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Abstract Distributions of runs of length at least k (Type II runs) and overlapping
runs of length k (Type III runs) are derived in a unified way using a new generating
function approach. A new and more compact formula is obtained for the probability
mass function of the Type III runs.

Keywords Runs statistics ·Generating function ·Asymptotic distributions · Factorial
moments · Wilf-Zeilberger method

1 Introduction

Runs statistics have foundmany applications in various fields and have attracted atten-
tions ofmany researchers (Balakrishnan andKoutras 2002). In the long history of study
of run-related statistics, many of the results were obtained by ingenious combinator-
ial method. These traditional methods are ad hoc and not easy to generalize. Several
unified methods have been devised to overcome the combinatorial difficulties. One of
them is the finite Markov chain imbedding approach (Fu and Koutras 1994; Koutras
and Alexandrou 1995). This approach projects the original problems into a Markov
chain, and thus expresses the problem under study in terms of transition matrices
of the Markov chain. The method is quite versatile and easy to be adapted to han-
dle Markov-dependent multi-state trials. Another elegant approach is the method of
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Koutras (1997). The method derives the double generating function of the number of
appearances of a pattern using the generating function of the waiting time for the r th
appearance of the pattern, which is usually easier to obtain.

Recently, we used a different unified approach to study statistics of runs of multi-
state systems by utilizing matrix formulation to derive the generating function (GF) of
the whole system from the proper GFs of individual objects (Kong 2006, 2014, 2015).
Originally, we applied the GF method mainly to “exact length runs” (Mood 1940), as
the method naturally applies to this definition of runs by considering each run as a
“block” that can be represented readily by the GF of the individual object (Kong 2006,
2015). The method is actually versatile enough to handle other definitions of runs:
in Kong (2014), for example, the method is applied to Type I runs. In this paper, we
use the method to study Type II and Type III runs. For definitions, see Balakrishnan
and Koutras (2002, p.139). In addition to show that this new GF method can deal
with different definitions of runs in a simple and unified way, we also derive a new
and more compact formula for the probability mass function (pmf) of Type III runs
(Eq. 9). Generalizations of the method to include interactions between neighboring
runs andMarkov-dependent processes have also been developed and will be published
elsewhere.

1.1 Definitions and notation

Throughout the paper, we assume that the elements in the sequence are independent
of each other, with probability pi to appear for the i th object and qi = 1 − pi . The
length of the sequence is denoted as n. The mth falling factorial powers are defined
as x (m) = x(x − 1) . . . (x − m + 1) for m > 0, with x (0) = 1. By this definition, we
have x (m) = m!( xm

)
. The r th factorial moment of a random variable X is denoted as

E(X (r)), and pmf as P(X). For a series f (x) in powers of x , we use the usual notation
[xn] f (x) to denote the coefficient of xn in the series. The numbers of Type II and Type
III runs are denoted as Gn,k and Mn,k respectively. When there is no ambiguity, we
will choose the first object to discuss its distributions and the subscript in G{1}

n,k, etc.
will be omitted.

The method applies to multiple-state systems naturally, so we will not treat the
binary case specially.

1.2 General strategy: bivariate GF, factorial moment, and pmf

Here, we outline the general strategy to use the GFmethod for different kind problems.
We first write down the GFs of individual objects based on the particular problem
we want to solve, then use these individual GFs to get the bivariate GF of the whole
system using Thm (2) of Kong (2006), fromwhich the r th factorial moment is obtained
(Eqs. 1, 2), which in turn yields the pmf (Eq. 3).
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Type II and Type III runs 491

The r th factorial moment of a random variable X , En(X (r)) = ∑
x x

(r)P(X = x)
(r ≥ 0), when considered as a sequence of n, has its generating function Er (z) defined
as Er (z) = ∑

n En(X (r))zn . The following results can be used to obtain Er (z) and
En(X (r)) from the bivariate GF G(z, u) of the whole system:

Er (z) = r ![ur ]G(z, u + 1), (1)

En(X
(r)) = [zn]Er (z) = r ![znur ]G(z, u + 1). (2)

The proof of Eq. (1) can be obtained directly from the definition of En(X (r)) by
binomial expansion. The pmf P(X = x) can be obtained from the expression of
En(X (r)) as:

Pn(X = x) = (−1)x
∞∑

r=x

(−1)r
(
r

x

)
En(X (r))

r ! , (3)

which can be proved from the relation Mn(t) = Pn(t + 1), where Mn(t) is
the traditional factorial moment generating function (pmgf) defined as Mn(t) =
∑∞

r=0
En(X (r))

r ! tr , and Pn(t) is the probability generating function (pgf) defined as
Pn(t) = ∑

x Pn(X = x)t x = En(t X ).

