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Abstract The distributions of themth longest runs of multivariate random sequences
are considered. For random sequences made up of k kinds of letters, the lengths of
the runs are sorted in two ways to give two definitions of run length ordering. In
one definition, the lengths of the runs are sorted separately for each letter type. In
the second definition, the lengths of all the runs are sorted together. Exact formulas
are developed for the distributions of the mth longest runs for both definitions. The
derivations are based on a two-step method that is applicable to various other runs-
related distributions, such as joint distributions of several letter types and multiple run
lengths of a single letter type.

Keywords Generating function · Combinatorial identities · Randomness test ·
Distribution-free statistical test · Runs length test · Biological sequence analysis

1 Introduction

Run statistics have been used in various disciplines to test the nonrandomness in
sequences (Balakrishnan and Koutras 2002; Godbole and Papastavridis 1994; Knuth
1997). For the related topic of scan statistics, see for example (Glaz et al. 2001). The
research in this area has been revived recently because of the applications in biological
related problems, such as sequence analysis and genetic analysis.

One of the commonly used runs tests is the longest run test. An unusual long
consecutive appearance of one type of letter usually indicates the nonrandom nature
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of the process that generates the sequence. These long consecutive appearances (runs),
however, are usually obscured by noises or other processes so that they do not reveal
themselves to the observers, making the application of the longest run test difficult
or impossible. For example, when we consider biological sequences such as DNA
sequences, the longest run of one particular letter type might have been broken into
several shorter ones due to either biological mutations or errors that occurred in the
process of reading out these sequences. For such sequences, it would be difficult to
have a single run of statistically significant length. For example, for a binary system
of 17 total elements, with 10 elements of the first letter type and 7 elements of the
second letter type, the longest run of the first letter type needs a length of 7 to achieve
statistically significance with a cutoff of α = 0.05: P(l0 ≥ 7) = 0.049 [see Eq. (18)].
On the other hand, if we use the second longest run, it requires only l1 ≥ 4 to achieve
statistically significance for the same significance level: P(l1 ≥ 4) = 0.041 [see
again Eq. (18)]. One of the goals of this paper is to develop explicit, easily calculated
formulas for the mth longest runs of multivariate random sequences, where m is an
arbitrary nonnegative integer. As shown in Fig. 1 and Table 1, asm becomes bigger, the
distributions become narrower, so it might become easier to tell whether the observed
statistic comes from one distribution or the other.

The distributions of the longest runs and other runs-related distributions have been
studied by previous researchers for independent trials and Markov-dependent trials
(Burr and Cane 1961; Philippou and Makri 1985, 1986; Schilling 1990; Koutras and
Papastavridis 1993; Koutras and Alexandrou 1995; Lou 1996; Muselli 1996; Fu et al.
2003; Eryilmaz 2006; Makri et al. 2007). Based on the results of Mood (1940), a
distribution is derived which gives probability of at least one run of a given length
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Fig. 1 Probability mass distribution of the mth longest runs of the whole system, for n = (n1, n2) =
(200, 300), m = 0 to 3. The probability is calculated by W (n; q;m) in Corollary 5, divided by
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Table 1 Average, the second
moment, and variance of the
distribution in Fig. 1

m E(X) E(X2) σ 2

0 10.997 126.502 5.562

1 9.072 84.309 2.006

2 8.121 67.115 1.165

3 7.494 56.966 0.809

or greater for the special case of binary systems where each kind of object has the
same number of elements (n1 = n2) (Mosteller 1941). The formulas involve double
summations. These results are simplified later (Olmstead 1958; Bradley 1968, pp.
255–259), again for binary systems. A recursion-based algorithm is given for the
distribution of the longest run of any letter type of multiple object systems (Schuster
1996). Morris et al. (1993) had similar objectives to ours: they obtained exact, explicit
formulas for multiple objects containing any minimum collection of specified lengths.
Their formulas were obtained by using convoluted combinatorial arguments. Different
from their approach, we will use a simple method that can derive various distribution
in a unified, almost mechanical way. This is the second major goal of this paper: to
introduce a systematicmethod that can treat various distributions in a unified approach.

