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Abstract In this paper, we show that some of the most commonly used tests of sym-
metry do not have power which is reflective of the size of asymmetry. This is because
the primary rationale for the test statistics that are proposed in the literature to test
for symmetry is to detect the departure from symmetry, rather than the quantification
of the asymmetry. As a result, tests of symmetry based upon these statistics do not
necessarily generate power that is representative of the departure from the null hypoth-
esis of symmetry. Recent research has produced new measures of asymmetry, which
have been shown to do an admirable job of quantifying the amount of asymmetry. We
propose several new tests based upon one such measure. We derive the asymptotic
distribution of the test statistics and analyse the performance of these proposed tests
through the use of a simulation study.

Keywords Symmetry · Asymmetry · Measure of asymmetry · Testing symmetry ·
Skewness

1 Introduction

The concept of symmetric random variables is important for the development and
application of statistical theory. In particular, symmetry is an important assumption for
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many statistical models. For example, symmetry assumptions are essential in deriving
many point or interval estimates of location parameters. In non-parametric statistics
such as the Wilcoxon signed-rank test, proposed by Wilcoxon (1945) to test for dif-
ferences between two samples with unknown distribution functions, the most crucial
assumption is that the samples are from symmetric populations. Since very often
the symmetry assumption does not hold in practice and the Wilcoxon signed-rank
test is not robust against the assumption of symmetry, it is essential to check the
assumption of symmetry before employing the Wilcoxon signed-rank procedure. The
non-robustness of the Wilcoxon signed-rank procedure stems from the fact that the
distribution of its test statistic is heavily dependent on the symmetry. To elaborate
further, the distribution of the test statistic based on a sample from a population with
a small departure from symmetry in the right-end is stochastically significantly larger
than theWilcoxon signed-rank test statistic based on a sample from a symmetric popu-
lation. Thismeans that the actual size of theWilcoxon signed-rank test is very different
from the advertised size, and the values of size and power that one obtains using the
standard Wilcoxon table are simply meaningless. For details, see Kasuya (2010) and
Voraprateep (2013).

Furthermore, as is the case with the Wilcoxon signed-rank test, a wide range of
statistical techniques rely on the assumption of symmetry or somewhat indirectly
on symmetry through the assumption of normality. For example, linear regression
models assume that residuals are normally distributed, and assessing the symmetry
of the residual distribution is an important precursor in assessing the normality of the
residuals. Consequently, there are a wealth of options for testing the hypothesis of
symmetry.

However, in this paper, we show that some of the most commonly used tests of
symmetry do not have power which is reflective of the size of asymmetry. This is
because the primary rationale for the test statistics that are proposed in the litera-
ture to test for symmetry is to detect the departure from symmetry, rather than the
quantification of the asymmetry. For example, a common procedure for testing for
symmetry relies on using measures of skewness. Whilst these measures are equal to
zero for symmetric random variables and non-zero for asymmetric random variables,
these measures of skewness do not measure the underlying asymmetry. In Sect. 2, we
demonstrate this undesirable feature for a number of commonly used existing tests
for symmetry using a combination of theoretical examples and a simulation study.
In Sect. 3, we introduce a recently proposed measure of asymmetry, which has been
shown to do an admirable job of quantifying the amount of asymmetry. Using this
new measure, we construct several new tests and discuss the asymptotic properties
of the new test statistics. We compare the power of the new tests with the existing
tests using a simulation study. In particular, we show that the new tests display an
improvement in power and, moreover, have power which is more reflective of the size
of asymmetry. In Sect. 4, we discuss the advantages and limitations of the proposed
tests.
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Fig. 1 The left figure shows the symmetric Normal and Cauchy density curves. The middle figure shows
the density curves of Normal mixtures of the form pN (0, 1) + (1 − p)N (2, 2), for 0 < p < 1. The
rightmost figure shows the three ‘highly’ asymmetric densities which, in order of increasing asymmetry,
are Log-Normal, Folded Normal and Exponential

2 Testing symmetry

2.1 Ordering distributions based on asymmetry

Consider samples taken fromNormal, Cauchy, Normalmixtures, Log-Normal, Folded
Normal, and Exponential populations. Figure 1 shows the density functions of these
random variables. The Normal mixtures in Fig. 1 are constructed using

pN (0, 1) + (1 − p)N (2, 2),

for p = 0.945, 0.872, 0.773 and 0.606.
It is clear from the plot on the left of Fig. 1 that the Normal and Cauchy densities

are symmetric about zero, whilst the other density functions are clearly asymmetric.
However, we are entitled to ask ‘Which of these asymmetric densities, is the most
asymmetric?’ In this case, it is possible to obtain a visual impression of the size of
asymmetry present in the random variables. For example, consider the middle plot
of Fig. 1, which shows four Normal mixture densities. As p decreases, the N (2, 2)
population has more of an effect on the mixture density and the curve becomes more
asymmetric to the right. Thus, it is clear that as p decreases from near to 1 closer to 0.5,
the resultant density becomes more asymmetric. The rightmost plot of Fig. 1 exhibits
several more extreme cases. For example, the Log-Normal density has a substantial
proportion of its probability mass concentrated to the left, and as a result, it is rea-
sonable to say that it is even more asymmetric than the Normal mixtures. Further, the
Folded Normal and the Exponential density represent an even more extreme example
of asymmetry as they have no left tail whatsoever. Observe that the Folded Normal
curve has a ‘more even spread’ of probabilitymass compared to the Exponential curve,
hence one can reason that a Folded Normal random variable is not as asymmetric as
an Exponential random variable.

Thus, for the random variables given above, we can arrive at the following ordering
of asymmetry, based on visual interpretation:

Normal <a Normal mixtures <a Log-Normal <a Folded Normal <a Exponential,
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432 C. Partlett, P. Patil

where the binary operator <a represents the sentence “. . . appears to be less asym-
metric than . . .”.

This visual ordering is supported by the work of Patil et al. (2012) and Patil et al.
(2014). An ‘ideal’ test statistic would have power which reflects this increasing depar-
ture from symmetry. In fact, it can be shown thatmany of the existing tests of symmetry
do not exhibit this desirable property.

2.2 An oversight of some existing tests

2.2.1 Theoretical evidence

There are several tests in the literature to assess the symmetry of an unknown density
f (x) based on a random sample, see, for example, Hollander (2004) and references
therein. However, these tests do not help to compare or quantify the asymmetry of the
probability density function. For example, Butler (1969) proposes a test of symmetry
based on the sample version of

η1(F) = sup
x≤0

|F(θ + x) + F(θ − x) − 1| ,

where θ is the median. Alternatively, again with θ being the median, Boos (1982)
proposes a test for symmetry using the sample version of

η2(F) =
∫
R

[F(θ + x) + F(θ − x) − 1]2 dx,

and Rothman and Woodroofe (1972) propose using the sample version of

η3(F) =
∫
R

[F(θ + x) + F(θ − x) − 1]2 dF(x).

However, with FFN and FLN, respectively, denoting the distribution functions of the
Folded Normal and Log-Normal distribution, it is readily calculated that

η1(FFN) = erf

(
2θ√
2

)
− 1 = erf

(
2 · erf−1(0.5)

)
− 1 ≈ 0.177344,

for the Folded Normal distribution and η1(FLN) ≈ 0.251508 for the Log-Normal
distribution, indicating that the Folded Normal density is less asymmetric than the
Log-Normal density, which contradicts our earlier visual inspection.

To appraise η2 and η3, consider the following simple probability density function,

fε(x) =

⎧⎪⎨
⎪⎩

1
2 + ε if −1 < x < 0
1
2 − ε if 0 < x < 1

0 otherwise,
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Fig. 2 The density functions,
f0.1 and f0.4
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where 0 ≤ ε ≤ 1
2 and let Fε denote the corresponding distribution function. Figure 2

shows the density function fε for ε = 0.1 and ε = 0.4.
Observe that purely as a function (i.e. not as a ‘probability density’ function), the

visual impression of fε(x) for all x where fε(x) > 0 is that it looks and becomes a
more and more symmetric function as ε approaches to zero and is exactly symmetric
at ε = 0. However, as ε increases towards 1/2, fε looks and becomes more and
more asymmetric and is exactly symmetric at ε = 1/2. That is, if there is a measure to
quantify the asymmetry of fε as a function of ε say, η∗(ε), then we expect η∗(ε) to be a
monotonically increasing continuous function of ε for 0 < ε < 1/2, η∗(0) = η∗(1/2),
discontinuous at 1/2 and continuous at 0.

If viewed as a probability density function though, the concept of asymmetry
changes. Let θ be the median (of fε) and write the probability density function as
fε(θ + |u|). Then, in the strict sense of the definition of symmetry, as u goes away
from zero in either direction, one expects every pair of intervals from 0 to u on either
side to have equal probability content. If this is true for every u, the density function
fε is symmetric. If this is true for every u ∈ (−M, M) for small M , fε is more asym-
metric, and for large M , it is less asymmetric. Thus, if there is a measure to quantify
the asymmetry of the probability density function fε as a function of ε say, η(ε),

then we expect η(ε) to be a monotonically decreasing continuous function of ε for
0 < ε < 1/2, η(0) = η(1/2), discontinuous at 0 and continuous at 1/2.

