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Abstract In the paper, we propose a new class of functions which is used to construct
tail index estimators. Functions from this new class are non-monotone in general, but
they are the product of two monotone functions: the power function and the loga-
rithmic function, which play essential role in the classical Hill estimator. The newly
introduced generalized moment ratio estimator and generalized Hill estimator have
a better asymptotic performance compared with the corresponding classical estima-
tors over the whole range of the parameters that appear in the second-order regular
variation condition. Asymptotic normality of the introduced estimators is proved, and
comparison (using asymptotic mean square error) with other estimators of the tail
index is provided. Some preliminary simulation results are presented.
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1 Introduction

From the first papers of Hill and Pickands (see Hill 1975; Pickands 1975), devoted
to the estimation of the tail index (or, more generally, the extreme value index), most
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462 V. Paulauskas, M. Vaičiulis

of statistics constructed for this aim were based on order statistics and logarithmic
function. Suppose we have a sample X1, X2, . . . , Xn , considered as independent,
identically distributed (i.i.d.) random variables with a distribution function (d.f.) F
satisfying the following relation for large x :

F̄(x) := 1 − F(x) = x−1/γ L(x). (1)

The parameter γ is usually called extreme value index (EVI) and α = 1/γ > 0 is
called the tail index, L(x) > 0, for all x > 0, and L is a slowly varying at infinity
function:

lim
x→∞

L(t x)

L(x)
= 1.

In the paper we consider the case γ > 0 only. DenoteU (t) = F← (1 − (1/t)), t ≥ 1,
where W← : I → R is the left continuous inverse function of a monotone function
W , defined byW←(t) := sup {x : W (x) ≤ t}, t ∈ I . It is well-known that in the case
γ > 0 assumption (1) is equivalent to the following one: for all x > 0,

lim
t→∞

U (t x)

U (t)
= xγ , (2)

i.e., the quantile function U (t) varies regularly with the index γ . Let Xn,1 ≤ Xn,2 ≤
· · · ≤ Xn,n denote the order statistics of X1, . . . , Xn . Taking some part of the largest
values from the sample and the logarithmic function a statistician can form various
statistics. In this way one can get Hill and Pickands estimators, moment and moment
ratio estimators which are well-known and deeply investigated. The heuristic behind
this approach (based on the peaks-over-threshold (POT) phenomenon and the maxi-
mum likelihood) is also given in many papers and monographs, therefore we do not
provide it here.

There are estimators, based on a different idea: the sample is divided into blocks
and in each block the ratio of two largest values is taken. Then the linear function
f (x) = x instead of logarithmic one is applied to these ratios. Estimators, based on
this idea were constructed in Paulauskas (2003) and Paulauskas and Vaičiulis (2010).
The next step was to include the linear and logarithmic functions into some parametric
family of functions, and, considering estimators based on block scheme, this was done
in Paulauskas and Vaičiulis (2011), taking the family of functions, defined for x ≥ 1

fr (x) =
{ 1

r (xr − 1) , r �= 0,
ln x, r = 0.

(3)

In Paulauskas and Vaičiulis (2013) this family of functions was applied to order sta-
tistic. This was done by introducing the statistics

H ( j)
n (k, r) = 1

k

k−1∑
i=0

f j
r

(
Xn−i,n

Xn−k,n

)
, j = 1, 2,
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and some combinations, formed from these statistics. Since in the paper we shall use
mainly this statistic with j = 1, we use the abbreviation Hn(k, r) := H (1)

n (k, r). Here
k is some quantity satisfying 1 ≤ k < n, and in the EVI estimation k is chosen as
a function of n [thus, strictly speaking, we should denote it by k(n)]. In this way the
generalizations of the Hill, the moment, and the moment ratio estimators (we shall
write the expressions of these estimators later in this section; to denote these estimators
we shall use the letters H, M,MR and for generalizations we add the letter G) were
obtained, for example, the generalized Hill estimator (GH) is defined as

γ̂GH
n (k, r) = Hn(k, r)

1 + r · Hn(k, r)
(4)

and the Hill estimator is obtained by taking r = 0, γ̂ H
n (k) := γ̂GH

n (k, 0).
Another estimator of the parameter γ , which can be written as a function of the

statistic Hn(k, r), was very recently introduced in Beran et al. (2014) (see also Fabian
and Stehlik 2009; Henry III 2009; Stehlik et al. 2010). It is named as the harmonic
moment (HM) tail index estimator , and for β > 0, β �= 1, it is defined by formula

γHM
n (k, β) = 1

β − 1

⎛
⎝
[
k−1

k−1∑
i=0

(
Xn−k,n

Xn−i,n

)β−1
]−1

− 1

⎞
⎠ , (5)

while for β = 1 it is defined as a limit as β → 1. It is easy to see that by very simple
transformation, denoting β = 1 − r , we have γHM

n (k, 1 − r) = γGH
n (k, r), and this

means, that the HM is exactly the GH. As it was pointed to us by one of the referees, at
the same time as Paulauskas and Vaičiulis (2013), there appeared the paper Brilhante
et al. (2013), where the same generalization of the Hill estimator was introduced and
investigated. Namely, in Brilhante et al. (2013) the mean of order p (MOP) estimator
was introduced, but it is easy to see that this estimator, defined in Brilhante et al. (2013)
by formula (8), coincides with GH estimator defined in (4).

Thus, it is possible to say that in three papers Paulauskas andVaičiulis (2013), Beran
et al. (2014), Brilhante et al. (2013), written independently, the same generalization of
the Hill estimator was introduced and investigated, and this generalization turned out
to be quite successful, since in Paulauskas and Vaičiulis (2013) and Brilhante et al.
(2013) it was shown that the GH estimator γ̂

(GH)
n (k, r) with an optimal r [in the sense

of minimal asymptotic mean square error (AMSE)] dominates the Hill estimator in all
region {γ > 0, ρ < 0} of the parameters γ and ρ which are present in the second-order
condition, see (12). Also, let us note that in Paulauskas and Vaičiulis (2013) we have
considered statistics H ( j)

n (k, r) with both j = 1, 2, and by means of these statistics
the generalizations of the moment and the moment ratio estimators were obtained.

The main goal of this paper is to introduce another parametric family of functions,
which has the same property that includes logarithmic function, and to construct new
estimators using this family. For x ≥ 1, let us consider functions

gr,u(x) = xr lnu(x),
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where parameters r andu canbe arbitrary real numbers, but for our purposes, connected
with consistency, we shall require γ r < 1 and u > −1. Moreover, mainly we shall
consider only integer values of parameter u. The family {gr,u}, similarly to { fr },
contains logarithmic function (with r = 0), but, contrary to { fr }, contains logarithmic
function for any value of parameter r (if u �= 0). Also let us note that for r ≥ 0 the
function gr,u is monotone for all values of u, while for r < 0 and u > 0 there is no
monotonicity.

Using these functions we can form statistics, similar to H ( j)
n (k, r):

Gn(k, r, u) = 1

k

k−1∑
i=0

gr,u

(
Xn−i,n

Xn−k,n

)
. (6)

The above-mentioned Hill estimator, the M estimator [introduced in Dekkers et al.
(1989)] and theMRestimator [introduced inDanielsson et al. (1996)] can be expressed
via statistics Gn(k, 0, u), u = 1, 2 as follows:

γ̂ H
n (k) = Gn(k, 0, 1),

γ̂ M
n (k) = Gn(k, 0, 1) + 1

2

{
1 −

(
Gn(k, 0, 2)

G2
n(k, 0, 1)

− 1

)−1
}

,

γ̂MR
n (k) = Gn(k, 0, 2)

2Gn(k, 0, 1)
.

Many estimators, considered earlier, can be expressed in terms of statistics (6), for
example, in Gomes andMartins (2001) the following two estimators were considered:

Gn(k, 0, u)

�(1 + u)Gu−1
n (k, 0, 1)

and

(
Gn(k, 0, u)

�(1 + u)

)1/u

.

Let us note, that, due to the expressions of functions fr and gr,u , we can express the
statistic Hn(k, r) via the statistics Gn(k, r, u):

Hn(k, r) =
{

(Gn(k, r, 0) − 1) /r, r �= 0,
Gn(k, 0, 1), r = 0,

(7)

and there is continuity with respect to r in this relation, since it is easy to see
that limr→0

(
gr,0(x) − 1

)
/r = g0,1(x). Taking into account that H (2)

n (k, r) can be
expressed via Hn(k, r) [see (3.2) in Paulauskas and Vaičiulis (2013)], all estimators,
which were introduced in Paulauskas and Vaičiulis (2013), can be written by means
of statistics Gn(k, r, u) only.

