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Abstract In this paper, we study periodical stochastic processes, and we define the
conditions that are needed by a model to be a good noise model on the circumference.
The classes of processes that fit the required conditions are studied together with
their expansion in random Fourier series to provide results about their path regularity.
Finally, we discuss a simple and flexible parametric model with prescribed regularity
that is used in applications, and we prove the asymptotic properties of the maximum
likelihood estimates of model parameters.

Keywords Fourier transform · Karhunen–Loève’s theorem · Gaussian processes ·
Periodic processes · Stationary processes · Maximum likelihood

1 Introduction

1.1 Literature review

Modeling the random boundaries of star-shaped planar objects is a topic that is receiv-
ing an increasing interest in recent times. Some examples can be found in neurology
(see Hobolth 2003 and the references therein), geography (Burrough and Frank 1996),
stereology (see Hobolth et al. 2003; Hobolth and Vedel Jensen 2002 and the refer-
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ences therein), fractal geometry analysis (see Dioguardi et al. 2003 and the references
therein).

A common way to model such a phenomena is to model the radius-vector function
as a periodic stochastic process from an interval toR; a detailed geometric description
of this model is provided in van Lieshout (2013). In such a framework, the radius of
the star-shaped planar object is a periodic and continuous function, as a function of
the independent variable, representing the angle.

A very standard and well-known model that apparently suits these needs is the
Brownian bridge. The Brownian bridge is a universally known model, used in several
areas of applied mathematical science. As only an example, the recent publication of
Kroese et al (2011) and Manganaro (2011) and the reference therein provide a huge
relevant literature, while Bass (2011) provides a theoretical analysis of such a process.
The main aspect of the Brownian bridge is its periodicity that makes this process a
good model for a noise on the finite domain [0, 1]. On the other hand, a deficiency of
this model is its non-stationarity, which is almost a must when one models pure noise.
This is due to the fact that Brownian bridge is assumed to be 0 at t = 0.

A second approach that is being obtaining success in recent time is to exploit
the asymptotic results of the random Fourier series to provide general models for
the boundaries of star-shaped objects. In Hobolth et al. (2003), the authors propose a
parametric randomFourier seriesmodel (called generalized p-ordermodel) to describe
the border of random planar star-shaped objects in terms of normalized radius-vector
function.Again, inHobolth et al. (2003), the authors also provided results about sample
path regularity, and an expression for the maximum likelihood function for the model
parameters, even if there are not asymptotic results about these estimators.

1.2 Overview and insights of the paper

In this paper, we deal with the second approach, using random Fourier series as a
flexible modeling tool, finding interesting properties of the studied processes thanks
to the standard representation they provide.

First, we define the theoretical conditions that are needed by a process to be a good
noise model on the boundary of a circle, admitting models with a fixed zero value
in the origin only as the conditioning of such a process, as the result of a selective
sampling. More precisely, two classes of processes are considered:

– H , the set of Gaussian, stationary, [0, 1]-periodic processes;
– H0, the set of processes generated by a process in H conditioned to be 0 when

t = 0.

Then, we remark that the Brownian bridge is not contained inH0. Furthermore, we
find a standard Fourier decomposition for a process {xt }t∈[0,1] in H , by expressing
its covariance function C(s, t) as C(s, t) = c20 + 2

∑∞
k=1 c2k cos(2kπ(s − t)). Thanks

to Karhunen–Loève’s theorem, the process {xt }t∈[0,1] may be represented as:

xt = c0Y ′
0 +

∞∑

k=1

ck(Yksk(t) + Y ′
kck(t))
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Noise models on the circumference 391

where {Yk}k≥1 and {Y ′
k}k≥0 are two independent sequences of independent standard

Gaussian variables.
As a consequence, we prove that:

– the randomFourier series expansion of a process inH0 shares the same asymptotic
behavior for the spectrum with its generator inH ;

– the path regularity of a process in H0 depends on path regularity of its generator
in H ; in particular, we show that the regularity properties of the trajectories of a
process in H and of its generated process in H0 have the same lower bound in
terms of Hölder regularity;

– the path regularity of a process inH (and of its generated process inH0) can be
deduced by the Fourier coefficients of the generator process covariance function,
looking at their decrease rate. In particular, we show that, for any 0 < α ≤ 1,

c2k = O(1/k1+2m+α) �⇒ {xt }t∈[0,1] ∈ Cm,β([0, 1]), with β < α/2,

whereCm,β([0, 1]) is theHölder space of the functions on [0, 1] having continuous
derivatives up to order m and such that the mth-derivative is Hölder continuous
with exponent β.

Finally, as in Hobolth et al. (2003), we discuss a general and flexible parametric
model inH :

xt =
N∑

k=1

a

k p
(Yk sin(2kπ t) + Y ′

k cos(2kπ t)),

together with the generated model in H0. We underline that

– thesemodels provide a very easyway to represent stochastic processes in computer
memory, where only a finite number of coefficient may be stored. In addition, the
representation of the first one is built on a finite dimensional subspace made by
only trigonometric functions;

– the path regularity of {xt }t∈[0,1] is determined by its parameters, see Figure 1;
– weprovidemaximum likelihood estimates for the firstmodel, togetherwith asymp-
totic properties of the estimators.

Summing up, these models can be very useful in the applications: on one hand,
they might shape particular characteristics of the observed phenomena, allowing on
the other hand properties similar to the Brownian bridge when these are needed, but
with a stronger theoretical support.

