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Abstract In structural equation modeling (SEM), parameter estimates are typically
computed by the Fisher-scoring algorithm, which often has difficulty in obtaining
converged solutions. Even for simulated data with a correctly specified model, non-
converged replications have been repeatedly reported in the literature. In particular,
in Monte Carlo studies it has been found that larger factor loadings or smaller error
variances in a confirmatory factor model correspond to a higher rate of convergence.
However, studies of a ridgemethod inSEMindicate that adding a diagonalmatrix to the
sample covariance matrix also increases the rate of convergence for the Fisher-scoring
algorithm.This article addresses these two seemingly contradictory phenomena.Using
statistical and numerical analyses, the article clarifies why both approaches increase
the rate of convergence in SEM. Monte Carlo results confirm the analytical results.
Recommendations are provided on how to increase both the speed and rate of conver-
gence in parameter estimation.
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1 Introduction

Obtaining a set of parameter estimates for a theoretically-plausible model is the first
step in any statistical analysis. For structural equation modeling (SEM), however,
parameter estimates have to be computed iteratively, and there is a good chance that
a researcher is unable to obtain a set of converged solutions in practice, especially
when the sample size is not large enough. Various factors can contribute to non-
convergence of an iterative algorithm, including bad model or bad data. But only after
a set of solutions is obtained can we possibly distinguish different causes. In par-
ticular, non-convergences not just occur to poorly formulated models, as they have
been repeatedly reported for correctly specified models with simulated data in Monte
Carlo studies (Bentler and Yuan 1999; Hu et al. 1992; Jackson 2001) and in bootstrap
replications (Ichikawa and Konishi 1995; Yuan and Hayashi 2003). Obtaining con-
verged solutions is equally important to Monte Carlo studies although replications are
essentially cost free. This is because non-converged replications cannot be regarded as
identically distributed as the converged ones (e.g., Yuan and Hayashi 2003). Similar
to missing data analysis that ignores missing not at random mechanism, when the
percentage of non-converged replications is substantial, results obtained based on just
the converged replications may not correctly reflect the properties of the methodology
being studied. The main purpose of this article is to examine factors affecting the
convergence properties of the Fisher-scoring (FS) algorithm, which is used in most
SEM packages. Strategies for achieving higher convergence rates in both simulation
and real data analysis are explored as well.

In conducting Monte Carlo studies with confirmatory factor models using LIS-
REL (Jöreskog and Sörbom 1981), Anderson and Gerbing (1984) observed that
non-converged replications occurred more often with small factor loadings or indi-
cators with low reliability. Boomsma (1985) also observed that in simulation studies
the convergence rate of LISREL increased with greater measurement reliabilities.
Jackson (2001) noted a similar phenomenon in simulation studies using SAS Calis
(SAS Institute 1996). However, recent studies of a ridge method in SEM indicate that
adding a diagonal matrix to the sample covariance matrix S increases the rate of con-
vergence (Yuan and Chan 2008). Because manipulation for larger factor loadings is in
the opposite direction of the ridge method, we will call it an anti-ridge method. Thus,
the findings in the literature are seemingly in conflict. By examining factors affect-
ing the convergence properties of the FS algorithm, we will clarify why these two
seemingly contradictory methods both lead to higher convergence rate. Our analysis
of the ridge and anti-ridge methods also applies to other algorithms for minimizing
the normal-distribution-based maximum likelihood (NML) discrepancy function and
similarly is relevant to other discrepancy functions.

The convergence properties of the FS algorithm are affected by many factors. One
of them is multicolinearity among the observed variables. If the sample or model
implied covariance matrix is close to being singular, then the FS algorithm may have
difficulty to reach a set of converged solutions. The ridge method developed in Yuan
and Chan (2008) aims to address the problem of near singular covariance matrices.
Instead of fitting S by a structural model �(θ), the ridge method fits Sa = S + aI
by �(θ) through minimizing the NML-based discrepancy function, where a > 0 is
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a constant that may depend on the sample size N and the number of variables p but
not the observed data. Let θ̂a be the resulting estimates from fitting Sa . Then the
final parameter estimates are obtained by deducting a from the elements of θ̂a that
correspond to the variances of errors.

In the literature of numerical analysis, the ratio of the largest over the smallest
eigenvalues of a matrix is called the condition number of the matrix (Golub and
Van Loan 1983). A large condition number not only causes computations involving
the inverse of the matrix to be less accurate, it may also cause the algorithm to fail
to converge if the computation is iterative. The condition number of Sa = S + aI
is always smaller than that of S. Yuan and Chan (2008) briefly discussed how the
ridge method improves the convergence properties of the FS algorithm. In this article,
we further study the changes in condition numbers as well as the convergence rate
and speed between modeling S and Sa using numerical examples and Monte Carlo
simulation.

The population or sample covariance matrix corresponding to a SEM model might
be close to singular if certain error variances are tiny. Thus, we would expect the
convergence rate of the FS algorithm to decrease with the increase of factor loadings,
opposite to what Anderson and Gerbing (1984) and Boomsma (1985) have found.
However, as we shall show, with the increase of factor loadings, the relative sampling
errors in the sample covariances become smaller. Our analysis and results further show
that smaller sampling errors in S will positively affect the convergence rate as well
as the speed of convergence of the FS algorithm. Smaller sampling errors also tend
to improve the condition of the sample covariance matrix S. Because the condition
number is a rather complicated function of the elements of S, we will use numerical
examples and Monte Carlo simulation to evaluate the change of condition numbers
following the anti-ridge method.

In addition, we will discuss how to use the findings in practice when FS fails to
obtain a set of converged solutions. As we shall see, the ridge method can be applied
to all the models where error variances are subject to estimation. In contrast, the
anti-ridge method is mostly usable a priori in Monte Carlo studies where the factor
loadings are subject to manipulation, and can also be applied to special models in post-
hoc analysis when the space of the common factors are known or when alternative
items are available.

We will not study the properties of parameter estimates or test statistics for overall
model evaluation with the ridge method. These have been studied in Yuan and Chan
(2008). In particular,Kamada (2011) andKamada andKano (2012) found that the ridge
method can yield parameter estimates that are substantially more accurate than MLEs
at smaller N , even when the population is normally distributed. Since the applicability
of the anti-ridge method is limited, we will not study properties of parameter estimates
following the anti-ridge method.

In Sect. 2 of the article, we review the formulation of the FS algorithm and exam-
ine the factors that affect its convergence properties. In Sect. 3, we obtain formulas
that show how the relative errors in S are affected by population factor loadings and
error/unique variances. In Sect. 4, using examples, we numerically illustrate how
converged solutions are obtained with ridge and/or anti-ridge methods. Monte Carlo
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574 K.-H. Yuan, P. M. Bentler

results on the effectiveness of ridge and anti-ridge methods are presented in Sect. 5.
Recommendation and discussions regarding the applications of ridge and anti-ridge
methods are given in the concluding section.

2 Fisher-scoring algorithm

In this section, we will first present a formulation of the FS algorithm in SEM. Factors
that affect the speed of convergence of FS as well as whether there exists a vector of
parameters that satisfies a given convergence criterion are then examined.

Let S = (s jk) be a sample covariance matrix of size N from a p-variate population.
We are interested in modeling the covariance matrix � = E(S) by a structural model
�(θ) using NML, which defines parameter estimate θ̂ by minimizing

FML(S,�(θ)) = tr[S�−1(θ)] − log |S�−1(θ)| − p. (1)

Let vec(S) be the vector of stacking the columns of S, and s = vech(S) be the vector
of stacking the lower-triangular part of S. Then, with p∗ = p(p + 1)/2, there exists
a p2 × p∗ matrix Dp such that Dpvech(S) = vec(S), and Dp is called a duplication
matrix (see e.g., Schott 2005, p. 313). Further let σ (θ) = vech[�(θ)],

σ̇ (θ) = ∂σ (θ)

∂θ ′ , and W(θ) = 1

2
D′

p

[
�−1(θ) ⊗ �−1(θ)

]
Dp.

With initial value θ (0), the FS algorithm for computing θ̂ is given by

θ (t+1) = θ (t) + �θ (t), (2)

where

�θ (t) = [H(θ (t))]−1σ̇ ′(θ (t))W(θ (t))[s − σ (θ (t))] (3)

with H(θ) = σ̇ ′(θ)W(θ)σ̇ (θ) being the information matrix. The NML estimate θ̂

is obtained when the algorithm converges, which is typically defined as the absolute
values of all the elements of �θ (t) being smaller than a given number. A variant of (2)
is

θ (t+1) = θ (t) + α�θ (t), (4)

where the scalar α is to control the size of the step so that

FML(S,�(θ (t+1))) < FML(S,�(θ (t))).