In the paper we provide general method to prove limit theorems for estimators,
constructed bymeans of statisticsGn(k, r, u).We prove theweak consistency for these
statistics for general values of parameters r < 1/γ and u > −1. Then (see Theorem 3)
we prove the asymptotic normality for the pair of statistics (Gn(k, r, 0),Gn(k, r, 1)).
Taking the simplest choice of parameter u, u = 0 and u = 1, we made the first step,
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although the final goal would be to prove the asymptotic normality for general pair
(Gn(k, r1, u1),Gn(k, r2, u2)).

The last remark in Sect. 1 concerns the class of the reduced-bias or Hill-corrected
estimators (see Brilhante et al. 2013 and references therein). We do not consider these
estimators in our paper, since they are not expressed by means of our functions gr,u ,
they are based on a different idea and usually require additional assumptions, like the
third-order asymptotic condition [the rate of convergence in the SORV condition (12)].

The rest of the paper is organized as follows. In the next section, we formulate the
main results of the paper. In Sect. 3, we investigate asymptotic mean square error of the
introduced estimators, and compare these estimators with the H and GH estimators,
using the same methodology as in De Haan and Peng (1998), and provide some
simulation results. Then there are formulated conclusions, and the last Sect. 5 is devoted
to the proofs of the results. At the end of the proof of Theorem 3 we discuss the
alternative proof of this result based on the paper Drees (1998).

2 Formulation of results

Our first result shows what quantities are estimated by the introduced statistics
Gn(k, r, u).

Theorem 1 Suppose that X1, . . . , Xn are i.i.d. nonnegative random variables whose
quantile function U satisfies condition (2). Let γ r < 1 and u > −1. Let us suppose
that a sequence k = k(n) satisfies conditions

k(n) → ∞, n/k(n) → ∞, as n → ∞. (8)

Then for statistics, introduced in (6), we have

Gn(k, r, u)
P→ξ(r, u) := γ u�(1 + u)

(1 − γ r)1+u
, as n → ∞. (9)

Here
P→ stands for the convergence in probability and�(u) denotes the Euler’s gamma

function.

The following corollary allows to proof the consistency of an estimator, expressed
as a function of statistics Gn(k, r, u) with different r and u.

Corollary 1 Suppose that X1, . . . , Xn are i.i.d. nonnegative random variables whose
quantile function U satisfies condition (2). Let γ r j < 1 and u j > −1, j =
1, 2, . . . ,m. Let us suppose that a sequence k = k(n) satisfies (8). Let χ(t1, . . . , tm) :
(0,∞)m → (0,∞) be a continuous function. Then

χ (Gn(k, r1, u1), . . . ,Gn(k, rm, um))
P→χ (ξ(r1, u1), . . . , ξ(rm, um)) , (10)

as n → ∞.
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The relation (10) gives usmany possibilities to form consistent estimators of γ using
statistics Gn(k, r, u) with different r, u. Since it is not clear which combinations
are good ones, we decided to restrict ourselves with the two most simple statistics
Gn(k, r, 0), Gn(k, r, 1) (that is, u = 0 and u = 1) and to consider the following three
estimators of γ > 0

γ̂ (1)
n (k, r) =

{
(Gn(k, r, 0) − 1)(rGn(k, r, 0))−1, r �= 0,
Gn(k, 0, 1), r = 0,

γ̂ (2)
n (k, r) = 2Gn(k, r, 1)

2rGn(k, r, 1) + 1 + √
4rGn(k, r, 1) + 1

, (11)

γ̂ (3)
n (k, r) =

{
(rGn(k, r, 1) − Gn(k, r, 0) + 1)(r2Gn(k, r, 1))−1, r �= 0,
γ̂MR
n (k), r = 0.

One can note, that the estimator γ̂
(1)
n (k, r) is exactly the GH estimator, given in (4),

only expressed via statisticsGn(k, r, u). For us it will be convenient to use this notation
for GH estimator, since we shall compare these two new estimators from (11) with
the H and GH estimators. Since γ̂

(2)
n (k, 0) = γ̂

(1)
n (k, 0), the second estimator presents

another generalization of the Hill estimator, while the third estimator gives us the
generalized moment ratio estimator.

The main step in proving asymptotic normality of the introduced estimators
γ̂

( j)
n (k, r), j = 1, 2, 3, (and other estimators, expressed via statistics Gn(k, r, u) with

u = 0 and u = 1) is to prove two-dimensional asymptotic normality for statistics
Gn(k, r, 0), Gn(k, r, 1). As usual, in order to get asymptotic normality for estimators
the so-called second-order regular variation (SORV) condition, in one or another form,
is assumed. In this paper we shall use the SORV condition formulated by means of the
functionU . We assume that there exists a measurable function A(t) with the constant
sign near infinity, which is not identically zero, and A(t) → 0 as t → ∞, such that

lim
t→∞

U (t x)
U (t) − xγ

A(t)
= xγ xρ − 1

ρ
(12)

for all x > 0. Here ρ < 0 is the so-called second-order parameter. It is known that
(12) implies that the function |A(t)| varies regularly with index ρ.

Let us denote dr (b) = 1 − bγ r .

Theorem 2 Suppose that X1, . . . , Xn are i.i.d. nonnegative random variables whose
quantile function U satisfies condition (12). Suppose that γ r < 1/2 and that the
sequence k = k(n) satisfies (8) and

lim
n→∞

√
k A

(n
k

)
= μ ∈ (−∞,+∞). (13)

Then, as n → ∞,

√
k (Gn(k, r, 0) − ξ(r, 0),Gn(k, r, 1) − ξ(r, 1))

d→μ
(
ν(1)(r), ν(2)(r)

)
+
(
W (1),W (2)

)
, (14)
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where
d→ stands for the convergence in distribution and quantities ν( j)(r), j = 1, 2

are as follows

ν(1)(r) = r

dr (1)(dr (1) − ρ)
, ν(2)(r) = 1 − ρ − γ 2r2

(dr (1))2(dr (1) − ρ)2
. (15)

(
W (1),W (2)

)
is zero mean Gaussian random vector with the variances

E
(
W ( j)

)2 = s2j (r), j = 1, 2

and the covariance E
(
W (1)W (2)

) = s12(r), where

s21 (r) = γ 2r2

dr (2)d2r (1)
,

s22 (r) = γ 2(dr (2) + 2γ 4r4)

d3r (2)d4r (1)
,

s12(r) = γ 2r(dr (1) − γ 2r2)

d2r (2)d3r (1)
.

From Theorem 2 we derive the main result of the paper.

Theorem 3 Under assumptions of Theorem 2, for the estimators, introduced in (11),
we have √

k
(
γ̂

( j)
n (k, r) − γ

)
d→N

(
μν j (r), σ

2
j (r)

)
, j = 1, 2, 3, (16)

where

ν1(r) = dr (1)

dr (1) − ρ
, σ 2

1 (r) = γ 2d2r (1)

dr (2)
,

ν2(r) = dr (1)(1 − ρ − γ 2r2)

(1 + γ r)(dr (1) − ρ)2
, σ 2

2 (r) = γ 2d2r (1)(dr (2) + 2γ 4r4)

(1 + γ r)2d3r (2)
,

ν3(r) = d2r (1)

(dr (1) − ρ)2
, σ 2

3 (r) = 2γ 2d4r (1)

d3r (2)
.

Having the asymptotic normality of the introduced estimators in Sect. 3we compare
the asymptotic mean square error (AMSE) of these estimators. As in Paulauskas and
Vaičiulis (2013), where we have shown that the GH estimator (with the optimal value
of r ) dominates the Hill estimator in all region of the parameters {γ > 0, ρ < 0},
now the same dominance is demonstrated when comparing the GMR (again, with
the optimal value of r ) and MR estimators, more over, from Fig. 2, the left graph we
can see that the GMR estimator outperforms MR estimator not only theoretically,
but also empirically (simulation results are given as points on the same graph). In
Fig. 3, the right graph presents comparison of the GMR estimator with the GH esti-
mator, and asymptotic result (solid line) shows that no one estimator dominates in all
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468 V. Paulauskas, M. Vaičiulis

region −∞ < ρ < 0 (the ratio of AMSE does not depend on γ ), while simulation
results (points) demonstrate the domination of GMR for all values of ρ, for which the
simulation was performed.

