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Abstract In this paper, a jackknife empirical likelihood based approach is developed
to test whether the underlying distribution is equal to a specified one. The limiting
distribution of the proposed testing statistic is derived under some mild conditions.
It turns out that the proposed test is consistent and easy to be implemented. Some
simulation studies are conducted to evaluate the finite sample behaviors by comparing
the proposed method with the existing one. A real data example is also analyzed to
illustrate the proposed test approach.

Keywords Jackknife empirical likelihood · Estimating equations · Cramér–von
Mises test

1 Introduction

A canonical testing problem in statistics is that of testing whether an independent
random p-dimensional (p ≥ 1) sample {X1, X2, . . . , Xn} comes from a specified
distribution F0(x), i.e., testing the following hypothesis

H0 : F(·) ≡ F0(·) versus H1 : F(·) �≡ F0(·), (1)

where F(x) denotes the underlying distribution of Xi (1 ≤ i ≤ n).
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This testing problem arises in many scientific applications, such as econometrics
and signal processing, and has been intensively studied in history. Many famous test
statistics have been proposed. To name but a few, Kolmogorov test statistic, Cramér–
von Mises test statistics, Anderson–Darling test statistics and Watson test statistic. A
detailed account of these kinds of tests can be found in the monograph of D’Agostino
and Stephens (1986).

It is known that some tests above can be reasonable powerful. Nevertheless, since
most of their limiting distributions are generally not standard, the computation of
the related critical values uses the bootstrap method in the practical applications. As a
result, these tests are quite computationally intensive.Also,most of these tests consider
only the case of p = 1. Furthermore, it is also inconvenient for such tests to utilize
some auxiliary information, which may be available in practice, for improving their
performances.

As an alternative, many authors have tried to consider this testing problem in the
context of empirical likelihood, which offers several key benefits, e.g., the ease of
using the auxiliary information to improve inference by adding constrains. Typical is
the work of Einmahl and McKeague (2003) for a local empirical likelihood method.
Unfortunately, their test is developed only for p = 1, and still very time-consuming
for calculation because of processing a non-standard limiting distribution.

Recently, Feng and Peng (2012) proposed to consider this testing problem by using
jackknife empirical likelihood (JEL). It seems that the JEL-based method appears to
be very favorable due to its standard limiting distributions. However, from a theoretical
point of view, the hypotheses that their method is based is not equivalent to the original
hypothesis (1) they expected to test. The power values of their tests may decrease and
hencemaynot converge to1 as the sample size increases.That is, the test is inconsistent.
On the other hand, their procedure is computationally intensive because it involves
numerical integrations, and hence is hardly practical for application as the dimension
of X is high.

To solve these problems, we first suggest a hypothesis which is equivalent to (1),
and then construct a JEL test based on it. It is proved that the proposed test is con-
sistent. Furthermore, we derive the limiting distribution of the proposed empirical
log-likelihood ratio under some mild conditions. The proposed procedure is easy to
be implemented and runs very fast even in high dimensions since the numerical inte-
gration is avoided for the proposed method.

JEL was first studied by Jing et al. (2009). This method has been proved useful in
the applications involving nonlinear statistics such as U -statistics. The main benefit
from JEL is the capability of substantially lessening the calculative burden of the
ordinary empirical likelihood by introducing the so-called ‘jackknife pseudo-values’.
The ordinary empiricalmethodwas first proposed byOwen (1988). In the past decades,
empirical likelihood has emerged as a powerful nonparametric method in statistics.
See, for example, Owen (1990), Qin and Lawless (1994), Wang and Rao (2002), etc.
For an excellent summary about the earlier developments of empirical likelihood, we
refer the readers toOwen (2001). The updated results concerning the large dimensional
empirical likelihood can be found in Chen et al. (2015) and reference therein.

The rest of this paper is organized as follows. In Sect. 2, we introduce the method-
ology and present the main results. In Sect. 3, we conduct some simulation studies to
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compare the proposed method with the JEL method due to Feng and Peng (2012). In
Sect. 4, a real data example is analyzed to illustrate the proposed method. In Sect. 5,
we make some brief discussions. The detailed proofs of the main results are provided
in the Appendix.

2 Methodology and main results

Feng and Peng (2012) conducted a jackknife empirical likelihood based test for (1)
relying on the fact that: if F(x) ≡ F0(x), then

⎧
⎨

⎩

∫
F2(x)d F0(x) = β1

∫
F(x)F0(x)d F0(x) +

d∑

l=1

∫ √

1 − F2
0l(xl)d Fl(xl) = β2

(2)

where β1 = ∫
F2
0 (x)d F0(x), and β2 = β1 + dπ

4 . However, the above hypotheses
that they considered are not equivalent to the original hypothesis (1), since for some
F(x) �≡ F0(x), the equations in (2) may still hold. This implies that the test may be
inconsistent. On the other hand, such a method concerns computing some quantities
such as

∫

I(X ≤ x)F0(x)d F0(x),

which may be very time-consuming for calculation especially when dimension of X is
greater than 1, although the fast computation seems possible in few cases, for example,
when F0(x) is a normal distribution. This would consequentlymake the corresponding
JEL-based tests not so practical.

This motivates us to suggest a new test which improves the JEL in following two
points:

(1) Suggest a hypothesis which is equivalent to (1) such that the hypothesis-based
jackknife empirical likelihood ratio test is consistent.

(2) Avoiding the numerical integration calculation on F0(·).
Denote

γ =
∫

(F(x) − F0(x))2ω0(x)d F(x)

=
∫

(F(x) − F0(x))F(x)ω0(x)d F(x) −
∫

(F(x) − F0(x))F0(x)ω0(x)d F(x),

where ω0(x) > 0 is a known bounded weight function for increasing flexility. When
ω0(x) ≡ 1, γ is closely related to the Cramér–von Mises type test.

Note that F(x) ≡ F0(x) is equivalent to γ = 0, which further implies that

{∫
(F(x) − F0(x))F(x)ω0(x)d F(x) = 0∫
(F(x) − F0(x))F0(x)ω0(x)d F(x) = 0.