For example, define

η(ε) = P[X ∈ Sε],

where Sε = {x | fε(θ − x) �= fε(θ + x)}. It is clear that η(0) = η(1/2) = 0; however,
when ε is close to zero η(ε) is large. Indeed, if we consider a very small value for
ε > 0, the median θ = − 2ε

1+2ε approaches zero from the left as ε approaches zero
from the right. Hence, there is only a small interval about θ where the equality fε(θ +
x) = fε(θ − x) holds. This interval is given by [2θ, 0] ≡

[
− 4ε

1+2ε , 0
]
which clearly

shrinks as ε approaches zero. Hence, as ε approaches 0, the set of values x such
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434 C. Partlett, P. Patil

that fε(θ + x) �= fε(θ − x) consists of the entire support, with the exception of
an increasingly small interval about the median θ . Therefore, f0 is symmetric, but
when ε is close to zero, fε is very asymmetric and η(ε) is rightly discontinuous
at 0.

Thus, to be appropriate measures of asymmetry, when η2(F) and η3(F) are applied
to the probability density function fε , one expect ηi (Fε), i = 2, 3 to be monotoni-
cally decreasing continuous functions of ε for 0 < ε < 1/2, ηi (F0) = ηi

(
F1/2

)
,

discontinuous at ε = 0 and continuous at ε = 1/2. It is readily calculated that

η2(Fε) = 32ε4 − 32ε3 + 8ε2

12ε2 + 12ε + 3
,

and

η3(Fε) = −16ε2 − 8ε

2ε + 1
.

Clearly η2(F0) = η3(F0) = 0 and η2
(
F1/2

) = η3
(
F1/2

) = 0 as one would expect.
However, it is clear that η2(Fε) and η3(Fε) are continuous at zero and, as a result,
the power of the test based on the sample version of s2 and s3 will not reflect the
magnitude of asymmetry. That is, the tests proposed by Boos (1982) and Rothman
and Woodroofe (1972) will both fail to have power which increases with the amount
of asymmetry.

It is important to note that the measure of asymmetry η(ε) introduced above is only
applicable to random variables which take two values, such as X ∼ fε considered
here. This simple measure is sufficient to demonstrate the subtle nature of asymmetry;
however, inSect. 3,we revisit this idea andpropose amore generalmeasure asymmetry.

2.2.2 Other tests of symmetry

There are many other methods for testing symmetry and it is not possible to repeat the
above argument for all such tests. As a result, we shall analyse the power of several
other tests using a simulation study. Consider a random sample X1, . . . , Xn identically
drawn from a probability distribution. Then, Cabilio andMasaro (1996) propose a test
based on sample skewness,

S1 = √
n
x̄ − θ̃

s
,

where x̄ and θ̃ are the sample mean and sample median, respectively, and s is the
sample standard deviation. The simple rationale behind this statistic is the necessary
condition that for a symmetric continuous population the mean is equal to the median.
Thus, significantly large values of |S1| are indicative of departure from symmetry. As
mentioned previously, the detection of departure from symmetry is the main focus of
S1 and and not the quantification of asymmetry.
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Another test is suggested by Antille et al. (1982), who define the following test
statistic based on ranks,

R(α) = 1√
n

n∑
i=1

Gα

⎛
⎝ R

(
|Xi − θ̃ |

)

2(n + 1)

⎞
⎠ sign

(
Xi − θ̃

)
,

where Gα(x) = min(x, 1
2 − α) and R(Xi ) is defined as the rank of Xi among the

Xi s. Antille et al. (1982) propose a test based onR(α), and determine the asymptotic
properties of the test statistic. For simplicity, we only consider α = 0 and denote
S2 = R(0). Under the null hypothesis of symmetry, S2 is very close to zero and,
hence, one rejects the null for large values of |S2|.

Alternatively, Randles et al. (1980) define the following ‘triples’ test,

S3 = 1

3

(
N
3

)−1 ∑
i< j<k

[
sign(Xi + X j − 2Xk)

+ sign(Xi + Xk − 2X j ) + sign(X j + Xk − 2Xi )
]
,

where sign(u) = −1, 0, or 1 for u <,=, or > 0.A triple of observations (Xi , X j , Xk)

is defined as a right triple if the middle observation is closer to the smallest observation
than it is to the largest observation, and vice-versa for a left triple. Thus, S3 is a constant
multiple of the difference between the proportion of right and left triples. As a result,
E[S3] = 0 when the underlying distribution is symmetric. Suggesting that the class
of asymmetric probability models for which E[S3] = 0 is small, Randles et al. (1980)
use S3 for testing symmetry. It is also worthy of note that the theoretical analogue of
S3, E[S3], fails to measure the asymmetry of fε introduced in Sect. 2.2.1. Indeed, one
can show that as a function of ε, it is continuous at ε = 1/2 as required. However, it
is also continuous at ε = 0 and thus fails to quantify the asymmetry in fε when ε is
is relatively close to zero.

Gupta (1967) details the classical test of skewness based on

S4 =
1
n

∑n
i=1(Xi − X̄)3

(
1

n−1

∑n
i=1(Xi − X̄)2

) 3
2

.

As with S1, the rationale behind this test statistic is that a symmetric population has
zero skewness. Thus, significantly large values of |S4| are indicative of departure from
symmetry. Indeed, there are other tests for symmetry based on measures of skewness,
as detailed byNgatchou-Wandji (2006). However, one should bemindful that, as noted
by Li and Morris (1991), measures of skewness do not correctly indicate the degree
of asymmetry in a probability density function.

Finally, we consider the test proposed by McWilliams (1990), based on a runs
statistic. To define the test statistic, let X(1), X(2), . . . , X(n) denote the sample values
ordered from smallest to largest according to their absolute value, but retaining their
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sign, and let �i indicate the sign of X(i), i = 1, 2, . . . , n, by way of defining �i = 1
when X(i) > 0 and zero otherwise. Then define

S5 = 1 + I2 + I3 + · · · + In,

where

Ik =
{
0 if �k = �k−1
1 if �k �= �k−1

, k = 2, . . . , n

which counts the number of runs in the sequence {�i }. Under the null hypothesis of
symmetry, S5 − 1 has a binomial distribution with parameters n − 1 and 1

2 . In this
case, one rejects the null hypothesis if S5 falls in the lower tail of the null distribution.

As we have mentioned, the tests discussed in this section share a common char-
acteristic. Namely, that the rationale behind the test statistics is to detect departure
from symmetry as opposed to the quantification of asymmetry. Ley and Paindaveine
(2009), Cassart et al. (2008) and Cassart et al. (2011) propose tests that are optimal
for a specific class of alternative distributions and, for these tests, the test statistics
do quantify the asymmetry provided that the data are distributed according to the
specified alternative. However, there is no guarantee that these test statistics quantify
asymmetry in general.

2.3 Optimal tests

The tests proposed by Ley and Paindaveine (2009), Cassart et al. (2008) and Cassart
et al. (2011) behave as one should expect for their specified alternatives. That is, the
power of these tests increases as the asymmetry in the specified class of alternative
probability density functions increases. However, as one expects, there is no guaran-
tee that these tests will have power which increases with the size of asymmetry for
probability density functions outside the prescribed class of alternatives, and more
importantly, the class of functions for which the tests are optimal is too restrictive.

For example, Cassart et al. (2008) propose a test which is locally and asymptotically
optimal for Fechner-type asymmetry. Here for symmetric f1, the class of asymmetric
alternatives is of the form

fθ,σ,ξ (x) := 1

σ

[
f1

(
x − θ

(1 + ξ)σ

)
I [x ≤ θ ] + f1

(
x − θ

(1 − ξ)σ

)
I [x > θ ]

]
, (1)

where θ plays the role of a location parameter, σ is a scale parameter and ξ ∈ (−1, 1) is
a skewness parameter which quantifies the size of asymmetry. This class of two-piece
distributions includes the Fernandez and Steel (1998) distribution. Indeed, setting

σ = 1
2

(
γ + 1

γ

)
and ξ =

1
γ

−γ

γ+ 1
γ

, we obtain the Fernandez and Steel density function.

Therefore, the test for symmetry in this case is to test H0 : ξ = 0 against, for example,
H1 : ξ > 0. For this class of alternatives, the test statistic for the optimal test is
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O1 =
∑

i (Xi − θ)
(
2m∗

1 − |Xi − θ |)√
n

(
m(n)

4 − 4m∗
1
(n)m∗

3
(n) + 4

(
m∗

1
(n)
)2

m(n)
2

) ,

where

m∗
k
(n) = 1

n

n∑
i=1

|Xi − θ |k ,

and

m(n)
k = 1

n

n∑
i=1

(Xi − θ)k .