1.3 Structure of the paper

In Sect. 2, we define the two classes of interest, H and the space of conditioned
processes H0, studying their properties and analyzing their random Fourier series
expansion. In Sect. 3, we show the connection between the spectrum of the processes
in H0 with respect to their generators in H . In Sect. 4, it is proven that also the
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Fig. 1 Parametric model in H ,
where path regularity is
determined by the parameter p

path regularity is maintained for such couples, as a consequence of Kolmogorov’s
continuity conditions and a result of Boas. In Sect. 5, simple parametric models in
H and H0 are presented, together with the properties of the maximum likelihood
estimators for the parameters.

Summary of notations

The variables s, t, . . . relate to time variables, and will often belong to [0, 1]. We
denote by {xt }t∈[0,1], {yt }t∈[0,1], . . . stochastic adapted process defined on a given fil-
tered space (�,F , {Ft }t∈[0,1],P), while {Xn}n≥1, {Yn}n≥1, {Zn}n≥1, . . . are sequences
of random variables. C(s, t) is a positive semidefinite function (it will be the corre-
lation function of a stochastic process). When a process has stationary increments,
its covariance function will often be replaced by the associated covariogram function
C̃(t − s) = C(s, t). The sequence {ek(t)}k≥0 denotes a sequence of orthogonal func-
tion on L2([0, 1]). Finally, we denote by [|t |]1 the fractional part of the real number t
that is the sawtooth wave defined by the formula [|t |]1 = t − floor(t).

2 Preliminaries and Karhunen–Loève’s decomposition theorem

In this section, we recall some basic results from Gaussian processes theory. The first
theorem we need is the Karhunen–Loève’s decomposition theorem (see Karhunen
1947) that states what follows.

Theorem 1 (Karhunen–Loève) Let {xt }t∈[0,1], such that E[xt ] ≡ 0, and Cov(xt , xs)

= C(t, s), continuous in both variables. Then, xt =∑∞
k=1 Zk ek(t), where

– the functions {ek(·)}k≥1 are the eigenfunctions of the following integral operator
from L2[0, 1] in itself

f ∈ L2[0, 1] −→ g(t) =
∫ 1

0
C(t, τ ) f (τ )dτ , (1)
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Noise models on the circumference 393

and {ek(·)}k≥1 form an orthonormal basis for the space spanned by the eigenfunc-
tions corresponding to nonzero eigenvalues;

– the random variables Z1, Z2, . . . are given by Zk = ∫ 10 xt ek(t)dt and form a zero-
mean orthogonal system (i.e., E(Zk Z j ) = 0 for k �= j ) with variance λ2k , where
λk is the eigenvalue corresponding to the eigenfunction ek(·).

The series
∑∞

k=1 Zkek(t) converges in mean square to xt , uniformly in t :

sup
t∈[0,1]

E

⎛

⎝

[

xt −
∞∑

k=1

Zkek(t)

]2
⎞

⎠ −→
n→∞ 0.

Finally, xt is a Gaussian process if and only if {Zn}n≥1 is a sequence of independent
Gaussian random variables.

2.1 Representation of the set H with respect to the Fourier basis
{sk(t), ck(t)}k≥0

We deal in this paper with the following class H of processes, thought of as the set
of ‘pure Gaussian noises’ on the circumference.

Definition 1 Let {xt }t∈[0,1] be a stochastic process with covariance functionC(s, t) =
Cov(xt , xs).H is the set of real Gaussian stochastic processes {xt }t∈[0,1] such that

zero-mean: E(xt ) = 0, ∀t ∈ [0, 1];
continuously stationary: there exists a continuous real function C̃ such that C(s, t) =
C̃(s − t), ∀s, t ∈ [0, 1];
periodic: {xt }t∈[0,1] admits a periodic extension to R (i.e., x0 = x1, a.s.).

Remark 1 A necessary and sufficient condition for a continuously stationary process
to be periodic is that C̃(1) = C̃(0). This allows a continuous version of the process
with V ar(xt+1 − xt ) = 0 for any t ∈ R. We remark that if {xt }t∈[0,1] ∈ H and if
C̃(s − t) = C(s, t) is its covariogram function, then C̃(t) = C̃(t + 1).

The set H is a Hilbert space, when it is equipped with the inner product given
by 〈x(·), y(·)〉 = ∫ 1

0 E(xt yt )dt . Karhunen–Loève’s decomposition theorem can be
specialized toH , in order to show that a process is inH if and only if it can be written
as limit of a canonical trigonometric random series, namely the constant function
equal to 1 together with the sequence {sk(t), ck(t)}k≥1, where sk(t) = √

2 sin(2kπ t)
and ck(t) = √

2 cos(2kπ t).

Theorem 2 Let {xt }t∈[0,1] ∈ H with covariance C(s, t) = C̃(t − s); then in mean
square, uniformly in t ,

xt = c0Y ′
0 +

∞∑

k=1

ck(Yksk(t) + Y ′
kck(t))
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394 G. Aletti et al.

where {Yk}k≥1 and {Y ′
k}k≥0 are two independent sequences of independent standard

Gaussian variables, and {ck}k≥0 ∈ �2 is such that

c2n =
∫ 1

0
C̃(s) cos(2nπs)ds, n = 0, 1, 2, . . .

Proof See Appendix 1. ��
Theorem 3 Let {Yk}k≥1 and {Y ′

k}k≥0 be two independent sequences of independent
standard Gaussian variables, and {ck}k≥0 ∈ �2. Then, the sequence

y(n)
t = c0Y ′

0 +
n∑

k=1

ck(Yksk(t) + Y ′
kck(t))

converges in mean square, uniformly in t to {yt }t∈[0,1] ∈ H . Moreover, if C(s, t) is
the covariance function of yt , then uniformly, absolutely and in L2[0, 1] × [0, 1],

C(s, t) = c20 +
∞∑

k=1

c2kck(s)ck(t) +
∞∑

k=1

c2k sk(s)sk(t)

= c20 + 2
∞∑

k=1

c2k cos(2kπs) cos(2kπ t) + 2
∞∑

k=1

c2k sin(2kπs) sin(2kπ t)

= c20 + 2
∞∑

k=1

c2k cos(2kπ(s − t)). (2)

Proof See Appendix 1. ��
Remark 2 As a consequence of Theorems 2 and 3, we can observe that periodic
processes with period 1

m have only terms of form mk in their expansion:

xt+ 1
m

= c0Y ′
0 +

∞∑

k=1

cmk
(
Ymksmk(t + 1

m ) + Y ′
mkcmk(t + 1

m )
) = xt .

