g(‖x + α‖2 + ‖β‖2)]

and

B(x) = E0
[
E0[β g(‖x + α‖2 + ‖β‖2)|α]] = 0,

since β|α is spherically symmetric around 0. Setting α = Z x/‖x‖, we have

A(x) = x G(‖x‖2)

where

G(‖x‖2) = E0

[
E0

[(
1 + Z

‖x‖
)
g

(
‖x‖2

(
1 + Z

‖x‖
)2

+ ‖β‖2
) ∣∣∣∣β

]]
.

This proves the first part.
Now assume that the density f (‖θ − x‖2) is unimodal and consider

E0

[(
1 + Z

‖x‖
)
g

(
‖x‖2

(
1 + Z

‖x‖
)2 + ‖β‖2

) ∣∣∣∣β,
(
1 + Z

‖x‖
)2 = y2

]

= g
(‖x‖2 y2 + ‖β‖2) E0

[(
1 + Z

‖x‖
) ∣∣∣∣β,

(
1 + Z

‖x‖
)2 = y2

]
.

To finish the proof it suffices to show that the above conditional expectation is non-
negative which can be seen noticing that

E0

[(
1 + Z

‖x‖
) ∣∣∣∣β,

(
1 + Z

‖x‖
)2

= y2
]

= |y| f
({[−1 + |y|]2 ‖x‖2} + ‖β‖2) − f ({[−1 − |y|]2 ‖x‖2} + ‖β‖2)
f
({[−1 + |y|]2 ‖x‖2} + ‖β‖2) + f ({[−1 − |y|]2 ‖x‖2} + ‖β‖2) ≥ 0,

by monotonicity of f . ��
Versions of Lemma 4 have been often used in the literature (for instance, in Cellier

et al. 1995 and in Fourdrinier et al. 2012) when dealing with spherical densities. Here,
we provide an extension to the entire class of spherically symmetric distributions.

Lemma 5 If the prior π(‖θ‖2) in (3) is unimodal and if its Laplacian �(π(‖θ‖2)) is
a nondecreasing function of ‖θ‖2 then, for any r ≥ 0 and for any x ∈ R

p,

∫
Sr,x

x · ∇π(‖θ‖2) dσr,x (θ) = 2π p/2

	(p/2)
r p−1

∫
Sr,x

x · ∇π(‖θ‖2) dUr,x (θ) ≤ 0. (62)
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Proof Under the conditions of the lemma, Fourdrinier and Strawderman (2008)
showed that the sphere mean

∫
Sr,x

x · ∇π(‖θ‖2) dUr,x (θ) is a nondecreasing func-

tion of r and that the ball mean
∫
Br,x

x ·∇π(‖θ‖2) dVr,x (θ) is nonpositive (which may
also be derived from Lemma 4). Therefore, for any r ≥ 0,

2 ‖x‖2 π ′(‖x‖2) = x · ∇π(‖x‖2) ≤
∫
Sr,x

x · ∇π(‖θ‖2) dUr,x (θ)

and, as π ′(‖x‖2) ≤ 0 by unimodality of π(‖θ‖2), ∫
Sr,x

x · ∇π(‖θ‖2) dUr,x (θ) is
nonpositive in a neighborhood of 0. If there exists r0 > 0 such that

δ =
∫
Sr0,x

x · ∇π(‖θ‖2) dUr0,x (θ) > 0,

then, using (59), we have

0≥
∫
Br,x

x · ∇π(‖θ‖2) dVr,x (θ)

= p

r p

(∫ r0

0
τ p−1

∫
Sτ,x

x · ∇π(‖θ‖2) dUτ,x (θ) dτ

+
∫ r

r0
τ p−1

∫
Sτ,x

x · ∇π(‖θ‖2) dUτ,x (θ) dτ

)

≥ p

r p

(
2 ‖x‖2 π ′(‖x‖2)

∫ r0

0
τ p−1 dτ + δ

∫ r

r0
τ p−1 dτ

)

= 1

r p

(
2 r p0 ‖x‖2 π ′(‖x‖2) + δ (r p − r p0 )

)
.

As this last quantity goes to δ when r goes to infinity, the nonpositivity of the ball
mean

∫
Br,x

x · ∇π(‖θ‖2) dVr,x (θ) is contradicted and (62) follows. ��
The sphere mean in (62) occurs in Bayesian analysis such as in Fourdrinier and

Strawderman (2008). The interest ofLemma5 is that its signmaybe controled although
the integrand term changes sign.