Similarly, Cassart et al. (2011) propose optimal tests for a slightly modified class
of asymmetric probability density functions

f (x) = σ−1 f1(x) − ξg1(x)
(
x2 − κ( f1)

)
I[|x | ≤ |z∗|]

− sign(ξ)f1(x)
{
I
[
|x| > sign(−ξ)|z∗|

]
− I
[
|x| ≤ sign(ξ)|z∗|

]}
,

where as before ξ ∈ R is a skewness parameter, κ is a generalised kurtosis coefficient
(κ = 3 for f1 = φ) and z∗ is the solution to

f1(z
∗) = ξg1(z

∗)((z∗)2 − κ),

where g1(x) satisfies

f1(z1) − f1(z2) =
∫ z2

z1
g1(z)dz

and f1 is a symmetric density function.
For this class of alternatives, the test statistic for the optimal test is

O2 = 1√
nγ (n)

n∑
i=1

(Xi − θ)
(
(Xi − θ)2 − 3m(n)

2

)
,

where γ (n) = m(n)
6 − 6m(n)

4 + 9
(
m(n)

2

)3
. The test based on O2 is asymptotically

equivalent to the classical test of symmetry S4.
Ley and Paindaveine (2009) propose optimal tests for symmetry based on the gen-

eral skewing mechanism proposed by Ferreira and Steel (2006),

f L(x) = l(F(x)) f (x),
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438 C. Partlett, P. Patil

where L is a distribution function over [0, 1] and l is its respective probability density
function. This is a very general class of functions and includes the Skew Normal
random variables considered in the simulation study by using l(x |λ) = 2F(λF−1(x)),
where λ ∈ R.

The test statistic for the Skew Normal alternatives is given by

O3 =
√

2
nπ

∑
i Si�

−1
(
1
2

(
1 + Ri

n+1

))

(�22)
1/2 ,

where Si = sign(Xi), and Ri denotes the rank of |Xi | among |X1|, . . . , |Xn|. Further,
� is the distribution function of the standard Normal distribution and

�22 =
∫ 1

0

2

π

(
�−1(u)

)2
.

Next, we conduct a simulation study to investigate the power behaviour of all of
the tests discussed here in relation to the amount of asymmetry in the underlying
distribution.

2.4 Simulation study

We now approximate the power (i.e. calculate the empirical power) of the tests pro-
posed by Cabilio andMasaro (1996), Antille et al. (1982), Randles et al. (1980), Gupta
(1967) andMcWilliams (1990), as well as the optimal tests proposed by Ley and Pain-
daveine (2009), Cassart et al. (2008) and Cassart et al. (2011), for a range of different
distributions. In particular, in addition to the probability distributions of section 2.1, we
consider several other classes of asymmetric distributions, namely, the Skew Normal
distribution proposed by Azzalini (1985); the Sinh-arcsinh distribution proposed by
Jones and Pewsey (2009); and the skewed distribution introduced by Fernandez and
Steel (1998). The Skew Normal distribution with parameter λ has density function

SN(z; λ) = 2φ(z)�(λz), −∞ < z < ∞,

whereφ and� are the standardNormal density and distribution functions, respectively.
Whenλ = 0, this reduces to the symmetric standardNormal distribution.Whenλ > 0,
the distribution is skewed to the right, and when λ < 0, the distribution is skewed to
the left.

The Sinh-arcsinh distribution has density function

SAS(z; ε, δ) = 1√
2π

δCε,δ(z)√
1 + z2

exp

{
−1

2
S2ε,δ(z)

}
,

where

Cε,δ(x) = cosh
[
δ sinh−1(x) − ε

]
,
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and

Sε,δ(x) = sinh
[
δ sinh−1(x) − ε

]
.

Here ε ∈ R plays the role of a skewness parameter, while δ > 0 controls the weight
of the tails.

The skewed Fernandez and Steel distribution has density function

FAS(z; γ ) = 2

γ + 1
γ

{
f

(
z

γ

)
I[z ≥ 0] + f (γ z) I[z < 0]

}
,

for some γ ∈ (0,∞). This distribution will be symmetric when γ = 1 and is asym-
metric whenever γ �= 1.

In particular, we consider the Skew Normal distributions with λ = 1.214, 1.795,
2.429, 3.221, 4.310, 5.970, 8.890, 15.570, respectively; the Sinh-arcsinh distribution
with δ = 1 and ε = 0.1, 0.203, 0.311, 0.430, 0.565, 0.727, 0.939, 1.263; and the
Fernandez and Steel distribution where f is the probability density function of the
standard Normal distribution and γ = 1.111, 1.238, 1.385, 1.564, 1.791, 2.098, 2.557,
3.388.

We simulate samples of varying sizes (n = 30, 50 and 70) from each of the proba-
bility models. We simulate each sample 10,000 times and calculate the test statistics
each time to obtain a large sample from the sampling distributions of the test statistics.
The null hypothesis of symmetry is accepted or rejected at the level α = 0.05, based
on the value of these statistics. The critical value, at which to reject symmetry, is
determined from the asymptotic distribution of the sample statistics, and then finally,
the empirical powers (the proportion of rejections) of each of the tests are reported.
We present the empirical powers of the test based on sample skewness S1 proposed
by Cabilio and Masaro (1996); the test based on ranks S2 suggested by Antille et al.
(1982); the triples test S3 proposed by Randles et al. (1980); the classical test of skew-
ness S4 presented by Gupta (1967); and runs test S5 proposed by McWilliams (1990);
as well as the optimal tests O1, O2 and O3 proposed by Ley and Paindaveine (2009),
Cassart et al. (2008) and Cassart et al. (2011), respectively.

Let NM1, NM2, NM3, NM4 denote the Normal mixtures with p = 0.945, 0.872,
0.773, 0.606, respectively, and let SN1-SN8, denote the Skew Normal distribution
with λ = 1.214, 1.795, 2.429, 3.221, 4.310, 5.970, 8.890, 15.570, respectively. Let
SAS1–SAS8 denote the Sinh-arcsinh distribution with δ = 1 and ε = 0.1, 0.203,
0.311, 0.430, 0.565, 0.727, 0.939, 1.263, respectively. Let FAS1–FAS8 denote the
Fernandez and Steel distribution with γ = 1.111, 1.238, 1.385, 1.564, 1.791, 2.098,
2.557, 3.388, respectively. The empirical powers are shown in Table 1. The table also
includes a column entitled η, which is a measure of the asymmetry in the distribution
and is formally defined in Sect. 3.

We do not simulate from theCauchy distribution for S1 as this test requires themean
of the underlyingdistribution to exist.Observe that for S1 the test has nominal empirical
level for the symmetric Normal distribution, in keeping with the set level of 0.05. For
n = 30, the empirical power is 0.036 rising to 0.04 for n = 70. As expected, the power
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steadily increases for the asymmetric families; however, the amount of power is not
related to the amount of asymmetry as determined by our previous ‘visual inspection’.
For example, for n = 30, the test S1 has power equal to 0.282 and 0.709 for the Folded
Normal andLog-Normal distributions, respectively. Although S1 identifies asymmetry
in Log-Normal with a very good power of 0.709, it does a very poor job of identifying
asymmetry in Folded Normal distribution, which is perceived to be more asymmetric
than Log-Normal, with the power of 0.282 only.

The performance of the test S2 is very similar to S1. For the symmetric distributions,
the empirical level suggests the test is conservative, while the proportion of rejections
slowly increases for the asymmetric families of distributions. However, when one
considers the extremely asymmetric distributions, although the test has good rejection
levels, its power does not reflect the size of asymmetry. For example, for n = 70,
although the Log-Normal density is less asymmetric than Exponential density, the
power of S2 does not reflect this with values of 0.704 and 0.603, respectively.

For the asymmetric distributions, the test S3 does achieve very high empirical power.
Also, although it is not perfect, it does appear to capture the size of the asymmetry
more accurately than S1 and S2. However, the test does not appear to be conservative.
Indeed, the test has an estimated type-I error rate of 0.082 for a sample of size n = 30
from a Normal population and 0.075 for a substantial sample of size n = 70 from a
Cauchy distribution.

For the classical test of skewness S4, the test has nominal empirical level for the
symmetric distributions, although the test appears to be overly conservative for the
Cauchy case. Again, for the asymmetric distributions, the test fails to capture the
asymmetry present in the most asymmetric distributions. For example, when n = 70,
the test has empirical power 0.792 for the Folded Normal distribution, but has much
less power (0.677) to detect asymmetry for the Exponential distribution.

As with the previous tests, S5 achieves nominal empirical level for the symmetric
Normal and Cauchy distributions. There is also a steady increase in power through
the increasingly asymmetric families of distributions. Again, like S2, S5 identifies
asymmetry in the Log-Normal distribution with a very good power of 0.831, but does
a very poor job of identifying asymmetry in FoldedNormal distributionwith the power
of 0.454 only.