The value of α can be chosen using step halving (.50, .25, . . .) or a line search method
(e.g., chapter 2 of Everitt 1987; chapter 3 of Nocedal and Wright 1999). We will
call (4) the FS algorithm with step-size adjustment.
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Since all the elements of the �θ (t) in (3) must be small enough for FS to converge,
we further examine its two major components: the inverse of the information matrix
H(t) = H(θ (t)) and the score vector ν(t) = σ̇ ′(θ (t))W(θ (t))[s − σ (θ (t))]. Denote
�(t) = �(θ (t)) and �̇

(t)
j = ∂�(θ (t))/∂θ

(t)
j , then the j th element of ν(t) can be further

written as

ν
(t)
j = tr

[
(�(t))−1�̇

(t)
j (�(t))−1(S − �(t))

]
.

Clearly, causes for FS to fail to converge must be through ν(t) andH(t), and they might
be classified into four categories: (C1) The first cause is when �(t) is near singular.
Then�(t) may not be invertible, which will cause problems to the computation of both
H(t) and ν(t). (C2) The second is when σ̇ (θ (t)) is close to rank deficient. Rank deficient
σ̇ (θ (t)) does not cause operational problems to the calculation of ν

(t)
j because matrix

multiplication is very robust to the values of the elements of the matrices, but it may
cause H(t) to be close to singular. Then the calculation of �θ (t) cannot proceed. (C3)
The third is when there exist large sampling and/or systematic differences between S
and�(t) relative to the size of the elements of�(t). Notice that thematrix (�(t))−1(S−
�(t)) in the expression of ν

(t)
j essentially represents the relative errors in S. When

the relative errors are large enough, certain elements of �θ (t) may never satisfy a
given convergence criterion. (C4) The fourth is the effect of interactions between the
relative errors in S and the conditions of �(t) and/orH(t). A matrix A is said to be ill-
conditioned if its condition number κ(A) is huge. An ill-conditioned matrix may not
be near singular if its smallest eigenvalue is not close to zero. However, according to
Golub andVan Loan (1983, Sect. 2.5), the relative errors in x resulting from x = A−1b
can be κ(A) times those inA and b. Moderate errors in S together with large condition
numbers of�(t) and/orH(t) can result in substantial fluctuations in�θ (t) from iteration
to iteration, which will not satisfy a given convergence criterion.

In addition to the four noted causes, the convergence properties of the FS algorithm
are also affected by the initial value θ (0). In the following section, wewill examine how
ridge and anti-ridge methods change the formulation of �θ (t) so that the convergence
properties of FS improve.Wewill not discuss initial values because they are not unique
to either the ridge or the anti-ridge method.

3 Relative errors in sample covariances, ridge and anti-ridge methods

In this section, we will first quantify the relative errors in S using the coefficient of
variation (CV). Then we examine how the relative errors change in the ridge and anti-
ridge methods. Condition numbers of covariance and information matrices following
ridge and anti-ridge methods will also be discussed. Since our interest is in the effect
of the size of factor loadings versus that of the size of error variances, we will mainly
consider factor models. Another reason for us to consider factor models is that an SEM
model can be equivalently expressed as a factormodelwith structured factor variances-
covariances. Notice that, in SEM or factor analysis, the size of factor loadings and
that of factor variances-covariances cannot be distinguished before fixing the scales of
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latent variables. Unless stated otherwise, we assume that the variance of each factor
is fixed at 1.0 from now on.

3.1 Relative errors in s j k

Let y = (y1, y2, . . . , yp)′ represent a population with p random variables. Suppose y
follows a confirmatory factor model

y = μ + �ξ + ε, (5)

whereμ = E(y);� is a p×q matrix of factor loadings; ξ is a vector of q latent factors
with E(ξ) = 0 andCov(ξ) = 	 = (φlm)being a correlationmatrix; andε is a vector of
p errors or uniquenesseswith E(ε) = 0 andCov(ε) = 
 = diag(ψ11, ψ22, . . . , ψpp).
When ξ and ε are uncorrelated, the covariance matrix of y is given by

� = (σ jk) = �	�′ + 
. (6)

In this section, we will further assume that ξ and ε are independent to avoid overly
complicated analytical results. In Monte Carlo studies in Sect. 5, we will further
evaluate relative errors in S when ξ and ε are uncorrelated but dependent.

Let yi = (yi1, yi2, . . . , yip)′, i = 1, 2, . . . , N , be a random sample of the y in (5),
then the sample covariance matrix is given by S = (s jk) with

s jk = 1

n

N∑
i=1

(yi j − ȳ j )(yik − ȳk),

where n = N − 1. Notice that each s jk is a 2nd-order sample moment. Standard
large sample theory shows that the asymptotic variance of

√
ns jk is given by γ jk =

Var(y j0yk0) (e.g., Ferguson 1996), where y j0 = y j −μ j and yk0 = yk −μk . Because
the exact expression for Var(

√
ns jk) is rather complicated and its difference from

γ jk is in the order of 1/N , we treat γ jk as the variance of
√
ns jk for simplicity. Let

CV jk denote the coefficient of variation of s jk . Then CV jk = γ
1/2
jk /(

√
nσ jk). We next

quantify CV jk with respect to the population values of the parameters in (6). For the
obtained formulas to have relatively simple forms, we only consider unidimensional
measurement where each variable loads on only one factor.

With q factors, suppose y j = λ jξ j∗ + ε j and yk = λkξk∗ + εk , where 1 ≤
j∗ ≤ k∗ ≤ q. It follows from the results in Sect. 7 (Appendix) that, when j∗ �= k∗
(σ jk = λ jλkφ j∗k∗ ),

nCV2
jk = 1

φ2
j∗k∗

{[
E

(
ξ2j∗ξ2k∗

)
− φ2

j∗k∗
]

+ ψkk

λ2k
+ ψ j j

λ2j
+ ψ j j

λ2j

ψkk

λ2k

}
; (7)

when j∗ = k∗ but j �= k (σ jk = λ jλk),

nCV2
jk =

[
E

(
ξ4j∗

)
− 1

]
+ ψkk

λ2k
+ ψ j j

λ2j
+ ψ j j

λ2j

ψkk

λ2k
; (8)
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and when j = k (σ j j = λ2j + ψ j j ),

nCV2
j j =

[
E

(
ξ4j∗

)
− 1

]
+ 4ψ j j/λ

2
j +

[
E

(
ε4j

)
− ψ2

j j

]
/λ4j

(
1 + ψ j j/λ

2
j

)2 . (9)

Let ε j = ψ jε j0 with ψ j = ψ
1/2
j j , then we can further write (9) as

nCV2
j j =

[
E

(
ξ4j∗

)
− 3

]

(
1 + ψ j j/λ

2
j

)2 +
[
E

(
ε4j0

)
− 3

] (
ψ j j/λ

2
j

)2
(
1 + ψ j j/λ

2
j

)2 + 2. (10)

It is clear from (7) and (8) that, when j �= k, the relative error in s jk is an increasing
function ofψ j j andψkk , and a decreasing function of |λ j | and |λk |. The relationship of
CV2

j j with λ j and ψ j j in (9) or (10) depends on the kurtoses of ξ j∗ and ε j . When both

ξ j∗ and ε j are normally distributed, E(ξ4j∗) = E(ε4j0) = 3, then nCV2
j j is unrelated

to λ j or ψ j j . Otherwise, nCV2
j j will depend on the values of factor loadings and error

variances. Suppose E(ε4j0) > 3 and E(ξ4j∗) > 3, then the first term on the ride side
of (10) increases with |λ j | and decreases with ψ j j , whereas the second term on the
right side of (10) changes in the opposite direction.

For normally distributed populations considered in Anderson and Gerbing (1984)
and Boomsma (1985), relative errors in s j j are not affected by the values of factor
loadings or error variances, but relative errors in s jk become smaller with larger factor
loadings. Since each element of �θ (t) is proportional to relative errors in S, results
in (7) and (8) explain why larger factor loadings lead to smaller elements of �θ (t) and
consequently more convergent replications, as reported in the literature.

3.2 Smaller relative errors via the ridge and anti-ridge methods

The results in the previous subsection characterize the relationship of relative errors
in s jk with the population factor loadings and error variances that generated the data.
The ridge method of modeling Sa = S + aI = (s jka) is a post-hoc technique after
S = (s jk) is obtained. Since a is a constant, the variance of s jka is the same as
that of s jk . However, E(s j ja) = E(s j j ) + a. Consequently, the relative error in s j ja
monotonically decreases with a. Thus, the �θ (t) in (2) following the ridge method
becomes smaller, which increases both the speed and rate of convergence of the FS
algorithm.

The manipulations on the size of factor loadings and error variances in Anderson
and Gerbing (1984) and Boomsma (1985) are a priori. We may consider applying the
anti-ridge method in a post-hoc manner after S is observed. Suppose we know the
variance-covariance matrix of the common scores �ξ . Then we may consider fitting
Sc = (s jkc) = S + (c�)	(c�)′ = S + c2�	�′ by the structural model �(θ). Since
�c = E(Sc) = (1 + c2)�	�′ + 
 and Var(s jkc) = Var(s jk), relative errors in all
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the elements of Sc are smaller than those of S. Thus, we expect that the post-hoc use
of the anti-ridge method is more effective than the ridge method in improving the
convergence properties of FS. However, such a technique can only be used in certain
applications where the factor loadings are not subject to estimation.