Corollary 4 Under the conditions of Lemma 5, for any y ∈ R+, the ratio of the
functions defined in (19) and (20) equals, for any x ∈ R

p and for y = ‖x‖2,

γ (y)

	(y)
= E∗

x

[
f (R2)

F(R2)

]
(63)

where E∗
x is the expectation with respect to a density proportional to

F(r2)

∣∣∣∣∣
∫
Sr,x

x · ∇π(‖θ‖2) dσr,x (θ)

∣∣∣∣∣ ,
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provided the function π is not constant.

Proof According to (18), we can write, for any x ∈ R
p,

x · ∇m(‖x‖2) = ‖x‖2 γ (‖x‖2)

and
x · ∇M(‖x‖2) = ‖x‖2 	(‖x‖2)

so that
γ (‖x‖2)
	(‖x‖2) = x · ∇m(‖x‖2)

x · ∇M(‖x‖2) . (64)

Now, by absolute continuity of f and F , interchange of the gradient and the integral
sign is valid so that, according to the expressions of m and M in (5) and (6), (64)
becomes

γ (‖x‖2)
	(‖x‖2) = x · ∫

Rp ∇ f (‖x − θ‖2) π(‖θ‖2) dθ)

x · ∫
Rp ∇F(‖x − θ‖2) π(‖θ‖2) dθ)

= x · ∫
Rp f (‖x − θ‖2)∇π(‖θ‖2) dθ)

x · ∫
Rp F(‖x − θ‖2)∇π(‖θ‖2) dθ)

, (65)

by Lemma 3. Hence, by linearity of the inner product and integrating over the sphere,
it follows from (65) that

γ (‖x‖2)
	(‖x‖2) =

∫ ∞
0 f (r2)

∫
Sr,x

x · ∇π(‖θ‖2) dσr,x (θ)dr∫ ∞
0 F(r2)

∫
Sr,x

x · ∇π(‖θ‖2) dσr,x (θ)dr

=
∫ ∞
0 f (r2)

∣∣∣∫Sr,x x · ∇π(‖θ‖2) dσr,x (θ)

∣∣∣ dr
∫ ∞
0 F(r2)

∣∣∣∫Sr,x x · ∇π(‖θ‖2) dσr,x (θ)

∣∣∣ dr
, (66)

since, according to (62),
∫
Sr,x

x ·∇π(‖θ‖2) dσr,x (θ) has constant sign. Hence the result
follows. ��

The next lemma is used in the proof of Theorem 3.

Lemma 6 Let ϕ be a function from R
p into R such that its Laplacian exists on R

p

and let β ∈ R. Then, for any x ∈ R
p, we have

�ϕβ(x) = β ϕβ(x)

[
�ϕ(x)

ϕ(x)
+ (β − 1)

∥∥∥∥∇ϕ(x)

ϕ(x)

∥∥∥∥
2
]

. (67)
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Proof For any x ∈ R
p, we have

�ϕβ(x) = div
(∇ϕβ(x)

)
= div

(
β ϕβ−1(x)∇ϕ(x)

)

= β
{
ϕβ−1(x) div(∇ϕ(x)) + ∇ϕβ−1(x) · ∇ϕ(x)

}

= β
{
ϕβ−1(x)�ϕ(x) + (β − 1) ϕβ−2(x)∇ϕ(x) · ∇ϕ(x)

}

= β ϕβ(x)

{
�ϕ(x)

ϕ(x)
+ (β − 1)

‖∇ϕ(x)‖2
ϕ2(x)

}
.

��
The next lemma is used in the proof of Theorem 4.

Lemma 7 Let V and T two random variables such that (V, T ) has density f(V,T ) of
the form

f(V,T )(v, t) = q(t + v) h(t) g(v) (68)

for some functions q, h and g.
Let U = V + T . Then the density of T given U does not depend on q.
If g(u − t) has nondecreasing monotone likelihood ratio in t with respect to u and

if λ is a nondecreasing function then the conditional expectation E[λ(T ) |U = u] is
nondecreasing in u.

Proof Clearly (U, T ) has density f(U,T ) given by

f(U,T )(u, t) = f(V,T )(u − t, t)

so that the conditional density of T given U = u can be expressed as

fT (t |U = u) = f(U,T )(u, t)∫
f(U,T )(u, t ′) dt ′

= f(V,T )(u − t, t)∫
f(V,T )(u − t ′, t ′) dt ′

.

Using (68) this becomes

fT (t |U = u) = q(u) h(t) g(u − t)∫
q(u) h(t ′) g(u − t ′) dt ′

= h(t) g(u − t)∫
h(t ′) g(u − t ′) dt ′

.