Earlier studies of run statistics usually used ingenious ad hoc combinatorial meth-
ods, which sometimes became very tedious. In Kong (2006) a systematic method
to study various run statistics in multiple letter systems was developed. Two of the
commonly used run tests, the total number of runs test and the longest run test, were
investigated in detail by using the general method. The method was later applied to
other commonly used runs tests (Kong 2015a, b, c). In this paper, we extend themethod
to investigate the distributions of the mth longest runs for multi-letter systems. Two
different definitions of the run length order will be studied. For the first definition, the
lengths of the runs are sorted separately for each letter type. The formula developed
in Kong (2006, Theorem 10) is a special case for this definition, with mi = 0 for each
letter type. For the second definition, the lengths of all the runs from all letter types
are sorted together. The distributions of both definitions can be considered as special
cases of the general two-step method discussed in Sect. 2.

In the general setting themethod involves two steps. In the first step, we only need to
consider the arrangements of a single letter type thatmeet the restrictionswe impose on
that letter type, such as the lengths of the runs or the number of runs, without worrying
about the complicated combinations with other letter types. It simplifies the enumer-
ation tasks considerably when only one letter type is considered. The number of such
arrangements of a single letter type, say the i th type, with ni elements and ri number
of runs, is specified in Eq. (4) by U (ni , ri ; Xi ), where Xi is a place-holder for other
restrictions in addition of ni and ri . In the second step, the quantities U (ni , ri ; Xi ),
which are for individual letter types, are then combined together by the function F(r)
[as shown in Eq. (1)] to get the distribution of the whole system. The function F(r)
gives the number of configurations to arrange in a line r1 blocks of the first letter type,
r2 blocks of the second letter type, etc., without the blocks of the same letter type touch-
ing each other. The explicit expression of F(r) [Eq. (1)] makes it possible to obtain
explicit expressions for various kind of run-related distributions. These expressions
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can often be simplified by manipulating binomial and multinomial coefficients, which
can be done mechanically using the Wilf–Zeilberger method (Petkovsěk et al. 1996).

The major results of this article are Theorems 2 and 3. These theorems are for
the mth longest runs in systems with arbitrary number of letter types under the two
different definitions of the run length ordering.

Both results are obtained by using the simple yet quite general consideration dis-
cussed in Theorem 1. It is interesting to note that, when compared to the formulas for
the special case of the longest runs (m = 0), the only difference is that the general for-
mulas for the arbitrary mth longest runs contain an extra binomial factor (−1)m

( j−1
m

)

where j is a summation variable [see Eqs. (13), (17), (18), and (23)].
There aremany definitions of runs in the literature. In this articlewe use the classical

definition of Mood (1940), which asserts that consecutive runs of one letter type must
be separated by other letter types. This is also the definition we used in the previous
work (Kong 2006).

Two kinds of models are usually used when the distributions of runs are studied. If
the numbers of elements for each letter type are fixed, the models are known as condi-
tional models. If the elements are not fixed but chosen from a multinomial population,
themodels are called unconditional. For both of thesemodels, exact finite distributions
and asymptotic distributions have been investigated in the past. The results presented
in this article are exact distributions conditioned on the compositions of systems under
study, i.e., the numbers of each letter type are fixed. These exact distributions are par-
ticular useful for relatively short sequences and other situations where asymptotic
results cannot be applied. Once the conditional distribution is obtained, it is usually
easy to get unconditional distribution by the multinomial theorem.

Throughout the article we reserve the letter k for the number of letter types in the
system, and use ni as the number of elements of the i th letter type. The total number
of elements of the system is n = ∑k

i=1 ni . The letter m (with index if necessary) is
used to indicate the run order. For the first definition of the run ordering, mi = 0 is
used to index the longest run of the i th letter type, and mi = 1 is the index of the
second longest run, etc. For the second definition, since the letters are pooled together
when the run lengths are ordered, the subscript on m is no longer needed. In this case,
m = 0 indicates the longest run of the whole system, and m = 1 is the second longest
run, etc.

We denote by the bold letters the tuples with k elements, such as n =
(n1, n2, . . . , nk), r = (r1, r2, . . . , rk), p = (p1, p2, . . . , pk), and similarly for other
symbols. We use

(n
m

)
for the binomial coefficient (n choose m), and

[p1+···+pk
p1,...,pk

] =
[ p
p1,...,pk

] = [p
p

] = p!/(p1! . . . pk !) as the multinomial coefficient, with p = ∑k
i=1 pi .