Example 1 Consider the linear latent growth curve model (Preacher et al. 2008) y j =
ξ1+( j−1)ξ2+ε j , j = 1, 2, . . . , p,where ξ1 is the latent intercept, ξ2 is the latent slope,
with E(ξ1) = τ1, E(ξ2) = τ2, Var(ξ1) = φ11, Var(ξ2) = φ22, and Cov(ξ1, ξ2) = φ12,
resulting in a covariance structure as in (6), where all the elements of the first column
of � are 1.0, and those of the second column of � are 0, 1, 2, . . . , p− 1 in sequence;
	 is a free matrix subject to estimation; and 
 is a diagonal matrix. For growth curve
modeling, there is also a mean structure μ j = τ1 + ( j − 1)τ2. Then, with the same
rationale as for just covariance structure analysis, keeping the sample means the same
and treating Sc = S + c2��′ as the new sample covariance matrix will increase the
likelihood for the Fisher-scoring algorithm to converge. Except for the estimate of 	,
all other estimates obtained from fitting (ȳ,Sc) by the mean and covariance structure
model are consistent, and one can get a consistent estimate of 	 by 	̂ = 	̂c − c2I,
where 	̂c is the estimate of 	 under modeling Sc.

In summary, both the ridge and the anti-ridgemethods alleviate the non-convergence
problems caused by (C3), as discussed in Sect. 2. If the problem of a nearly rank
deficient σ̇ (θ (t)) is due to extreme or improper values of θ (t), caused by large sampling
errors, then the two methods also alleviate the non-convergence problems caused by
(C2). When non-convergence is due to the fluctuations of certain elements of �θ (t)

from iteration to iteration caused by the interaction of sizeable errors in S and the
conditions of�(t) and/orH(t), then the two methods also address the problems caused
by (C4).

3.3 Condition numbers following the ridge and anti-ridge methods

In addition to affecting relative errors in FS, the ridge and anti-ridgemethods also affect
condition numbers of the model covariance and information matrices. In the following
discussion, �(t) and H(t) are used to denote the model covariance and information
matrices corresponding to modeling S; �

(t)
a and H(t)

a , and �
(t)
c and H(t)

c are used to
denote those corresponding to modeling Sa and Sc, respectively.

When S is close to being singular or ill-conditioned, because the algorithm is to
approximate S by �(t) as close as possible, �(t) ≈ S will be very likely close to
singular or not invertible from iteration to iteration, and so will be W(θ (t)) and the
corresponding H(t). Since Sa = S + aI, there exists �

(t)
a ≈ �(t) + aI. Thus, with

an appropriate a, �(t)
a in the ridge method is always well-conditioned. But this is not

always true for H(t)
a . When an ill-conditioned H(t) is due to an ill-conditioned �(t),

not a rank deficient σ̇ (θ (t)), then H(t)
a will be well-conditioned. However, if an ill-

conditioned H(t) is caused by a rank deficient σ̇ (θ (t)), then the condition of H(t)
a may

not improve. This is because the ridge constant a mainly affects only the variances of
errors, and their values do not have any effect on the Jacobian matrix σ̇ (θ (t)).
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Another scenario inwhich the ridgemethod improves the condition numbers of�(t)

and H(t) is when S is well-conditioned but its elements contain substantial sampling
or systematic errors, which cause some ψ

(t)
j j to be close to zero or negative during the

iterative process. Then�(θ (t))might be close to singular and so might beH(t). Again,
because �

(t)
a ≈ �(t) + aI, both �

(t)
a and H(t)

a will be well-conditioned.
A third scenario where the ridge method improves the condition numbers of �(t)

andH(t) is through reducing relative errors in Sa . Certain elements of θ (t) can become
extreme when a model is not a good representation of the data, due to sampling or
systematic errors. Extreme elements other than variances of errors in θ (t) can also
make �(t) close to singular or σ̇ (θ (t)) close to rank deficient. Due to smaller rela-
tive errors in Sa , θ (t)

a becomes less extreme and results in well-conditioned �
(t)
a and

H(t)
a .
The changes in conditionnumbers of themodel covariance and informationmatrices

following the anti-ridge method are much more complicated than those following the
ridge method. This is because there is no simple relationship between the eigenvalues
of S and those of Sc = S+c2�	�′. Although κ(Sc) is not necessarily always greater
than κ(S), we would expect κ(Sc) to be greater than κ(S)most of the times in practice.
However, κ(H(t)

c ) is not necessarily greater than κ(H(t)) even if κ(Sc) > κ(S). A
scenariowhere�

(t)
c andH(t)

c are better conditioned than�(t) andH(t) iswhen elements
of θ (t) are extreme due to substantial relative errors in S. Similar to the third scenario
with the ridge method, with smaller relative errors in Sc, θ (t)

c becomes less extreme

and results in well-conditioned �
(t)
c and H(t)

c . We will show the changes in condition
numbers due to anti-ridgemanipulations using examples andMonte Carlo simulations
in the next two sections.

Another interesting fact is that the condition number κ(H(t)) is not invariant with
respect to rescaling of � by a constant. That is, κ(H(t)) may change when all the
elements in S or �(θ) change proportionally. We will illustrate such a property of
condition numbers in Sect. 5.

Having discussed how non-convergence problems are affected by condition num-
bers of �(t) and/or H(t) caused through (C1) and (C4), we would like to note that,
when themodel�(θ) is in a neighborhood of S, a large but not extreme κ(S) alonemay
not cause a non-convergence problem although it affects the accuracy of parameter
estimates. The value of κ(S) affects but does not determine the value of κ(�(t)) or
κ(H(t)). The effect of κ(S) on convergence is mostly through its interactions with the
model and/or the relative errors in S.

4 Numerical examples

In this section, we consider two examples. Fisher-scoring algorithm repeatedly has
non-convergence problems in simulation studies, especially at smaller N . The data
(sample covariance matrices) for the examples are just two samples (replications)
from our simulation studies. The first example involves a one-factor model with p = 4
variables, and the second example involves a structural equation model with p = 6
variables and two latent factors.When estimating each of themodels, the FS algorithm
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implemented in SAS IML1 cannot reach convergence. In addition to the FS algorithm,
we will also use the commercial programs EQS (Bentler 2008) and SAS Calis (SAS
Institute Inc 2011) to estimate the models in the two examples.

Example 2 The sample covariance matrix

S =

⎛
⎜⎜⎝
1.436 .176 .506 .120
.176 1.681 1.153 .616
.506 1.153 1.278 .243
.120 .616 .243 1.946

⎞
⎟⎟⎠ (11)

is obtained from a normally distributed population with sample size N = 30. The
population covariance matrix satisfies a one-factor model with all the factor loadings,
the factor variance, and all the error variances being at 1.0. In estimating the model, we
fix the factor variance at 1.0 for model identification. Thus, the model has 8 parameters
with θ = (λ1, λ2, λ3, λ4, ψ11, ψ22, ψ33, ψ44)

′. The population counterpart of θ is
θ0 = (1, 1, 1, 1, 1, 1, 1, 1)′, which is used as the initial value of the FS and other
algorithms described below, evenwhenS is replaced bySa = S+aI orSc = S+c211′,
where 1 = (1, 1, 1, 1)′ with 11′ being the population covariancematrix of the common
scores. The criterion for convergence of the FS algorithm is defined as

max |�θ (t)| < .0001 within 300 iterations, (12)

where max | · | is the maximum absolute value on all the elements of �θ (t). EQS and
SAS Calis have their own convergence criteria that are different from (12).

When fitting the S in (11) by the one-factor model, at the 60th iteration (t = 60),
FS as implemented in SAS IML declares that the information matrix H(t) cannot be
inverted, with κ(�(t)) ≈ 3.74 × 108 and κ(H(t)) ≈ 1.56 × 1017. Initial values other
than θ0 are also used and FS runs into the same problem. The problem of singular
informationmatrix encountered by FS in this examplemay also occur to other iterative
methods. We may want to address such a problem by adjusting the step size as in (4)
with a proper value of α, which is the default implementation in EQS.With the default
convergence criterion of EQS (conv = .001), the program converges in 261 iterations
and yields

θ̂ = (.049, .142, 8.267,−.027, 1.434, 1.661,−67.031, 1.945)′. (13)

The output of EQS indicates that during the iteration process step size is adjusted
many times with the α in (4) ranging from 1.0 to .001. However, using the θ̂ in (13)
as the initial value θ (0), FS declares that H(t) is singular at t = 16, with κ(H(t)) =
−3.1× 1016. To better understand the problem, we reset the convergence criterion in
EQS to conv = .000001. Then EQS cannot reach convergence in 1000 iterations.