(3)
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Therefore, we suggest the hypothesis:

H̃0 : F(·) ∈ Fdist versus H̃1 : F(·) /∈ Fdist, (4)

where Fdist = {F(·) : F(·) is the distribution function satisfying (T1(F), T2(F),
T3(F)) = �0}, with

T1(F) =
∫

(F(x) − F0(x))F(x)ω0(x)d F(x),

T2(F) =
∫

(F(x) − F0(x))F0(x)ω0(x)d F(x) +
p∑

l=1

∫

m0(xl)d Fl(xl),

T3(F) =
p∑

l=1

∫

m0(xl)d Fl(xl),

�0 = (0, �0, �0)
�,

�0 =
p∑

l=1

∫

m0(xl)d F0l(xl),

Fl(·) and F0l(·) denote the marginal distributions of F(·) and F0(·), respectively,
and m0(·) a known bounded function.

Clearly, (4) is equivalent to (1). (4) is not equivalent to (1) if one removes T3 = �0
from (4). The main purpose of using

∑p
l=1

∫
m0(xl)d Fl(xl) in T2(F) and T3(F) is to

avoid the degeneratematrix problem in deriving the empirical likelihood-type test as in
Feng and Peng (2012). In practice, m0(·) is usually selected as a functional depending
on F0l(·). For example, one may take m0(r) = (1 − F2

0l(r))1/2 as in Feng and Peng
(2012). Clearly, it satisfies Assumption A5 given in the Appendix. For convenience,
we drop the argument F from T1(F), T2(F) and T3(F) in what follows if no confusion
arises.

Note that both T1 and T2 are nonlinear. Therefore, we suggest testing this hypothesis
by using the jackknife empirical likelihood method. Given {X1, X2, . . ., Xn}, denote
the jackknife pseudo-sample of (T1, T2, T3)� to be Vi = (V1i , V2i , V3i )

�, i =
1, 2, . . . , n, where

V1i = nT̂1 − (n − 1)T̂1,i ,

V2i = nT̂2 − (n − 1)T̂2,i ,

V3i = nT̂3 − (n − 1)T̂3,i ,

where T̂1, T̂2 and T̂3 denote the estimators of T1, T2 and T3, which are given later, and
T̂1,i , T̂2,i and T̂3,i the “leave i th sample out” versions of T̂1, T̂2, and T̂3, respectively.

Note that both T2 and T3 concern the same unknown quantity

S =
p∑

l=1

∫

m0(xl)d Fl(xl). (5)
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Hence, we face the problem that it is hard to derive a consistent test based on (4) if
one estimates the unknown quantity in both T2 and T3 by the same estimator. In this
case, some matrices, which are required for establishing consistent test and deriving
some asymptotic properties, may be degenerate. For example, the following matrix

1

n

n∑

i=1

(Vi − �0)(Vi − �0)
�

converges to a degeneratematrixwith rank two rather than three. To avoid this problem,
we estimate (5) in T2 by

Ŝn = 1

n

n∑

j=1

Z j ,

and in T3 by

S̃n =
n∑

j=1

a j
∑n

j=1 a j
Z j ,

respectively, where Z j = ∑p
l=1 m0(X jl), {a1, a2, . . . , an} denotes a sequence of

non-negative real numbers. Assume that {a1, a2, . . . , an} satisfies all the assumptions
given in the Appendix, and letwni = ai/

∑n
j=1 a j (1 ≤ i ≤ n). Then, Lemma 1 in the

Appendix guarantees that S̃n is also a consistent estimator of S as Ŝn , butwith a different
asymptotic variance from that of Ŝn as long as a1, a2, . . . , an are chosen appropriately,
which in turn guarantees the positive definiteness of the following matrix

lim
n→∞

1

n

n∑

i=1

(Vi − �0)(Vi − �0)
�

and some other related matrices.
This is a significant and novel idea or technique to use T3 = �0 in (4) and two

different estimators for S in T2 and T3 for defining a consistent JEL test with some
asymptotic properties. In what follows, we take

T̂1 =
∫

(F̂n(x) − F0(x))F̂n(x)ω0(x)d F̂n(x),

T̂2 =
∫

(F̂n(x) − F0(x))F0(x)ω0(x)d F̂n(x) + Ŝn,

T̂3 = S̃n,

where F̂n(x) = 1
n

∑n
j=1 I(X j ≤ x) with I(·) being the indicator function.

According to Jiang et al. (2011), based on these jackknife pseudo-values, a jackknife
empirical likelihood function can be defined by
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�n(�0) = sup
(p1,p2,...,pn)

{
n∏

i=1

(npi ) : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piVi = �0

}

.

Its limiting distribution is stated in the following theorem.

Theorem 1 Suppose Assumptions A1–A5 given in the Appendix hold. Then under the
null hypothesis H0 (or equivalently H̃0), we have

−2 log �n(�0)
L−−→ Q��−1

2 Q,

as n → ∞, where
L−−→ denotes the convergence in distribution, Q ∼ N (0, �1) and

�1 and �2 are defined in (7) and (13) in the Appendix, respectively.

It is worth mentioning that, for a general sequence of {a1, a2, . . . , an}, the matrix
�1 does not necessarily equal to �2. When �1 �= �2, the result of Theorem 1 can
not be directly utilized in practice, because the limiting distribution of −2 log �n(�0)

is non-standard chi-square and involves some unknown quantities, namely, unknown
eigenvalues of �−1

2 �1. For this case, we suggest adjusting −2 log �n(�0), as did in
Wang and Rao (2002), by multiplying the factor:

r̂(�0) = tr
(
�̂−1

1 	̂
)

/tr
(
�̂−1

2 	̂
)

,

where tr(·) denotes the trace of amatrix, �̂1 and �̂2 are defined in (16) in theAppendix,
and

	̂ =
(
1

n

n∑

i=1

(Vi − �0)

)(
1

n

n∑

i=1

(Vi − �0)

)�
.

For this adjusted jackknife empirical log-likelihood ratio, we have the following
result.

Theorem 2 Suppose the same assumptions of Theorem 1, we have

−2̂r(�0) log �n(�0)
L−−→ χ2

3 ,

as n → ∞, where χ2
3 denotes a standard chi-square-distributed variable with degrees

of freedom three.