2 Type II runs (runs of length at least k)

To get the pmf of Type II runs, we can use the following gi with variable z tracking
the number of total elements of the system and variable u tracking the number of runs
of length at least k of the first object:

g1 =
k−1∑

i=1

(p1 z)
i + u

∞∑

i=k

(p1 z)
i = p1 z − (p1 z)

k

1 − p1 z
+ u(p1 z)

k

1 − p1 z
,

gj =
∞∑

i=1

(pj z)
i = pj z

1 − pj z
, j �= 1. (4)

To get the joint distribution of G{1}
n,k1

and G{2}
n,k2

, also called trinomial distributions of
order (k1, k2), we can simply add an additional variable u2 in the g2 of Eq. (4) to track
the number of runs of length at least k2 for the second object,

g2 =
k2−1∑

i=1

(p2 z)
i + u2

∞∑

i=k2

(p2 z)
i = p2 z − (p2 z)

k2

1 − p2 z
+ u2(p2 z)

k2

1 − p2 z
.

Following the strategy mentioned above, all interesting properties of Type II runs can
be obtained, including the bivariateGFG(z, u) (orG(z, u1 , u2) for joint distributions),
Er (z), E(G(r)

n,k), and pmfs as well as themean and (co)variance. Themean and variance
are linear in n when n is large (Hirano and Aki 1993) [see also (Balakrishnan and
Koutras (2002), p.164)]. A large family of distributions with rational GFs have this
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property, as stated by the singularity perturbation theorem (Flajolet and Sedgewick
2009, TheoremIX.9). The theorem also states that these distributions have Gaussians
as the limiting distribution.

3 Type III runs (overlapping runs)

For Type III runs (overlapping runs) of order k, the following gi can be used:

g1 =
k−1∑

i=1

(p1 z)
i +

∞∑

i=1

ui (p1 z)
i+k−1 = p1 z − (p1 z)

k

1 − p1 z
+ u(p1 z)

k

1 − up1 z
,

gj =
∞∑

i=1

(pj z)
i = pj z

1 − pj z
, j �= 1. (5)

The GF Er (z) of factorial moments of order k Type III runs can be obtained as

Er (z) = r ! [1 − p1 z − q1(1 − (p1 z)
k)

]r−1
pk
1
zr+k−1

(1 − p1 z)
r−1(1 − z)r+1 , r ≥ 1. (6)

From Eq. (6), the expression of the r th factorial moments of Mn,k can be obtained.

Proposition 1 The rth factorial moment of Mn,k is given by

E
(
M (r)

n,k

)
= r !

r−1∑

i=0

n−k−ki−1∑

j=0

(
n − k − ki − j − 1

r − 2

)(
r − 1

i

)(
i + j + 1

j

)
pn−i− j
1

q1
i

(7)
for r ≥ 1. When r = 0, E(M (0)

n,k) = 1.

Proof For r ≥ 1, Eq. (6) can be rewritten as

Er (z) = r !(p1 z)
r+k−1

(1 − p1 z)
r−1(1 − z)2

[
1 + q1(p1 z)

k

p1(1 − z)

]r−1

.

The part on the right with power of r−1 can be expanded using binomial theorem, then
the (1 − z)2 in the denominator can be pulled in and combined with the 1/(1 − z)i

terms in the binomial expansion. After two more expansions of 1/(1 − z)i+2 and
1/(1 − p1 z)

r−1, Eq. (7) can be obtained. The case for r = 0 is trivial. ��
A formula for E(M (r)

n,k), credited to Charalambides, was mentioned in Balakrishnan
and Koutras (2002, p.167), but its proof does not seem to be published in literature.

With Eq. (7), a closed form formula for P(Mn,k = x) that involves three sums
can be obtained directly. This expression, however, can be simplified. To simplify
the expression further, we need the following identity of binomial coefficients, whose
proof is in Appendix 1.
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Lemma 1 For u ≥ 0 and v ≥ 0, the following identity holds when m ≥ 0,

Sm =
m∑

r=u−1

(
m

r

)(
r + 1

u

)(
r + 2

v

)
(−1)r

= (−1)m
(u + 1)(uv − u + 2m + 2)m!

(m − u + 1)!(m − v + 2)!(u + v − m)! . (8)

When m = −1, Sm = −1 only when u = 0 and v ∈ {0, 1}; otherwise Sm = 0.

Using this identity, we can now derive a simplified formula for the pmf of Mn,k .

Theorem 1 The pmf of the Type III runs of length k is given by, when x > 1,

P(x)= pk
1

n−k∑

i=0

b∑

j=a

(
n − k − j − ki + i

i + 1

)
(−1) j−x j !(i+1)(i x−i+2 j+2)

( j−x+2)!( j−i+1)!(x + i − j)! p
−i+ j+ki+1
1

qi
1
,

(9)
where the limits of inner sum are a = max{0, x − 2, i − 1} and b = min{n − k −
ki − 1, x + i}. For x = 0, an extra term of 1− (n − k + 1)pk

1
is added to Eq. (9). For

x = 1, an extra term of (n − k + 1)pk
1
is added to Eq. (9).