1 The implementation of the FS algorithm as described in Eqs. (2) and (3) is straightforward. Readers are
welcome to contact the authors to obtain an electronic copy of the SAS IML code.
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The program SAS Calis uses the so-called Levenberg-Marquardt optimization
method (Nocedal and Wright 1999, pp. 262–266) with step size adjustment. With
the default convergence criterion of Calis and setting the maximum number of itera-
tions at 1000, SAS Calis gives an error message “LEVMAR Optimization cannot be
completed”. at the end of the 1000 iterations.

For the S in (11), fitting the Sa at a = .5 by the one-factor model, FS converges in
82 iterations and yields

θ̂ = (.388, .933, 1.236, .243, 1.285, .811,−.250, 1.887)′, (14)

where the estimates of error variances are obtained by subtracting a from each of their
values directly from the FS algorithm for the purpose of consistency. Notice that the
solution in (14) contains a negative estimate of error variance (called Heywood case
in factor analysis). Fitting this Sa by the one-factor model with conv = .000001, after
126 iterations EQS obtains estimates with the first 3 decimals identical to those in (14).

Fitting the Sa at a = 1 by the one-factor model, FS converges in 29 iterations and
yields

θ̂ = (.335, 1.089, 1.059, .380, 1.324, .495, .157, 1.801)′. (15)

Fitting this Sa by the one-factor model with conv = .000001, EQS converges in 46
iterations and yields estimates with the first 3 decimals identical to those in (15).

We next apply the anti-ridge method by fitting the one-factor model to Sc = S +
c211′ at c2 = .5and1.0.Thesevalues of c2 are chosen so that the variances-covariances
of the common scores are increased by respectively 50 and 100%, corresponding
to parallel increases of error variances at a = .5 and 1.0. Let λ̂c be the vector of
estimates of the factor loadings corresponding to the solution of fitting Sc. The anti-
ridge estimates of factor loadings reported below are obtained by λ̂ = λ̂c − [(1 +
c2)1/2 − 1]1, while the estimates of error variances are not changed. Thus, all the
reported estimates following the anti-ridge method are consistent.

Fitting the one-factor model to Sc at c2 = .5, FS converges in 37 iterations and
yields

θ̂ = (.529, .992, 1.134, .285, 1.368, .700,−.069, 2.186)′, (16)

which also contains a Heywood case. For this Sc and the one-factor model, with
conv = .000001, EQS converges in 63 iterations and yields the same estimates as
in (16) for the first 3 decimal places. Fitting the one-factor model to the Sc at c2 = 1.0,
FS converges in 20 iterations and yields

θ̂ = (.583, 1.025, 1.081, .438, 1.441, .609, .042, 2.220)′. (17)

Fitting this Sc by the one-factor model with conv = .000001, EQS converges in 34
iterations and yields estimates with the first 3 decimals identical to those in (17).

Table 1 contains the condition numbers of S, Sa (a = .5, 1.0) and Sc (c2 = .5, 1.0),
called input covariance (ICov) matrix in the table. Condition numbers of the estimated
covariance (ECov) matrix �̂ or �(60) as well as the corresponding estimated infor-
mation (EInf) matrix are also reported in the table. With κ(S) = 14.645, the sample
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Table 1 Condition numbers of the input covariance (ICov)matrix, the estimated covariance (ECov)matrix,
and the estimated information (EInf) matrix corresponding to S, Sa and Sc in Example 3

S Sa=.5 Sa=1 Sc2=.5 Sc2=1

ICov 14.645 5.097 3.410 23.571 32.754

ECov 4.474 3.158 16.950 23.231

EInf 95.454 47.880 58.328 48.462

ECov(60) 3.74 × 108

EInf(60) 1.56 × 1017

covariance matrix is not ill conditioned. However, the sampling errors in S cause �(t)

and H(t) to be close to singular, which further causes FS and other algorithms to fail
to converge. The results in Table 1 indicate that κ(�̂a) decreases as a increases and
κ(�̂c) increases as c2 increases. However, the condition number of the information
matrix corresponding to Sc at c2 = 1.0 is smaller than that at c2 = .5. The condition
number of the information matrix corresponding to Sa at a = .5 (c2 = 0) is also much
larger than that corresponding to Sc at either c2 = .5 or 1.0.

In Example 2, neither FS nor the default algorithm in SAS Calis is able to reach
convergence when fitting S by the 1-factor model. The seeming convergence of EQS
at conv = .001 is just a coincidence, with the θ̂ in (13) being not a stationary point.
By using either the ridge or anti-ridge method, FS easily yields converged solutions.
However, the estimates by different methods are quite different. Although both the
ridge and the anti-ridge methods yield estimates that are consistent with the model
and population, the S in (11) contains substantial sampling errors, which cause the
differences among the estimates in (14) to (17). The example shows that, in addition
to yielding converged solutions, ridge and anti-ridge methods can be also effective in
removing Heywood cases.

Notice that the convergence criterion in EQS is defined differently from that in (12).
The reason for us to choose conv = .000001when usingEQS to fitSa andSc is because
the program was unable to reach convergence when working with S under the same
value of conv. If setting conv at a larger number, it will take fewer iterations for EQS
to reach convergence.

The previous example is on the convergence issue of the FS algorithm with a
confirmatory factor model. The FS algorithm has similar problems when fitting a
structural equation model, as illustrated by the following example.

Example 3 Consider six variables with y1, y2 and y3 being indicators for the first
factor ξ1; y4, y5 and y6 being indicators for the second factor ξ2; and ξ2 is predicted
by ξ1 according to

ξ2 = γ21ξ1 + ζ2,

where ξ1 and ζ2 are independent with φ11 = Var(ξ1) and ϕ22 = Var(ζ2). Letting
ξ = (ξ1, ξ2)

′, then the covariance structure of y = (y1, y2, . . . , y6)′ is given by
Eq. (6) with
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�′ =
(
1.0 λ2 λ3 0 0 0
0 0 0 1.0 λ5 λ6

)
and 	=

(
φ11 γ21φ11

γ21φ11 γ 2
21φ11 + ϕ22

)
. (18)

Note that, for the above structural equation model, we cannot fix the variance of ξ2 at
1.0 becuase its value is subject to prediction. So we put λ1 = λ4 = 1.0 for the purpose
of model identification. In this model, there are 13 free parameters with

θ = (λ2, λ3, λ5, λ6, φ11, γ21, ϕ22, ψ11, ψ22, ψ33, ψ44, ψ55, ψ66)
′.

Like for Example 2, the sample covariance matrix

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

3.498 1.686 .679 1.033 1.426 .286
1.686 1.964 1.062 .718 .654 .642
.679 1.062 1.754 .863 1.036 .720
1.033 .718 .863 2.061 1.402 .779
1.426 .654 1.036 1.402 2.284 1.380
.286 .642 .720 .779 1.380 2.646

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

is obtained from a normally distributed population with N = 30. Except γ21 = .5 and
ϕ22 = .75, all the other elements of θ in the population are 1.0; and we denote the
vector of these values as θ0. The initial value of the FS and other algorithms described
below are set at θ0 regardless of whether the ridge or anti-ridge method is used when
estimating the model in (18). The criterion for convergence of the FS algorithm is the
same as defined in (12).

When fitting the model in (18) to the sample covariance matrix in (19), the FS
algorithm does not converge. Starting at 66th iteration (t = 66), the θ (t) in Eq. (2)
oscillates between

θ (t) = (.668, .633, 1.346, .972, 2.054, .366, .690, 1.444, .832,

.926, 1.040, .384, 1.688)′ (20)

and

θ (t+1) = (.983, .640, 1.535, .948, 1.379, .509, .514, 2.119, .483, 1.184,

1.148, .139, 1.828)′. (21)

Other initial values are also used but FS eventually runs into the same problem.
We would hope that the problem of oscillation between two points encountered by

FS in this example would be solved by adjusting the step size via the value of α in (4).
With the default convergence criterion of EQS (conv = .001), the program converges
in 12 iterations and yields

θ̂ = (.887, .622, 1.445, .963, 1.799, .415, .662, 1.699, .549, 1.058,

1.089, .256, 1.745)′. (22)
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The output of EQS indicates that, at the 4th and 10th iterations, step halving is used.
However, with the θ̂ in (22) as the initial values, the FS algorithm in (2) returns to
oscillating between the two sets of values in (20) and (21), starting at t = 134. To better
understand the problem, we reset the convergence criterion in EQS to conv = .00001.
Then EQS cannot reach convergence in 1000 iterations.

With the default convergence criterion, SAS Calis yields a vector of converged
values essentially the same as that of EQS. However, using the converged values of
SASCalis as the initial values for FS and let the algorithm continue to run, the iteration
returns to oscillating between the two sets of values in (20) and (21).

Since the relative errors in s jk do not depend on how the structure model is identi-
fied, the results and properties regarding ridge and anti-ridge methods obtained in the
previous sections still hold, as illustrated below.