Table 2 shows the empirical level and power for the optimal tests O1, O2 and O3.
Firstly, it is apparent that the finite sample performance of these tests is generally
poor. Indeed, for the symmetric Normal and Cauchy distributions, all of the tests have
empirical level which is much lower than the expected level of 0.05.

For example, for a normally distributed sample of size n = 70, the test based on
O1 has empirical level of 0.029, but O2 and O3 only have empirical level of 0.013 and
0.002, respectively.

The test based on O1 is locally and asymptotically optimal for the Fernandez and
Steel distribution and achieves a reasonably good power for this family of distributions.
Indeed, when n = 70, the test has empirical power ranging from 0.047 for FAS1 and
0.744 for FAS8. However, the test performs poorly outside of this class of densities,
only achieving an empirical power of 0.400 for a Log-Normal sample of size n = 70.

The performance of the test based on O2 is similar to O1, although it generally
achieves lower power than the first test. Again, the finite sample performance appears
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Table 2 Empirical power/level of the tests O1, O2 and O3 for a variety of density functions and sample
sizes

η Dist. O1 O2 O3

n = 30 n = 50 n = 70 n = 30 n = 50 n = 70 n = 30 n = 50 n = 70

0 N 0.013 0.021 0.029 0.004 0.011 0.013 0.000 0.002 0.002

0 C 0.003 0.003 0.003 0.002 0.002 0.002 0.000 0.000 0.000

0.1 NM1 0.012 0.021 0.038 0.005 0.010 0.018 0.000 0.002 0.003

0.2 NM2 0.022 0.083 0.174 0.010 0.042 0.096 0.000 0.002 0.006

0.3 NM3 0.070 0.241 0.453 0.030 0.112 0.263 0.000 0.005 0.012

0.4 NM4 0.130 0.402 0.657 0.040 0.167 0.370 0.001 0.015 0.050

0.1 SN1 0.014 0.036 0.050 0.006 0.015 0.028 0.000 0.002 0.004

0.2 SN2 0.025 0.068 0.122 0.009 0.030 0.070 0.000 0.004 0.009

0.3 SN3 0.042 0.130 0.254 0.014 0.052 0.130 0.000 0.009 0.020

0.4 SN4 0.064 0.221 0.415 0.018 0.087 0.216 0.001 0.011 0.040

0.5 SN5 0.092 0.319 0.553 0.025 0.125 0.303 0.001 0.023 0.073

0.6 SN6 0.116 0.398 0.668 0.030 0.159 0.369 0.003 0.040 0.109

0.7 SN7 0.142 0.450 0.729 0.037 0.182 0.411 0.003 0.054 0.140

0.8 SN8 0.152 0.505 0.772 0.041 0.196 0.442 0.004 0.059 0.156

0.1 SAS1 0.018 0.031 0.044 0.005 0.015 0.025 0.000 0.002 0.004

0.2 SAS2 0.026 0.066 0.111 0.008 0.026 0.057 0.000 0.003 0.010

0.3 SAS3 0.045 0.129 0.249 0.014 0.052 0.129 0.000 0.006 0.021

0.4 SAS4 0.066 0.230 0.419 0.018 0.091 0.219 0.001 0.013 0.044

0.5 SAS5 0.102 0.343 0.603 0.027 0.127 0.317 0.002 0.028 0.088

0.6 SAS6 0.143 0.477 0.745 0.033 0.171 0.389 0.002 0.057 0.161

0.7 SAS7 0.186 0.585 0.843 0.042 0.199 0.428 0.005 0.107 0.260

0.8 SAS8 0.228 0.647 0.883 0.045 0.198 0.420 0.011 0.162 0.379

0.1 FAS1 0.015 0.034 0.047 0.004 0.014 0.023 0.000 0.003 0.004

0.2 FAS2 0.023 0.070 0.114 0.008 0.026 0.057 0.000 0.005 0.010

0.3 FAS3 0.041 0.114 0.229 0.010 0.043 0.119 0.001 0.007 0.023

0.4 FAS4 0.056 0.192 0.369 0.017 0.081 0.194 0.001 0.014 0.040

0.5 FAS5 0.078 0.284 0.515 0.021 0.114 0.280 0.002 0.025 0.064

0.6 FAS6 0.106 0.364 0.617 0.027 0.148 0.359 0.002 0.039 0.095

0.7 FAS7 0.127 0.432 0.698 0.034 0.183 0.404 0.003 0.045 0.124

0.8 FAS8 0.140 0.482 0.744 0.038 0.205 0.431 0.004 0.059 0.143

0.91 LN 0.106 0.260 0.400 0.015 0.038 0.070 0.019 0.252 0.548

0.95 FN 0.157 0.509 0.790 0.041 0.213 0.456 0.004 0.070 0.173

1 EXP 0.181 0.495 0.711 0.032 0.116 0.232 0.016 0.201 0.441

to be relatively poor, and the empirical power is improved markedly as the sample size
increases.

The test based on O3 is particularly poor when there are only n = 30 observations,
with very few rejections for any of the distributions. Indeed, even for the extremely
asymmetric Exponential distribution, the empirical power is just 0.016. Moreover,
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while the test is defined so as to be locally and asymptotically optimal for the Skew
Normal distributions, the empirical power is still very low in these cases, although
there is improvement as the sample size is increased.

2.5 Discussion

For the tests that are under investigation here, we demonstrated that they have either
very poor power or the magnitude of the power does not reflect the size of asymmetry.
The simulation study and theory proposed inSect. 2.2.1 validates the claim that existing
tests of symmetry fail to capture the size of asymmetry in the underlying distribution.
There are many other methodologies for testing symmetry and for further details on
these different methods the authors recommend referring to Hollander (2004) and the
references therein. It is not practical to demonstrate this point, through simulations or
otherwise, for all other tests of symmetry. However, the theory in Sect. 2.2.1 and the
extensive simulation studies in Sect. 2.4 suggest that existing tests of symmetry fail
to generate power that is representative of the amount of asymmetry in the underlying
distribution.

Recent research has led to the development of new measures aimed at quantifying
the size of asymmetry, and the main subject of the rest of this paper is to explore the
use of one such measure to test symmetry.

3 Measuring asymmetry

3.1 A recently proposed measure of asymmetry

Intuitively it is believed that asymmetry is something that can be measured. When
presented with two similar density curves, it is usually possible to provide some ratio-
nale on why one is more or less asymmetric than the other density curve (it was
precisely this type of reasoning that generated our <a orderings in the previous sec-
tion). Despite this, it is a challenge to find a mathematical expression to effectively
calibrate or quantify the amount of asymmetry.

Several measures of asymmetry have in fact been proposed. For example, see
MacGillivray (1986) and Boshnakov (2007) and the references therein. However,
each of these limits the class of density functions in one way or another. For a more
general discussion on measuring asymmetry refer to Patil et al. (2012). Patil et al.
(2012) propose measuring asymmetry using

η(X) = η(F) =
{−Corr( f (X), F(X)) if 0 < Var( f (X)) < ∞
0 if Var( f (X)) = 0,

where X is a continuous random variable, with continuous probability density func-
tion f and distribution function F . This approach is founded on the fact that, for a
symmetric random variable X with continuous probability density function f ,

Cov( f (X), F(X)) = 0.
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A measure such as η is particularly desirable as, since it is based on f (X) and F(X),
it utilises the maximum possible information available to quantify the asymmetry.
Indeed, Patil et al. (2012) show that this user-friendly measure does a good job of
quantifying the asymmetry of a number of different distributions.

For example, consider the fε density introduced in Sect. 2.2.1. Technically the
above measure cannot be applied to the density function fε since it is discontinu-
ous; however, it is the limiting case of the following continuous probability density
function,

fε,δ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 + ε if − 1 < x < −δ

1
2 − ε

δ
x if − δ < x < δ

1
2 − ε if δ < x < 1

0 otherwise,

as δ → 0. One can apply the above measure to fε,δ(x), for a very small value of δ.

However, since the lessons learned there remain valid if we apply it to fε , for sim-
plicity we evaluate η(Fε). Note that if ε = 0 or 1

2 then Var( fε(X)) = 0 and therefore
η(Fε) = 0 trivially. Therefore, we concern ourselves only with 0 < ε < 1

2 . Note that
in this case

η(Fε) =
√
3

2

√
1 − 4ε2.

Analysis of this function reveals that η is able to measure the amount of asymmetry in
this distribution and that it is concurrent with our understanding of asymmetry for this
special case. Note that η

(
F1/2

)
is zero and η(Fε) increases as ε → 0. Furthermore,

at ε equal to zero, η(Fε) is discontinuous and η (F0) = 0 correctly identifying that f0
is a symmetric density.

It may be worth mentioning that the quantification of asymmetry ξ provided by
Cassart et al. (2008) is different from η. For example, if f1 is taken to be a standard
Normal density in equation (1) (with θ = 0 and σ = 1) then as |ξ | → 1, |η| →
0.95.