When there is no ambiguity, the k nesting summations will be abbreviated as a single
sum for clarity, for example,

∑r1
p1=1 · · ·∑rk

pk=1 f (p) will be written as
∑ri

pi=1 f (p).
The coefficient of xm of a polynomial f (x) is denoted as [xm] f (x).

The paper is organized as follows. In Sect. 2, we describe the two-step method
outlined above in a general setting. Then in Sects. 3 and 4, the method is applied to
obtain the distributions of the mth longest runs, under two different definitions of the
run length ordering.
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2 A general two-step method for run-related distributions

As discussed in Sect. 1, in the first step we only consider the enumeration of one letter
type when its elements are considered alone. The enumeration of one letter type is
considerably easier than when all the letter types are considered together. Let assume
that for the i th letter type with ni elements arranged into ri runs, we impose one
or more additional conditions, collectively denoted as Xi . Denote U (ni , ri ; Xi ) as
the number of arrangements of ni elements of the i th letter type in exactly ri runs
with the additional restriction Xi imposed. Various methods can be used to obtain
U (ni , ri ; Xi ), with generating function as one of the most powerful and versatile
methods [see Eq. (11) for one of such applications].

After obtaining U (ni , ri ; Xi ), we need to put them together to form a k-letter type
system. To do this we will use the function F(r), which is the number of ways to
arrange in a line r1 runs of the first letter type, r2 runs of the second letter type, etc.,
without two adjacent runs being of the same kind. The explicit expression of function
F(r) is given by Kong (2006):

Lemma 1 The function F(r) is given by

F(r) =
∑

1≤pi≤ri
1≤i≤k

(−1)
∑

i (ri−pi )
(
r1 − 1

p1 − 1

)
· · ·

(
rk − 1

pk − 1

)[
p1 + · · · + pk
p1, . . . , pk

]
. (1)

When k = 2, F(r1, r2) can be simplified from Eq. (1) to the following trivial expres-
sion,

F(r1, r2) =
(

2
r1 − r2 + 1

)
=

⎧
⎪⎨

⎪⎩

2 if r1 = r2,

1 if |r1 − r2| = 1,

0 otherwise,

which is obvious from the meaning of function F(r).

Proposition 1 For a system with k letter types, the total number of configurations is
given by

R(n) =
ni∑

ri=1

F(r)
k∏

i=1

U (ni , ri ; Xi ), (2)

where U (ni , ri ; Xi ) is the number of arrangements of ni elements of the i th letter type
in exactly ri runs with restrictions Xi imposed.

Often the time we do not want to impose the restrictions on all of the k letter types.
For example, we might only be interested in the length of runs of the first letter type,
and put no restrictions on the other k − 1 letter types. Or we are only interested in the
length of runs of the first and the second letter types to obtain their joint distributions.
In general, suppose we only impose certain restrictions on some of the k letter types,
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which are indexed by S = {i1, i2, . . . , }. Then the number of configurations of the
system R(n; S) can be written as

R(n; S) =
∑

ri

F(r)
∏

i∈S
U (ni , ri ; Xi )

∏

i /∈S
V (ni , ri ), (3)

where V (ni , ri ) is the number of arrangements of the ni elements of the i th letter type
in exactly ri runs without any restrictions.

Theorem 1 The number of configurations R(n; S) for a system with k letter types is
given by

R(n; S) =
∑

ri ,pi ,i∈S

[∑
i∈S pi + ∑

i /∈S ni
pi , ni

] ∏

i∈S
(−1)ri−pi

(
ri −1

pi −1

)
U (ni , ri ; Xi ), (4)

where the set S specifies the subset of letter types on which additional restrictions are
imposed.