For the S in (19), fitting the Sa = S + aI at a = .5 by the model in (18), the FS
algorithm converges in 50 iterations and yields

θ̂ = (.877, .633, 1.438, .928, 1.758, .462, .609, 1.740, .613, 1.050,

1.077, .248, 1.798)′. (23)

Fitting the Sa with a = .5 and conv = .00001 by the model in (18), EQS converges in
59 iterations and yields estimates with the first 3 decimals identical to those in (23).

Fitting the Sa at a = 1 by the SEM model in (18), the FS algorithm converges in
28 iterations and yields

θ̂ = (.875, .644, 1.430, .904, 1.725, .484, .593, 1.773, .643, 1.039,

1.063, .244, 1.830)′. (24)

Fitting the Sa at a = 1 by the SEM model and set conv = .00001, EQS converges in
33 iterations and yields estimates with the first 3 decimals identical to those in (24).

Let Sc = S + c2�	�′, where �	�′ is the population covariance matrix of the
common scores. Because λ1 and λ4 are fixed at 1.0 in the formulation of the SEM
model in (18), the population counterpart of	 corresponding toSc becomes (1+c2)	,
and those of � and 
 remain the same. Thus, consistent estimates of φ11 and ϕ22 are
obtained by φ̂11 = φ̂c11 − c2φ110 and ϕ̂c22 = ϕ̂22 − c2ϕ220, where φ̂c11 and ϕ̂c22 are
the estimates of φ11 and ϕ22 under modeling Sc; and φ110 and ϕ220 are the population
values of φ11 and ϕ22, respectively.

Fitting the SEM model to the Sc at c2 = .5, FS converges in 135 iterations and
yields

θ̂ = (.973, .715, 1.318, .977, 1.690, .417, .687, 1.808, .389, 1.135,

1.119, .278, 1.770)′. (25)

With conv = .00001, fitting the Sc by the SEM model in (18) using EQS takes 160
iterations and yields estimates with the first 3 decimals identical to those in (25).

Fitting the SEM model to the Sc at c2 = 1.0, FS converges in 44 iterations and
yields
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Table 2 Condition numbers of
the input covariance (ICov)
matrix, the estimated covariance
(ECov) matrix, and the estimated
information (EInf) matrix
corresponding to S (t ≥ 22), Sa
and Sc in Example 2

S Sa=.5 Sa=1 Sc2=.5 Sc2=1

ICov 31.381 10.662 6.744 38.504 46.123

ECov 6.652 4.999 13.496 16.722

EInf 76.999 85.052 99.001 150.535

ECov(t) 9.462

ECov(t+1) 10.915

EInf(t) 71.713

EInf(t+1) 78.224

θ̂ = (1.006, .769, 1.249, .984, 1.633, .421, .705, 1.865, .299, 1.196,

1.139.287, 1.786)′. (26)

With conv = .00001, fitting the SEM model to the Sc at c2 = 1 by EQS takes 53
iterations and yields estimates with the first 3 decimals identical to those in (26).

Parallel to Table 1, the condition numbers of S, Sa (a = .5, 1.0) and Sc (c2 = .5,
1.0) as well as those of the corresponding �̂ or �(t) and the associated information
matrices for this example are reported in Table 2. The sample covariance matrix is
not ill conditioned. But κ(S) = 31.381 is several times of that in Table 1. The results
in Table 2 indicate that κ(�̂a) decreases as a increases and κ(�̂c) increases as c2

increases, which are similarly observed in Table 1. However, in Table 2 the condition
number of the information matrix in fitting Sc increases with c2, and is the largest at
c2 = 1.0. This may explain why anti-ridge method in this example is not as effective
as in the previous example, and it took 135 iterations for the FS algorithm to converge
when fitting Sc at c2 = .5, compared to 50 iterations when fitting Sa at a = .5.

In this example, FS algorithm is unable to reach convergence when S is fitted by the
SEM model. Step size adjustment does not solve the problem, as shown by running
EQS with conv = .00001. With or without step size adjustment, FS has no problem in
reaching a converged solution with either the ridge or the anti-ridge method. Although
the S in (19) contains substantial sampling errors, the 4 sets of estimates in (23) to (26)
are comparable.

Notice that the convergence criterion of EQS with fitting Sa and Sc in this example
is set at conv = .00001 while in the previous example it was set at conv = .000001.
This is because, when working with S, EQS could not reach convergence at these
specified values.

5 Monte Carlo results

In this section, we empirically compare the convergence rate and speed of the FS
algorithm in fitting S, Sa and Sc. In Sect. 3.1, our characterization of the relative
errors in S is based on the assumption that factors and errors in the factor model
are independent, and the results are derived using asymptotics. We will empirically
evaluate the size of relative errors in S when factors and errors are dependent but
uncorrelated. Because the convergence properties of FS are related to the condition
numbers of S and/or the information matrix in (3), we will also evaluate how these
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condition numbers and sampling errors jointly affect the convergence rate and speed
of the FS algorithm.

5.1 Conditions

The population distributions are specified through a confirmatory factor model with
p = 15 observed variables

y = μ + �(rξ) + rε, (27)

where μ is a 15 × 1 vector of means;

� =
⎛
⎝

λ 0 0
0 λ 0
0 0 λ

⎞
⎠

with λ being a 5 × 1 vector of factor loadings; ξ = (ξ1, ξ2, ξ3)
′ and ε =

(ε1, ε2, . . . , ε15)
′ are independent with E(ξ) = 0,

	 = Var(ξ) = (φ jk) =
⎛
⎝
1.0 .3 .4
.3 1.0 .5
.4 .5 1.0

⎞
⎠ ,

E(ε) = 0, and Var(ε) = 
 = diag(ψ11, ψ22, . . . , ψpp). The multiplier r in (27),
to be further specified, is to make the factors (rξ) and errors (rε) dependent but
uncorrelated. Such a condition was used in Hu et al. (1992) to invalidate the so-called
asymptotic robustness conditions in studying the likelihood ratio statistic. Three sets
of population parameters are used: (P1) λ = (1, 1, 1, 1, 1)′ or λ j = 1 and ψ j j = 1,
j = 1 to 15; (P2) λ = (2, 2, 2, 2, 2)′ or λ j = 2 and ψ j j = 1, j = 1 to 15; (P3)
λ = (1, 1, 1, 1, 1)′ or λ j = 1 and ψ j j = 2, j = 1 to 15. Four population distribution
conditions of y, as described in Table 3a, are used. Each distribution of y is defined
through ξ = 	1/2zξ and ε = 
1/2zε, where the elements in zξ = (zξ1, zξ2, zξ3)′ and
zε = (zε1, zε2, . . . , zε15)′ are independent and each follows a standardized distribution
described in the table. In condition D1, r = 1, ξ ∼ N (0,	) and ε ∼ N (0,
), and
thus y is normally distributed with mean μ and covariance matrix as given in (6). In
conditionsD2,D3 andD4, r ∼ (3/χ2

5 )1/2. Since E(r2) = 1, each� inD2,D3 orD4 is
also given by (6). In D2, y follows an elliptical distribution. In D3, y follows a skewed
distribution due to a skewed ξ . InD4, y follows a skewed distribution due to a skewed ε.

Since non-convergence is typically associatedwith smaller sample sizes, we choose
N = 30, 50, 100 and 200. The number of replications is Nr = 500.

To study the convergence properties of FS with ridge and anti-ridge methods, we fit
S,Sa = S+aI andSc = S+c2�	�′, where�	�′ is set at the population values of the
variances-covariances of the common scores; a = 1 and c2 = 1 for parameterizations
P1 and P2; and a = 2 and c2 = 1 for parameterization P3. Thus, the choice of a
makes the error variances corresponding to Sa doubled those corresponding to S in
P1, P2 andP3;whereas the choice of cmakes the common-score variances-covariances
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Table 3 (a) Population distributions ofy for theMonteCarlo study, ξ = 	1/2zξ with zξ = (zξ1, zξ2, zξ3)
′,

and the zξ j are independent; ε = 
1/2zε with zε = (zε1, zε2, . . . , zε15)
′, and the zε j are independent.

(b) Values of parameters in the population, and condition numbers of �, �a = E(Sa) and �c = E(Sc) as
well as those of the corresponding information matrix H = σ̇ ′Wσ̇

(a)

Condition zξ j zε j r y

D1 N (0, 1) N (0, 1) 1.0 Normal

D2 N (0, 1) N (0, 1) (3/χ2
5 )1/2 Elliptical

D3 Standardized χ2
1 N (0, 1) (3/χ2

5 )1/2 Skewed ξ

D4 N (0, 1) Standardized χ2
1 (3/χ2

5 )1/2 Skewed ε

(b)

Parameter κ(�) κ(�a) κ(�c) κ(H) κ(Ha) κ(Hc)

P1 (λ j = 1, ψ j j = 1)

a = 1, c2 = 1 10.028 5.514 19.056 7.038 12.387 15.800

P2 (λ j = 2, ψ j j = 1)

a = 1, c2 = 1 37.112 19.056 73.223 33.983 31.029 70.796

P3 (λ j = 1, ψ j j = 2)

a = 2, c2 = 1 5.514 3.257 10.028 12.387 24.456 19.616

corresponding to Sc doubled those corresponding to S in the three conditions. Clearly,
the conditions contain both post-hoc and a priori implementations of the ridge and
anti-ridge methods. Condition numbers for the population covariance matrix and the
information matrix corresponding to S, Sa and Sc are listed in Table 3b. Notice that
the κ(�) under P1 equals the κ(�c) under P3 because �c = 2�, but the condition
numbers of their corresponding information matrices are not equal.