Proof For a given pair of integers n and k, the maximum value Mn,k can take is
n − k + 1, so E(M (r)

n,k) = 0 when r > n − k + 1. This sets the upper summation limit
of r in Eq. (3) as n − k + 1. Applying Eq. (3)– (7) by assuming that it applies to all
r ≥ 0 (we will make the correction of 1 for x = 0 later), we have

P(x) = (−1)x
n−k+1∑

r=x

(
r

x

)
(−1)r

×
r−1∑

i=0

n−k−ki−1∑

j=0

(
n − k − ki − j − 1

r − 2

)(
r − 1

i

)(
i + j + 1

j

)
pn−i− j
1

qi
1
.

Interchanging the order of summation, and taking care of the summation limits, we
obtain

P(x) = (−1)x
n−k∑

i=0

n−k−i−ik∑

j=0

(
i + j + 1

j

)
pn−i− j
1

qi
1

×
n−1−k− j−ki∑

r=i−1

(
n − 1 − k − j − ki

r

)(
r + 1

i

)(
r + 2

x

)
(−1)r .

The upper summation limit of r takes value of −1 only when i = 0 and j = n − k.
In this case, the innermost sum can only take nonvanishing values when x = 1 or
x = 0. The triple summation for x = 1 or x = 0 when i = 0 and j = n − k is
(−1)x+1(n− k+1)pk

1
. For other combinations of i and j , n−1− k− j − ki ≥ 0 and
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hence the identity of Eq. (8) in Lemma 1 holds. Using this identity leads to Eq. (9)
after some variable changes. For x = 0, E(M (0)

n,k) = 1 should be added. ��
To our best knowledge, the formula in Eq. (9) is more compact than the published

results, which usually have three or more summations (for example, Balakrishnan and
Koutras 2002, pp. 155–156). The original Markov chain imbedding approach uses a
square matrix of dimension (n − k + 1)(k + 1), which becomes incredibly big when
n increases. The improved Markov chain imbedding approach uses a recursion on
a vector of dimension (k + 1) (Koutras and Alexandrou 1995). For a given x , this
improvedmethod needs O(nx+1) operations ofmultiplication of the vectorwith one of
the two square matrices of dimension (k+1), so overall the computational complexity
is O(nx+1k2). Equation (9) significantly reduces the computational complexity. The
upper limit of the outer sum shows that fewer computations are needed as k increases.
For a given k, the computational complexity is O(n3). In practice, Eq. (9) is much
faster than the improved Markov chain imbedding method, especially for large n and
k. In a Maple implementation, Eq. (9) takes 0.005 seconds to calculate P(x = 12)
when n = 1200, k = 310, and p = 0.3, while the same calculation takes the improved
Markov chain imbedding method 1551 seconds. The Maple codes for both methods
can be found in the supplementary document and can also be downloaded from http://
graphics.med.yale.edu/runs/type_III.

Themean and variance for Type III runs can be obtained fromEq. (7) (Balakrishnan
andKoutras 2002, p.166). Againwe see that themean and variance are linear functions
of n when n becomes large, as predicted by the singularity perturbation theorem
(Flajolet and Sedgewick 2009). As for Type II runs, the joint distributions for Type III
runs can be readily obtained by introducing more tracking variables to the individual
GF gi ’s in Eq. (5).
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Appendix: Proof of Lemma 1

In this Appendix, we give the proof of Lemma 1.

Proof Using the Wilf–Zeilberger method (Petkovsěk et al.1996), we can obtain the
following linear recurrence equation for Sm :

(m − v + 3)(m − u + 2)(uv − u + 2m + 2)Sm+1

= (m + 1)(uv − u + 2n + 4)(m − u − v)Sm .

To get explicit form of Sm , first assume that v − 2 ≥ u − 1. From the recurrence we
have

Sm+1= (−1)m−v+3 [(m + 1) · · · ] [(u + 2) · · · (u + v − m)] (uv − u+2n + 4)

[(m − u + 2) · · · ] [(m − v + 3) · · · 1] (uv + 2v − u − 2)
Sv−2.
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When m = v − 2, there is only one term in the sum, which leads to

Sv−2 =
(
v − 1

u

)
(−1)v−2.

After substitution of Sv−2 and rearrangements, the identity in Eq. (8) of Lemma 1 is
obtained for the case when v−2 ≥ u−1 andm ≥ 0. If we assume v−2 < u−1, the
same result is obtained for m ≥ 0. In this case the recurrence ends with m = u − 1,
and we use the identity

Su−1 =
(
u + 1

v

)
(−1)u−1

to get the explicit form of Sm .
The case of m = −1 is trivial since in this case the only value u can take is u = 0;

hence, the sum involves only one term when r = −1. This further restricts the values
of v, which can only take v = 0 or v = 1 for the sum to take nonvanishing value. ��
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