More fancy processes having only odd terms are antiperiodic with period 1
2 , i.e.,

xt+ 1
2

=
∞∑

k=0

c2k+1(Y2k+1s2k+1(t + 1
2 ) + Y ′

2k+1c2k+1(t + 1
2 )) = −xt .

An immediate consequence of this remark is that when one needs to model a pure
noise on the boundary of a circle, then he must choose processes whose expansion has
both odd and even terms.

123



Noise models on the circumference 395

2.2 The quotient set HZ

It is easy to see thatH can be seen as a Hilbert space, isometrically equivalent to the
space of the coefficients �2; let us consider two independent sequences {Ȳn}n≥1 and
{Ȳ ′

n}n≥0 of independent standard Gaussian variables. For each {zt }t∈[0,1] ∈ H , there
exists an {xt }t∈[0,1] ∈ HZ having the same law, where

HZ =
{
{xt }t∈[0,1] ∈ H : xt = a0Ȳ ′

0 +
∞∑

k=1

ak(Ȳksk(t) + Ȳ ′
kck(t)), {an}n≥0 ∈ �2

}

and the limit is in mean square and uniformly in t . From Theorems 2 and 3, it is
naturally defined an isometry between the representative space HZ and �2:

xt = a0Ȳ ′
0 +

∞∑

k=1

ak(Ȳksk(t) + Ȳ ′
kck(t)) ←→ {a0,

√
2a1,

√
2a2,

√
2a3, . . .} ∈ �2,

where ‖xt‖HZ =
√

a2
0 + 2

∑
n a2

n .

2.3 The space H0 and its relation with HZ

By Theorem 3 given {ci }i≥0 ∈ �2, there exists a unique {xt }t∈[0,1] ∈ HZ , with
covariance function given by

C(s, t) = c20 +
∞∑

k=1

c2kck(s)ck(t).

Let us define the setH0 of the process generated by those inH conditioned to be
0 at t = 0.

Definition 2 Let H0 be the following set:

H0 = {{yt }t∈[0,1] : ∃{xt }t∈[0,1] ∈ H such that

L ((yt1 , . . . , ytn )) = L ((xt1 , . . . , xtn )|x0 = 0), ∀t ∈ [0, 1]n, n ∈ N}.

We call:

Generator process: the process {xt }t∈[0,1] ∈ H ;
Generated process: the process {yt }t∈[0,1] ∈ H0.

In other words, the process {xt }t∈[0,1] ∈ HZ , conditioned to be 0 at t = 0, is the
periodic zero-mean Gaussian process {yt }t∈[0,1] ∈ H0 with covariance function

R(s, t) = C(s, t) − C(s, 0)C(0, t)

C(0, 0)
. (3)
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396 G. Aletti et al.

It is easy to show that {yt }t∈[0,1] /∈ H because it is not stationary. However, the
function R(s, t) is symmetric, and hence it is the L2-limit of its 2-D Fourier series.
With the notation given above, with c0(t) = 1, we get the series expansion:

R(s, t) =
∞∑

k, j=0

rcc
k j ck(s)c j(t) +

∞∑

k, j=1

rss
k j sk(s)s j(t) +

∞∑

k=1, j=0

rsc
k j sk(s)c j(t)

+
∞∑

k=0, j=1

rcs
k j ck(s)s j(t). (4)

The following theorem gives a necessary and sufficient condition for a process
{yt }t∈[0,1] with covariance function R(s, t) to have a unique process {xt }t∈[0,1] ∈ HZ

which generates it. The trivial case when R(s, t) = 0 (generated by a constant process)
is omitted since it is the sole case when the solution is not unique. The proof may be
found in Appendix 1.

Theorem 4 For any Gaussian process {yt }t∈[0,1] such that y0 = 0, E(yt ) = 0 and
continuous covariance function R(s, t) �= 0, there exists a unique (in law) station-
ary process {xt }t∈[0,1] ∈ HZ which generates {yt }t∈[0,1] if and only if the Fourier
coefficients of R(s, t) satisfy:

– the mixed matrices cos–sin and sin–cos are null:

{rcs
jk} j≥0,k≥1 = {rsc

jk} j≥1,k≥0 = 0;

– the sin–sin matrix is a nonnegative diagonal in �1:

{rss
jk} j,k≥1 =

⎛

⎜
⎜
⎝

rss
11 0 0 0 · · ·
0 rss

22 0 0 · · ·
0 0 rss

33 0 · · ·
· · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎠ ,

with rss
kk ≥ 0 and rcc

00 < r̄ =∑k r ss
kk < ∞;

– defined rss
00 = rcc

00 r̄
r̄−rcc

00
, the cos–cos matrix is built from the sin–sin matrix and rcc

00:

{rcc
jk} j,k≥0=

⎛

⎜
⎜
⎝

rss
00 0 0 0 · · ·
0 rss

11 0 0 · · ·
0 0 rss

22 0 · · ·
· · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎠− r̄ − rcc

00

r̄2

⎛

⎜
⎜
⎜
⎝

rss
00rss

00 rss
00rss

11 rss
00rss

22 · · ·
rss
11rss

00 rss
11rss

11 rss
11rss

22 · · ·
rss
22rss

00 rss
22rss

11 rss
22rss

22 · · ·
· · · · · · · · · · · ·

⎞

⎟
⎟
⎟
⎠

.