Finally, we formulate some results concerning the robustness of the introduced
estimators. We follow the paper Beran et al. (2014), where robustness was considered
for the HM estimator (or in our notation, for γ̂

(1)
n (k, r)). To define the robustness

measure for the estimator γ̂
( j)
n (k, r), instead of γ̂

( j)
n (k, r) we will use the notation

γ̂
( j)
n (k, r; X1, . . . , Xn). Let us define

�γ̂
( j)
n (k, r, x) = γ̂

( j)
n (k, r; X1, . . . , Xn−1, x) − γ̂

( j)
n−1(k − 1, r; X1, . . . , Xn−1).

Then, following Beran et al. (2014), for fixed n and k, we take the quantity

B( j)
n (k, r) = lim

x→∞ �γ̂
( j)
n (k, r, x), (17)

whichmeasures the worst effect of one arbitrarily large contamination on the estimator
γ̂

( j)
n (k, r). For fixed n and k these quantities are random variables, but it turns out that

asymptotically they become constants, depending on γ and r (here it is appropriate to
note, that results on robustness are based on Theorem 1, thus there is no dependence
on ρ).

Theorem 4 Suppose that X1, . . . , Xn are i.i.d. nonnegative random variables whose
quantile function U satisfies condition (2). Let γ r < 1 and let B( j) := B( j)(γ, r) be
the limit in probability of B( j)

n (k, r), j = 1, 2, 3, defined in (17), as n → ∞ and (8)
holds. Then we have

B( j) =
⎧⎨
⎩
0, r < 0,
∞, r = 0,
(1 − γ r)/r, 0 < r < 1/γ.

j = 1, 2, 3.

Assuming the SORV condition (12) we were able to find optimal values of r for
γ̂

( j)
n (k, r), j = 1, 3 [see formulas (24) and (25) in Sect. 3], therefore, for the gen-

eralized Hill estimator we get B(1)(γ, r∗
1 ) = γ (1 − ρ + √

(2 − ρ)2 − 2). For the
generalized moment ratio estimator the situation is even better, since optimal value
r∗
3 < 0, therefore B(3)(γ, r∗

3 ) = 0, while B( j)(γ, 0) = ∞. At first it seemed for us a
little bit strange, that for all three estimators with r = 0 we get the same infinite value
of B( j), but looking more carefully to the construction of this measure of robustness,
we realized that it is quite natural and even the proof is almost trivial. Since the second
term in the expression of �γ̂

( j)
n (k, r, x) is independent of x , moreover, if n → ∞, it

tends to γ , we have

B( j)
n (k, r) = lim

x→∞ γ̂
( j)
n (k, r; X1, . . . , Xn−1, x) − γ̂

( j)
n−1(k − 1, r; X1, . . . , Xn−1).

(18)
Thus, robustness of the given estimator depends essentially on this first limit, which
can be zero, infinity, or finite, depending on the term gr,u

(
x/Xn−k,n

)
. For all classical
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estimators γ̂ H , γ̂ M , γ̂MR (r = 0) this term tends to infinity, therefore we get infinite
value for robustness, while for all three generalizations there appear ratios of such
terms, and we are getting that this first limit in (18), as x → ∞, is 1/r , if r > 0
and is γ , if r < 0, thus we are getting result of Theorem 4. Moreover, the proof of
this theorem shows that we can contaminate the sample not by one large value, but
by several, and the asymptotic result will be the same—generalized estimators will
remain (asymptotically) robust.

3 Theoretical comparison of the estimators and Monte Carlo simulations

In this section, we assume that the assumptions of Theorem 3 are satisfied, therefore
the condition (12) holds with ρ < 0. We excluded the case ρ = 0, since in this case
one faces principal difficulties in finding the optimal sequence k(n), see p. 81–83 in
De Haan and Ferreira (2006) for details.

For theoretical comparison of estimators under consideration, as a first step we find
optimal values (in the sense of minimal AMSE) of both tuning parameters k and r . As
in De Haan and Peng (1998) we can write the following relation for the asymptotic
mean squared error of the estimator γ̂

( j)
n (k, r)

AMSE
(
γ̂

( j)
n (k, r)

)
∼ ν2j (r)A

2
(n
k

)
+ σ 2

j (r)

k
, j = 1, 2, 3, (19)

where a sequence k = k(n) satisfies (13). Here and below we write an ∼ bn if
an/bn → 1 as n → ∞. As in Paulauskas and Vaičiulis (2013), assuming that r is

fixed, we perform the minimization of AMSE
(
γ̂

( j)
n (k, r)

)
with respect to k . We will

obtain the optimal value of k(n) for the estimator γ̂
( j)
n (k, r), which will be denoted by

k∗
j (r). Thenweminimize the asymptoticmean squared error AMSE

(
γ̂

( j)
n

(
k∗
j (r), r

))
with respect to r . Since the optimization procedure, based onDeHaan andPeng (1998),
is used in many papers dealing with EVI estimation, we do not provide all calculations
and formulate only results of this optimization.

We define the function a by the following relation:

A2(t) ∼
∫ ∞

t
a(u) du, t → ∞, (20)

and, assuming that r is fixed, we get

k∗
j (r) =

(
σ 2
j (r)

ν2j (r)

)1/(1−2ρ)
n

a←(1/n)
. (21)

Having (21), from (19) we obtain

AMSE
(
γ̂

( j)
n

(
k∗
j (r), r

))
∼ 1 − 2ρ

(−2ρ)

(
ν2j (r)

(
σ 2
j (r)

)−2ρ
)1/(1−2ρ) a←(1/n)

n
. (22)
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It is easy to see that to minimize the right-hand side of (22) with respect to r it is

sufficient to minimize the product ν2j (r)
(
σ 2
j (r)

)−2ρ
with respect to r . Let us note

that asymptotic parameters ν j (r), 1 ≤ j ≤ 3 depend on parameters ρ and γ r , while
quantities σ 2

j (r)/γ
2, 1 ≤ j ≤ 3 depend on the product γ r only. Therefore, it is

convenient to introduce notation R = γ r and to consider minimization of the function

η j (R) = γ 4ρν2j (R/γ )
(
σ 2
j (R/γ )

)−2ρ
,

with respect to R satisfying inequality R < 1/2. Equating the derivative of this
function to zero, we get

σ 2
j (R/γ )

dν j (R/γ )

dR
− ρν j (R/γ )

dσ 2
j (R/γ )

dR
= 0. (23)

By substituting the values of ν3(R/γ ) and σ 2
3 (R/γ ) into Eq. (23) we get the equation

R2−R(2−ρ)+ρ = 0.Whence it follows that the optimal value of R for the estimator
γ̂

(3)
n

(
k∗
3(r), r

)
is

R∗
3 = (2 − ρ) − √

(2 − ρ)2 − 4ρ

2
, (24)

since the second root of the quadratic equation does not satisfy the relation R < 1/2.
As for the estimator γ̂

(1)
n

(
k∗
1(r), r

)
, the optimal value of the parameter r was found in

Paulauskas and Vaičiulis (2013) (see also Brilhante et al. 2013), and in our notation
[it is necessary to note, that SORV condition in Paulauskas and Vaičiulis (2013) was
used with a different parametrization, see (1.3) therein] the optimal value of R is

R∗
1 = (2 − ρ) − √

(2 − ρ)2 − 2

2
. (25)

Unfortunately, the situation with the estimator γ̂ (2)
n

(
k∗
2(r), r

)
is more complicated. By

substituting the expressions of ν2(R/γ ) and σ 2
2 (R/γ ) into (23) we get the equation

2R9 − 2R8(1 − ρ) − 2R7(5 − 3ρ) + 2R6(ρ2 − 3ρ + 6) − 2ρR5(5 − 2ρ)

−6R4(1 − ρ)2 + R3(8ρ2 − 22ρ + 15) − 2R2(5ρ2 − 14ρ + 9)

+4R(ρ2 − 3ρ + 2) − (1 − ρ) = 0.