However, for a small sample size, it is hard to estimate �1 and �2 well, which
in turn leads to poor performances of the proposed jackknife empirical likelihood
based test, while for a large sample size, multiplying such an adjusted factor r̂(�0)

requires much more computation time as can be seen from the construction of �̂1 and
�̂2. Therefore, to facilitate the applications, special attention needs to be paid to the
choice of {a1, a2, . . . , an} so that�1 = �2. Fortunately, desirable sequences do exist
in practice. The regular assumptions that the desirable sequences satisfying �1 = �2
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are given in the Appendix. The sequence provided in the following Theorem 3 is a
special example of the sequences.

Theorem 3 When A5 holds and ai = 1 if 1 ≤ i ≤ �nτ�, ai = 0 otherwise. Then
under the null hypothesis H0 (or equivalently H̃0), we have that

−2 log �n(�0)
L−−→ χ2

3 ,

as n → ∞, where τ is a constant satisfying 0 < τ < 1, �·� denotes the floor function.

Remark 1 In Theorem 3, τ actually denotes the proportion of the data used in estimat-
ing S in T3. According to Theorem 3, τ should be smaller than 1. On the other hand, a
too small τ may result in a very inefficient estimator of S in T3. Hence, as a tradeoff,
we recommend empirically to choose a moderate τ , i.e., 0.8, in practical applications.

Theorem 3 implies that, with a proper choice of {a1, a2, . . . , an}, an α-level JEL
test rejects H0 : F(·) ≡ F0(·) if −2 log �n(�0) ≥ χ2

3,1−α , where χ2
3,1−α is the α-

quantile of χ2
3 . The power of the proposed test comes from the fact that �∗ �= 0 if

H0 : F(·) ≡ F0(·) is violated and hence the limiting of 1
n

∑n
i=1(Vi −�0) is not zero,

where

�∗ =
⎛

⎝
T1(F)

T2(F) − �0
T3(F) − �0

⎞

⎠ .

Consequently, there exists a positive constant ε0 such that

−2 log �n(�0) ≥ ε0 · λ−1
max · √

n ·
∥
∥
∥
∥
∥

1

n

n∑

i=1

(Vi − �0)

∥
∥
∥
∥
∥

2

→ ∞

with probability tending to 1 as n → ∞, where ‖ · ‖ denotes the Euclidean distance
and λmax the maximum eigenvalue of �2. That is,

P
(
−2 log �n(�0) ≥ χ2

3,1−α|H1

)
→ 1, as n → ∞,

namely, the proposed test is consistent.

3 Simulation studies

We conducted some simulation studies to evaluate the proposed testing method by
comparing it with that due to Feng and Peng (2012) in terms of size, power and time
consumption for calculation. We do not report the results of some other tests here
since Feng and Peng (2012) made a thorough discussion and comparison between
their method and other testing methods, including the Cramér–von Mises test and the
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test statistic in Einmahl and McKeague (2003) (a type of Anderson–Darling test), and
displayed some advantages of their method.

The data were, respectively, generated from the following distributions

(D1) (1 − δ) N (μ, σ 2) + δt1(ζ ),

(D2) (1 − δ) N

((
0
μ

)

,

(
1 0.5σ

0.5σ σ 2

))

+ δt2(ζ ),

where tk(ζ ) (k = 1, 2) denote the k-dimensional t-distribution having independent
componentswith degrees of freedom ζ . Thenull hypothesis is truewhen δ = 0.Various
combinations of (μ, σ, δ, n) are investigated with ζ = 1. The nominal significance
level is set to be 0.05. In these simulations, ai = 1 if 1 ≤ i ≤ �nτ� with τ = 0.80,
otherwise ai = 0, and m0(r) = arctan(r).

The empirical size and power values based on 1000 repeated computations for the
proposed method and that due to Feng and Peng (2012) were reported in Tables 1 and
2. For scenario (D1), Table 1 shows that the proposed method performs better than
that of Feng and Peng (2012) in terms of size. Especially, the empirical sizes of the
testing method due to Feng and Peng (2012) are about one and even two times larger
than the nominal level 0.05 when n = 100 and 200. In most cases, the power values
of the proposed method are larger than that of Feng and Peng (2012) and even much
larger for some cases such as (μ, σ, δ) = (1, 0.3, 0.10) and (1, 0.3, 0.15) in Table 1.
Also, it is noted that the power values of the testing method of Feng and Peng (2012)
are larger than the proposed method for some cases, but it is generally slight, and
the power value of their methods does not increase as the sample size increases for
some cases such as (μ, σ, δ) = (−1, 3, 0.10) and (−1, 3, 0.15) in Table 1. This may
be caused by the inconsistency of their test. For scenario (D2), the proposed method
outperforms the method of Feng and Peng (2012) in terms of both size and power in
most combinations of (μ, σ, δ, n). The power values of the proposed method are far
larger or even 3 times larger than that of Feng and Peng (2012) for some cases such as
(μ, σ, δ) = (1, 0.3, 0.10), (1, 0.3, 0.15), (1, 0.3, 0.10) and (1, 0.3, 0.10) in Table 2.

For the proposed method, both Tables 1, 2 suggest that the power value of the pro-
posedmethod increaseswhen the sample size n increases. This confirms the theoretical
results of this paper.