Remark 3 One of the models mainly used for periodic noise is the Brownian bridge,
i.e., the process {Bt }t∈[0,1] such that Bt = Wt − tW1, where {Wt }t∈[0,1] is a Brownian
motion. This process is Gaussian, periodic and has the following standard represen-
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Noise models on the circumference 397

tation in Fourier random series:

Bt =
∞∑

k=1

Zk

√
2 sin(kπ t)

kπ
,

where Z1, Z2, . . . are independent identically distributed standard normal random
variables. Starting from the results explained in this section, it is straightforward to
prove that {Bt }t∈[0,1] /∈ H0; so we cannot consider it a “good” noise model on the
boundary of a circle.

3 A process inH0 shares the same asymptotic behavior for the spectrum
with its generator

We want to get information about Fourier coefficients of Karhunen–Loève expansion
for processes in H0 with respect to the coefficients of their generators in H . To do
this, as described in the Theorem 1, it is sufficient to study the spectrum of the integral
operator induced by the covariance function of the process {yt }t∈[0,1] ∈ H0 generated
by {xt }t∈[0,1] ∈ H .

Theorem 5 Denote by {yt }t∈[0,1] a process in H0 and by {xt }t∈[0,1] its generator in
H . Let {cn}n≥0 ∈ �2 be the sequence of Fourier coefficients of Karhunen–Loève
expansion of the process {xt }t∈[0,1], such that, as in Theorems 2 and 3,

xt = c0Y ′
0 +

∞∑

k=1

ck(Yksk(t) + Y ′
kck(t)).

Then, the Karhunen–Loève expansion of the process {yt }t∈[0,1] has the following form:

yt =
∞∑

k=0

(ckYksk(t) + c̃kY ′
k fk(t))

where fk(t) is the eigenfunction related to the eigenvalue ãn = c̃2n, and, for all n ∈ N,

akn = ãkn = akn+1 if akn = akn+1

akn > ãkn > akn+1 if akn = akn+1

where {akn }n≥0 is a decreasing reordering of the sequence {an}n≥0.

Proof See Appendix 2. ��
Remark 4 Theorems 4 and 5 give a theoretical approach to build the Karhunen–Loève
expansion of processes inH0. A numerical example of such a procedure may be found
in the example of the Sect. 5.
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398 G. Aletti et al.

4 A process in H0 shares the same path regularity properties with its
generator

We showed in Theorem 5 that a process inH0 and its generator inH share the same
asymptotic behavior for the spectrum. In this section, we show that the regularity of
the paths is also maintained.

4.1 Hölder regularity of the paths of processes inH and inH0

We first remind that the Hölder space Cm,α([0, 1]), where m ≥ 0 is an integer and
0 < α ≤ 1, consists of those functions on [0, 1] having continuous derivatives up to
order m and such that the mth-derivative is Hölder continuous with exponent α. We
recall a classic regularity theorem.

Theorem 6 (Kolmogorov–Centsov continuity criterion, Revuz and Yor 1999) Let
{xt }t∈[0,1] be a real stochastic process such that there exist three positive constants γ ,
c and ε so that

E
(|xt − xs |γ

) ≤ c|t − s|1+ε;

then there exists a modification {x̃t }t∈[0,1] of {xt }t∈[0,1], such that

E

((

sup
s �=t

|x̃t − x̃s |
|t − s|α

)γ)

< ∞

for all α ∈ [0, ε
γ
); in particular, the trajectories of {x̃t }t∈[0,1] belong to C0,α([0, 1]).

The following results are an immediate consequence of this last theorem (proofs
may be found inAppendix 3),where the processes {x̃t }t∈[0,1] and {ỹt }t∈[0,1] are thought
modified as in the Theorem 6.

Theorem 7 Let {xt }t∈[0,1], a stationary stochastic process with null expectation, and
let R(s, t) be its covariance function; if R ∈ C0,α([0, 1] × [0, 1]), with 0 < α ≤ 1,
then almost all trajectories of {xt }t∈[0,1] belong to C0,β([0, 1]) with β < α

2 .

It is simple to apply this last theorem to processes laying inH and inH0: assume
that {xt }t∈[0,1] ∈ H and let C(s, t) = C̃(s − t) be its covariance function. If C̃ ∈
C0,α([0, 1]), then almost all trajectories of {x̃t }t∈[0,1] belong to C0,β([0, 1]), for any
β < α

2 . The same argument can be applied toH0 processes.
In fact we can say something more.

Theorem 8 Let {xt }t∈[0,1] ∈ H and let C(s, t) = C̃(s−t) be its covariance function.
Consider its generated process {yt }t∈[0,1] ∈ H0, and let R(s, t) be its covariance
function. Then we have, for any β < α

2 ,

C̃ ∈ C0,α([0, 1]) ⇒ R ∈ C0,α([0, 1] × [0, 1]) ⇒
{{ỹt }t∈[0,1] ∈ C0,β([0, 1])

{x̃t }t∈[0,1] ∈ C0,β([0, 1]) .

123



Noise models on the circumference 399

This last result implies that regularity properties of almost all trajectories of
{x̃t }t∈[0,1] and of its generated process {ỹt }t∈[0,1] have the same lower bound, obtained
by studying regularity of their covariance function.

4.2 Upper order regularity

In Sect. 2.2, a sequence in �2 is uniquely associated with each stochastic process in
H . We are now showing how the decrease rate of such sequence is associated with
the regularity of the process trajectory path.