In a recent article, Patil et al. (2014) discuss a stronger measure ηs , where the
condition ηs = 0 is a necessary and sufficient condition for symmetry. Unfortunately,
a drawback of the stronger measure ηs is a loss of the ‘user-friendly’ aspect of η. Thus,
we propose using η to devise a test for symmetry. But before that, the next subsection
gives a brief description regarding the estimation of η.

3.2 Estimating η

Patil et al. (2012) construct three competing estimates of η. These are based upon
calculating the sample correlation using different estimates for f and F . For example,
f (Xi ) is estimated using kernel smoothing,
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f̂ (Xi ) = 1

n − 1

1

h

n∑
j �=i

K

(
X j − Xi

h

)
,

where K is a kernel density and h is the bandwidth. Now F(Xi ) is estimated by

F̂(Xi ) = 1

n − 1

n∑
j �=i

I[X j < Xi ].

We estimate η using

η̂ = −
∑n

i=1 f̂ (Xi )F̂(Xi ) − n ¯̂f ¯̂F√(∑n
i=1( f̂ (Xi ))2 − n ¯̂f 2

) (∑n
i=1(F̂(Xi ))2 − n ¯̂F2

) ,

where ¯̂f = 1
n

∑
i f̂ (Xi ) and ¯̂F = 1

n

∑
i F̂(Xi ). It was shown via simulation that

η̂ is the most effective estimator of η considered by Patil et al. (2012). Further-
more, they state that standard methods can be used to show the consistency of this
estimate.

3.3 Test statistics and asymptotic analysis

The simplest suggestion for a test statistic based on η̂ to test for symmetry is to use η̂

directly. For example, the standardised test statistic would be

T1 := √
n

η̂√
σ̂ 2
1

,

where σ̂ 2
1 is the estimate of the variance of

√
nη̂.

Observe that η̂ is effectively a sample correlation coefficient, but Tjostheim (1996)
notes that the estimation of the sample correlation coefficient r is somewhat problem-
atic. Indeed, Tjostheim states that, “It is well established that the sampling distribution
of the sample correlation coefficient is appreciably skewed for quite substantial sample
sizes”. This presents a problem when using T1 as a test statistic to test for symmetry.
However, the Fisher Z -transform of r ,

Z(r) = 1

2
log

(
1 + r

1 − r

)
,

is known to be a better approximation to normality. Indeed, simulations appear to
suggest that the finite sample behaviour of Z(η̂) is better than η̂, that is, Z(η̂) appears
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to follow a Normal distribution more closely than η̂ for small samples. This motivates
a second test statistic

T2 := √
n
Z
(
η̂
)

√
σ̂ 2
2

,

where σ̂ 2
2 is the estimate of the variance of

√
nZ
(
η̂
)
.

An alternative way to avoid dealing with the asymptotic behaviour of T1 is to
simply ignore the denominator terms in η̂. Indeed, if we are only interested in testing
for symmetry (and not providing a scaled measure of the asymmetry in the sample),
then we can simply base our test statistic on ν f F = Cov( f (X), F(X)). That leads to

T3 := √
n

ν̂ f F√
σ̂ 2
3

,

where

ν̂ f F = 1

n

n∑
i=1

f̂ (Xi )

(
F̂(Xi ) − 1

2

)
,

and σ̂ 2
3 is the estimate of the variance of

√
nν̂ f F .

The asymptotic distributions of η̂, Z(η̂) and ν̂ f F are established in Theorem 1
below. For that, we require the following assumptions:

A1 Assume that E[ f 2(X)] < ∞.
A2 The kernel function K is smooth, has bounded support and is of bounded variation.
A3 The bandwidth h ∼ n−γ for 1

4 ≤ γ < 1
2 .

Theorem 1 Let X1, . . . , Xn be a random sample from a continuous probability den-
sity function f (x) and distribution function F(x) and further suppose that assumptions
A1,A2 and A3 all hold. Then as n → ∞,

(i)
√
n
[
η̂ − η

] L−→ N (0, σ 2),

(ii)
√
n
[
Z(η̂) − Z(η)

] L−→ N (0, τ 2),

(iii)
√
n
[
ν̂ f F − ν f F

] L−→ N (0, υ2),

where

σ 2 = Var

[
2√

ν f νF

(
f (X)F(X) − 1

2
f (X)

)
+
∫ ∞

X

f (y)2√
ν f νF

dy

+ η

{(
F(X) − 1

2

)2
2νF

+ ( f (X) − μ f )
2

2ν f
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+
∫ ∞

X

(
F(y) − 1

2

)
νF

f (y)dy + ( f (X) − μ f ) f (X)

ν f

}]
,

τ 2 = σ 2

(1 − η2)2
,

υ2 = Var

[
2

(
f (X)F(X) − 1

2
f (X)

)
+
∫ ∞

X
f (y)2dy

]
, (2)

where ν f and νF denote Var( f (X)) and Var(F(X))
(= 1

12

)
, respectively, and μ f =

E[ f (X)].

We present the proof of (i) and (i i i) below using Theorem 1 from Giné and Mason
(2008).More details regarding this theorem are given in the appendix. Further, a simple
application of the delta method to (i) gives (i i).

Proof Recall that

η̂ = −Ĉorr
(
f̂ , F̂

)
= −

∑
i

(
f̂i − ¯̂f

) (
F̂i − ¯̂F

)
√∑

i

(
f̂i − ¯̂fi

)2√∑
i

(
F̂i − ¯̂Fi

)2 ,

where f̂i = f̂ (Xi ) and F̂i = F̂(Xi ), for i = 1, . . . , n. This is an estimate of the
population correlation coefficient

η = −Corr ( f (X), F(X)) = −E[ f (X)F(X)] − E[ f (X)]E[F(X)]√
Var[ f (X)]Var[F(X)] .

To ease the notation let

ν f F = E[ f (X)F(X)] − E[ f (X)]E[F(X)],
ν̂ f F = 1

n

∑
i

(
f̂i − ¯̂f

) (
F̂i − ¯̂F

)
= 1

n

∑
i

(
f̂i
) (

F̂i − ¯̂F
)

= 1

n

∑
i

f̂i

(
F̂i − 1

2

)
,

ν f = Var[ f (X)],
ν̂ f = 1

n

∑
i

(
f̂i − ¯̂f

)2
,

νF = Var[F(X)] = 1

12
,

ν̂F = 1

n

∑
i

(
F̂i − ¯̂F

)2 = 1

n

∑
i

(
F̂i − 1

2

)2
.
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Then

η̂ = − ν̂ f F√
ν̂ f ν̂F

and η = − ν f F√
ν f νF

.

Firstly, observe that

√
n(η̂ − η) = −√

n

(
ν̂ f F√
ν̂ f ν̂F

− ν f F√
ν f νF

)

= −√
n

(
ν̂ f F√
ν̂ f ν̂F

− ν f F√
ν̂ f ν̂F

+ ν f F√
ν̂ f ν̂F

− ν f F√
ν f νF

)

= −√
n

1√
ν̂ f ν̂F

(
ν̂ f F−ν f F

)+√
n

ν f F√
ν̂ f ν̂F

√
ν f νF

(√
ν̂ f ν̂F−√

ν f νF

)
.

(3)

Ignoring the sign of the first term on the right-hand side of Eq. (3) rewrite

√
n

1√
ν̂ f ν̂F

(
ν̂ f F − ν f F

) = √
n

1√
ν f νF

(
ν̂ f F − ν f F

)+ √
n

1√
ν̂ f ν̂F

(
ν̂ f F − ν f F

)

− √
n

1√
ν f νF

(
ν̂ f F − ν f F

)

= √
n

1√
ν f νF

(
ν̂ f F − ν f F

)+ √
n

1√
ν̂ f ν̂F

√
ν f νF

× (ν̂ f F − ν f F
) (√

ν f νF −
√

ν̂ f ν̂F

)
.