Note that the computing issue is of great interest for the practical applications of
a statistical procedure. Hence we also recorded the computation times (in s) of these
two methods. It is found that the computation time does obviously not depend on the
choice of the combination of (μ, σ, δ) for a fixed n. Therefore, in the sequel we only
present the computation time for scenario (D2) when (μ, σ, δ) = (−1, 0.3, 0.00)
with 100 ≤ n ≤ 800, respectively. Figure 1 plotted the time curves for calculation
of the two methods for one run. Figure 1 suggests that the proposed method runs far
faster than that of Feng and Peng (2012). Especially, it should be pointed out that the
calculation for the Feng and Peng (2012) testing method is hardly practical when the
dimension of X is large. The numerical integrations involved in the test of Feng and
Peng (2012) are computed by utilizing dblquad.m. All results are obtained on a HP
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Table 1 Empirical size and power values of the proposed method (New) and that of Feng and Peng (2012)
(FP2012) for Scenario (D1)

(μ, σ, δ) n = 100 n = 200 n = 300

New FP2012 New FP2012 New FP2012

( 1, 0.3, 0.00) 0.0680 0.1630 0.0570 0.1010 0.0540 0.0740

( 1, 0.3, 0.10) 0.4260 0.1870 0.6410 0.2820 0.8400 0.4910

( 1, 0.3, 0.15) 0.7040 0.2370 0.9290 0.6250 0.9850 0.8680

( 1, 0.3, 0.30) 0.9950 0.8460 1.0000 0.9990 1.0000 1.0000

( 1, 0.3, 0.50) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

( 1, 0.3, 0.70) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

( 1, 3, 0.00) 0.0560 0.1500 0.0520 0.1010 0.0630 0.0810

( 1, 3, 0.10) 0.0680 0.0910 0.0900 0.0710 0.1250 0.0710

( 1, 3, 0.15) 0.0970 0.0890 0.1560 0.0920 0.1720 0.1290

( 1, 3, 0.30) 0.2190 0.1290 0.4510 0.3260 0.5870 0.4930

( 1, 3, 0.50) 0.5690 0.3970 0.8760 0.8350 0.9690 0.9730

( 1, 3, 0.70) 0.8850 0.8070 0.9970 0.9990 1.0000 1.0000

(−1, 0.3, 0.00) 0.0600 0.1210 0.0590 0.0990 0.0510 0.0660

(−1, 0.3, 0.10) 0.3990 0.5470 0.5690 0.9160 0.7430 0.9950

(−1, 0.3, 0.15) 0.6400 0.8770 0.8580 0.9990 0.9970 1.0000

(−1, 0.3, 0.30) 0.9920 0.9990 1.0000 1.0000 1.0000 1.0000

(−1, 0.3, 0.50) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(−1, 0.3, 0.70) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(−1, 3, 0.00) 0.0560 0.1450 0.0530 0.0910 0.0450 0.0900

(−1, 3, 0.10) 0.0730 0.1910 0.1080 0.1540 0.1240 0.1240

(−1, 3, 0.15) 0.0910 0.2220 0.1720 0.1740 0.2190 0.1640

(−1, 3, 0.30) 0.2560 0.3220 0.4810 0.3680 0.7110 0.3980

(−1, 3, 0.50) 0.6320 0.4690 0.9450 0.6320 0.9910 0.7860

(−1, 3, 0.70) 0.9130 0.6840 0.9980 0.8740 1.0000 0.9600

Here the null hypothesis is true when δ = 0.00

Pavilion dv7 Notebook PC with Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz,
RAM 6.00GB, Windows 7 Home Premium and Matlab 7.8.

4 A real data example

To gain more insight to the proposed testing method, we also provide a real data exam-
ple. The data setX n = {Xi }n

i=1 is a part of the daily simple returns of IBM stock from
2006 January 03 to 2008 December 31. It consists of 755 observations, i.e., n = 755.
These data can be downloaded from the teaching page of Tsay (2010): http://faculty.
chicagobooth.edu/ruey.tsay/teaching/fts3/d-ibm3dx7008.txt. A thorough investiga-
tion on this data set is beyond the scope of this paper, but we utilize two columns
under the titles of rtn and vwretd as an illustration of how to use the proposed method.
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Table 2 Empirical size and power values of the proposed method (New) and that of Feng and Peng (2012)
(FP2012) for Scenario (D2)