A very useful result for our analysis will be the following one, whose proof may
be found in Lorentz (1948).

Theorem 9 (Boas’ Theorem)Let f ∈ L1[0, 1] be a function whose Fourier expansion
has only nonnegative cosine terms, and let {an}n≥0 be the sequence of its cosine
coefficient. Then

f ∈ C0,α([0, 1]) ⇐⇒ ak = O
( 1

kα+1

)
.

Boas’ Theorem may be used in connection with Theorems 2 and 3 to deduce more
regularity properties of the processes in H , since C̃ is a function whose Fourier
expansion has only nonnegative cosine terms. In fact, take {cn}n≥0 as in Theorem 2
and Theorem 3. FromBoas’ Theorem, we have that if k2c2k = O( 1

k1+α ) for 0 < α ≤ 1,

then C̃ ∈ C2,α([0, 1]) . This link between the regularity of C̃ and the paths of {xt }t∈[0,1]
is underlined in the following theorem. The proof is in the Appendix 3.

Theorem 10 With the notations of Theorem 3, if c2k = O( 1
k3+α ), then there exists a

version of {xt }t∈[0,1] whose trajectories belong to C1,β([0, 1]), with β < α
2 .

Fig. 2 Change of path regularity: a comparison between trajectories of processes for fixed i.i.d. gaussian
{Yk , Y ′

k }k≥0 and varying the magnitude of {ck }k≥0. Left parametric model in H given in (5), where
a = 1.5 (dilation coefficient, fixed) and varying p. Right parametric model in H0 given in (6), obtained
by conditioning the model (5) to be 0 at t = 0. The coefficients {c̃k }k≥0 and the eigenbase { fk }k≥0 of the
model are obtained as explained in Sect.5. As a consequence of the Corollary 1, each trajectory belongs to
Cm,β ([0, 1]), where m + β < 2p − 1. The series are truncated at N = 40
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400 G. Aletti et al.

A natural generalization of this result is the following corollary, exemplified in
Fig. 2.

Corollary 1 With the notations of Theorem 3, if there exists an m ∈ N such that
c2k = O(1/k1+2m+α), then there exists a version of {xt }t∈[0,1] whose trajectories
belong to Cm,β([0, 1]), with β < α

2 .

5 A parametric model inH and in H0

Results provided in this paper suggest to create aGaussian parametric family of station-
ary and periodic processes of arbitrary regularity. In fact, let us consider the following
family of processes inH :

xt =
N∑

k=1

a

k p
(Yk sin(2kπ t) + Y ′

k cos(2kπ t)). (5)

This family is the discrete approximation of themodel given inHobolth et al. (2003),
obtained when N goes to infinite. We note that for this limiting process, Theorem 7
states that the paths become more regular as p increases. This property is shown in
Fig. 2 (left), which suggests how to smooth a process by changing p.

By Theorem 4, it is possible to build a parametric model in H0 of the form given
in the Theorem 5

xt =
N∑

k=1

a

k p
Yk sin(2kπ t) +

N∑

k=0

c̃kY ′
k fk(t). (6)

The functions { fk(t)}k≥0 are the eigenfunctions of the cos–cos part of the covariance
function R(s, t) given in (4). To find an approximation of these first eigenfunctions,
given

Rcc(s, t) =
N∑

k, j=0

Rcc
k j ck(s)c j(t),

we may find the spectral representation of the cos–cos matrix Rcc = U DU T , with D
diagonal and U unitary. Then, c̃k = √

Dkk and fk(t) =∑N
j=0 U jkc j(t).

Model (5) gives a family ofGaussian processes. In application,maximum likelihood
estimates of a and p are a straightforward consequence of a fast Fourier transform of
the observed discretized process {xt }t∈[0,i/n], i = 0, . . . , n. The properties of these
estimators are studied in the following section.

5.1 Maximum likelihood estimators of (5)

Given (xt0 , xt1 , . . . , xtn ) sampled from (5), we want to find the property of the maxi-
mum likelihood estimator (â, p̂) of the parameters (a, p).
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More precisely, with a equispaced or nonequispaced Fourier transform (see, e.g.,
Brigham 1982; Dutt and Rokhlin 1993), we first transform (xt0 , xt1 , . . . , xtn ) into
(y(1)

1 , y(1)
2 , . . . , y(1)

n ) and (y(2)
1 , y(2)

2 , . . . , y(2)
n ) (real and imaginary part). As a conse-

quence of Theorem 2 applied to (5), there exist two sequences {Yk}k≥1 and {Y ′
k}k≥1

of independent Gaussian standard random variables such that

y(1)
1 = aY1, y(1)

2 = a

2p
Y2, . . . , y(1)

n = a

n p
Yn,

y(2)
1 = aY ′

1, y(2)
2 = a

2p
Y ′
2, . . . , y(2)

n = a

n p
Y ′

n .

The log-likelihood function then reads

�n(a, p) =
n∑

k=1

log

⎛

⎝ 1√

2π a2

k2p

exp

⎛

⎝− 1
2

(y(1)
k )2

a2

k2p

⎞

⎠

⎞

⎠

+
n∑

k=1

log

⎛

⎝ 1√

2π a2

k2p

exp

⎛

⎝− 1
2

(y(2)
k )2

a2

k2p

⎞

⎠

⎞

⎠

= −n log(2π) − 2n log(a) + 2p
n∑

k=1

log(k)

− 1

2a2

n∑

k=1

k2p((y(1)
k )2 + (y(2)

k )2
)

and hence, if ok = (y(1)
k )2 + (y(2)

k )2, k = 1, . . . , n, we get

∂�n

∂a
= −2n

a
+ 1

a3

n∑

k=1

k2pok

∂�n

∂p
= 2

n∑

k=1

log(k) − 1

a2

n∑

k=1

log(k)k2pok =
n∑

k=1

log(k)
(
2 − k2pok

a2

)
. (7)