For a fixed given value of ρ this equation of the 9th order was solved with “Wolfram
Mathematica 6.0”. It turns out that depending on the parameter ρ it has 3 real roots
and three pairs of conjugate roots or 5 real roots and two pairs of conjugate roots. All
real roots were substituted into the function η2(R) and optimal value was found in this
way. Numerical values of optimal value R∗

2 as a function of ρ are provided in Fig. 1.
Although we got explicit and very simple expressions for the optimal values R∗

1 and
R∗
3 , we provide these two functions (as functions of ρ) in the same Fig. 1.
Let r∗

j = R∗
j /γ denote the optimal value of the parameter r . From this picture we

see that the first two functions R∗
i , i = 1, 2 has comparatively small range of values
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Fig. 1 Graphof the functions R∗
1 (ρ) (solid line), R∗

2 (ρ) (dashed line) and R∗
3 (ρ) (dotted line),−10 < ρ < 0

[for R∗
3(ρ) the range is (−1, 0)], this means that optimal value of parameters r∗

1 and
r∗
2 are not sensitive to the parameter ρ, but more sensitive to γ .

Nowweare able to compare the generalizedHill estimator γ̂ (1)
n

(
k∗
1(r

∗
1 ), r∗

1

)
with the

another generalization of the Hill estimator γ̂
(2)
n

(
k∗
2(r

∗
2 ), r∗

2

)
and generalized moment

ratio estimator γ̂
(3)
n

(
k∗
3(r

∗
3 ), r∗

3

)
. But before performing comparison of these estima-

tors, at first we demonstrate that GMR estimator γ̂
(3)
n

(
k∗
3(r

∗
3 ), r∗

3

)
outperforms the

initial MR estimator γ̂
(3)
n

(
k∗
3(0), 0

)
in the whole area {(γ, ρ) : γ > 0, ρ < 0}.

Denoting

ψMR(ρ) = lim
n→∞

AMSE
(
γ̂

(3)
n

(
k∗
3(0), 0

))

AMSE
(
γ̂

(3)
n

(
k∗
3(r

∗
3 ), r∗

3

)) ,

it is not difficult to get that

ψMR(ρ) =
(
2−8ρ (v(ρ) − ρ)4 (v(ρ) − 1 + ρ)−6ρ

(1 − ρ)4 (v(ρ) + ρ)4−8ρ

)1/(1−2ρ)

,

where v(ρ) = (
(2 − ρ)2 − 4ρ

)1/2
. Sincewemust investigate this function on negative

half-line {ρ < 0}, it is convenient to denote −ρ = x and to write

ψ̃MR(x) = ψMR(−x) = ( f (x))g(x),

with

f (x) = 2−8x (ṽ(x) + x)4 (ṽ(x) − 1 − x)6x

(1 + x)4 (ṽ(x) − x)4+8x , g(x) = 1

1 + 2x
,
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Fig. 2 Graph of the functions ψMR(ρ) (solid line, on the left), ψH (ρ) (solid line, on the right) and results
of Monte Carlo simulations (points) with the Burr distribution and γ = 1

where ṽ(x) = v(−x). Taking logarithm of ψ̃MR(x), using the fact that f is the product
of several elementary functions, and using the simple relation v(x)−x = 4+O(x−1),
one can get

lim
x→∞ ln(ψ̃MR(x)) = 3 ln 3 − 4 ln 2, or lim

x→∞ ψ̃MR(x) = 27

16
= 1.6875.

In a similar way one can get

lim
x→0

ln(ψ̃MR(x)) = 0, or lim
x→0

ψ̃MR(x) = 1.

As a matter of fact, ψMR(0) = 1, but considering the asymptotic normality and
AMSEof the estimators under considerationwe excluded the case ρ = 0, thereforewe
calculate this last limit. More difficult is to show that the function ψ̃MR(x) is monotone
and increasing (or ψMR(ρ) is decreasing), we skip these considerations, only we
mention that we use the fact that the logarithmic derivative of a product of functions
is a sum of logarithmic derivatives of these functions. The graph of the function
ψMR(ρ), ρ < 0 is provided in Fig. 2 in left. In the same picture we gave also results
(in form of separate points) of simulations, namely, we calculated the ratio of MSE of
these estimators taking samples of size n = 1000 from Burr distribution (details on
simulation will be explained below). Surprisingly, simulation results are even better
than theoretical asymptotical result—most points are above the graph of ψMR(ρ).

As it was recommended by the referee, we also compare the GMR estimator with
the Hill estimator. If we denote

ψH (ρ) = lim
n→∞

AMSE
(
γ̂

(1)
n

(
k∗
1(0), 0

))

AMSE
(
γ̂

(3)
n

(
k∗
3(r

∗
3 ), r∗

3

)) ,

then we have

ψH (ρ) =
(

(1 − ρ − R∗
3)

4(1 − 2R∗
3)

−6ρ

2−2ρ(1 − ρ)2(1 − R∗
3)

4−8ρ

)1/(1−2ρ)

.
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Fig. 3 Graph of the functions ϕ2(ρ) (on the left), ϕ3(ρ) (solid line, on the right) and results of Monte Carlo
simulations (points) with the Burr distribution and γ = 1

The graph of the function ψH (ρ), ρ < 0 is provided in Fig. 2 on the right, and, as on
the left picture, there are simulation results, which are even more surprising, since the
empirical results are not only above the theoretical curve, but they show that empirical
MSE of theGMRestimator is smaller thanMSE of theHill estimator for all considered
values of ρ.

Both graphs in Fig. 2 shows good performance of the GMR estimator, especially
comparing with the MR estimator, since in a big range of the parameter ρ the function
ψMR is bigger than 1.3, and the maximal value is close to 1.7.

Now we return to the comparison of the estimators γ̂
(2)
n

(
k∗
2(r

∗
2 ), r∗

2

)
and

γ̂
(3)
n

(
k∗
3(r

∗
3 ), r∗

3

)
with the GH estimator γ̂

(1)
n

(
k∗
1(r

∗
1 ), r∗

1

)
, and we must investigate

the following two functions:

ϕ j (ρ) := lim
n→∞

AMSE
(
γ̂

(1)
n

(
k∗
1(r

∗
1 ), r∗

1

))

AMSE
(
γ̂

( j)
n

(
k∗
j (r

∗
j ), r

∗
j

)) , j = 2, 3.

It is important to note that both functions are independent of γ and depend only on ρ.
In view of (22) we have

ϕ j (ρ) =
⎛
⎜⎝ ν21

(
r∗
1

) (
σ 2
1

(
r∗
1

))−2ρ

ν2j

(
r∗
j

) (
σ 2
j

(
r∗
j

))−2ρ

⎞
⎟⎠

1/(1−2ρ)

, j = 2, 3.

Since we were able to obtain the optimal value of R∗
2 only numerically, we can provide

only anumerically obtainedgraphof the functionϕ2(ρ), seeFig. 3 on the left; therefore,
in this case we did not provide simulation results.

Although the graph of ϕ2(ρ) allows to believe that the new generalization of the
Hill estimator dominates the GH estimator [which is the same as HM estimator from
Beran et al. (2014) or MOP estimator from Brilhante et al. (2013)] in all region of
parameters {(γ, ρ) : γ > 0, ρ < 0}, but without explicit expression of the function
ϕ2(ρ) we cannot prove this.

Finally, comparing GH and GMR estimators (these two estimators, in our opinion,
are the most successful, since for both of them we have quite simple expression for
optimal value of R∗

j , j = 1, 3) we have
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ϕ3(ρ) =
(

3−6ρ (v(ρ) − ρ)8−8ρ (w(ρ) + (1 − ρ))−2ρ

43−5ρ(1 − 2ρ)2 (v(ρ) + (1 − ρ))−6ρ (w(ρ) − ρ)4−4ρ

)1/(1−2ρ)

,

wherew(ρ) = (
(2 − ρ)2 − 2

)1/2
. As can be seen from Fig. 3 on right, GMR estimator

γ̂
(3)
n

(
k∗
3(r

∗
3 ), r∗

3

)
dominates the GH estimator γ̂

(1)
n

(
k∗
1(r

∗
1 ), r∗

1

)
for ρ ∈ (ρ̃, 0), where

ρ̃ ≈ −4.57018. It is not difficult to show that

lim
ρ→−∞ ϕ3(ρ) = 33

25
= 0.84375.