(μ, σ, δ) n = 100 n = 200 n = 300

New FP2012 New FP2012 New FP2012

( 1, 0.3, 0.00) 0.0570 0.0760 0.0610 0.0570 0.0590 0.0480

( 1, 0.3, 0.10) 0.2720 0.1250 0.4500 0.1650 0.6200 0.1710

( 1, 0.3, 0.15) 0.4580 0.1760 0.7270 0.2500 0.8700 0.2850

( 1, 0.3, 0.30) 0.8490 0.3260 0.9850 0.4770 0.9960 0.6270

( 1, 0.3, 0.50) 0.9590 0.5050 0.9890 0.7360 0.9970 0.8830

( 1, 0.3, 0.70) 0.9400 0.6210 0.9980 0.8580 0.9990 0.9600

( 0, 0.3, 0.00) 0.0500 0.0690 0.0430 0.0600 0.0700 0.0530

( 0, 0.3, 0.10) 0.2210 0.1450 0.3690 0.1820 0.5020 0.2450

( 0, 0.3, 0.15) 0.3640 0.2170 0.6250 0.3110 0.7820 0.4530

( 0, 0.3, 0.30) 0.7900 0.5080 0.9680 0.7800 0.9960 0.9000

( 0, 0.3, 0.50) 0.9560 0.8750 0.9870 0.9880 0.9800 1.0000

( 0, 0.3, 0.70) 0.9710 0.9880 0.9670 1.0000 0.9630 1.0000

(−1, 0.3, 0.00) 0.0470 0.0720 0.0440 0.0600 0.0540 0.0490

(−1, 0.3, 0.10) 0.2490 0.2350 0.3790 0.3680 0.5160 0.5260

(−1, 0.3, 0.15) 0.4030 0.4080 0.6610 0.6770 0.8400 0.8410

(−1, 0.3, 0.30) 0.8730 0.8980 0.9930 0.9960 1.0000 1.0000

(−1, 0.3, 0.50) 0.9940 1.0000 1.0000 1.0000 1.0000 1.0000

(−1, 0.3, 0.70) 0.9970 1.0000 1.0000 1.0000 1.0000 1.0000

( 1, 3, 0.00) 0.0550 0.0750 0.0460 0.0600 0.0540 0.0650

( 1, 3, 0.10) 0.1680 0.0800 0.2400 0.1010 0.3240 0.1280

( 1, 3, 0.15) 0.2630 0.1220 0.4680 0.1630 0.6030 0.1880

( 1, 3, 0.30) 0.6590 0.2550 0.9030 0.3730 0.9830 0.4660

( 1, 3, 0.50) 0.9160 0.4550 0.9840 0.6780 0.9900 0.8440

( 1, 3, 0.70) 0.9180 0.6350 0.9630 0.8980 0.9980 0.9700

( 0, 3, 0.00) 0.0540 0.0640 0.0610 0.0520 0.0530 0.0590

( 0, 3, 0.10) 0.1160 0.1120 0.1740 0.1220 0.2180 0.1370

( 0, 3, 0.15) 0.1900 0.1520 0.2760 0.1750 0.3510 0.1900

( 0, 3, 0.30) 0.4430 0.3090 0.6830 0.4350 0.8480 0.5960

( 0, 3, 0.50) 0.7590 0.5850 0.9480 0.8410 0.9920 0.9340

( 0, 3, 0.70) 0.9140 0.8260 0.9690 0.9740 0.9700 0.9990

(−1, 3, 0.00) 0.0470 0.0740 0.0540 0.0410 0.0570 0.0460

(−1, 3, 0.10) 0.1150 0.1420 0.1250 0.1410 0.1680 0.1750

(−1, 3, 0.15) 0.1580 0.1720 0.2140 0.2410 0.2940 0.3210

(−1, 3, 0.30) 0.3650 0.4150 0.6060 0.6660 0.7990 0.8030

(−1, 3, 0.50) 0.7130 0.8150 0.9410 0.9710 0.9880 0.9960

(−1, 3, 0.70) 0.9170 0.9770 0.9980 0.9990 1.0000 1.0000

Here the null hypothesis is true when δ = 0.00
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Fig. 1 The computation times (in s) of these two methods for scenario (D2) when (μ, σ, δ) =
(−1, 0.3, 0.00) with n = 100, 200, . . . , 800. Here the curves with circle and triangle are the compu-
tation time curves of the proposed method and that of Feng and Peng (2012), respectively

The issue of interest is to test whether or not the simple returns are independently
and identically distributed as normal with fixed mean and variance. The assumption of
normal distribution makes statistical properties of returns tractable in financial study.
Before performing the test, the following transformation is taken: Yi = �̂−1/2(Xi −μ̂)

onX n , where μ̂, �̂ denote the samplemean and covariance-matrix ofX n , respectively;
see Fig. 2a for the scatter plot of Yi s. The null hypothesis is that Yi s are generated
from the bivariate standard normal distribution.

In descriptive statistics, there are already some useful graphical methods for visu-
alizing whether or not the observations are generated from an underlying normal
distribution. For univariate data, the QQ-plot (quantile versus quantile plot) usually
serves for this purpose. In higher dimensions, a similar tool is the DD-plot (depth
versus depth plot) introduced by Liu et al. (1999). We plot the QQ-plot for both of the
components of Yi s (see Fig. 2c, d), and the DD-plot of Yi s (see Fig. 2b) relying on the
halfspace depth. The halfspace depth is capable to characterize the underlying empiri-
cal distribution and elliptically symmetric distributions; see Kong and Zuo (2010) and
references therein for details.

Ideally, if the observations were generated from the underlying distribution, the
points in both the QQ-plot and DD-plot should approximately lie on the line y = x .
However, this is not the case for these points in Fig. 2b, c. These figures suggest
rejecting the normal assumption.

We test the hypothesis by the proposed method under the same setting as that for
the simulated data. The value of the empirical log-likelihood ratio multiplying −2 is
23.0732 (that of Feng and Peng (2012) is 25.6169), which is larger than 7.8147, the
0.05 quantile of χ2

3 . This suggests us to reject the null hypothesis under the nominal
signification level 0.05. This coincides with the descriptive results provided by both
the QQ-plot and DD-plot.
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Fig. 2 The transformed daily simple returns Yi s of IBM stock from 2006 January 03 to 2008 December
31

5 Concluding discussions

It is of great interest to test whether the underlying distribution is equal to a specified
one before making the data analysis. There is a long history to consider this issue in
statistics. Many useful tools have been proposed in the literature. In this paper, we
further enriched the toolkits for such tests by providing a new approach based on the
jackknife empirical likelihood. One advantage of the proposed method is its capa-
bility of utilizing some auxiliary information if available. Compared to the methods
developed by Feng and Peng (2012), the proposed testing statistics can be shown to
be consistent. Its implementation is also very easy to be achieved, especially when
the underlying distribution is not normally distributed in high dimensions. Similar
methods may easily be extended to the case of composite null hypothesis, we hence
did not pursue it in this paper. In the presence of missing values, most of the existing
procedures are invalid for such a testing issue, how to construct the corresponding
testing statistics has not been considered and is still worthy of further study.
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6 Appendix: proofs of the main results

To prove the main results, we need to assume that the sequence of {a1, a2, . . ., an}
satisfies the following assumptions.

A1. max1≤i≤n

(
ai∑n

l=1 al

)2 → 0, as n → ∞.

A2. limn→∞
∑n

i=1
na2i

(
∑n

l=1 al)
2 = κ0 < +∞.

A3.
(
limn→∞ 1

n

∑n
j=1 b j

)2 �= limn→∞ 1
n

∑n
j=1 b2j , where

b j = a j

⎛

⎝
n2

∑n
l=1 al

− (n − 1)
n∑

i=1,i �= j

1
∑n

l=1,l �=i al

⎞

⎠ . (6)

A4.
(
limn→∞ 1

n

∑n
j=1 c j

)2 �= limn→∞ 1
n

∑n
j=1 c2j , where c j = (n−1)a j∑n

l=1,l �= j al
.

A5. m0(·) must be chosen so that σ11σ22 − σ 2
12 > 0, where σ11, σ22 and σ12 are

specified in (12).

We now brieflymake some comments on these assumptions.A1–A2 are assumed to
guarantee the convergence and asymptotic normality of the estimator S̃n ; see Lemma
1 and Jiang et al. (2011).A3–A5 are technically used to avoid the degenerate problem
of the proposed JEL ratio. The existence of the limits, namely, limn→∞ 1

n

∑n
j=1 b j ,

limn→∞ 1
n

∑n
j=1 b2j , limn→∞ 1

n

∑n
j=1 c j and limn→∞ 1

n

∑n
j=1 c2j , can be derived by

Assumptions A1–A2; see the proofs of Lemmas 2–3 for details. These assumptions
are mild, and trivially hold in practice. A particular example is given in Theorem 3.