As expected, when p0 is a known parameter,

â2 = 1

2n

n∑

k=1

k2p0ok, 2n â2

a20
∼ χ2

2n,

where χ2
2n is a chi-square distribution with 2n degree of freedom, while nothing is

known about the distribution of p̂, for small n, and for the distribution of the cou-
ple (â, p̂). We have the following asymptotic results, whose proof may be found in
Appendix 4.
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Fig. 3 Plot of 200 (â, p̂)-joint simulations (blue point) of data coming from (5) for different values of a
and p (red stars). In these pictures, n = 40 (see Sect. 5.1 for notations)

Fig. 4 Theorem 11 predicts that the left-hand part of (8) transforms data from Fig. 3 into i.i.d. vectors
with a gaussian distribution concentrated on y = −x (red line)

Theorem 11 There exists an ML estimator { p̂n}n≥1, zero of the Eq. (7), such that

p̂n
a.s.−→

n→∞ p0,
p̂n − p0

2
√∑n

1 log
2(k)

L−→
n→∞ N (0, 1).

Moreover,
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2

⎛

⎝

√
n

a0
−
∑n

k=1 log(k)√
n

−
∑n

k=1 log(k)

a0
√∑n

k=1 log
2(k)

√∑n
k=1 log

2(k)

⎞

⎠
(

ân − a0
p̂n − p0

)
L−→

n→∞

(
1

−1

)

Z , (8)

where Z is a standard Gaussian variable.

As a corollary of Theorem 11, the joint perfect correlation between ân and p̂n

is asymptotically predicted. In Fig. 3, we show this fact by plotting the maximum
likelihood estimates of 200 simulated processes frommodel (5), where the correlation
coefficient ρ > 0.94 for n = 40 and different values of a0 and p0. In Fig. 4, we plot
the corresponding computed left-hand part of (8).

6 Conclusions and perspectives

The results we presented in this paper, together with the parametric models (5) and (6),
are useful to represent the border of circular objects where random noise is present.
The statistical results might help the practitioners to estimate the model parameters;
confidence intervals may be found when dealing with large populations of objects.

A practical advantage of this model is its computer usability: often stochastic
processes are represented in computers as discrete values, and only a subset of their
Fourier coefficients are available; these models overcome this issue, allowing to find
the parameters that best fit the represented process.

In conclusion, the parametric models might be considered in the applications more
appropriate alternative than the Brownian bridge. Both the models have a more solid
theoretical background, and they present more flexible in terms of path regularity.

A natural perspective would be to extend the presented results to model the shape
of the border of a generic d-dimensional star-shaped object, starting from the three
dimensional case, where the Fourier basis is more treatable, maintaining the usability
of the models.

Appendix 1: Proofs of results of Sect. 2

Proof of the Theorem 2 By Mercer Theorem (see, e.g., Ash 1990), we know that if
{en}n≥0 is an orthonormal basis for the space spanned by the eigenfunctions corre-
sponding to nonzero eigenvalues of the integral operator (1) then, uniformly, absolutely
and in L2[0, 1] × [0, 1],

C(s, t) =
∞∑

k=0

ek(t)ek(s)λk, (9)

where λk is the eigenvalue corresponding to ek . By hypothesis, since C(s, t) = C̃(|t −
s|) = C̃(|t − s| + 1) by Remark 1, we get

∫ 1

0
C̃(s) cos(2nπs)ds = an,

∫ 1

0
C̃(s) sin(2nπs)ds = 0, (10)
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and hence

C̃(τ ) = a0 + 2
∞∑

n=0

an cos(2nπτ). (11)

It is simple to prove that the sequence {sn(t), cn(t)}n≥0 contains all the eigenfunctions
of the operator (1). In fact,

∫ 1

0
C(t, τ )cn(τ )dτ = √

2
∫ 1

0
C̃(s) cos(2nπ(t + s))dt

= cn(t)
∫ 1

0
cos(2nπs)C̃(s)ds − sn(t)

∫ 1/2

−1/2
sin(2nπs)C̃(s)ds

= ancn(t), (12)

the same relation holding when cn(t) is replaced by sn(t). By (11), we get

C(s, t) = C̃(s − t) = a0 +
∞∑

k=1

ak cos(2kπ(s − t))

= a0 + 2
∞∑

k=1

ak cos(2kπs) cos(2kπ t) + 2
∞∑

k=1

ak sin(2kπs) sin(2kπ t)

= a0 +
∞∑

k=1

akck(s)ck(t) +
∞∑

k=1

aksk(s)sk(t)

where this equality holds uniformly, absolutely and in L2[0, 1] × [0, 1] by Mercer
Theorem (cfr. (9)).

Now, since C(s, t) is a covariance function, it is positively definite, and hence an ≥
0, ∀n. Moreover, since {an}n≥0 ∈ �1, if we define cn = √

an , then {cn}n≥0 ∈ �2. From
Theorem 1, we deduce the existence of two independent sequences of independent
standard Gaussian variables {Yk}k≥1 and {Y ′

k}k≥0 such that in mean square, uniformly
in t

xt = c0Y ′
0 +

∞∑

k=1

ck(Yksk(t) + Y ′
kck(t)).