The empirical results, as in the case of functionψH (x) in Fig. 2 (on the right), show the
same picture—almost all empirical points in the figure are not only above the graph of
ϕ3(x), but they are bigger than 1. Thismeans that the empiricalMSEofGMRestimator
is smaller than the empiricalMSE of the GH estimator for all values of ρ in the interval
−10 < ρ < 0, not only for ρ ∈ (ρ̃, 0), as gives asymptotic theoretical result. The
similarity of the graphs on the right of both Figs. 2 and 3 is not coincidental, since in
Paulauskas and Vaičiulis (2013) we had compared GH and H estimators (see Fig. 2
therein) and saw that the improvement of the GH estimator over the Hill estimator is
important only theoretically, since the maximal value of the ratio is only 1.05.

Nowwe shall provide some results ofMonte Carlo simulations (part of these results
are given in Figs. 2 and 3 together with theoretical results). We must admit that these
results are very preliminary, since we had based our simulation only on two families
of heavy-tailed distributions. Also it is necessary to investigate the stability of estima-
tors under consideration with respect to r . Figure1 shows that stability for different
estimators is different. We intend to return to this problem in a separate paper.

For simulations we use a slightly more restrictive condition than (12), namely, we
assume that the distribution function F(x) under consideration belongs to the Hall’s
class of Pareto type distributions (Hall 1982; Hall and Welsh 1985), i.e.,

1 − F(x) =
( x

C

)−1/γ
(
1 + β

ρ

( x

C

)ρ/γ + o
(
xρ/γ

))
, x → ∞, (26)

where C > 0, β ∈ R\{0} and ρ < 0. This assumption is assumed in many papers
dealing with simulations for the following reason. Taking the ratio of AMSE of two
estimators we do not need to know the function a←, but for simulations, having given
sample size n, we must calculate the value of k∗

j (r) in (21) and the empirical MSE of
estimators, and for this we must have the function a←. Assuming (26), we have that
the second-order condition (12) holds with A(t) = γβtρ and from (20) it follows that

a←(t) = (−2ργ 2β2
)1/(1−2ρ)

t1/(2ρ−1). Now we can rewrite (21) as follows:

k∗
j (r, β, ρ) =

(
σ 2
j (r)

−2ρβ2γ 2ν2j (r)

)1/(1−2ρ)

n−2ρ/(1−2ρ).

In fact, quantities k∗
j (0, β, ρ), j = 1, 3 depend on β, ρ and n only, thus replacing β

and ρ by some estimators β̂n and ρ̂n , we obtain the empirical values of the parameter
k(n) for the Hill and the moment ratio estimators:
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k̂1,n =
(

(1 − ρ̂n)
2

−2ρ̂n β̂2
n

)1/(1−2ρ̂n)

n−2ρ̂n/(1−2ρ̂n), (27)

k̂3,n =
(

(1 − ρ̂n)
4

−ρ̂nβ̂2
n

)1/(1−2ρ̂n)

n−2ρ̂n/(1−2ρ̂n). (28)

For corresponding generalized estimators we have additionally to take estimators of
optimal parameter R, therefore we have

K̂1,n =
(

(1 − ρ̂n − R∗
1

(
ρ̂n
)
)2

−2ρ̂n β̂2
n (1 − 2R∗

1

(
ρ̂n
)
)

)1/(1−2ρ̂n)

n−2ρ̂n/(1−2ρ̂n), (29)

K̂3,n =
(

(1 − ρ̂n − R∗
3

(
ρ̂n
)
)4

−ρ̂n β̂2
n (1 − 2R∗

3

(
ρ̂n
)
)3

)1/(1−2ρ̂n)

n−2ρ̂n/(1−2ρ̂n). (30)

Thus, in our simulations the comparison is made between the Hill estimator

γ̂
(1)
n

(
k̂1,n, 0

)
, the GH estimator γ̂

(1)
n

(
K̂1,n, r∗

1

(
γ̂

(1)
n

(
k̂1,n, 0

)
, ρ̂n

))
, the MR esti-

mator γ̂
(3)
n

(
k̂3,n, 0

)
and the GMR estimator

γ̂ (3)
n

(
K̂3,n, r

∗
3

(
γ̂ (3)
n

(
k̂3,n, 0

)
, ρ̂n

))
,

with parameters given in (27)–(30).
We generated 1000 times samples X1, . . . , Xn of i.i.d. random variables of size

n = 1000 with the following two d. f. with the extreme value index γ , parameter ρ

and satisfying (26):

(i) the Burr d.f. F(x) = 1 − (
1 + x−ρ/γ

)1/ρ
, x ≥ 0;

(ii) the Kumaraswamy generalized exponential d.f.

F(x) = 1 − (
1 − exp

{−xρ/γ
})−1/ρ

, x ≥ 0.

The parameter β which is present in (26) for the Burr distribution is 1 and for the
Kumaraswamy distribution −1/2, and C = 1 for both distributions. To calculate the
H and the GH estimators we used the following algorithm:

1. Estimate the parameter ρ by the following estimator proposed in Fraga Alves et al.
(2009):

ρ̂n(k, τ ) = −
∣∣∣∣3
(
T (τ )
n (k) − 1

) (
T (τ )
n (k) − 3

)−1
∣∣∣∣ ,

where

T (τ )
n (k) = (Gn(k, 0, 1))τ − (Gn(k, 0, 2)/2)τ/2

(Gn(k, 0, 2)/2)τ/2 − (Gn(k, 0, 3)/6)τ/3

with τ > 0, and
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T (0)
n (k) = ln (Gn(k, 0, 1)) − (1/2) ln (Gn(k, 0, 2)/2)

(1/2) ln (Gn(k, 0, 2)/2) − (1/3) ln (Gn(k, 0, 3)/6)
.

To decide which values of parameters τ (0 or 1) and k to take in the above written
estimator ρ̂n(k, τ ), we realized the algorithm provided in Gomes et al. (2009).

2. To estimate the parameter β use the estimator β̂n
(
k, ρ̂n(k, τ )

)
, where

β̂n (k, ρ) =
( k
n

)ρ {( 1
k

∑k
i=1

( i
k

)−ρ
) (

1
k

∑k
i=1 Wi

)
−
(
1
k

∑k
i=1

( i
k

)−ρ
Wi

)}
(
1
k

∑k
i=1

( i
k

)−ρ
) (

1
k

∑k
i=1

( i
k

)−ρ
Wi

)
−
(
1
k

∑k
i=1

( i
k

)−2ρ
Wi

)

and Wi = i ln
(
Xn+i−1,n/Xn+i,n

)
, 1 ≤ i ≤ k < n. This estimator was introduced

in Gomes and Martins (2002). Again, as in the step 1, to choose the parameter k
we applied the algorithm from Gomes et al. (2009).

3. By using (27) estimate parameter k for the Hill estimator and then obtain

γ̂
(1)
n

(
k̂1,n, 0

)
;

4. Estimate R∗
1

(
ρ̂n
)
and r∗

1

(
γ̂

(1)
n

(
k̂1,n, 0

)
, ρ̂n

)
;

5. By using (29) estimate the parameter k for the GH estimator and find the estimate

γ̂
(1)
n

(
K̂1,n, r∗

1

(
γ̂

(1)
n

(
k̂1,n, 0

)
, ρ̂n

))
.

We used the similar algorithm (with obvious changes) for the MR estimator

γ̂
(3)
n

(
k̂3,n, 0

)
and the GMR estimator γ̂

(3)
n

(
K̂3,n, r∗

3

(
γ̂

(3)
n

(
k̂3,n, 0

)
, ρ̂n

))
. Having

values of the estimators we calculate MSE and bias of these estimators and these
results of simulations are summarized in Fig. 4 (for the Burr distribution) and in Fig. 5
(for the Kumaraswamy distribution). Also these calculated MSE were used in Figs. 2
and 3, providing empirical results for comparison of some pairs of estimators, for
example in Fig. 2, on the left, points are obtained calculating the ratio of MSE of MR
and GMR estimators.