For each condition in Table 3, the model is the same. That is, a confirmatory 3-
factor model as in Eq. (6), each factor has 5 unidimensional indicators and the factors
are freely correlated, and the errors are uncorrelated. In the estimation, each factor
variance is fixed at 1.0. Thus, there are 15 factor loadings, 3 factor correlations, and
15 error variances.

For a given condition, let si jk be the sample covariance between the j th and kth
variables in the i th replication. Since E(si jk) = σ jk is positive in all the conditions,
we use the average

REod = 1

Nr

Nr∑
i=1

⎡
⎣

p−1∑
j=1

p∑
k= j+1

|si jk − σ jk |
σ jk

⎤
⎦ /[p(p − 1)/2]

to measure the relative errors in the off-diagonal elements of the sample covariance
matrix S. Similarly, we use

REd = 1

Nr

Nr∑
i=1

⎡
⎣

p∑
j=1

|si j j − σ j j |
σ j j

⎤
⎦ /p
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to measure the relative errors in the diagonal elements of S.
When fitting S, Sa or Sc, the population values of θ corresponding to � = E(S),

�a = � + aI and �c = � + c2�	�′ are used as initial values respectively. For
some replications, the FS algorithm cannot reach the convergence criterion defined
in (12). These non-converged replications can be classified into two types. One is
that (12) is still not satisfied after completing 300 iterations, call it type A; and the
other is that, for t < 300, the ratio of the largest absolute eigenvalue over the smallest
absolute eigenvalue of H(t) is so large that SAS IML declares H(t) as singular, call it
type B. The numbers of replications for each type are recorded to measure the rate of
non-convergence/convergence. For each condition, the average number of iterations
across all the converged replications (out of 500) is also recorded as an indicator of
the speed of convergence of FS.

Average condition numbers of S, Sa and Sc for each condition across the 500
replications are recorded in order to examine their relationship to the convergence
properties of FS. Similarly, the average condition numbers of the information matrices
corresponding to S, Sa and Sc across the converged replications are also recorded for
each condition.

5.2 Results

Table 4 contains the averages of relative errors in sample variances (REd ) and covari-
ances (REod ) across 500 replications of S for each condition. It is clear that, regardless
of whether the population distribution is symmetric or skewed, or whether the errors
and factors are independent or just uncorrelated, the REods in condition P2 (λ j = 2,

Table 4 Relative errors in the
sample variances (REd ) and
covariances (REod ) as factor
loadings and/or unique variances
vary: (D1) normally distributed
population; (D2) elliptically
distributed population; (D3)
distribution with skewed factors
and symmetrically distributed
errors; (D4) distribution with
skewed errors and symmetrically
distributed factors

REd REod

N 30 50 100 200 30 50 100 200

P1 (λ j = 1, ψ j j = 1)

D1 .205 .163 .113 .080 .656 .505 .359 .250

D2 .314 .254 .188 .136 .887 .723 .537 .383

D3 .365 .306 .228 .170 .904 .762 .558 .409

D4 .392 .328 .246 .180 .829 .687 .505 .371

P2 (λ j = 2, ψ j j = 1)

D1 .205 .162 .113 .080 .433 .329 .236 .163

D2 .315 .252 .188 .137 .594 .469 .359 .255

D3 .440 .373 .283 .214 .625 .531 .392 .291

D4 .320 .261 .192 .140 .570 .466 .339 .252

P3 (λ j = 1, ψ j j = 2)

D1 .206 .163 .113 .080 .963 .745 .528 .369

D2 .313 .255 .188 .136 1.292 1.051 .783 .558

D3 .335 .279 .207 .152 1.301 1.090 .796 .576

D4 .447 .377 .286 .209 1.176 .980 .724 .530
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Table 5 The number of replications that the Fisher-scoring algorithm cannot reach convergence within 300
iterations (in front of /) or the information matrices are singular during iterations (after /); (D1) normally
distributed population; (D2) elliptically distributed population; (D3) distribution with skewed factors and
symmetrically distributed errors; (D4) distribution with skewed errors and symmetrically distributed factors

P1 (λ j = 1, ψ j j = 1) P2 (λ j = 2, ψ j j = 1) P3 (λ j = 1, ψ j j = 2)

N S Sa=1 Sc2=1 S Sa=1 Sc2=1 S Sa=2 Sc2=1

D1 30 5/1 49/24 3/12

50 5/1

D2 30 15/4 1/0 74/38 10/15 4/0

50 1/0 25/8 4/1 2/0

100 1/0 1/0

D3 30 31/23 4/6 2/0 100/62 6/26 8/2

50 5/6 0/3 1/0 18/25 6/9 1/1

100 7/1 1/3

D4 30 17/5 2/2 5/0 2/0 2/0 56/28 8/11 7/2

50 3/0 1/0 20/5 3/1 3/0

100 1/0 2/0

Total 77/39 7/11 10/0 2/0 2/0 357/192 42/78 25/5

ψ j j = 1) are smallest and those in condition P3 (λ j = 1, ψ j j = 2) are largest, con-
sistent with the analytical results obtained in Sect. 3.1. The relative errors in sample
variances (REd ) do not follow the same pattern as that for the sample covariances. In
particular, under normally or elliptically distributed population, REds barely change
from P1 to P3. With skewed factors, REds are greatest in P2 and smallest in P3. How-
ever, with skewed errors/uniquenesses, REds are greatest in P3 and smallest in P2.
These results are also consistent with our analysis in Sect. 3.1.

Table 5 contains the numbers of non-converged replications of type A (in front
of /) and type B (after /), where empty cells correspond to conditions in which all
500 replications converged. We did not include the results for N = 200 because all
500 replications converged. It is clear from Table 5 that the number of non-converged
replications in fitting S is closely related to the size of REods reported in Table 4. In
particular, least numbers of non-converged replications occurred under P2 and largest
numbers occurred under P3. Within P3, the three conditions with largest REod in
Table 4 (D3, D2, and D4 under N = 30) correspond to most non-converged repli-
cations in Table 5 (100/62, 74/38, 56/28). The three largest entries of REod under
N = 50 in Table 4 (D3, D2, D4 following P3) also correspond to most non-converged
conditions following N = 50 in Table 5 (18/25, 25/8, 20/5).

Results in Table 5 also show that both post-hoc ridge and anti-ridge methods are
effective in addressing the problem of non-convergence with fitting S. Under P1, the
anti-ridge method is slightly more effective than the ridge method for conditions D2
and D3 but not for D4. Under P2, only two replications in D4 could not converge
with fitting S, and the ridge method solves the problem whereas the anti-ridge method
does not. This is because the variances-covariances of the common-scores (�	�′)
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Table 6 Average number of iterations across converged replications; (D1) normally distributed population;
(D2) elliptically distributed population; (D3) distribution with skewed factors and symmetrically distributed
errors; (D4) distribution with skewed errors and symmetrically distributed factors

P1 (λ j = 1, ψ j j = 1) P2 (λ j = 2, ψ j j = 1) P3 (λ j = 1, ψ j j = 2)

N S Sa=1 Sc2=1 S Sa=1 Sc2=1 S Sa=2 Sc2=1

D1 30 15.858 10.666 10.264 9.912 7.110 9.004 32.679 19.144 14.146

50 10.074 8.150 7.944 7.700 6.114 7.266 17.271 12.876 9.856

100 7.142 6.260 6.226 6.110 5.122 5.862 9.698 8.530 7.306

200 5.712 5.174 5.150 5.090 4.464 4.936 7.126 6.550 5.926

D2 30 22.154 15.076 12.978 12.432 8.678 10.974 42.655 27.480 19.192

50 15.389 11.378 10.430 10.010 7.428 9.042 28.084 19.927 13.233

100 9.988 8.542 7.998 7.678 6.226 7.222 16.355 12.892 9.916

200 7.492 6.616 6.542 6.268 5.334 5.998 10.198 9.230 7.674

D3 30 26.011 19.351 14.090 14.582 9.726 11.438 41.985 30.376 20.469

50 15.851 13.372 10.509 10.244 7.930 8.836 31.823 22.390 14.010

100 10.336 9.030 7.898 7.738 6.640 7.162 16.909 14.621 9.944

200 7.542 6.904 6.308 6.260 5.496 5.862 10.486 9.482 7.500

D4 30 22.469 14.974 15.123 14.468 8.616 13.309 37.579 23.391 21.149

50 14.557 11.700 11.220 10.394 7.450 9.592 24.251 18.028 15.183

100 9.908 8.246 8.333 7.950 6.216 7.574 14.414 12.324 10.206

200 7.606 6.636 6.708 6.466 5.406 6.234 10.186 9.218 8.194

Ave 13.006 10.130 9.233 8.956 6.747 8.144 21.981 16.029 12.119

corresponding to fitting S are already rather large in P2, and further enlarging their
values does not make much difference. In other words, non-converged replications in
fitting S under P2 are not due to large relative errors in S but something related to
condition numbers of �(t) and/or H(t), and the ridge method directly addresses the
problem. In contrast, under P3, because the relative errors (REod ) are rather large (see
Table 4) and κ(S) (to be discussed) is already quite small, reducing the relative errors
by modeling Sc is more effective than further improving the condition number of S.

