Theorem by Giné and Mason (2008)

Christopher Partlett and Prakash Patil

1 Introduction

Giné & Mason (2008) study the uniform in bandwidth behaviour of estimators of

$$T(F) = \int_{R} \phi\left(x, F(x), F^{(1)}(x), \cdots, F^{(r)}(x)\right) dF(x),$$

which have the form

$$T_n(h) = \frac{1}{n} \sum_{i=1}^n \phi\left(X_i, F_{n,i}(X_i), F_{n,h_1,i}^{(1)}(X_i), \cdots, F_{n,h_r,i}^{(r)}(X_i)\right),\,$$

where $h = (h_1, \dots, h_r), h_i > 0$, is a vector of bandwidths and

$$F_{n,i}(X_i) = \frac{1}{n-1} \sum_{1 \le i \ne j \le n} K_0^{(-1)} (X_i - X_j),$$

with $K_0^{(-1)}(x) = I\{x > 0\}$, and for $1 \le m \le r$,

$$F_{n,h_m,i}^{(m)}(X_i) = \frac{1}{n-1} \frac{1}{h^m} \sum_{1 \le i \ne j \le n} K_m^{(m-1)} \left(\frac{X_i - X_j}{h} \right), \quad i = 1, \dots, n,$$

where $K_m^{(0)} = K_m$ is an L_1 kernel, m-1 times differentiable with $K_m^{(m-1)}(x) = \frac{d^{m-1}K_m(x)}{dx^{m-1}}$ satisfying

$$\int_{R} K_m(u)du = 1.$$

Define the sequence of processes in $\vec{\lambda} = (\lambda_1, \dots, \lambda_r), 0 < a \le \lambda_m \le b < \infty$, for $m = 1, \dots r$, by

$$v_n\left(\vec{\lambda}\right) := \sqrt{n} \left\{ T_n(\vec{\lambda} \otimes \mathbf{h_n}) - T(F) \right\},$$

where $\{\mathbf{h_n}\}$ is a sequence of vectors $\mathbf{h_n} = (h_{1,n}, \cdots h_{r,n})$ with positive coordinates converging to zero and

$$\vec{\lambda} \otimes \mathbf{h_n} = (\lambda_1 h_{1,n}, \cdots, \lambda_r h_{r,n}).$$

Giné and Mason construct i.i.d. random variables $Y_1, Y_2, \cdots Y_n$ with mean 0 and finite variance, such that

$$\sup_{\vec{\lambda} \in [a,b]^r} \left| v_n \left(\vec{\lambda} \right) - \frac{1}{\sqrt{n}} \sum_{i=1}^n Y_i \right| = o_p(1). \tag{1}$$

2 Notation

Towards defining the random variables $Y_1, Y_2, \dots Y_n$, let

$$\varphi(x) := \varphi\left(x, F(x), F^{(1)}(x), \cdots, F^{(r)}(x)\right)$$

and

$$\varphi_m(x) := \frac{\partial}{\partial y_m} \varphi(x, y_0, y_1, \cdots, y_r)|_{(y_0, y_1, \cdots, y_r) = (F(x), F^{(1)}(x), \cdots, F^{(r)}(x))}.$$

Let

$$\zeta(X_i) = \varphi(X_i) - E\varphi(X) = \varphi(X_i) - T(F),$$

$$\zeta_0(X_i) = \int_{X_i}^{\infty} \varphi_0(X_i) f(y) dy - \int_{R} F(y) \varphi_0(y) f(y) dy,$$

and, for $m = 1, \dots, r$, let

$$\chi_m(y) := \frac{d^{m-1}}{dy^{m-1}} \left(\varphi(y) f(y) \right) = -\frac{d^m}{dy^m} \int_y^\infty \varphi(x) f(x) dx,$$

where $\frac{d^0}{dy^0}g(y) = g(y)$, and set for $i \ge 1$,

$$\zeta_m(X_i) = (-1)^{m-1} \{ \chi_m(X_i) - E\chi_m(X) \}.$$

Define

$$Y_i = \zeta(X_i) + \sum_{m=0}^{r} \zeta_m(X_i), \quad i \ge 1.$$
 (2)

3 Conditions

For the main result one requires the following assumptions:

I For each $m = 1, \dots, r, f^{(m-1)}$ is bounded.

II For some $0 < \alpha \le 1$, and each $m = 1, \dots, r, f^{(m-1)}$ is in $G_{2r+\alpha-1,K_m}(H)$, where H is some nonnegative measurable function satisfying $E\left[H^2(X)\right] < \infty$, which may depend on $f^{(m-1)}$. $G_{s,k}(H)$ is the class of all measurable functions g on $\mathbb R$ for which there is a positive constant $M_K(g)$ such that for all h sufficiently small

$$\left| \frac{1}{h} \int_{R} g(u) K\left(\frac{x-u}{h}\right) du - g(x) \right| \le h^{s} M_{k}(g) H(x), \quad \forall x.$$

III Uniformly in $x \in \text{supp}(f)$, the function $\varphi(x, y_0, y_1, \dots, y_r)$ and its partial derivatives $\partial \varphi/\partial y_i, i = 0, \dots, r$, satisfy a global Lipschitz condition with respect to the variables y_0, \dots, y_r on a bounded open convex subset of \mathbb{R}^{r+1} containing the closure of the range,

$$\left\{ \left. \left(F(x), f(x), f^{(1)}(x), \cdots, f^{(r-1)}(x) \right) \right| x \in \mathbb{R}. \right\}.$$

IV $\varphi_m, m = 0, 1, \dots, r$, are bounded on the support of f.

V For each $m=1,\cdots,r$, the function χ_m is Lipschitz of order $0<\beta\leq 1$ and

$$\int_{R} |u|^{\beta} |K_m(u)| du < \infty.$$

VI The kernels $K_m^{(m-1)}$, $m=1,\cdots,r$, are in $L_2(\mathbb{R})$ and of bounded variation in \mathbb{R} .

VII The kernels K_m is smooth and has bounded support.

VIII With $0 < \alpha \le 1$ as in condition II, for $m = 1, \dots, r$,

$$\sqrt{n}\frac{h_{m,n}^{2r-1}}{\log(1/h_{m,n})} \to \infty \text{ and } \sqrt{n}h_{m,n}^{2r+\alpha-1} \to 0.$$

4 Theorem

Under conditions *I-VIII*, for all $0 < a < b < \infty$, (1) holds. Moreover, if $0 < \text{Var}(Y) < \infty$, where Y is defined as in (2), then the processes $\left\{v_n\left(\vec{\lambda}\right): \vec{\lambda} \in [a,b]^r\right\}$ converge in law in $l_\infty([a,b]^r)$ (in the sense of Hoffmann-Jorgensen) to the constant Gaussian process $G\left(\vec{\lambda}\right) = G$ where G is $N(0, \text{Var}(Y_1))$, that is,

$$\left\{T_n(\vec{\lambda} \otimes \mathbf{h_n}) - T(F)\right\} \longrightarrow_d N(0, \operatorname{Var}(Y_1)),$$

uniformly in $\vec{\lambda} \in [a, b]^r$.

References

Giné, E. & Mason, D. (2008), 'Uniform in bandwidth estimation of integral functionals of the density function', Scandinavian Journal of Statistics 35(4), 739–761.