Proof The expression of V (ni , ri ) in Eq. (3) for the unrestricted arrangements of
exactly ri runs using ni elements is given by the well-known formula

V (ni , ri ) =
(
ni − 1

ri − 1

)
. (5)

A direct interpretation of above expression is to put ri − 1 bars between the ni − 1
spaces formed by the ni elements to form ri runs. By using Eqs. (1) and (5) and
utilizing the identity

n∑

r=0

(−1)r
(
n

r

)(
r

m

)
= (−1)nδn,m,

the sums of ri in Eq. (3) for i /∈ S can be evaluated to (−1)ni δni ,pi . These δni ,pi in
turn filter out the sums of pi in the explicit expression of F(r) for i /∈ S to a single
term with pi = ni , leading to the simplification of R(n; S) to sums that only involve
letter types in S. ��

With different assignments of the set S, Theorem 1 can be used to obtain different
kinds of distributions, such as joint distributions of two or three letter types, with
S = {1, 2} and S = {1, 2, 3}, respectively. Several special cases for this theorem are
mentioned here for: (1) |S| = 0, (2) |S| = k, and (3) |S| = 1. If S is empty, then
R(n; S) is simplified to the trivial result

[ n
ni

]
, as it should be:

R(n; S = ∅) =
[
n

ni

]
.
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If S = {1, 2, . . . , k}, i.e., all letter types are subject to restrictions, then

R(n; S = {1, . . . , k}) =
∑

pi

(−1)pi
[
p

pi

] ∑

ri

∏

i

(−1)ri
(
ri − 1

pi − 1

)
U (ni , ri ; Xi ). (6)

If only one letter type has restrictions, say S = {1}, then

R(n; S = {1})

=
n1∑

r1=1

r1∑

p1=1

(−1)r1−p1

[
n − n1 + p1
p1, n2, . . . , nk

](
r1 − 1

p1 − 1

)
U (n1, r1; X1)

=
[

n − n1
n2, . . . , nk

] n1∑

r1=1

r1∑

p1=1

(−1)r1−p1

(
n − n1 + p1

p1

)(
r1 − 1

p1 − 1

)
U (n1, r1; X1).

By using the identity

r∑

p=1

(−1)p
(
n + p

p

) (
r − 1

p − 1

)
= (−1)r

(
n + 1
r

)
,

we get

Corollary 1 For a system with the first letter type restricted while the other letter
types are unrestricted, the number of configurations is given by

R(n; S = {1}) =
[

n − n1
n2, . . . , nk

] n1∑

r1=1

(
n − n1 + 1

r1

)
U (n1, r1; X1). (7)

The direct interpretation of Eq. (7) is that the n − n1 elements of the other letter types
form n−n1+1 intervals in a line (including the two ends). There are

(n−n1+1
r1

)
ways for

the elements of the first letter type to choose r1 out of these n−n1+1 intervals to form
r1 runs. The multinomial factor in the front takes care of the number of configurations
the elements of the other letter types can form among themselves.

In the following, we will use this two-step method to derive distributions of themth
longest runs under two different definitions.

3 The first definition of the mth longest run: run lengths sorted within
each letter type

In this definition, the run lengths are sorted for each letter type separately. For the i th
letter, we denote l(i)0 as the length of the longest run of the i th letter type, l(i)1 as the

length of the second longest run of the i th letter type, etc. In general, l(i)m is the length
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of the (m + 1)th longest run of the i th letter type. The lengths of all the runs formed
by the i th letter type are ordered as

l(i)0 ≥ l(i)1 ≥ l(i)2 ≥ · · · ≥ l(i)ri−1.

In other words, there are at leastm+1 runs of the i th letter type whose length is longer
or equal to l(i)m .

For example, in a k = 4 system made up of letter types {1, 2, 3, 4}, if we have the
following particular arrangement of the four letter types

111 | 2 | 111 | 333 | 444444 | 33 | 11111, (8)

then we have l(1)0 = 5, l(1)1 = 3, l(1)2 = 3 for the first letter type 1s, l(2)0 = 1 for the

second letter type 2s, l(3)0 = 3, l(3)1 = 2 for the third letter type 3s, and l(4)0 = 6 for the

fourth letter type 4s. All other l(i)m = 0.
As described in Sect. 2, to use the two-step method to obtain the distribution of the

whole system we first focus on a single particular letter type. In the following, if we
only deal with one letter type, the index i in l(i)m will be omitted and we will use lm for
simplicity. Define function hm(n, q, r) as the number of ways to arrange the elements
of a given letter type with n elements in r runs, with the length of (m + 1)th longest
run less than or equal to q, q ≥ 0, i.e., lm ≤ q. In other words, at most m runs can
have lengths greater than q. This is a specialization of the generic functionU (n, r; X)

of Eq. (3), with the parameters m and q jointly act as the restriction parameter X . In
the following, we will find an explicit expression for hm(n, q, r).