Notice that, under conditions P1 and P3 in Table 5, there are more non-converged
replications of type A than type B when fitting S, whereas it is the other way around
whenfittingSa . This suggests that the ridgemethod is less effective in dealingwith type
B non-converged replications. This is because, as reported in Table 3b, the condition
numbers κ(�) for the two conditions are already rather small, and κ(Ha) is even
greater than κ(H). Although the condition number κ(Hc) under P1 or P3 is also
greater than the corresponding κ(H), the relative errors in S are effectively reduced
by the anti-ridge method, and thus, the number of non-converged replications due to
singular H(t) caused by the size of relative errors in S becomes smaller.

For each condition, the average number of iterations across the converged repli-
cations is reported in Table 6; and a further average across the 4 sample sizes and
4 distribution conditions is reported in the last line of the table. It is clear that both
the ridge and anti-ridge methods accelerate the speed of convergence of FS. Under
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Table 7 Average condition number of S, Sa and Sc across 500 replications; (D1) normally distributed
population; (D2) elliptically distributed population; (D3) distributionwith skewed factors and symmetrically
distributed errors; (D4) distribution with skewed errors and symmetrically distributed factors

P1 (λ j = 1, ψ j j = 1) P2 (λ j = 2, ψ j j = 1) P3 (λ j = 1, ψ j j = 2)

N S Sa=1 Sc2=1 S Sa=1 Sc2=1 S Sa=2 Sc2=1

D1 30 89.655 10.595 128.235 312.983 35.314 481.561 52.861 6.525 69.582

50 40.088 9.120 66.968 143.114 30.807 253.812 23.034 5.532 35.890

100 22.913 7.803 41.337 83.316 26.658 157.821 12.883 4.673 21.942

200 16.905 6.975 31.370 62.009 23.963 120.156 9.402 4.149 16.579

D2 30 140.995 11.799 184.214 470.879 37.857 683.019 88.350 7.630 102.182

50 57.645 10.278 90.743 199.283 33.473 340.226 34.805 6.437 49.474

100 30.065 8.619 52.336 106.914 28.898 198.543 17.481 5.298 28.078

200 20.591 7.563 37.496 74.685 25.747 143.161 11.643 4.555 19.914

D3 30 146.509 12.072 183.669 490.817 39.061 683.367 91.851 7.762 101.878

50 58.959 10.469 90.425 205.039 34.609 340.444 35.477 6.570 49.236

100 30.164 8.609 52.037 107.976 29.079 197.952 17.470 5.271 27.869

200 20.671 7.580 37.313 75.185 25.900 142.590 11.669 4.556 19.805

D4 30 210.594 12.452 275.199 692.170 39.132 1014.366 136.183 8.277 155.461

50 78.375 10.907 121.109 263.658 35.026 450.915 49.113 7.083 67.183

100 37.351 9.092 64.639 131.849 30.311 244.648 22.125 5.670 34.896

200 23.737 7.859 43.330 85.766 26.670 165.269 13.553 4.771 23.070

Ave 64.076 9.487 93.776 219.103 31.407 351.116 39.244 5.922 51.440

P1, the anti-ridge method is slightly faster than the ridge method on average. Under
P2, the ridge method is uniformly faster than the anti-ridge method; and, under P3,
the anti-ridge method is uniformly faster than the ridge method. Comparing Tables 6
and 5, we may notice that conditions under which FS converges faster also tend to
have smaller numbers of non-converged replications. This implies that both the speed
and rate of convergence of FS are strongly affected by the relative errors in sample
covariances.

The average condition numbers of S, Sa and Sc across the 500 replications for each
condition are reported in Table 7. Due to sampling errors, each of the averages is much
greater than the corresponding population condition number reported inTable 3b, espe-
cially in condition D4when errors follow a skewed distribution. The average condition
numbers monotonically decrease as N increases, but they are still substantially above
the population values even at N = 200. Further averages across the 4 sample sizes
and 4 distribution conditions are reported in the last row of Table 7, and those under
the ridge method are less than two times of the population condition number, while
those under the anti-ridge method are about 5 times of the corresponding population
value.

Corresponding to S, Sa and Sc, the average condition numbers of the information
matrices across the converged replications for each condition are reported in Table 8.

123



592 K.-H. Yuan, P. M. Bentler

Table 8 Average condition number of the information matrix across the converged replications; (D1) nor-
mally distributed population; (D2) elliptically distributed population; (D3) distribution with skewed factors
and symmetrically distributed errors; (D4) distribution with skewed errors and symmetrically distributed
factors

P1 (λ j = 1, ψ j j = 1) P2 (λ j = 2, ψ j j = 1) P3 (λ j = 1, ψ j j = 2)

N S Sa=1 Sc2=1 S Sa=1 Sc2=1 S Sa=2 Sc2=1

D1 30 22.655 26.834 21.730 66.606 60.874 84.535 18858.867 492.230 48.087

50 13.262 20.926 18.201 49.963 47.206 77.991 34.873 52.460 37.347

100 9.391 16.981 16.854 41.156 38.305 74.434 21.952 36.778 29.779

200 7.931 15.049 16.299 37.244 34.168 72.589 17.595 31.479 25.921

D2 30 298.909 1132.487 47.973 208.928 178.923 126.882 23236427.300 210643.772 130.480

50 34.959 34.622 28.133 85.404 81.493 93.303 2748.604 986.102 63.177

100 17.047 23.368 20.513 57.299 54.736 80.882 59.743 60.032 44.091

200 10.571 18.049 17.399 43.386 41.055 75.363 25.114 41.453 32.691

D3 30 240945.570 104.712 37.036 173.907 123.476 108.591 8007681.450 29129034.400 90.231

50 84.616 34.759 27.214 100.254 87.207 93.766 8741361.590 81911.339 111.607

100 16.859 21.811 20.749 57.909 54.704 81.330 1513.458 85.893 44.446

200 10.618 17.106 17.554 44.339 41.876 75.926 23.989 38.338 32.104

D4 30 285497.050 110.341 228.583 310.685 185.647 319.755 828416.539 2205436.440 390.626

50 126.168 69.397 108.763 148.250 127.856 162.301 103156.938 77129.931 247.058

100 42.786 36.965 42.627 74.393 79.098 95.740 507.287 336.608 111.481

200 19.687 24.784 24.154 45.815 52.775 76.558 47.097 56.650 63.011

Ave 32947.380 106.762 43.361 96.596 80.587 106.247 2558806.400 1981648.400 93.884

Many numbers in the table are huge, and far above their population values reported in
Table 3b. Since condition numbers corresponding to typeBnon-converged replications
are so large that SAS cannot properly store them, including one of them in the calcu-
lation of the average can make the result larger than any of the numbers reported in
Table 8. Comparing Tables 8 and 5, we may notice that most larger numbers in Table 8
correspond to conditions with many non-converged replications in Table 5, although
the numbers in Table 8 are the averages of only the converged replications. Compar-
ing Table 8 with Tables 3b and 7 suggests that condition numbers of the information
matrices are affected much more by the relative errors in the sample covariances than
by the population condition numbers or those of the sample covariance matrices. The
rapid decline of condition number with increasing sample size in Table 8 is also due
to smaller relative errors in S.

In summary, the results in this section suggest that the size of sampling errors
in S affects the convergence properties of FS most. The sampling errors strongly
affect the condition numbers of S, Sa and Sc as well as those of the corresponding
information matrices, which are key components of the FS algorithm. For majority of
the replicationswithH(t) being singular, the ridgemethod solves the problem by fitting
Sa , which improves the condition number of S. However, the ridge method is more
effective when the non-convergence is caused by fluctuations of θ (t) from iteration to
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iteration rather than by a singular H(t). By directly reducing the size of the relative
errors in S, the anti-ridge method is more effective in improving the convergence
properties of the FS algorithm. However, if the non-convergence is not due to the size
of relative errors in S, the ridge method will outperform the anti-ridge method.