For the Burr distribution we took parameters γ and ρ in the intervals (0, 4]
and (−5,−0.2], respectively. In Fig. 4 (left) we divided this rectangle (0, 4] ×
(−5,−0.2] into squares �i, j = (i/10, (i + 1)/10] × (−( j + 1)/10,− j/10],
i = 0, 1, . . . , 40, j = 2, 3, . . . , 50. By taking true values of parameters γ and
ρ as coordinates of the center of the rectangle �i, j , we performed Monte Carlo
simulations. We colored the square �i, j in black if empirical MSE of the GH esti-

mator γ̂
(1)
n

(
K̂1,n, r∗

1

(
γ̂

(1)
n

(
k̂1,n, 0

)
, ρ̂n

))
is the smallest among all four estimators

under consideration, while areas of domination of the estimators γ̂
(1)
n

(
k̂1,n, 0

)
, (H )

γ̂
(3)
n

(
k̂3,n, 0

)
(MR), and γ̂

(3)
n

(
K̂3,n, r∗

3

(
γ̂

(3)
n

(
k̂3,n, 0

)
, ρ̂n

))
(GMR) are in dark grey,

grey, and in white, respectively. In Fig. 4(right) there are given the areas of domination
with respect to absolute value of the bias (domination means that absolute value of
the bias is the smallest), using the same colors as in the left picture.

The results of the simulations based on Kumaraswamy distribution (areas of dom-
ination of MSE and bias for this distribution) are performed in the same way and are
presented in Fig. 5.
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Fig. 4 Empirical comparison of the estimators by using Burr distribution; MSE on the left, BIAS on the
right; black color—if at this point GH is the smallest, dark grey, grey, and white—if H, MR, and GMR,
respectively, are the smallest
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Fig. 5 Empirical comparison of the estimators by using Kumaraswamy distribution;MSE on the left, BIAS
on the right; meaning of colors is the same as in Fig. 4

Figures 4 and 5 demonstrate that areas of domination almost do not depend on
parameter γ and essentially depend only on ρ. This corresponds well to theoretical
results which state that functions ϕ j (ρ), j = 2, 3, ψH (ρ), and ψMR(ρ) depend on
ρ only. Therefore, taking the particular value γ = 1 and the hundred of values of
ρ in the interval (−10, 0) for the Burr distribution we obtained ratios of empirical
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MSEs to complement theoretical comparison and included these ratios (as separate
points) in Figs. 2 and 3. Slightly unexpected, Figs. 2 and 3 reveal that empirical results
differ from theoretical ones. In Fig. 2 (left), where GMR estimator is compared with
the MR estimator, in the interval −4 ≤ ρ < 0 empirical points are very close to
the theoretical function ψMR(ρ), but in the interval −10 < ρ < −4 all points are
above the theoretical curve, this means that the MR estimator has MSE almost two
times bigger that MSE of the GMR estimator. Empirical results in Fig. 3 (right) show
that the GMR estimator performs better than GH for all values of ρ in the interval
−10 < ρ < 0, while theoretical result predict such result only for ρ ∈ (ρ̃, 0).

4 Conclusions

We introduced a new parametric class of functions gr,u which allows to construct many
new generalizations of the well-known estimators, including such as the Hill, the M,
and the MR estimators. We proved the asymptotic normality of all these generalized
estimators in a unified way and demonstrate that in the sense of AMSE new estimators
are better than the classical ones, especially promising looks GMR estimator. Also we
hope that this new parametric class of functions will be useful in the difficult problem
of estimating the second-order parameter ρ.

Preliminary simulation results show quite good correspondence with the obtained
theoretical results, but we admit that future work on the construction of new estimators
by means of statistics Gn(k, r, u) and on studying the behavior of the new estimators
for middle size samples is needed.

5 Proofs

Proof of Theorem 1 There is nothing to prove in the trivial case r = u = 0. Keeping
in mind relation (7), conclusion (9) is the immediate consequence of Theorem 1 in
Paulauskas and Vaičiulis (2013) in the case u = 0 and γ r < 1. The case r = 0, u ≥ 1
was investigated in Gomes and Martins (2001).

Consider the case r �= 0 and u > −1, u �= 0. Let us recall that the function
U (t), t ≥ 1 varies regularly at infinity with the index γ , thus, by applying Potter’s
bound, we have: for arbitrary ε > 0 there exits t0, such that, for x ≥ 1 and t ≥ t0,

((1 − ε)x)γ−ε <
U (t x)

U (t)
< ((1 + ε)x)γ+ε . (31)

In order to apply (31) for the function tr it is convenient to introduce the notation
ε±(r), where ε±(r) = ε, if r > 0, and ε±(r) = −ε, if r < 0. Then we get

{(1 − ε±(r))x}r(γ−ε±(r)) <

(
U (t x)

U (t)

)r

< {(1 + ε±(r))x}r(γ+ε±(r)) . (32)

Similarly we get the following inequalities

(γ − ε±(u))u lnu ((1 − ε±(u))x) < lnu
(
U (t x)

U (t)

)
(33)
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lnu
(
U (t x)

U (t)

)
< (γ + ε±(u))u lnu ((1 + ε±(u))x) . (34)

By multiplying inequalities (32) and (33), (34), we obtain

c1x
r(γ−ε±(r)) lnu ((1 − ε±(u))x) < gr,u

(
U (t x)

U (t)

)

gr,u

(
U (t x)

U (t)

)
< c2x

r(γ+ε±(r)) lnu ((1 + ε±(u))x) ,

where

c1 = (γ − ε±(u))u(1 − ε±(r))r(γ−ε±(r)),

c2 = (γ + ε±(u))u(1 + ε±(r))r(γ+ε±(r)).

Let Y1, . . . ,Yn be i.i.d. random variables with distribution functionG(x) = 1−(1/x),
x ≥ 1. Taking

t = Yn−k,n, x = Yn−i,n/Yn−k,n, (35)

for i = 0, 1, . . . , k − 1, we get

c1

(
Yn−i,n

Yn−k,n

)r(γ−ε±(r))

lnu
(

(1 − ε±(u))
Yn−i,n

Yn−k,n

)
< gr,u

(
U (Yn−i,n)

U (Yn−k,n)

)
, (36)

c2

(
Yn−i,n

Yn−k,n

)r(γ+ε±(r))

lnu
(

(1 + ε±(u))
Yn−i,n

Yn−k,n

)
> gr,u

(
U (Yn−i,n)

U (Yn−k,n)

)
. (37)

Note that U (Yi ) = Xi , i = 1, 2, . . . , n, thus

Gn(k, r, u) = 1

k

k−1∑
i=0

gr,u

(
U (Yn−i,n)

U (Yn−k,n)

)
.

From this equality, by summing inequalities (36) and (37), we get

c1
k

k−1∑
i=0

(
Yn−i,n

Yn−k,n

)r(γ−ε±(r))

lnu
(

(1 − ε±(u))
Yn−i,n

Yn−k,n

)
< Gn(k, r, u), (38)

c2
k

k−1∑
i=0

(
Yn−i,n

Yn−k,n

)r(γ+ε±(r))

lnu
(

(1 + ε±(u))
Yn−i,n

Yn−k,n

)
> Gn(k, r, u). (39)

By means of the standard argument (see e.q. De Haan and Ferreira 2006) one can
deduce that the left-hand side of (38) equals (in distribution) to the sum

c1
k

k∑
i=1

Yr(γ−ε±(r))
i (ln(Yi ) + ln(1 − ε±(u)))u .
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The expectation of this quantity equals to c1 (�1 + �2), where

�1 =
∫ ∞

1
xr(γ−ε±(r))−2 lnu(x)dx,

�2 =
∫ ∞

1
xr(γ−ε±(r))−2 lnu(x)

{(
1 + ln(1 − ε±(u))

ln(x)

)u

− 1

}
dx .

One can verify that

∫ ∞

1
xa−2 lnb(x)dx = (1 − a)−1−b�(1 + b), a < 1, b > −1. (40)

By using the last identity, assumptions 1− γ r > 0, u > −1 and the fact that rε± > 0
we get

c1�1 = (1 − ε±(r))r(γ−ε±(r))(γ − ε±(u))u�(u + 1)

(1 − r(γ − ε±(r)))u+1 ,

whence we get c1�1 → ξ(r, u), as ε → 0.
Consider the quantity �2 now. If 0 < u ≤ 1, then ε±(u) = ε and we use the

following inequalitywhich holds for any real numbersa andb: ||a|u − |b|u | ≤ |a−b|u .
We have

|�2| ≤ |ln(1 − ε)|u
∫ ∞

1
xr(γ−ε±(r))−2dx

= |ln(1 − ε)|u
1 − r(γ − ε±(r))

.