Claim 1
√
n
(
ν̂ f F − ν f F

)
converges in law to a Normal distribution with finite

variance.
From Hall and Marron (1987), it follows that ν̂ f and ν̂F converge in probability to

ν f and νF . Therefore, by this fact and Claim 1, we have

√
n

1√
ν̂ f ν̂F

(
ν̂ f F − ν f F

) = √
n

1√
ν f νF

(
ν̂ f F − ν f F

)+ op(1). (4)

Write the second term in Eq. (3) as

√
n

ν f F√
ν̂ f ν̂F

√
ν f νF

(√
ν̂ f ν̂F − √

ν f νF

)

= √
n

ν f F
(
ν̂ f ν̂F − ν f νF

)
√

ν̂ f ν̂F
√

ν f νF
(√

ν̂ f ν̂F + √
ν f νF

)

= √
nν f F

ν̂ f ν̂F − ν f νF

2ν f νF
√

ν f νF
+ √

nν f F
(
ν̂ f ν̂F − ν f νF

)
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× 2ν f νF −√ν̂ f ν̂F
(√

ν̂ f ν̂F + √
ν f νF

)
2ν f νF

√
ν f νF

√
ν̂ f ν̂F

(√
ν̂ f ν̂F + √

ν f νF
)

= √
nν f F

ν̂ f ν̂F − ν f νF

2ν f νF
√

ν f νF
+ op(1), (5)

again, using the fact that ν̂ f and ν̂F converge in probability to ν f and νF . Furthermore,

√
n
(
ν̂ f ν̂F−ν f νF

) = √
n
(
ν f (ν̂F−νF )+νF (ν̂ f −ν f )

)+√
n
(
ν̂ f −ν f

) (
ν̂F − νF

)
= √

n
(
ν f (ν̂F − νF )+νF (ν̂ f − ν f )

)+op(1). (6)

Hence, using Eqs. (4), (5), and (6), rewrite (3) as

√
n(η̂ − η) = −√

n

(
1√

ν f νF

(
ν̂ f F − ν f F

)

− ν f F

2ν f νF
√

ν f νF

(
ν f (ν̂F − νF ) + νF (ν̂ f − ν f

))+ op(1)

= −√
n

(
1√

ν f νF

(
ν̂ f F − ν f F

)− ν f F

2νF
√

ν f νF

(
ν̂F − νF

)

− ν f F

2ν f
√

ν f νF

(
ν̂ f − ν f

))+ op(1).

The leading order term in the expansion for
√
n(η̂ − η) is composed of three parts.

We show that the linear combination is asymptotically Normal by applying Theorem
1 given by Giné and Mason (2008). Firstly, observe that

√
nν̂ f = √

n
1

n

n∑
i=1

(
f̂i − ¯̂f

)2

= √
n
1

n

n∑
i=1

(
f̂i − μ f

)2 + op(1),

where μ f = E[ f (X)]. Hence, defining

ν̃ f = 1

n

n∑
i=1

(
f̂i − μ f

)2
,

it is clear that

√
n(η̂ − η) = −√

n

(
1√

ν f νF

(
ν̂ f F − ν f F

)
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− ν f F

2νF
√

ν f νF

(
ν̂F − νF

)− ν f F

2ν f
√

ν f νF

(
ν̃ f − ν f

))+ op(1)

= −√
n�̂ + op(1),

where

�̂ = 1√
ν f νF

(
ν̂ f F
)− ν f F

2νF
√

ν f νF

(
ν̂F
)− ν f F

2ν f
√

ν f νF

(
ν̃ f
)
.

Claim 2
√
n�̂

L−→ N (0, σ 2).

The proof of the Theorem will be complete if we prove Claim 1 and Claim 2. Since
the proofs of Claim 1 and 2 are similar we prove Claim 2, whilst Claim 1 follows
similarly. Observe that �̂ is in the form

1

n

n∑
i=1

φ̂
(
f̂ (Xi ), F̂(Xi )

)
,

and is an estimator of

� =
∫ ∞

−∞

{
f (x)F(x) − 1

2 f (x)√
ν f νF

− ν f F

2νF
√

ν f νF

(
F(x) − 1

2

)2

− ν f F

2ν f
√

ν f νF
( f (x) − μ f )

2

}
f (x)dx = 0.

Therefore, we can apply Theorem 1 of Giné and Mason (2008) to show that �̂ is
asymptotically Normal once we have verified the conditions I–VIII of the theorem.
These conditions are described in detail in the appendix. Conditions I, VI, VII and
VIII hold directly from the assumptions A1,A2 and A3. Also, under the assumption
A3, condition II holds with H = f as the suitable measurable function. To verify the
remaining conditions note that, in Giné and Mason’s notation, we have

ψ(x, F(x), f (x)) = f (x)F(x) − 1
2 f (x)√

ν f νF
− ν f F

2νF
√

ν f νF

(
F(x) − 1

2

)2

− ν f F

2ν f
√

ν f νF
( f (x) − μ f )

2,

ψ(x, y0, y1) = y0y1 − 1
2 y1√

ν f νF
− ν f F

2νF
√

ν f νF

(
y0 − 1

2

)2

− ν f F

2ν f
√

ν f νF
(y1 − μ f )

2.

Further,

ψm(x) = ∂

∂ym
ψ(x, y0, y1)

∣∣
(x,F(x), f (x)).
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Hence,

ψ0(x) = ∂

∂y0
ψ(x, y0, y1) = y1√

ν f νF
− ν f F

νF
√

ν f νF

(
y0 − 1

2

)

= f (x)√
ν f νF

− ν f F

νF
√

ν f νF

(
F(x) − 1

2

)
,

ψ1(x) = ∂

∂y1
ψ(x, y0, y1) = y0 − 1

2√
ν f νF

− ν f F

ν f
√

ν f νF
(y1 − μ f )

= F(x) − 1
2√

ν f νF
− ν f F

ν f
√

ν f νF
( f (x) − μ f ).

Therefore, III and IV hold under the assumption A1.
Further define

ξ(X) = ψ(X) − E [ψ(X)]

= f (X)F(X) − 1
2 f (X)√

ν f νF
− ν f F

2νF
√

ν f νF

(
F(X) − 1

2

)2

− ν f F

2ν f
√

ν f νF
( f (X) − μ f )

2,

ξ0(X) =
∫ ∞

X

{
f (y)√
ν f νF

− ν f F

νF
√

ν f νF

(
F(y) − 1

2

)}
f (y)dy − 1

2

μ f√
ν f νF

,

χ1(y) = ψ1(y) f (y)

= F(y) f (y) − 1
2 f (y)√

ν f νF
− ν f F

ν f
√

ν f νF
( f (y) − μ f ) f (y).

Hence, condition V is also satisfied. Define

ξ1(X) = χ1(X) − E [χ1(X)]

= F(X) f (X) − 1
2 f (X)√

ν f νF
− ν f F

ν f
√

ν f νF
( f (X) − μ f ) f (X).

Finally, define

Y = ξ(X) + ξ0(X) + ξ1(X)

= f (X)F(X) − 1
2 f (X)√

ν f νF
− ν f F

2νF
√

ν f νF

(
F(X)− 1

2

)2

− ν f F

2ν f
√

ν f νF
( f (X) − μ f )

2
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+
∫ ∞

Xi

{
f (y)√
ν f νF

− ν f F

νF
√

ν f νF

(
F(y) − 1

2

)}
f (y)dy − 1

2

μ f√
ν f νF

+ F(X) f (X) − 1
2 f (X)√

ν f νF
− ν f F

ν f
√

ν f νF
( f (X) − μ f ) f (X).

Hence, we can conclude, under the assumptions A1–A3, that
√
n
(
�̂ − �

)
is asymp-

totically normally distributed with mean 0 and variance

σ 2 :=Var(Y )=Var

[
2√

ν f νF

(
f (X)F(X)− 1

2
f (X)

)
+
∫ ∞

Xi

f (y)2√
ν f νF

dy− 1

2

μ f√
ν f νF

− ν f F

{(
F(X) − 1

2

)2
2νF

√
ν f νF

+ ( f (X) − μ f )
2

2ν f
√

ν f νF
+
∫ ∞

Xi

(
F(y) − 1

2

)
νF

√
ν f νF

f (y)dy

+ ( f (X) − μ f ) f (X)

ν f
√

ν f νF

}]

= Var

[
2√

ν f νF

(
f (X)F(X) − 1

2
f (X)

)
+
∫ ∞

Xi

f (y)2√
ν f νF

dy

− ν f F√
ν f νF

{(
F(X) − 1

2

)2
2νF

+ ( f (X) − μ f )
2

2ν f
+
∫ ∞

Xi

(
F(y) − 1

2

)
νF

f (y)dy

+ ( f (X) − μ f ) f (X)

ν f

}]

= Var

[
2√

ν f νF

(
f (X)F(X) − 1

2
f (X)

)
+
∫ ∞

Xi

f (y)2√
ν f νF

dy

+ η

{(
F(X) − 1

2

)2
2νF

+ ( f (X) − μ f )
2

2ν f
+
∫ ∞

Xi

(
F(y) − 1

2

)
νF

f (y)dy

+ ( f (X) − μ f ) f (X)

ν f

}]
.


�
The expression for the variance given in Eq. (2) is complicated, as well as difficult

to estimate, and thus, the next subsection is devoted to discussing a variety of methods
to estimate the variance σ 2.

3.4 Estimating the variance

We now provide details of how to estimate the variance σ 2 in Eq. (2), which is asso-
ciated with test statistic T1. The variances associated with the other test statistics can
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be estimated by similar methods. One approach is to estimate σ 2 using the Monte
Carlo method replacing f and F with f̂ and F̂ , respectively, and evaluating the inte-
grals using a numerical method. Under the null hypothesis of symmetry η = 0, and
therefore, in this case, σ 2 reduces to

σ 2
0 = 1

ν f νF
Var

(
2

{
f (X)F(X) − 1

2
f (X)

}
+
∫ ∞

X
f 2(y)dy

)
.

To ease the notation somewhat let

�1(X) =
∫ ∞

X
f 2(y)dy.