We need the following lemmas to derive the main results.

Lemma 1 Assume that Y1, Y2, . . . , Yn are independently and identically distrib-
uted with a finite mean μy . Let Ȳn = ∑n

i=1 wni Yi , where {wn1, wn2, . . . , wnn} is a
sequence of real numbers, and satisfies the following conditions: (i) for any 1 ≤ i ≤ n,
it holds limn→∞ wni = 0; (ii) limn→∞

∑n
i=1 wni = 1; (iii) there exists a constant

M0 > 0 such that for every n,
∑n

i=1 |wni | ≤ M0. Then,

Ȳn
p−→ μy ⇔ max

1≤i≤n
|wni | → 0,

as n → ∞, where
p−→ denotes the convergence in probability.

Proof The proof of this lemma can be found in Pruitt (1966). ��
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Lemma 2 Under the same assumptions of Theorem 1, we have

1√
n

n∑

i=1

(Vi − �0)
L−−→ N (0, �1),

where

�1 =
⎛

⎝
σ11 σ11 + σ12 κ1σ12

σ11 + σ12 σ11 + 2σ12 + σ22 κ1(σ12 + σ22)

κ1σ12 κ1(σ12 + σ22) κ2σ22

⎞

⎠ , (7)

where κ1 = limn→∞ 1
n

∑n
i=1 bi , κ2 = limn→∞ 1

n

∑n
i=1 b2i , σ11, σ12 and σ22 are

specified in (12).

Proof Let F̂ni (x) be the “leave the i th sample out” version of F̂n(x). Then, we have

V1i = nT̂1 − (n − 1)T̂1,i

=
(

n
∫

F̂2
n (x)ω0(x)d F̂n(x) − (n − 1)

∫

F̂2
ni (x)ω0(x)d F̂ni (x)

)

−
(

n
∫

F̂n(x)F0(x)ω0(x)d F̂n(x) − (n − 1)
∫

F̂ni (x)F0(x)ω0(x)d F̂ni (x)

)

:= V [1]
1i − V [2]

1i . (8)

By F̂ni (x) = n
n−1 F̂n(x) − 1

n−1 I(Xi ≤ x) and

F̂2
ni (x) = n2

(n − 1)2
F̂2

n (x) − 2
n

(n − 1)2
F̂n(x)I(Xi ≤ x) + 1

(n − 1)2
I(Xi ≤ x),

a direct calculation yields

1

n

n∑

i=1

V [1]
1i = 1

n

n∑

i=1

F̂2
ni (Xi )ω0(Xi ) + −2n + 1

(n − 1)2

n∑

j=1

F̂2
n (X j )ω0(X j )

+ 2n

(n − 1)2

n∑

j=1

F̂2
n (X j )ω0(X j ) + −1

(n − 1)2

n∑

j=1

F̂n(X j )ω0(X j )

= 1

n

n∑

i=1

F̂2
n (Xi )ω0(Xi ) + Op(n

−1). (9)

Similarly, we have 1
n

∑n
i=1 V [2]

1i = 1
n

∑n
i=1 F̂n(Xi )F0(Xi )ω0(Xi )+Op(n−1). This

together with (8) and (9) leads to

123



A consistent JEL test for distributions 263

1

n

n∑

i=1

V1i = 1

n

n∑

i=1

(
F̂n(Xi ) − F0(Xi )

)
F̂n(Xi )ω0(Xi ) + Op(n

−1)

= 1

n3

n∑

i=1

n∑

j=1

n∑

k=1

h1(Xi , X j , Xk) + Op(n
−1),

where h1(Xi , X j , Xk) = 1
3!
∑

I h̃1(X I1 , X I2 , X I3), h̃1(X I1 , X I2 , X I3) = (I(X I2 ≤
X I1) − F0(X I1))I(X I3 ≤ X I1)ω0(X I1), and the sum

∑
I taken over the set of all

unordered subsets I of 3 different integers, namely, I1, I2, I3, chosen from {i, j, k}.
Then, by V -statistics theory (Serfling 1980), we have

1

n

n∑

i=1

V1i =
(

n

3

)−1 ∑

1≤i< j<k≤n

h̃1(Xi , X j , Xk) + op(n
−1/2).

Then, a direct application of Theorem 12.3 of Van der Vaart (2000) leads to

1√
n

n∑

i=1

V1i = 1√
n

n∑

i=1

η(Xi ) + op(1), (10)

where η(Xi ) = E ( (I(Xi ≤ X) − F0(X))F0(X)ω0(X)| Xi ).
Similarly, we have

1√
n

n∑

i=1

(V2i − �0) = 1√
n

n∑

i=1

(η(Xi ) + Zi − �0) + op(1). (11)

Recalling the definition of V3i , we have

1√
n

n∑

i=1

(V3i − �0)

= 1√
n

n∑

i=1

(

n
(
T̂3 − �0

)− (n − 1)

∑n
l=1 al

∑n
l=1,l �=i al

(
(
T̂3 − �0

)− ai (Zi − �0)
∑n

l=1 al

))

= 1√
n

n∑

j=1

b j (Z j − �0),

where b j is defined in Assumption A3. This, combined with (10) and (11), leads to

1√
n

n∑

i=1

(Vi − �0) = 1√
n

n∑

i=1

Aξi + op(1),

where A =
(

1 0 0
1 1 0
0 0 1

)

, and ξi =
(

η(Xi )

Zi − �0
bi (Zi − �0)

)

.
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Clearly,

E(ξiξ
�
i ) =

⎛

⎝
E(η2(Xi )) E(η(Xi )(Zi − �0)) bi E(η(Xi )(Zi − �0))

E(η(Xi )(Zi − �0)) E((Zi − �0)
2) bi E((Zi − �0)

2)

bi E(η(Xi )(Zi − �0)) bi E((Zi − �0)
2) b2i E((Zi − �0)

2)