Now it follows that c1�2 → 0, as ε → 0. In the case −1 < u < 0 we have
ε±(u) = −ε, and since 0 < −u < 1, applying the same inequality as above, we get

∣∣(ln(x) + ln(1 + ε))u − lnu(x)
∣∣ =

∣∣ln(x)−u − (ln(x) + ln(1 + ε))−u
∣∣

ln(x)−u (ln(x) + ln(1 + ε))−u

≤ |ln(1 + ε)|−u

ln(x)−u (ln(x) + ln(1 + ε))−u .

We take small δ > 0 such that u − δ > −1, for example, one can take δ = (u + 1)/2.
Keeping in mind that ln(1 + ε) > 0, we can estimate

1

(ln(x) + ln(1 + ε))−u ≤ 1

(ln(x))δ (ln(1 + ε))−u−δ
.

Collecting the last two estimates we get

|�2| ≤ |ln(1 + ε)|δ
∫ ∞

1
xr(γ−ε±(r))−2 lnu−δ(x)dx

= (ln(1 + ε))δ �(1 + u − δ)

(1 − r(γ − ε±(r)))1+u−δ
.
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This allows to deduce that c1�2 → 0, as ε → 0.
Let u > 1. By using the inequality ||a|u − |b|u | ≤ u

(|a|u−1 − |b|u−1
) |a − b|,

which holds for any real numbers a and b, we get

|�2| ≤ 2u |ln(1 − ε±(u))|
∫ ∞

1
xr(γ−ε±(r))−2 lnu−1(x)dx

= 2u�(u) |ln(1 − ε±(u))|
(1 − r(γ − ε±(r)))u

,

and this implies c1�2 → 0, as ε → 0. Thus, by applying the Khintchine weak law of
large numbers, the left-hand side of (38) converges to zero in probability. In a similar
way we can prove that the left-hand side of (39) tends to zero in probability, too.
Theorem 1 is proved. �
Proof of Corollary 1 From (9) it follows

(
Gn(k, r1, u1), . . . ,Gn(k, r j , u j )

) P→ (
ξ(r1, u1), . . . , ξ(r j , u j )

)
,

as n → ∞. Applying Corollary 2 of Theorem 5.1 in Billingsley (1968) we derive
(10). �
Proof of Theorem 2 Let r = 0. Theorem 3.2.5 in De Haan and Ferreira (2006) states

√
k (Gn(k, 0, 1) − γ )

d→N
(

μ

1 − ρ
, γ 2

)
, n → ∞. (41)

The relation (41), together with
√
k (Gn(k, 0, 0) − 1)

P→ 0 and Theorem 4.4 in
Billingsley (1968), give (14) for r = 0.

Consider now the case r �= 0. Adjusting Potter’s type bounds (3.4) in Paulauskas
and Vaičiulis (2013) for our purposes (such adjustment is needed since the second-
order condition (12) and the corresponding condition in Paulauskas and Vaičiulis
(2013) are slightly different), we get that, for possibly different function A0(t) with
A0(t) ∼ A(t), as t → ∞, and for each ε > 0, δ > 0, there exists t0 such that for
t > t0, x ≥ 1,∣∣∣∣gr,0

(
U (t x)

U (t)

)
− xγ r − r xγ r A0(t) fρ(x)

∣∣∣∣ ≤ εr xγ r+ρ+δ |A0(t)| , (42)

where fρ(x) is defined in (3). It iswell-known that similar Potter’s type bounds hold for
the logarithmic function, see, e.g., inequalities (3.2.7) in De Haan and Ferreira (2006).
Namely, for a possibly different function A1(t) with A1(t) ∼ A(t), as t → ∞, and
for each ε > 0, δ > 0, there exists t1 such that for t > t1, x ≥ 1,

∣∣∣∣ln
(
U (t x)

U (t)

)
− γ ln(x) − A1(t) fρ(x)

∣∣∣∣ ≤ εxρ+δ |A1(t)| . (43)

Let t̃ = max{t0, t1}. By multiplying inequalities (42) and (43) we get that for t > t̃ ,
x ≥ 1,
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∣∣∣∣gr,1
(
U (t x)

U (t)

)
− gr,0

(
U (t x)

U (t)

){
γ ln(x) + A1(t) fρ(x)

}

− ln

(
U (t x)

U (t)

)
xγ r {1 + r A0(t) fρ(x)

}

+xγ r {1 + r A0(t) fρ(x)
} {

γ ln(x) + A1(t) fρ(x)
} ∣∣∣∣

≤ ε2r xγ r+2ρ+2δ |A0(t)| |A1(t)| .

Suppose that t̃ is large enough that, for t > t̃ , x ≥ 1,

γ ln(x) + A1(t) fρ(x) > 0, 1 + r A0(t) fρ(x) > 0.

Then, by applying inequalities (42) and (43) one more time, we obtain

− εd1(x, t) ≤ gr,1

(
U (t x)

U (t)

)
− b1(x) − c1(x, t) ≤ εd1(x, t), (44)

where

b1(x) = γ xγ r ln(x),

c1(x, t) = (A1(t) + γ r A0(t) ln(x)) x
γ r fρ(x) + r A0(t)A1(t)x

γ r f 2ρ (x),

d1(x, t) = xγ r+ρ+δ

(
|A1(t)|

{
1 + r A0(t) fρ(x)

}

+r |A0(t)|
{
γ ln(x) + A1(t) fρ(x)

} + εr xρ+δ |A0(t)| |A1(t)|
)

,

To prove two-dimensional Central Limit Theorem (14) we shall use the well-known
Cramer–Wald method. Let (θ0, θ1) ∈ R2. From (42) and (44) we get

−εd(x, t) ≤ θ0gr,0

(
U (t x)

U (t)

)
+θ1gr,1

(
U (t x)

U (t)

)
−b(x)−c(x, t) ≤ εd(x, t), (45)

where

b(x) = θ0x
γ r + θ1b1(x),

c(x, t) = θ0r A0(t)x
γ r fρ(x) + θ1c1(x, t),

d(x, t) = |θ0| r xγ r+ρ+δ|A0(t)| + |θ1| d1(x, t).

We claim that

1√
k

k−1∑
i=0

d

(
Yn−i,n

Yn−k,n
,Yn−k,n

)
P→ r |θ0μ|
dr (1) − ρ − δ

+ (1 − ρ − δ) |θ1μ|
(dr (1) − ρ − δ)2

, n → ∞.

(46)
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From Lemma 1 in Paulauskas and Vaičiulis (2013) we know that if ν < 1, ν �= 0, then

1

k

k−1∑
i=0

gν,0

(
Yn−i,n

Yn−k,n

)
P→ 1

1 − ν
, n → ∞. (47)

Similarly one can prove

1

k

k−1∑
i=0

gν,1

(
Yn−i,n

Yn−k,n

)
P→ 1

(1 − ν)2
, n → ∞. (48)

The relation √
k A

(
Yn−k,n

) P→μ, n → ∞, (49)

where μ is the same as in (13), is proved in Paulauskas and Vaičiulis (2013). Now, by
combining (47)–(49) one can obtain (46).

Taking into account (46), substituting the values of t and x from (35) into (45) and
performing summation over i = 0, 1, . . . , k − 1 we get distributional representation

√
k {θ0 (Gn(k, r, 0) − ξ(r, 0)) + θ1 (Gn(k, r, 1) − ξ(r, 1))}
d= √

kBn(k, r) + √
kCn(k, r) + op(1), (50)

where

Bn(k, r) = 1

k

k−1∑
i=0

{
b

(
Yn−i,n

Yn−k,n

)
− θ0ξ(r, 0) − θ1ξ(r, 1)

}
,

Cn(k, r) = 1

k

k−1∑
i=0

c

(
Yn−i,n

Yn−k,n
,Yn−k,n

)
.