Hence the first result follows.
Now, according to the monotone likelihood property of g, for fixed u1 < u2,

fT (t |U = u2)

fT (t |U = u1)
∝ g(u2 − t)

g(u1 − t)

is nondecreasing in t . Hence, as λ is a nondecreasing function, E[λ(T ) |U = u] is
nondecreasing in u. ��
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The two following lemmas are used in the proof of Theorem 4.

Lemma 8 Assume that the sampling density in (1) is a variance mixture of normals
as in (33), that is,

f (t) =
∫ ∞

0

1

(2π v)p/2
exp

(
− t

2 v

)
dG(v), (69)

where G is the distribution of a random variable V onR+. Denote by E the expectation
with respect to G. Assume also that the prior density is as in (3) and is unimodal, that
is, π ′(‖θ‖2) ≤ 0. For λ > 0 and for a random variable W having a noncentral chi-
squared distribution χ2

p(λ) with p degrees of freedom and noncentral parameter λ,
let

H ′(λ, V ) = ∂

∂λ
Eλ[π(V W )]. (70)

Then, for any y ∈ R+, the ratio of the functions defined in (19) and (20) equals

γ (y)

	(y)
= E

[ 1
V |H ′( y

2 V , V )|]
E

[|H ′( y
2 V , V )|] = E∗

y [V−1] (71)

where E∗
y is the expectation defined through the second equality in (71).

Proof According to (18), we can write, for any x ∈ R
p,

2 ‖x‖2 m′(‖x‖2) = x · ∇m(‖x‖2) = ‖x‖2 γ (‖x‖2)

and
2 ‖x‖2 M ′(‖x‖2) = x · ∇M(‖x‖2) = ‖x‖2 	(‖x‖2)

so that
γ (‖x‖2)
	(‖x‖2) = m′(‖x‖2)

M ′(‖x‖2) . (72)

Now, thanks to (5) and to (69), we have

m(‖x‖2) =
∫
Rp

∫ ∞

0

1

(2π v)p/2
exp

(
−‖x − θ‖2

2 v

)
dG(v) π(‖θ‖2) dθ

=
∫ ∞

0

∫
Rp

1

(2π v)p/2
exp

(
−‖x − θ‖2

2 v

)
π(‖θ‖2) dθ dG(v)

= E
[
E‖x‖2/2V [π(V W )]] , (73)

by Fubini’s Theorem for the second equality and noticing, for the third equality, that
W = ‖θ‖2/V |V ∼ χ2

p(λ) with λ = ‖x‖2/2V . Similarly, thanks to (6) and to (69)
and by definition of F in (7), we have
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M(‖x‖2) =
∫
Rp

1

2

∫ ∞

‖x−θ‖2

∫ ∞

0

1

(2π v)p/2
exp

(
− u

2 v

)
dG(v) du π(‖θ‖2) dθ

=
∫ ∞

0

1

(2π v)p/2

∫
Rp

∫ ∞

‖x−θ‖2
1

2
exp

(
− u

2 v

)
du π(‖θ‖2) dθ dG(v)

=
∫ ∞

0

∫
Rp

v

(2π v)p/2
exp

(
−‖x − θ‖2

2 v

)
π(‖θ‖2) dθ dG(v)

= E
[
V E‖x‖2/2V [π(V W )]] . (74)

Therefore, setting y = ‖x‖2 and differentiating with respect to y, we have

m′(y) = E

[
1

2 V
H ′( y

2 V
, V

)]
(75)

and

M ′(y) = E

[
1

2
H ′( y

2 V
, V

)]
(76)

with H ′(λ, V ) defined in (70). Note that, as π ′(‖θ‖2) ≤ 0, we have H ′(λ, V ) ≤ 0,
for any λ > 0, since χ2

p(λ) has increasing monotone likelihood ratio in λ. Therefore,
it follows from (72), (75) and (76) that

γ (y)

	(y)
= E[ 1

V H ′( y
2 V , V )]

E
[
H ′( y

2 V , V )
] = E[ 1

V |H ′( y
2 V , V )|]

E
[|H ′( y

2 V , V )|] = E∗
y [V−1] ,

which is the desired result. ��
Lemma 9 Assume that the sampling density in (1) and the prior density in (3) are
variance mixtures of normals as in (33) and (34), respectively, that is,

f (t) =
∫ ∞

0

1

(2π v)p/2
exp

(
− t

2 v

)
dG(v), (77)

where G is the distribution of a random variable V on R+, and

π(‖θ‖2) =
∫ ∞

0

1

(2π t)p/2
exp

(
−‖θ‖2

2 t

)
h(t) dt, (78)

for a certain (possibly improper) mixing density h. Then the superharmonicity of Mβ

can be expressed as

Q + R ≤ (1 − β)
p − 2

2
, (79)

where

Q = −h(0)