⎞

⎠

:=
⎛

⎝
σ11 σ12 biσ12
σ12 σ22 biσ22

biσ12 biσ22 b2i σ22

⎞

⎠ . (12)

Next, we prove the existence of κ2 = limn→∞ 1
n

∑n
j=1 b2j . Since

1

n

n∑

j=1

b2j =
n∑

j=1

⎛

⎜
⎝na2

j

⎛

⎝
n

∑n
l=1 al

− n − 1

n

n∑

i=1,l �= j

1
∑n

l=1,l �=i al

⎞

⎠

2
⎞

⎟
⎠

=
n∑

j=1

⎛

⎜
⎝

na2
j

(∑n
l=1 al

)2

⎛

⎝
2n − 1

n
− n − 1

n

n∑

i=1,i �= j

ai
∑n

l=1,l �=i al

⎞

⎠

2
⎞

⎟
⎠ ,

then, for a sufficient large n, by noting the fact

⎛

⎝
2n − 1

n
− n − 1

n

n∑

i=1,i �= j

ai
∑n

l=1,l �=i al

⎞

⎠

2

≤ 8 + 2

1 + max1≤i≤n

(
ai∑

l=1 al

)2 < 10,

we obtain lim
n→∞

1
n

∑n
j=1 b2j < 10κ0 < ∞. Next, by invoking Jensen’s inequality,

we have limn→∞
(
1
n

∑n
j=1 |b j |

)2 ≤ limn→∞ 1
n

∑n
j=1 b2j < ∞, which implies the

existence of κ1 = limn→∞ 1
n

∑n
j=1 b j .

Finally, by Assumptions A1–A3, we obtain

cov

(
1√
n

n∑

i=1

Aξi

)
p−→ A

⎛

⎝
σ11 σ12 κ1σ12
σ12 σ22 κ1σ22

κ1σ12 κ1σ22 κ2σ22

⎞

⎠A
� = �1 > 0.

This implies the Lindeberg condition. A direct use of the Lindeberg–Feller central
limit theorem proves this lemma. ��

Lemma 3 Under Assumptions A1, A2, A4 and A5, we have

1

n

n∑

i=1

(Vi − �0)(Vi − �0)
� p−→ �2
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with

�2 =
⎛

⎝
σ11 σ11 + σ12 κ3σ12

σ11 + σ12 σ11 + 2σ12 + σ22 κ3(σ12 + σ22)

κ3σ12 κ3(σ12 + σ22) κ4σ22

⎞

⎠ , (13)

where κ3 = limn→∞ 1
n

∑n
i=1 ci , and κ4 = limn→∞ 1

n

∑n
i=1 c2i .

Proof By the Glivenko–Cantelli theorem (Serfling 1980, Theorem A in page 61), we
have

sup
x

∣
∣F̂n(x) − F0(x)

∣
∣ = op(1) and max

1≤i≤n
sup

x

∣
∣F̂ni (x) − F0(x)

∣
∣ = op(1). (14)

Denote

Ṽ1i = n

(n − 1)2

n∑

j=1

h̃2(Xi , X j ) + 1

(n − 1)2

n∑

j=1

(F0(X j ) − 1)I(Xi ≤ X j )ω0(X j ),

where h̃2(Xi , X j ) = (I(Xi ≤ X j ) − F0(X j ))F0(X j )ω0(X j ). Decompose

1

n

n∑

i=1

V 2
1i = 1

n

n∑

i=1

Ṽ 2
1i + 1

n

n∑

i=1

(
V1i − Ṽ1i

)2 + 1

n

n∑

i=1

2Ṽ1i
(
V1i − Ṽ1i

)
. (15)

Note that the boundedness of F0(·), I(·) and ω0(·) implies that

max
1≤i≤n

∣
∣Ṽ1i − V1i

∣
∣ ≤ ε0 · max

{

sup
x

∣
∣F̂n(x) − F0(x)

∣
∣ , max

1≤i≤n
sup

x

∣
∣F̂ni (x) − F0(x)

∣
∣

}

,

max
1≤i≤n

∣
∣
∣
∣
∣
∣

1

(n − 1)2

n∑

j=1

(F0(X j ) − 1)I(Xi ≤ X j )ω0(X j )

∣
∣
∣
∣
∣
∣
= op(1),

where ε0 denotes a positive constant. This, together with (14) and (15), leads to

1

n

n∑

i=1

V 2
1i = 1

n

n∑

i=1

Ṽ 2
1i + op(1)

= 1

n

n∑

i=1

⎛

⎝
n

(n − 1)2

n∑

j=1

h̃2(Xi , X j )

⎞

⎠

2

+ op(1)
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= n4

(n − 1)4

⎛

⎝
1

n

n∑

i=1

η2(Xi ) + 2

n2

n∑

i=1

n∑

j=1

(
h̃2(Xi , X j ) − η(Xi )

)
η(Xi )

+ 1

n3

n∑

i=1

n∑

j=1

n∑

k=1

(
h̃2(Xi , X j ) − η(Xi )

) (
h̃2(Xi , Xk) − η(Xi )

)

⎞

⎠+ op(1)

p−−→ σ11,

as n → ∞, by V - and U -statistics theory (Serfling 1980) as in (10), and the following
facts

E
((

h̃2(Xi , X j ) − η(Xi )
)
η(Xi )

) = 0, for i �= j,

E
((

h̃2(Xi , X j ) − η(Xi )
) (

h̃2(Xi , Xk) − η(Xi )
)) = 0, for i �= k, i �= j, j �= k.

Similarly, we have

1

n

n∑

i=1

V1i (V2i − �0)
p−→ σ11 + σ12,

1

n

n∑

i=1

(V2i − �0)
2 p−→ σ11 + 2σ12 + σ22, as n → +∞.