Hence, for symmetric random variables, we have

σ 2
0 = 1

ν f νF
Var

[
2

{
f (X)F(X) − 1

2
f (X)

}
+ �1(X)

]

= 1

ν f νF

(
Var

[
2

{
f (X)F(X) − 1

2
f (X)

}]
+ Var [�1(X)]

+ 2Cov

(
2

{
f (X)F(X) − 1

2
f (X)

}
,�1(X)

))

= 1

ν f νF

(
E

[
4

{
f (X)F(X) − 1

2
f (X)

}2]
+ Var [�1(X)]

+ 4E

[{
f (X)F(X) − 1

2
f (X)

}
�1(X)

])

= 1

ν f νF

(
4E
[
f (X)2F(X)2

]
+ E

[
f (X)2

]
− 4E

[
f (X)2F(X)

]

+ E
[
�1(X)2

]
− [E�1(X)]2

+ 4E [ f (X)F(X)�1(X)] − 2E [ f (X)�1(X)]
)

.

Further, observe that by changing the order of integration

E [�1(X)] = E

[∫ ∞

X
f 2(u)du

]
=
∫ ∞

−∞
f (y)

∫ ∞

y
f 2(u)dudy

=
∫ ∞

−∞
f 2(u)

∫ u

−∞
f (y)dydu

=
∫ ∞

−∞
f 2(u)F(u)du = E [ f (X)F(X)] ,
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and

E [ f (X)�1(X)] = E

[
f (X)

∫ ∞

X
f 2(u)du

]
=
∫ ∞

−∞
f 2(y)

∫ ∞

y
f 2(u)dudy

=
∫ ∞

−∞
f 2(u)

∫ u

−∞
f 2(y)dydu

=
∫ ∞

−∞
f 2(u)

{
E[ f (X)] −

∫ ∞

u
f 2(y)dy

}
du

= E[ f (X)]2 − E [ f (X)�1(X)] .

Thus, under the null hypothesis

E [�1(X)] = 1

2
E [ f (X)] = E [ f (X)F(X)] ,

2E [ f (X)�1(X)] = [E f (X)]2 = 4 [E f (X)F(X)]2 .

Hence,

σ 2
0 = 1

ν f νF

{
4m22 + m20 − 4m21

}
+ 4

{
E [ f (X)F(X)�1(X)] − m2

11

}

+
{
E[�1(X)2] − m2

11

}
,

where

mi j = E
[
f (X)i F(X) j

]
, i = 1, 2, j = 0, 1, 2.

For a random sample, we can readily estimate mi j using

m̂i j = 1

n

n∑
k=1

f̂ (Xk)
i F̂(Xk)

j i = 1, 2, j = 0, 1, 2.

One can readily generalise the results of Hall and Marron (1987) to verify the consis-
tency of m̂i j . Even in this greatly reduced form, the presence of the terms involving
�1(X) means that the expression for the variance is a complex one to evaluate in
practice. In general, one could carry out a numerical integration technique using the
estimated density function f̂ (x) in place of f (x). Alternatively, in most situations,
one is primarily interested in whether samples are taken from a Normal population.
If we add the additional assumption (under the null hypothesis) that X is a normally
distributed random variable, we obtain

∫ ∞

x
f 2(y)dy = 1

4
√

πσX
cerf

(
x − μX

σX

)
,
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where μX and σX are the mean and variance of the random variable X , respectively,
and

cerf(z) = 2√
π

∫ ∞

z
e−t2dt,

is the complementary error function. This greatly simplifies the expression for the
variance under the null hypothesis and removes the need to carry out a computationally
expensive numerical integration technique.

More generally, one can define

Yi =
[

2√
ν̂ f ν̂F

(
f̂ (Xi )F̂(Xi ) − 1

2
f (Xi )

)
+ 1√

ν̂ f ν̂F
�̂1(Xi )

+ η̂

⎧⎪⎨
⎪⎩

(
F̂(Xi ) − 1

2

)2
2ν̂F

+
(
f̂ (Xi ) − ¯̂f

)2
2ν̂ f

+�̂2(Xi )+
(
f̂ (Xi ) − ¯̂f

)
f̂ (Xi )

ν̂ f

⎫⎪⎬
⎪⎭

⎤
⎥⎦ ,

where �̂1(X) is a numerical approximation of the integral �1(X) using f̂ (X) as an
estimate of the curve f (x), and �̂2(X) is a numerical approximation of

∫ ∞

Xi

(
F(y) − 1

2

)
νF

f (y)dy,

estimating f and F by f̂ and F̂ , respectively. It is then possible to estimate σ 2 using

σ̂ 2 = V̂ar(Y ) = 1

n − 1

n∑
i=1

(Yi − Ȳ )2. (7)

The R code for calculating the test statistics T1, T2, and T3 using the variance estimate
in Eq. (7) is available in the appendix.

It is also important to note that, the asymmetry measure η is based on the function-
als of f , and the test statistics are based on the estimation of η, that is, estimation of
functionals of f . We estimate these functionals by replacing f by its non-parametric
kernel-based estimator. As is the case for kernel-based estimators of the density func-
tion, the choice of kernel has no bearing on the convergence rate of the estimators of
these functionals. Also following the results of Hall and Marron (1987), it is easy to
note that for a reasonable range of bandwidths, these estimators converge to the true
value with mean squared error rate n−1.

3.5 Power analysis of new tests

We subject the three new test statistics to a similar simulation study as in Sect. 2. Once
again, the test statistic is generatedm = 10, 000 times from samples of size n = 30, 50
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and 70. In each case, the density function is estimated using a Normal kernel, and the
bandwidth is estimated using the simple rule of thumb given by Silverman (1986),
based on normality. Table 3 shows the results where σ 2 is estimated from the data (for
example, the variance of T1 is estimated from the sample using σ̂ 2 defined in Eq. (7)
and similarly for the other tests).

Table 3 Empirical power/level of the tests based on T1, T2 and T3 for a variety of density functions and
sample sizes

η Dist. T1 T2 T3

n = 30 n = 50 n = 70 n = 30 n = 50 n = 70 n = 30 n = 50 n = 70

0 N 0.040 0.037 0.038 0.004 0.017 0.023 0.012 0.016 0.020

0 C 0.037 0.036 0.035 0.006 0.018 0.026 0.020 0.023 0.028

0.1 NM1 0.049 0.055 0.059 0.006 0.025 0.040 0.020 0.028 0.038

0.2 NM2 0.075 0.113 0.147 0.008 0.056 0.098 0.044 0.074 0.117

0.3 NM3 0.128 0.229 0.321 0.020 0.131 0.251 0.088 0.188 0.303

0.4 NM4 0.202 0.392 0.573 0.031 0.257 0.460 0.136 0.330 0.528

0.1 SN1 0.046 0.054 0.060 0.005 0.025 0.036 0.017 0.026 0.033

0.2 SN2 0.068 0.100 0.127 0.006 0.049 0.087 0.028 0.049 0.088

0.3 SN3 0.105 0.179 0.261 0.014 0.097 0.184 0.055 0.113 0.199

0.4 SN4 0.167 0.296 0.425 0.021 0.175 0.328 0.091 0.223 0.366

0.5 SN5 0.251 0.446 0.591 0.033 0.277 0.468 0.154 0.351 0.531

0.6 SN6 0.359 0.574 0.737 0.045 0.367 0.607 0.218 0.501 0.701

0.7 SN7 0.443 0.681 0.841 0.051 0.406 0.670 0.300 0.610 0.791

0.8 SN8 0.506 0.757 0.883 0.043 0.370 0.679 0.361 0.690 0.868

0.1 SAS1 0.044 0.050 0.061 0.005 0.025 0.037 0.017 0.025 0.030

0.2 SAS2 0.069 0.096 0.130 0.008 0.050 0.084 0.028 0.052 0.082

0.3 SAS3 0.109 0.186 0.257 0.011 0.096 0.174 0.047 0.110 0.183

0.4 SAS4 0.170 0.311 0.436 0.023 0.185 0.329 0.090 0.221 0.358

0.5 SAS5 0.270 0.477 0.655 0.036 0.309 0.543 0.158 0.387 0.592

0.6 SAS6 0.408 0.671 0.833 0.055 0.455 0.729 0.265 0.579 0.792

0.7 SAS7 0.581 0.838 0.948 0.080 0.613 0.878 0.424 0.779 0.931

0.8 SAS8 0.738 0.936 0.987 0.079 0.656 0.934 0.607 0.917 0.983

0.1 FAS1 0.047 0.046 0.063 0.005 0.023 0.034 0.017 0.022 0.029

0.2 FAS2 0.070 0.098 0.128 0.006 0.044 0.080 0.025 0.049 0.079

0.3 FAS3 0.103 0.172 0.247 0.012 0.092 0.174 0.050 0.108 0.175

0.4 FAS4 0.170 0.281 0.402 0.021 0.161 0.292 0.079 0.190 0.310

0.5 FAS5 0.242 0.405 0.556 0.030 0.241 0.429 0.134 0.309 0.477

0.6 FAS6 0.326 0.541 0.687 0.036 0.317 0.542 0.198 0.436 0.636

0.7 FAS7 0.409 0.645 0.794 0.043 0.357 0.629 0.276 0.566 0.773

0.8 FAS8 0.482 0.729 0.866 0.040 0.343 0.641 0.333 0.658 0.851

0.91 LN 0.908 0.991 0.999 0.074 0.540 0.906 0.882 0.994 1.000

0.95 FN 0.550 0.790 0.910 0.035 0.305 0.618 0.392 0.744 0.903

1 EXP 0.866 0.981 0.998 0.037 0.296 0.676 0.784 0.976 0.998
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For all three tests,weobserve a steady increase in power for the asymmetric families.
For the remaining asymmetric distributions (Log-Normal, Folded Normal, Exponen-
tial), the test achieves a much higher level of power. Furthermore, whilst not perfect,
the amount of power is closely related to the amount of asymmetry. This is to be
expected since the tests are based on η, which has previously been identified as a
more effective measure of the magnitude of asymmetry. For example, for n = 50, the
empirical power of T1 for the Log-Normal and Folded Normal distribution is 0.994
and 0.786, respectively. This is considerably better than the empirical power for S1, S2
and S4, and comparable to that achieved by S3.