��

Proof of the Theorem 3 The sequence of Gaussian processes y(n)
t converges to a peri-

odical {yt }t∈[0,1] in mean square uniformly in t , since it is a Cauchy sequence:

sup
t∈[0,1]

E[|y(n)
t − y(m)

t |2] = 2
m∑

k=n

c2k −→
m,n→∞ 0.
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Hence, E[yt ] ≡ 0, and

Cov(yt , ys) = c20 +
∞∑

k=1

c2k cos(2kπ(s − t))

is a continuous function. Finally, {yt }t∈[0,1] is a Gaussian process, since the two
sequences {Yk}k≥1 and {Y ′

k}k≥0 are formed by independent Gaussian variables. ��
Proof of the Theorem 4 Necessity. Assume there exists a process {xt }t∈[0,1] ∈ HZ

which generates {yt }t∈[0,1] ∈ H0. The covariance function C(s, t) of {xt }t∈[0,1] is
given as in (2):

C(s, t) = c20 +
∞∑

k=1

c2kck(s)ck(t) +
∞∑

k=1

c2k sk(s)sk(t).

If we define x = C(0, 0) =∑∞
0 c2k , pi = c2i /x , and

D(s, t) = C(s, t)

x
= p0 +

∞∑

k=1

pkck(s)ck(t) +
∞∑

k=1

pksk(s)sk(t),

then, x > 0 and, by (3), we obtain

x R(s, t) = D(s, t) − D(0, t)D(s, 0)

= p0 +
∞∑

k=1

pkck(s)ck(t) +
∞∑

k=1

pksk(s)sk(t)

−
(

p0 +
∞∑

k=1

pkck(s)
)(

p0 +
∞∑

k=1

pkck(t)
)
. (13)

(13) and (4) give

xrss
k j =

{
pk if k = j > 0

0 if k �= j
(14)

xrcc
k j =

{
pk − p2k if k = j ≥ 0

−pk p j if k �= j
(15)

rsc
k j = rcs

k j = 0.

Since
∑∞

0 pk = 1, if r̄ =∑∞
k=1 rss

kk , we obtain by (14)

xr̄ = 1 − p0.
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Assume r̄ = 0, then p0 = 1, which is absurd since R(s, t) �= 0. Hence r̄ > 0, and we
define

x = r̄ − rcc
00

r̄2
. (16)

Thesis follows by combining (16) and (15).
Sufficiency. Given the matrices of the 2-D Fourier series as in the theorem assump-

tion, set x > 0 as in (16). Define

pk = rss
kk

r̄ − rcc
00

r̄2
, p0 = rcc

00

r̄
.

Then, {pk}k≥0 is a nonnegative sequence such that
∑

k pk = 1. Define

xt = √
xp0Y ′

0 +
n∑

k=1

√
xpk(Yksk(t) + Y ′

kck(t)).

By Theorem 2, we have

C(s, t) = x

(

p0 +
∞∑

k=1

pkck(s)ck(t) +
∞∑

k=1

pksk(s)sk(t)

)

.

It is straightforward to check that (14) and (15) hold. The fact that the solution is
unique follows immediately from the necessary condition. ��

Appendix 2: Proof of the Theorem 5

The case xt ≡ k is obvious. Let C(t, s) = C̃(t − s) be the covariogram function of
{xt }t∈[0,1] [see (2) for its expansion]. Since xt ≡ k ⇐⇒ C̃(0) = 0, we assume,
without loss of generalities, that C̃(0) = 1.

A straightforward computation gives that, if {yt }t∈[0,1] ∈ H0 is generated by
{xt }t∈[0,1] ∈ H , then {yt }t∈[0,1] is a Gaussian process with null expectation and
continuous covariance function

R(t, s) = C̃(t − s) − C̃(t)C̃(s)

C̃(0)
= C̃(t − s) − C̃(t)C̃(s). (17)

Hence, given the covariogram functionC(s, t) = C̃(t −s) of the generating process
{xt }t∈[0,1], we need to study the spectrum of the operator (1), where C is replaced by
R given in (17).

As in (11) and (2), we write C̃(t) = a0 + 2
∑∞

n=1 an cos(2nπ t) with 1 = a0 +
2
∑∞

n=1 an since C̃(0) = 1.
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Let f (t) be an eigenfunction of (17); from the expansion theorem (see Ash 1990),
we have in L2[0, 1],

f (t) = f0 +
∞∑

n=1

f c
n cn(t) + f s

n sn(t). (18)

where f0 = ∫ 10 f (τ )dτ, f c
n = ∫ 10 cn(τ ) f (τ )dτ and f s

n = ∫ 10 sn(τ ) f (τ )dτ. Let’s look
for the eigenvalue related to f :

∫ 1

0
R(s, t) f (t)dt =

∫ 1

0
C̃(t − s) f (t)dt − C̃(s)

∫ 1

0
C̃(t) f (t)dt = ã f (s). (19)

Substituting (18) into (19), and integrating with the results in (10) and (12), yields

a0 f0 +
∞∑

n=1

an( f c
n cn(s) + f s

n sn(s)) − C̃(s)

(

a0 f0 + √
2

∞∑

n=1

an f c
n

)

= ã f (s). (20)

sn(s) eigenfunctions

For any an �= 0, it is straightforward to see that f (s) = sn(s) is an eigenfunction, by
a direct substitution in (20), and that ã = an . Moreover, we are going to state more:
the only eigenfunctions which contain some f s

k �= 0 are indeed sn(s) (when an �= 0).
Assume that ∃k : f s

k �= 0 and, by contradiction, f (t) �= sk(t).
By multiplying both members of (20) by sk(s) and integrating, we obtain ak f s

k =
ã f s

k , i.e., ak = ã. Since ak �= 0, then sk(t) is an eigenfunction. This eigenfunction is
orthogonal to f (s) by Mercer Theorem, and hence

0 =
∫ 1

0
sk(s) f (s)ds = f s

k .

Summing up, for any an �= 0, sn(t) is an eigenfunction associated with ã = an , and the
other eigenfunctions do not contain the terms in {sn(t)}n≥1 (they are even function).