By definition it is obvious that

hm(n, q, r) =
m∑

i=0

h̄i (n, q, r), (9)

where h̄i (n, q, r) counts for the arrangements which have exactly i runs whose lengths
are greater than q. We will first find an explicit expression for h̄i (n, q, r), then use the
above relation to obtain hm(n, q, r).

Lemma 2 The number of ways to arrange n elements in r runs with exactly m longest
runs of length greater than q ≥ 0 is given by

h̄m(n, q, r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 q = 0 and r �= m,
(n−1
r−1

)
q = 0 and r = m,

min(r,�(n−r)/q	)∑

j=m
(−1)m+ j

( j
m

)(r
j

)(n−q j−1
r−1

)
otherwise.

(10)
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Proof To calculate h̄m(n, q, r), we define generating function g(x, y, q) as

g(x, y, q) = (x + · · · + xq) + y(xq+1 + · · · ) = x(1 − xq)

1 − x
+ y

xq+1

1 − x
. (11)

If we expand g(x, y, q)r , then h̄m(n, q, r) will be the coefficient of xn ym , since this
term counts the number of configurationswith exactlym runswhose lengths are greater
than q for a total of n elements. We obtain:

h̄m(n, q, r) = [xn ym]g(x, y, q)r

= [xn ym](1 − x)−r
[
x(1 − xq) + yxq+1

]r

= [xn](1 − x)−r
(
r

m

) [
x(1 − xq)

]r−m
xm(q+1)

= [xn]
(
r

m

) ∑

l

(
r + l − 1

r − 1

)∑

j

(−1) j
(
r − m

j

)
xl+r−m+q j+m(q+1)

=
(
r

m

) ∑

j

(−1) j
(
r − m

j

)(
n − (m + j)q − 1

r − 1

)

=
∑

j

(−1) j−m
(
j

m

)(
r

j

)(
n − q j − 1

r − 1

)
. (12)

Equation (12) includes the special case of q = 0, which can be checked explicitly. For
q = 0, we need to put n elements into r runs with exactly m runs whose lengths are
greater than zero. Each run, by definition, has a length greater than zero. Hence for
q = 0, h̄m(n, q, r) vanishes for all values ofm except form = r . This is also reflected
in Eq. (11): when q = 0, the only term of y in g(x, y, q)r is yr . In this case there
are

(n−1
r−1

)
number of ways to arrange n elements into r runs. This can be checked in

Eq. (12): the sum has only one nonvanishing term, which is when j = r = m, leading
to

(n−1
r−1

)
. ��

Lemma 3 The number of ways to arrange n elements in r runs, with the length of
(m + 1)th longest run less than or equal to q ≥ 0, is given by

hm(n, q, r)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 q = 0 and r > m,
(n−1
r−1

)
q = 0 and r ≤ m,

min(r,�(n−r)/q	)∑

j=0
(−1)m+ j

( j−1
m

)(r
j

)(n−q j−1
r−1

)
otherwise.

(13)
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Proof From the relation Eq. (9) and expression of h̄m(n, q, r) in Eq. (10), we have

hm(n, q, r) =
m∑

l=0

h̄l(n, q, r) =
∑

j

(−1) j
(
r

j

)(
n − q j − 1

r − 1

) m∑

l=0

(−1)l
(
j

l

)

= (−1)m
∑

j

(−1) j
(
r

j

)(
n − q j − 1

r − 1

)(
j − 1

m

)
. (14)

By definition, hm(n, q, r) = (n−1
r−1

)
when m ≥ r , the number of configurations with

n elements in r runs. This is reflected in the above expression as j = 0 is the only
nonvanishing term in the sumwhenm ≥ r . As before, some special cases when q = 0
should be considered. Apparently when q = 0, hm(n, q, r) = 0 if r > m. When
q = 0 and r ≤ m, Eq. (14) is simplified to