6 Discussion and conclusion

In the context of SEM, the FS or other algorithms are not always able to reach a set
of converged solutions. Methods to improve the convergence properties of FS or its
variants have been explored empirically, and one of the findings is to use more reliable
indicators. However, such a finding is in the opposite direction of the ridge method,
which improves the convergence properties of the FS algorithm by working with Sa =
S+aI. In this article we clarified themechanisms behind the convergence properties of
the two seemingly contradictingmethods. Our analytical results indicate that, when the
population follows a SEM or a confirmatory factor model, the size of relative errors in
sample covariances increaseswith error variances, and decreaseswith the size of factor
loadings or common-score variances. The improved convergence properties of FS or
other algorithms following the anti-ridgemethod are due to smaller relative errors in S.
On the other hand, the ridge method is a post-hoc method, and convergence properties
of FS improve because both relative errors in Sa and its condition number become
smaller. For majority of the cases where the information matrices H(t) corresponding
to S are singular, the ridge method is able to solve the problem.

Comparing the ridge and anti-ridge methods, the latter is more effective in improv-
ing the convergence properties of FS or other algorithms. However, the scope of the
applicability of the anti-ridgemethod is limited. In addition tomodels with fixed factor
loadings as in Example 1, anti-ridge strategy can also be usedwhenmultiple indicators
for each construct are available and we have the freedom to choose a subset of them.
Then more reliable indicators will correspond to a higher likelihood of obtaining a
set of converged solutions. However, if one has only a limited number of indicators
for each construct or the indicators are not exchangeable, then the ridge method can
be used. Even if all the indicators have fine reliabilities, the ridge method can still be
used. In particular, as Kamada (2011) and Kamada and Kano (2012) showed, the ridge
method can substantially improve the accuracy of parameter estimates when sample
size is small even when data are normally distributed.

When the model is correctly specified or the difference between data and model
is due to sampling error, the ridge method or a priori use of the anti-ridge method
still yields consistent parameter estimates. When a model is incorrectly misspecified,
then parameter estimates corresponding to the ridge or a priori use of the anti-ridge
method may be systematically different from those obtained by modeling S, and the
differences also will be related to the values of a or c. But it is not clear which estimate
will be more biased. We briefly explored the effect of a and c numerically in Sect. 4.
Yuan and Chan (2008) used a = p/N in their empirical study of mean square errors
of ridge estimates. Kamada (2011) and Kamada and Kano (2012) obtained more
refined formula of a that depends on data. However, these results are for correctly
specified models and normally distributed data. More studies for the effect of a on
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the convergence properties of FS and other algorithms as well as on the properties of
parameter estimates are needed.

The current research addressed sources of non-convergence problems in the FS
algorithm for minimizing the NML-based discrepancy function (1). A modifica-
tion to the weight matrix W(θ) in (3) yields an iterative algorithm for minimizing
the normal-distribution-based generalized least squares (GLS) discrepancy function
(Browne 1974). Thus, most of our analyses and discussions also apply to comput-
ing the GLS estimator. There also exists a GLS function that does not depend on
normal-distribution assumption, called asymptotically distribution free (ADF) func-
tion (Browne 1984). Huang and Bentler (2015) recently showed that the condition
numbers of the ADF weight matrices in both covariance and correlation structures are
strongly affected by sample size, and are closely related to the performance of test
statistics in the ADF method. We expect that a ridge method applying to the weight
matrix will improve the convergence properties of the corresponding FS algorithm for
minimizing the ADF function. Further studies in this direction are needed.

Our study of relative errors in sample covariances might be extended to relative
errors in sample correlations, which are commonly used in exploratory factor analysis.
Since it has been reported that the size of factor loadings is closely related to factor
pattern recovery (e.g., Velicer and Fava 1998), we suspect that the positive effect of
larger loadings on factor pattern recovery occurs because the relative errors in sample
correlations become smaller. Further study is needed in this direction.

The development of this article is around Fisher scoring algorithm for SEM with
complete data. With incomplete data, two methods for SEM were found to perform
well in practice (Savalei and Falk 2014). One is a two-stage procedure (Yuan and
Bentler 2000) in which saturated means and covariance matrix are obtained via the
EM-algorithm (Dempster et al. 1977) in the first stage. In the second stage, the S
in Eq. (1) is replaced by the estimated covariance matrix, and then estimate of the
structural parameter θ is obtained by minimizing the resulting function FML . It is
clear that the ridge and anti-ridge methods equally apply to the second stage of this
two-stage procedure. However, they may not be applicable to the first stage when
estimating the saturated means and covariance matrix by the EM-algorithm. This is
because the E-step involves conditional expectation of the missing variables given the
observed values, and the formulation of the conditional expectation depends on the
current values of the covariance matrix. When the covariance matrix is changed as
in the ridge or anti-ridge method, the conditional expectation will also be different.
Then the resulting algorithm may no longer possess the properties as described in
Wu (1983). Another method for SEM with incomplete data is via direct maximum
likelihood, and Jamshidian and Bentler (1999) developed an EM algorithm for this
approach. The E-step is performed based on the structuredmeans and covariances, and
the M-step is performed by maximizing a counterpart of Eq. (1) that also includes the
mean structure. The convergence properties of this EM-algorithm might be improved
by apply the ridge or anti-ridge method at the M-step. For example, one may change
the S∗ in Eq. (4) of Jamshidian and Bentler (1999) by S∗

a = S∗ + aI. However, for a
similar reason with estimating the saturated means and covariance matrix, the ridge
or anti-ridge method may not be applicable at the E-step of the EM algorithm. More

123



Fisher-scoring algorithm in structural equation modeling 595

studies for applying the ridge or anti-ridge idea to improve the convergence of EM
algorithm for SEM with missing data is worth further studying.

The focus of the article is ridge and anti-ridge techniques in improving the
convergence properties of the Fisher-scoring algorithm in SEM.However, both Fisher-
scoring and EM can apply to many other models beyond SEM. In particular, the
EM-algorithm is not sensitive to starting values, and the sequence of the iterated val-
ues of EM always converges to a stationary point of the likelihood function (see Wu
1983), whereas FS does not possess such properties. But in most cases, when conver-
gence is not an issue, the speed of FS is much faster than EM (Bentler and Tanaka
1983).

7 Appendix

This appendix provides the details leading to the coefficient of variations (CV) of the
sample covariances as given in (7), (8) and (9).With y j0 = y j −μ j and yk0 = yk−μk ,
the main work is to obtain γ jk = Var(y j0yk0).

It follows from (5) that

y j0yk0 = λ jλkξ j∗ξk∗ + λ jξ j∗εk + λkξk∗ε j + ε jεk

and

y2j0y
2
k0 = λ2jλ

2
kξ

2
j∗ξ

2
k∗ + λ2jξ

2
j∗ε

2
k + λ2kξ

2
k∗ε2j + ε2jε

2
k + 2

(
λ2jλkξ

2
j∗ξk∗εk

+λ jλ
2
kξ j∗ξ

2
k∗ε j + 2λ jλkξ j∗ξk∗ε jεk + λ jξ j∗ε jε

2
k + λkξk∗ε2jεk

)
. (28)

Taking the expected value of (28) term by term, we have:
when j∗ �= k∗,

E
(
y2j0y

2
k0

)
= λ2jλ

2
k E

(
ξ2j∗ξ2k∗

)
+ λ2jψkk + λ2kψ j j + ψ j jψkk; (29)

when j∗ = k∗ but j �= k,

E
(
y2j0y

2
k0

)
= λ2jλ

2
k E

(
ξ4j∗

)
+ λ2jψkk + λ2kψ j j + ψ j jψkk; (30)

and when j = k,

E
(
y4j0

)
= λ4j E

(
ξ4j∗

)
+ 6λ2jψ j j + E

(
ε4j

)
. (31)

Notice that σ jk = λ jλkφ j∗k∗ when j∗ �= k∗, it follows from (29) that

γ jk = λ2jλ
2
k

[
E

(
ξ2j∗ξ2k∗

)
− φ2

j∗k∗
]

+ λ2jψkk + λ2kψ j j + ψ j jψkk . (32)

The CV in (7) is obtained using (32) and CV jk = γ
1/2
jk /(

√
nσ jk).
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When j∗ = k∗ but j �= k, σ jk = λ jλk , it follows from (30) that

γ jk = λ2jλ
2
k

[
E

(
ξ4j∗

)
− 1

]
+ λ2jψkk + λ2kψ j j + ψ j jψkk . (33)

The CV in (8) directly follows from (33).
When j = k, σ j j = λ2j + ψ j j , it follows from (31) that

γ j j = λ4j

[
E

(
ξ4j∗

)
− 1

]
+ 4λ2jψ j j +

[
E

(
ε4j

)
− ψ2

j j

]
. (34)

With (34), the result in (9) is obtained from CV j j = γ
1/2
j j /(

√
nσ j j ).
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