It is clear that, of the newly proposed tests, the test based on T1 performs best
in terms of power. Indeed, in Table 3, the empirical powers of the test based on
T1 are uniformly larger than T2 and T3 for the asymmetric distributions. In fact, T1
outperforms the existing tests S1, S2 and S4 in terms of power and, whilst S3 has
marginally higher power than T1, recall that S3 is not conservative. Indeed, for a
Normal sample, T1 has estimated type-I error of 0.040 for n = 30 compared to
0.082 for S3. For a sample of n = 30 from the Cauchy distribution, this differ-
ence is even more stark with a type-I error estimate of 0.037 for T1 compared to
0.108 for S3. Hence, the additional power achieved by S3 is somewhat artificial if
the test is not conservative under the null hypothesis (i.e. it is unable maintain a
maximum level of 0.05 for the symmetric distributions). The test based on T1 also
outperforms the optimal tests O1, O2 and O3 for all of the distributions under consid-
eration here.

In fact, all of the proposed tests are competitive in terms of power, with the excep-
tion of T2 for n = 30. Indeed, the sample-based estimate of the variance of the
Z -transformed statistic S2,

τ̂ 2 = σ̂ 2

(
1 − η̂2

)2 ,

is somewhat unstable for small samples. Further investigation, not included here,
suggests that the bootstrap provides amore effective procedure to estimate the variance
of T2.

4 Conclusion

In this paper, some of the existing tests of symmetry have been appraised and shown to
perform well at detecting departure from symmetry. However, an undesirable feature
was identified, which seems to have been overlooked in the existing tests of symmetry.
Namely, that the tests failed to reject the symmetry hypothesis with greater power for
the most asymmetric distributions. This trait was exhibited using a combination of
theoretical examples and a simulation study. The reason for this is principally because,
until recently, there was no measure of asymmetry which adequately quantified the
amount of asymmetry.However, a recently proposedmeasure η, which has been shown
to do a good job of measuring the size of asymmetry, was introduced and discussed.
By considering sample estimates of η, several new tests for symmetry were proposed.
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Furthermore, the asymptotic properties of these tests were determined, and the tests
were compared with the existing tests in a simulation study.

In conclusion, it was shown that η provides a useful starting point for a test for
symmetry. The great advantage of a test based upon η is that it is an effective and easy
to understand measure of the amount of asymmetry in the underlying distribution. As
a result, the new tests have the desirable property that, for the most part, the higher the
amount of asymmetry in the underlying distribution, the greater the rejection power of
the test. This means that the tests based on η provide a valid alternative to the existing
tests. Finally, of these new tests, it is identified that the test based directly on η̂ has
greatest power for the distributions under consideration here.

Acknowledgements We are grateful to the two reviewers, whose constructive comments led to the current
version of the paper. This paper is based on work carried out as part of the PhD thesis of the first author,
who gratefully acknowledges the funding received by the EPSRC. We are also thankful to Dr. Dimitrios
Bagkavos for bringing the Kasuya (2010) reference to our notice.

References

Antille, A., Kersting, G., Zucchini, W. (1982). Testing symmetry. Journal of the American Statistical
Association, 77, 639–646.

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of
Statistics, 12, 171–178.

Boos, D. D. (1982). A test for asymmetry associated with the Hodges–Lehmann estimator. Journal of the
American Statistical Association, 77, 647–651.

Boshnakov, G. N. (2007). Some measures for asymmetry of distributions. Statistics & Probability Letters,
77, 1111–1116.

Butler, C. C. (1969). A test for symmetry using the sample distribution function.TheAnnals ofMathematical
Statistics, 40, 2209–2210.

Cabilio, P., Masaro, J. (1996). A simple test of symmetry about an unknown median. Canadian Journal of
Statistics, 24, 349–361.

Cassart, D., Hallin, M., Paindaveine, D. (2008). Optimal detection of Fechner-asymmetry. Journal of Sta-
tistical Planning and Inference, 138, 2499–2525.

Cassart, D., Hallin, M., Paindaveine, D. (2011). A class of optimal tests for symmetry based on local
Edgeworth approximations. Bernoulli, 17, 1063–1094.

Fernandez, C., Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. Journal of the
American Statistical Association, 93, 359–371.

Ferreira, J. T. S., Steel, M. F. (2006). A constructive representation of univariate skewed distributions.
Journal of the American Statistical Association, 101, 823–829.

Giné, E., Mason, D. (2008). Uniform in bandwidth estimation of integral functionals of the density function.
Scandinavian Journal of Statistics, 35, 739–761.

Gupta, M. K. (1967). An asymptotically nonparametric test of symmetry. The Annals of Mathematical
Statistics, 38, 849–866.

Hall, P., Marron, J. S. (1987). Estimation of integrated squared density derivatives. Statistics & Probability
Letters, 6, 109–115.

Hollander, M. (2004). Testing for symmetry (pp. 8579–8583). New York: Wiley, Cornell University.
Jones, M. C., Pewsey, A. (2009). Sinh-arcsinh distributions. Biometrika, 96, 761–780.
Kasuya, E. (2010). Wilcoxon signed-ranks test: Symmetry should be confirmed before the test. Animal

Behaviour, 79, 765–767.
Ley, C., Paindaveine, D. (2009). Le cam optimal tests for symmetry against ferreira and steel’s general

skewed distributions. Journal of Nonparametric Statistics, 21, 943–967.
Li, X., Morris, J. M. (1991). Onmeasuring asymmetry and the reliability of the skewness measure. Statistics

& Probability Letters, 12, 267–271.

123



460 C. Partlett, P. Patil

MacGillivray, H. (1986). Skewness and asymmetry: Measures and orderings. The Annals of Statistics, 14,
994–1011.

McWilliams, T. P. (1990). A distribution-free test for symmetry based on a runs statistic. Journal of the
American Statistical Association, 85, 1130–1133.

Ngatchou-Wandji, J. (2006). On testing for the nullity of some skewness coefficients. International Statis-
tical Review, 74, 47–65.

Patil, P. N., Patil, P., Bagkavos, D. (2012). A measure of asymmetry. Statistical Papers, 53, 971–985.
Patil, P. N., Bagkavos, D., Wood, A. T. (2014). A measure of asymmetry based on a new necessary and

sufficient condition for symmetry. Sankhya A, 76, 123–145.
Randles, R. H., Fligner, M. A., Policello, G. E., Wolfe, D. A. (1980). An asymptotically distribution-free

test for symmetry versus asymmetry. Journal of the American Statistical Association, 75, 168–172.
Rothman, E., Woodroofe, M. (1972). A Cramér von–Mises type statistic for testing symmetry. The Annals

of Mathematical Statistics, 43, 2035–2038.
Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). London: CRC Press.
Tjostheim,D. (1996).Measures of dependence and tests of independence.Statistics:A Journal of Theoretical

and Applied Statistics, 28, 249–284.
Voraprateep, J. (2013). Robustness ofWilcoxon signed-rank test against the assumption of symmetry.MPhil

thesis, University of Birmingham, Birmingham.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1, 80–83.

123


	Measuring asymmetry and testing symmetry
	Abstract
	1 Introduction
	2 Testing symmetry
	2.1 Ordering distributions based on asymmetry
	2.2 An oversight of some existing tests
	2.2.1 Theoretical evidence
	2.2.2 Other tests of symmetry

	2.3 Optimal tests
	2.4 Simulation study
	2.5 Discussion

	3 Measuring asymmetry
	3.1 A recently proposed measure of asymmetry
	3.2 Estimating η
	3.3 Test statistics and asymptotic analysis
	3.4 Estimating the variance
	3.5 Power analysis of new tests

	4 Conclusion
	Acknowledgements
	References