(n−1
r−1

)
. ��

With the expression of hm(n, q, r) in Lemma 3, we can use Eq. (4) in Theorem 1
to get the distribution for the whole system. First, we define two sets of numbers
m = (m1, . . . ,mk) and q = (q1, . . . , qk). Then we denote N (n;q;m) as the number
of ways to have the (mi + 1)th longest run of the i th letter type equal to or less than
qi ≥ 0 for all letters: i = 1, . . . , k. In other words, N (n;q;m) is the number of ways
to arrange the letters so that ∀i ∈ {1, 2, . . . , k}, l(i)mi ≤ qi . The Theorem 10 of Kong
(2006) is a special case of N (n;q;m) withm = (0, . . . , 0), i.e., only the longest run
for each letter type is considered there. From Eq. (3) we have

N (n;q;m) =
ni∑

ri=1

F(r)
∏

i

hmi (ni , qi , ri ). (15)

Equation (15) can be simplified if we use the explicit expression of F(r), as in Eq. (6).
If we put U (n, r, X) = hm(n, q, r) in Eq. (6) and define the last sum in Eq. (6) as

Hm(n, q, p) =
∑

r

(−1)r
(
r − 1

p − 1

)
hm(n, q, r),

then the summation of the running variable r can be carried out and we have

Theorem 2 The number of ways to arrange the k letter types so that for ∀i ∈
{1, 2, . . . , k}, l(i)mi ≤ qi is given by

N (n;q;m) =
ni∑

pi=1

(−1)pi
[∑

pi
pi

] ∏

i

Hmi (ni , qi , pi ), (16)
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where

Hm(n, q, p)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−1)m
(n−1
p−1

)(n−p−1
m−p

)
q = 0 and n ≤ m,

(n−1
p−1

) [
(−1)m

(n−p−1
m−p

) − (n−p−1
n−1

)]
q = 0 and n > m,

�(n−p)/q	∑

j=�(n−p)/(q+1)�
(−1)n+m+q j+ j

( j−1
m

)(n−q j−1
p−1

)( p
n−q j− j

)
otherwise.

(17)

The special case ofm = (0, . . . , 0)has been reported previously (Kong2006,Theorem
10).Comparing the twoexpressionswe see that the only difference is the extra binomial
term (−1)m

( j−1
m

)
for the general case of the mth longest runs in Eq. (17).

If we define L(n;q;m) as the number of arrangements to have at least one of the k
letter types, for example, the i th letter type, to have the length of the (mi +1)th longest
run equal to qi , i.e., ∃i ∈ {1, 2, . . . , k}, l(i)mi = qi , then by definition, L(n;q;m) =
N (n;q;m) − N (n;q − 1;m).

Corollary 2 The number of arrangements to have at least one of the k letter types to
have the length of the (mi + 1)th longest run equal to qi is given by

L(n;q;m) = N (n;q;m) − N (n;q − 1;m).

If we define W (n;q;m) as the number of arrangements for all letter types to have
the length of the (mi + 1)th longest run equal to qi , then we have

Corollary 3 The number of arrangements for all letter types to have the length of the
(mi + 1)th longest run equal to qi is given by

W (n;m;q) =
ni∑

pi=1

(−1)p
[
p

pi

] k∏

i=1

[
Hmi (ni , qi , pi ) − Hmi (ni , qi − 1, pi )

]
,

where p = ∑k
i=1 pi .

Applying Eq. (13) in Lemma 3 to Eq. (7) of Corollary 1, we can get the number
of configurations of at least m + 1 runs of the first letter type of length q or greater,
regardless of the other letter types:

Z(n; q;m) =
[
n

ni

]
−

[
n − n1

n2, . . . , nk

] n1∑

r1=1

(
n − n1 + 1

r1

)
hm(n1, q − 1, r1).

The summation of r1 in the above equation can be carried out, leading to

Corollary 4 The number of configurations of at least m + 1 runs of the first letter
type with length q or greater is given by
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Z(n; q;m)

=
[

n − n1
n2, . . . , nk

]min(n−n1+1,�n/q	)∑

j=1

(−1)m+ j+1
(
j − 1

m

)(
n − n1 + 1

j

)(
n − q j

n − n1

)
.