Note that E
(
h̃2(Xi , X j ) − η(Xi )|Xi

) = 0 (i �= j). Then, by Bernstein’s inequal-
ity (Serfling 1980) and the boundedness of F0(·), I(·) and ω0(·), we have that

P

⎛

⎝ max
1≤i≤n

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1, j �=i

h̃2(Xi , X j ) − η(Xi )

∣
∣
∣
∣
∣
∣
≥ ε0n−1/2+s/2

⎞

⎠

≤
n∑

i=1

E

⎛

⎝PXi

⎛

⎝

∣
∣
∣
∣
∣
∣

n∑

j=1, j �=i

h̃2(Xi , X j ) − η(Xi )

∣
∣
∣
∣
∣
∣
≥ ε0n1/2+s/2

⎞

⎠

⎞

⎠

≤
n∑

i=1

E

(

exp

(
− 1

2ε
2
0n1+s

∑n
j=1, j �=i EXi (̃h2(Xi , X j ) − η(Xi ))2 + M0ε0n1/2+s/2/3

))

≤ 2n exp
(
−ε1ns/2

)
≤ ε2n−2

for any 0 < s < 1, where M0 = supx∈R p ω0(x), ε0, ε1, ε2 denote three positive
constants, and PXi and EXi denote the conditional probability and expectation given
Xi , respectively. This leads to
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max
1≤i≤n

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

h̃2(Xi , X j ) − η(Xi )

∣
∣
∣
∣
∣
∣

≤ max
1≤i≤n

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1, j �=i

(
h̃2(Xi , X j ) − η(Xi )

)

∣
∣
∣
∣
∣
∣
+ 2M0

n

= Op(n
−1/2+s/2).

Relying on this, a simple derivation leads to

1

n

n∑

i=1

V1i (V3i − �0)

= 1

n

n∑

i=1

⎧
⎨

⎩

⎛

⎝
1

n

n∑

j=1

h̃2(Xi , X j ) − η(Xi )

⎞

⎠×
(

(n − 1)ai
∑n

l=1,l �=i al
(Zi − �0)

)⎫
⎬

⎭

+1

n

n∑

i=1

(
(n − 1)ai
∑n

l=1,l �=i al
η(Xi )(Zi − �0)

)

+ op(1)

p−→ κ3σ12, as n → +∞.

Similarly, as n → +∞, we have

1

n

n∑

i=1

(V2i − �0)(V3i − �0)
p−→ κ3(σ12 + σ22),

and

1

n

n∑

i=1

(V3i − �0)
2 = 1

n

n∑

i=1

(
(n − 1)ai
∑n

l=1,l �=i al
(Zi − �0)

)2

+ op(1)
p−→ κ4σ22.

Here the existence of κ3 and κ4 can be proved by following a similar argument to
those of κ1 and κ2. Thus, we omit the details. This completes the proof. ��
Proof of Theorem 1 By using Lagrange multiplier method, we obtain

−2 log �n(�0) = 2
n∑

i=1

log(1 + λ�(Vi − �0)),

where λ is the solution to
∑n

i=1(Vi − �0)/(1 + λ�(Vi − �0)) = 0. Note that
max1≤i≤n ‖Vi −�0‖ is bounded, a standard argument to that of Owen (1988) can lead

to ‖λ‖ = Op(n−1/2), and in turn −2 log �n(�0)
L−−→ Q��−1

2 Q based on Lemmas
2-3. This completes the proof of Theorem 1. ��
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Proof of Theorem 2 Let

�̂1 =
⎛

⎝
σ̂11 σ̂11 + σ̂12 κ̂1σ̂12

σ̂11 + σ̂12 σ̂11 + 2σ̂12 + σ̂22 κ̂1(̂σ12 + σ̂22)

κ̂1σ̂12 κ̂1(̂σ12 + σ̂22) κ̂2σ̂22

⎞

⎠ ,

and

�̂2 =
⎛

⎝
σ̂11 σ̂11 + σ̂12 κ̂3σ̂12

σ̂11 + σ̂12 σ̂11 + 2σ̂12 + σ̂22 κ̂3(̂σ12 + σ̂22)

κ̂3σ̂12 κ̂3(̂σ12 + σ̂22) κ̂4σ̂22

⎞

⎠ , (16)

where σ̂11 = 1
n

∑n
i=1

(
1
n

∑n
j=1 h2(Xi , X j )

)2
, σ̂12 = 1

n2
∑n

i=1
∑n

j=1 h2(Xi , X j )

(Zi − �0), σ̂22 = 1
n

∑n
i=1(Zi − �0)

2, κ̂1 = 1
n

∑n
i=1 bi , κ̂2 = 1

n

∑n
i=1 b2i , κ̂3 =

1
n

∑n
i=1 ci and κ̂4 = 1

n

∑n
i=1 c2i . Clearly, �̂1 and �̂2 are consistent estimators of �1

and �2, respectively. Based on the proof of Theorem 1, a similar derivation to that of
Theorem 2 in Wang and Rao (2002) leads to

−2×r̂(�0)×log�n(�0)

= −2 · tr
(
�̂−1

1 	̂
)

/tr
(
�̂−1

2 	̂
)

· log�n(�0)

=
(

1√
n

n∑

i=1

(Vi − �0)

)�
�̂−1

1

(
1√
n

n∑

i=1

(Vi − �0)

)

+ op(1)

L−→ χ2
3 .

This completes the proof. ��
Proof of Theorem 3 For

ai =
{
1, if i ≤ �nτ�
0, otherwise

, i = 1, 2, . . . , n,

we have

max
1≤i≤n

(
ai

∑2
l=1 al

)2

= 1

�nτ�2 → 0, as n → ∞,

lim
n→∞

n∑

i=1

na2
i

(
n∑

l=1
al

)2 = lim
n→∞ �nτ� × n

�nτ�2 = 1

τ
< ∞.

That is, Assumptions A1 and A2 hold. Next, for this particular case, we have

bi = n2

�nτ� − (n − 1)

(

(n − �nτ�) 1

�nτ� + (�nτ� − 1)
1

�nτ� − 1

)

= n

�nτ� ,
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and ci = n−1
�nτ�−1 , if 1 ≤ i ≤ �nτ�, otherwise bi = 0 and ci = 0. Based on these, a

tedious derivation leads to κ1 = 1, κ2 = 1
τ

�= κ1, κ3 = 1, and κ4 = 1
τ

�= κ3. Hence,
we have �1 = �2 > 0 when 0 < τ < 1. The rest of the proof of this theorem is
similar to that of Theorem 1. ��
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