[∫ ∞
0 v1−p/2 exp

(−s
v

)
dG(v)∫ ∞

0 Jp/2+1(v) v dG(v)
− (1 − β)

∫ ∞
0 v2−p/2 exp

(−s
v

)
dG(v)∫ ∞

0 Jp/2(v) v dG(v)

]

(80)
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and

R =
∫ ∞
0

∫ ∞
0 − h′(t)

(v+t)p/2
exp

( −s
v+t

)
dt v dG(v)∫ ∞

0 J1+p/2(v) v dG(v)

−(1 − β)

∫ ∞
0

∫ ∞
0 − h

′
(t)

(v+t)p/2−1 exp
( −s

v+t

)
dt v dG(v)∫ ∞

0 Jp/2(v) v dG(v)
(81)

with

Jk(v) =
∫ ∞

0
(t + v)−k exp

( −s

t + v

)
h(t) dt. (82)

Proof By the last equality in (31), �Mβ(‖x‖2) ≤ 0 is equivalent to

�M(‖x‖2)∥∥∇M(‖x‖2)∥∥ − (1 − β)

∥∥∇M(‖x‖2)∥∥
M(‖x‖2) ≤ 0, (83)

Now, for a sampling density (77) and a prior (78), it easy to derive

M(‖x‖2) = 1

(2π)p/2

∫ ∞

0

∫ ∞

0

v

(t + v)p/2
exp

(
−1

2

‖x‖2
t + v

)
h(t) dt dG(v),

so that

∇M(‖x‖2) = − 1

(2π)p/2

∫ ∞

0

∫ ∞

0

v

(t + v)p/2+1 exp

(
−1

2

‖x‖2
t + v

)
h(t) dt dG(v) x,

and

�M(‖x‖2) = 1

(2π)p/2

∫ ∞

0

∫ ∞

0

v

(t + v)p/2+1

(
‖x‖2
t + v

− p

)

× exp

(
−1

2

‖x‖2
t + v

)
h(t) dt dG(v).

Hence, Inequality (83) becomes

∫ ∞
0

∫ ∞
0

v
(t+v)p/2+1

( ‖x‖2
t+v

− p
)
exp

(
− 1

2
‖x‖2
t+v

)
h(t) dt dG(v)

‖x‖ ∫ ∞
0

∫ ∞
0

v
(t+v)p/2+1 exp

(
− 1

2
‖x‖2
t+v

)
h(t) dt dG(v)

−(1 − β)
‖x‖ ∫ ∞

0

∫ ∞
0

v
(t+v)p/2+1 exp

(
− 1

2
‖x‖2
t+v

)
h(t) dt dG(v)

∫ ∞
0

∫ ∞
0

v
(t+v)p/2

exp
(
− 1

2
‖x‖2
t+v

)
h(t) dt dG(v)

≤ 0,
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which is equivalent to

∫ ∞
0

∫ ∞
0

v
(t+v)p/2+2 exp

(
− 1

2
‖x‖2
t+v

)
h(t) dt dG(v)

∫ ∞
0

∫ ∞
0

v
(t+v)p/2+1 exp

(
− 1

2
‖x‖2
t+v

)
h(t) dt dG(v)

−(1 − β)

∫ ∞
0

∫ ∞
0

v
(t+v)p/2+1 exp

(
− 1

2
‖x‖2
t+v

)
h(t) dt dG(v)

∫ ∞
0

∫ ∞
0

v
(t+v)p/2

exp
(
− 1

2
‖x‖2
t+v

)
h(t) dt dG(v)

≤ p

‖x‖2

and can be conveniently expressed as

∫ ∞
0 Jp/2+2(v) v dG(v)∫ ∞
0 Jp/2+1(v) v dG(v)

− (1 − β)

∫ ∞
0 Jp/2+1(v) v dG(v)∫ ∞
0 Jp/2(v) v dG(v)

≤ p

2 s
(84)

where Jk(v) is in (82) and s = ‖x‖2/2. Setting dw = (v + t)−2 exp (−s/(t + v)) dt
and u = (v+t)−k+2 h(t), so thatw = 1/s exp (−s/(t + v)) and du = [(v+t)1−k (2−
k) h(t) + (v + t)2−k h

′
(t)] dt , we have

Jk(v) = −1

s
v2−k h(0) exp

(−s

v

)
+ k − 2

s
Jk−1(v)

−1

s

∫ ∞

0
(v + t)2−kh

′
(t) exp

( −s

t + v

)
dt,

since

lim
t→∞ (v + t)2−k h(t) = 0.

Then using this representation of Jk(v) in (84) gives rise to (79) with Q in (80) and R
in (81). ��
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