(18)

Equation (18) is a generalization of previous results, such as those of Bradley (1968,
p. 257). For the mth longest run, again the only difference is the extra binomial term
(−1)m

( j−1
m

)
.

By using Theorem 1 and Lemma 3, the method can easily lead to joint distributions
of various kinds. For example, instead of using S = {1} to focus only on the lengths of
runs of the first letter type, we can use S = {1, 2} to obtain joint distributions of both
the first and the second letter types. Other possibilities are to introduce more tracking
variables in generating function Eq. (11) to track more run lengths within one letter
type, instead of only one number q. The details are omitted here.

As for computational complexity, Eq. (15) has 3 nested summations over ni , i =
1, . . . , k: the inner k summations for hm(n, q, r) in Eq. (13), the middle k summations
for the calculation of F(r), and the outer k summations for variables ri . Hence the
computational complexity for Eq. (15) is O(

∏k
i=1 n

3
i ). Equation (16) of Theorem 2

simplifies the computation to two nested summations over ni , and the computational
complexity is reduced to O(

∏k
i=1 n

2
i ).

4 The second definition the mth longest run: run lengths sorted for all
letter types

In Sect. 3, the mth longest runs are ordered within runs formed by individual letter
types. In this section, distributions of mth longest runs of the whole system will be
developed.

For this definition the lengths of runs are sorted regardless which letter type the run
is made up of. The lengths of runs of the whole system are ordered as l0 ≥ l1 ≥ · · · ≥
lr−1, where r is the total number of runs of the system. The length of the longest run
of the whole system is l0, with the length of the shortest run labeled as lr−1. In general
lm denotes the length of the (m + 1)th longest run of the whole system. We define
li = 0 if i ≥ r . If we use the same example shown previously in (8), then l0 = 6,
l1 = 5, l2 = l3 = l4 = 3, l5 = 2, l6 = 1, and lm = 0 for m > 6.

We define Q(n; q;m) as the number of ways to arrange the whole system to have
the length of the (m + 1)th longest run less or equal to q, i.e., lm ≤ q. The definition
of Q(n; q;m) implies that for all the arrangements counted by Q(n; q;m), there are
at most m runs with lengths greater than q.

As before, Q(n; q;m) can be expressed by

Q(n; q;m) =
m∑

s=0

Q̄(n; q; s),

where Q̄(n; q;m) is the number of arrangements of the whole system where there are
exactlym runs with lengths greater than q, regardless of the letter types. The numbers
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given by Q(n; q;m) and Q̄(n; q;m) are the corresponding quantities on the whole
system level of the numbers given by hm(n, q, r) and h̄m(n, q, r) discussed in Sect. 3
for a particular given letter type.

To calculate Q̄(n; q;m), we use the same expression of h̄m(n, q, r) in Eq. (12),
which is the number of ways to arrange n elements of one particular letter type in r
runs, with exactm runs longer than q. Again the function F(r) is used to put the whole
system together:

Q̄(n; q; s) =
s∑

mi=0∑
mi=s

ni∑

ri=1

F(r)
∏

i

h̄mi (ni , q, ri ).

Hence for Q(n; q;m) we have

Q(n; q;m) =
m∑

s=0

s∑

mi=0∑
mi=s

ni∑

ri=1

F(r)
∏

i

h̄mi (ni , q, ri ). (19)

Equation (19) can be simplified. First, by using the explicit expression of F(r) of
Eq. (1), Eq. (19) can be simplified as

Q(n; q;m) =
m∑

s=0

s∑

mi=0∑
mi=s

ni∑

pi=1

(−1)pi
[∑

pi
pi

] ∏

i

H̄mi (ni , q, pi ), (20)

where

H̄m(n, q, p) =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)m
(m−1
p−1

)(n−1
m−1

)
q = 0,

�(n−p)/q	∑

j=�(n−p)/(q+1)�
(−1)n+m+q j+ j

( j
m

)(n−q j−1
p−1

)( p
n−q j− j

)
otherwise.