By applying relations (47)–(49) one more time, we find

√
kCn(k, r)

P→μ
(
θ0ν

(1)(r) + θ1ν
(2)(r)

)
, n → ∞, (51)

where ν( j)(r), j = 1, 2 are defined in (15). By using the well-known Rényi’s rep-
resentation [see e.g., Section 2 in Paulauskas and Vaičiulis (2013) for details] we
obtain √

kBn(k, r)
d= B̃n(k, r), (52)

where

B̃n(k, r) = 1√
k

k−1∑
i=0

{
θ0
(
gγ r,0(Yi ) − ξ(r, 0)

) + θ1γ

(
gγ r,1(Yi ) − 1

d2r (1)

)}
.
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Keeping in mind equality (40) one can deduce that the quantity B̃n(k, r) presents
normalized sum of i.i.d. zero mean random variables. Moreover, under assumption
γ r < 1/2,

E

{
θ0
(
gγ r,0(Yi ) − ξ(r, 0)

) + θ1γ

(
gγ r,1(Yi ) − 1

d2r (1)

)}2

= θ20 s
2
1 (r) + 2θ0θ1s12(r) + θ21 s

2
1 (r),

where s21 (r), s
2
2 (r) and s12(r) are defined in Theorem 2. Thus, applying Lindeberg–

Lévy central limit theorem, we get the relation B̃n(k, r)
d→θ0W (1) + θ1W (2). This,

together with (52) gives

√
kBn(k, r)

d→θ0W
(1) + θ1W

(2), (53)

as n → ∞. Applying Theorem 4.4 in Billingsley (1968), from (51) and (53) we get

√
k (Bn(k, r),Cn(k, r))

d→
(
θ0W

(1) + θ1W
(2), μ

(
θ0ν

(1)(r) + θ1ν
(2)(r)

))
,

as n → ∞. Continuous Mapping Theorem gives us the relation

√
k (Bn(k, r) + Cn(k, r))

d→θ0

(
W (1) + μν(1)(r)

)
+ θ1

(
W (2) + μν(2)(r)

)
,

as n → ∞. The last relation together with (50) gives (14). Theorem 2 is proved. �
Proof of Theorem 3 In the case j = 1 the proof of the relation (16) can be found in
Paulauskas and Vaičiulis (2013) (proof of the Corollary 1) or in Beran et al. (2014)
(proof of Theorem 2). But the asymptotic normality of all estimators γ̂

( j)
n (k, r), j =

1, 2, 3 can be obtained in a unifiedway, expressing these estimators as functions of sta-
tistics Gn(k, r, 0) and Gn(k, r, 1), and then combining Theorems 1, 2 and Continuous
mapping Theorem. Namely, it is easy to see that

γ̂ (1)
n (k, r) − γ = (1 − γ r)

(
Gn(k, r, 0) − ξr,0

)
rGn(k, r, 0)

.

For the estimator γ̂
(2)
n (k, r) we have

γ̂ (2)
n (k, r) − γ = 2(1 − γ r)Gn(k, r, 1) − γ − γ

√
4rGn(k, r, 1) + 1

2rGn(k, r, 1) + 1 + √
4rGn(k, r, 1) + 1

.

Multiplying the numerator and denominator of the right-hand side by 2(1 −
γ r)Gn(k, r, 1) − γ + γ

√
4rGn(k, r, 1) + 1, we get

γ̂ (2)
n (k, r) − γ = 4(1 − γ r)2

(
Gn(k, r, 1) − ξr,1

)
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×
(
Gn(k, r, 1) + ξr,1

) − 4γ
(
Gn(k, r, 1) − ξr,1

)
2rGn(k, r, 1) + 1 + √

4rGn(k, r, 1) + 1

× 1

2(1 − γ r)Gn(k, r, 1) − γ + γ
√
4rGn(k, r, 1) + 1

.

For the third estimator the following representation holds:

γ̂ (3)
n (k, r) − γ = r(1 − γ r)

(
Gn(k, r, 1) − ξr,1

) − (
Gn(k, r, 0) − ξr,0

)
r2Gn(k, r, 1)

.

As itwas said, it remains to combineTheorems1, 2 andContinuousMappingTheorem,
and we deduce (16) with 1 ≤ j ≤ 3. For example, we have

γ̂ (3)
n (k, r) − γ

= f
(√

k(Gn(k, r, 1) − ξ(r, 1)),
√
k(Gn(k, r, 0) − ξ(r, 0)),Gn(k, r, 1)

)

with

f (x, y, z) = r(1 − γ r)x − y

r2z
.

From Theorems 1 and 2 and Theorem 3.9 from Billingsley (1968), we have

(√
k (Gn(k, r, i) − ξ(r, i)) , i = 0, 1,Gn(k, r, 1)

)

d→
(
W (i) + μν(i)(r), i = 1, 2, ξ(r, 1)

)
,

and nowwe apply ContinuousMapping Theorem (Theorem 2.7 in Billingsley (1968)).
As it was mentioned at the end of Sect. 1, for the proof of the asymptotic normality

of the introduced estimators there is possibility to use general approach, suggested in
Drees (1998). Let Fn stand for the empirical d.f. based on the sample X1, . . . , Xn and
let the empirical tail quantile function is defined as

Qn(t) := F−1
n

(
1 − kn

n
t

)
= Xn−[knt],n, t ∈ [0, 1].

Then almost all known estimators of the EVI that are based on some part of largest
order statistics can bewritten as some functional T (defined on some functional space),
applied to Qn . Then, having estimator written as T (Qn), the idea in Drees (1998) is to
use invarianceprinciple for the processQn in the functional spaceonwhichT is defined
and then requiring some smoothness of T one can try to derive asymptotic normality
of the estimator under consideration. Smoothness of a functional T is required in
terms of Hadamard differentiability in linear topological space; usual D[0, 1] space
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with the Skorokhod topology is a metric, but not a linear space, while D[0, 1] with
supremum norm is non-separable normed space, therefore usually one deals with
the so-called countable normed spaces. For estimators, considered in the paper, it is
possible to use this scheme, but the functionals, which appear using this approach, are
quite complicated. For example, one can write γ̂

(3)
n (k, r) = TGMR(Qn) with

TGMR(z) = f (T0(z), T1(z), T2(z)),

f (x, y, v) = r y − x + 1

r2y
, for r �= 0 and f (x, y, v) = z

2y
, for r = 0,

and

Ti (z) =
∫ 1

0
gr,i

(
z(t)

z(1)

)
dt, i = 0, 1, T2(z) =

∫ 1

0
g0,2

(
z(t)

z(1)

)
dt.

For this complicated functional TGMR we must prove Hadamard differentiability on
some linear topological space (to choose the appropriate space is also non trivial
problem). Thus, it seems that our approach is much more simple, and we do not
need more restrictive conditions [such that appears in Drees (1998)], since instead of
invariance principle for the tail quantile process we prove two-dimensional CLT for
two particular statistics and then apply continuous mapping theorem in R3. �
Proof of Theorem 4 The expression of B(1)(r) is given in Beran et al. (2014), and at
first we followed the pattern of the proof in Beran et al. (2014), but, as it was noticed
in Introduction, there is more simple proof.

From the expression (18) we see that, in order to find B( j)
n (k, r), it is sufficient

to find the limit limx→∞ γ̂
( j)
n (k, r; X1, . . . , Xn−1, x), since γ̂

( j)
n−1(k − 1, r; X1, . . . ,

Xn−1)
P→γ , as n → ∞ and (8) holds. For all three estimators calculations are simple

and similar, therefore we demonstrate the proof for the estimator γ̂
(2)
n (k, r, x), having

the most complicated expression. It is clear that, for sufficiently large value of x ,
γ̂

( j)
n (k, r; X1, . . . , Xn−1, x) can be written as

2 (h(x) + b)

2r (h(x) + b) + 1 + √
4r (h(x) + b) + 1

, (54)

where h(x) = gr,1
(
x/Xn−k,n

)
and b is the sum of the rest summands from statistic

Gn(k, r, 1) and does not depend on x . If r > 0, then h(x) → ∞ and the limit of the
quantity in (54) is 1/r , while for r < 0 h(x) → 0, and the limit in (54) is

2b

2rb + 1 + √
4rb + 1

and this expression almost (this word is used for the reason that in the above written
expression the sum is divided by k, while for complete coincidence division should
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be by k − 1 ) coincides with γ̂
( j)
n−1(k − 1, r; X1, . . . , Xn−1); therefore, passing to the

limit as n → ∞ we get in limit B(2) = 0. In the case r = 0 only nominator contains
function h(x) = g0,1

(
x/Xn−k,n

)
which grows unboundedly; therefore, we get infinite

value for B( j)
n (k, r).
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