(21)

The expression of Eq. (20) can be further simplified by getting rid of the selection
summation on

∑
mi = s in the second sum. Let us discuss the simplification for

q = 0 and q > 0 separately.
When q = 0, ifm ≥ n, we have Q(n; 0;m) = [ n

ni

]
. For q = 0 andm < n, for each

summation of mi in Eq. (20), we can first ignore the selection restriction
∑

mi = s,
and use a variable t to track mi later. First look at the sum over one particular mi :

ni∑

mi=pi

(−1)mi

(
mi − 1

pi − 1

)(
ni − 1

mi − 1

)
tmi =

(
ni − 1

pi − 1

) ni∑

mi=pi

(−1)mi

(
ni − pi
mi − pi

)
tmi

= (−1)pi
(
ni − 1

pi − 1

)
(1 − t)ni−pi t pi .
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The nested k sums of mi will then give

(−1)p(1 − t)n−pt p
k∏

i=1

(
ni − 1

pi − 1

)
,

where n = ∑
k ni and p = ∑

k pi . The selection restriction
∑

mi = s just takes the
coefficient of t s from the above expression:

[t s](−1)p(1 − t)n−pt p = (−1)s
(
n − p

s − p

)
.

The outmost sum of s can then be carried out:

m∑

s=0

(−1)s
(
n − p

s − p

)
= (−1)m

(
n − p − 1

m − p

)
.

Putting all together, we have for q = 0 and m < n,

Q(n; 0;m) = (−1)m
∑

pi

(−1)p
(
n − p − 1

m − p

)[
p

pi

] ∏

i

(
ni − 1

pi − 1

)
. (22)

Similarly, for q > 0 Eq. (20) can be simplified by first doing the sums on each mi ,
and then filtering out the term with the selection restriction

∑k
i=1 mi = s by taking

the coefficient of the t s term.
In the end, after putting everything together, we obtain

Theorem 3 The number of configurations of a system with lm ≤ q when all lengths
of runs are sorted together regardless of letter types is given by, when q > 0,

Q(n; q;m)

= (−1)n+m
ni∑

pi=1

(−1)p
[
p

pi

]

×
�(ni−pi )/q	∑

ji=�(ni−pi )/(q+1)�
(−1) j (q+1)

(
j − 1

m

)∏

i

(
ni − q ji − 1

pi − 1

)(
pi

ni − q ji − ji

)

(23)

with j = ∑
i ji , n = ∑

k ni , and p = ∑
k pi . When q = 0, if m ≥ n,

Q(n; 0;m) =
[
n

ni

]
,
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when q = 0 and m < n,

Q(n; 0;m) = (−1)m
ni∑

pi=1

(−1)p
(
n − p − 1

m − p

)[
p

pi

] ∏

i

(
ni − 1

pi − 1

)
.

If we compare Eq. (23) with Eq. (16), we see that the only difference is in the term
(−1)m+(q+1) j

( j−1
m

)
: in Eq. (16) the term is calculated separately for individual letter

type as (−1)mi+(qi+1) ji
( ji−1
mi

)
, while in Eq. (23) the term is calculated for the whole

system using the j = ∑
i ji . From the definitions we see that when m = 0, if we set

all qi in Eq. (16) to q, so that q = (q, q, . . . , q), N (n;q; 0) = Q(n; q; 0). This can
be confirmed by comparing Eqs. (16) and (17) with Eq. (23). For m > 0, this will no
longer be true.

Corollary 5 The number of ways to have the length of the (m + 1)th longest run as
q for the whole system is given by

W (n; q;m) = Q(n; q;m) − Q(n; q − 1;m).

As we can see, Eq. (22) is very similar in form to Eq. (28) of Kong (2006), which
calculates the number of configurations with the total number of runs as r :

T (r;n) = (−1)r
∑

pi

(−1)p
(
n − p

r − p

)[
p

pi

] ∏

i

(
ni − 1

pi − 1

)
.

By the definition of Q(n; q;m), Q(n; 0;m) means the number of arrangements to
have at mostm runs with lengths greater than 0, i.e., with at mostm runs. The relation
between Q(n; 0;m) and T (r;n) is obvious:

Q(n; 0;m) =
m∑

r=0

T (r;n),

which can be checked explicitly.
In Fig. 1 the probability mass distribution of W (n; q;m) for n = (n1, n2) =

(200, 300) (divided by
(n1+n2

n1

)
) is plotted for m = 0 to 3. In Table 1, the average,

the second moment, and the variance of the same system are listed. The distributions
become narrower when m increases.
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