The other eigenfunctions of (20)

To conclude the proof, we should find another sequence of eigenfunctions with eigen-
values {ãn}n≥1 � {an}n≥1.Wewill first obtain a simple result on the coefficients of the
eigenfunctions. Then, we will introduce the multiplicity of the eigenvectors {an}n≥1
to conclude the proof accordingly.

The other eigenfunction takes the form f (t) = f0+∑∞
k=1 f c

k ck(t). By multiplying
both members of (20) by cn(s) and integrating, we obtain

⎧
⎨

⎩

a0 f0 − a0(a0 f0 + √
2
∑∞

k=1 ak f c
k ) = ã f0, n = 0;

an f c
n − √

2an(a0 f0 + √
2
∑∞

k=1 ak f c
k ) = ã f c

n , n > 0.
(21)
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As an immediate consequence, (an = 0) ⇒ ( f c
n = 0).

Lemma 1 { f c
n }n≥0 ∈ �1, and f0 + √

2
∑∞

n=1 f c
n = 0.

Proof Recall that an ≥ 0, and that a0 + 2
∑∞

n=1 an = C̃(0) = 1. For n > 0, by (21),
we have

| f c
n | ≤ an| f c

n | − √
2an(a0| f0| + √

2
∑∞

k=1 ak | f c
k |)

ã
,

and since {ak | f c
k |}k≥0 ∈ �1 (as a product of two �2 sequences), and {an}n≥1 ∈ �1, we

obtain the first part of the thesis. By (21) and a0 + 2
∑∞

n=1 an = C̃(0) = 1, we get

f0 + √
2

∞∑

n=1

f c
n = a0 f0−a0(a0 f0+

√
2
∑∞

k=1 ak f c
k )

ã + √
2
∑∞

n=1
an f c

n −√
2an(a0 f0+

√
2
∑∞

k=1 ak f c
k )

ã

= a0 f0+
√
2
∑∞

n=1 an f c
n

ã − a0 f0+
√
2
∑∞

k=1 ak f c
k

ã

(
a0 + 2

∑∞
n=1 an

)
= 0.

��
Definition 3 (Multiplicity and support) Given {an}n≥1, we define the support Sã of
ã:

Sã = {k : ak = ã}.

The multiplicity mã of a number ã > 0 is the cardinality of Sã :

mã = #{k : ak = ã}.

It is clear that mã < ∞ because {an}n≥1 ∈ �1.

Lemma 2 If mã = k > 0, then there are exactly k − 1 orthogonal eigenfunctions of
R related to ã. Moreover for anyone of these k − 1 eigenfunctions,

n /∈ Sã �⇒ f c
n = 0.

Proof Let ã > 0 be such that mã > 1.
It is simple to prove that there always existmã −1 orthogonal eigenfunctions related

to ã with f c
n = 0 if an /∈ Sã . We have two possibilities:

– 0 ∈ Sã or, equivalently, a0 = ã. In this case, (21) is equivalent to the following
system:

{
f c
n = 0, n /∈ Sã

ã
(

f0 + √
2
∑

n∈Sã\{0} f c
n

) = 0.
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– 0 /∈ Sã . In this case, (21) is equivalent to the following system:

{
f c
n = 0, n /∈ Sã

ã
(∑

n∈Sã
f c
n

) = 0.

In both cases, there exist a k −1-dimensional orthogonal basis for the solution system.
We now need to prove that there are not other eigenfunctions related to ã. Assume

that f c
n̄ �= 0. We recall that this fact implies an̄ �= 0. If n̄ = 0, from (21) we have that

⎧
⎨

⎩

(a0−ã) f0
a0

= a0 f0 + √
2
∑∞

k=1 ak f c
k ,

(an−ã) f c
n√

2an
= a0 f0 + √

2
∑∞

k=1 ak f c
k , n ∈ Sã .

The second equation shows that a0 f0 +√
2
∑∞

k=1 ak f c
k = 0, since an = ã, and hence

a0 = ã, which means that n̄ ∈ Sã . Analogously, if n̄ �= 0, from (21) we can prove that
n̄ ∈ Sã that completes the proof. ��

Let {a(n)}n≥1 be the decreasing reordering of the sequence {an}n≥1, positive and
without repetition: a(1) > a(2) > · · · > a(n) > · · · and ∀an > 0, exists k such that
an = a(k). To conclude the proof, we must find a sequence of eigenvalues {ãn}n≥1
such that a(n) > ãn > a(n+1).

Lemma 3 For each n ∈ N, there exists a unique eigenvalue ãn such that a(n) > ãn >

a(n+1). Moreover, mãn = 1.

Proof We have already observed that a0 f0 + √
2
∑∞

k=1 ak f c
k = 0 implies, for

any n, an = ã or f c
n = 0. Hence, without loss of generalities, we assume

a0 f0 + √
2
∑∞

k=1 ak f c
k = c �= 0 and we continue the proof. From (21), we obtain

f0 = c
a0

a0 − ã
, f c

n = c

√
2an

an − ã
. (22)

These relations with, again, a0 f0 + √
2
∑∞

n=1 an f c
n = c, imply

a2
0

a0 − ã
+ 2

∞∑

n=1

a2
n

an − ã
= 1. (23)

Weare going to show that there exists a unique solution ãn of (23) such thata(n) > ãn >

a(n+1). This solution is the searched eigenvalue, whose corresponding eigenfunction’
expansion is given in (22).

Let us consider the series

S(x) = a2
0

a0 − x
+ 2

∞∑

n=1

a2
n

an − x
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and the derivative series

S′(x) = a2
0

(a0 − x)2
+ 2

∞∑

n=1

a2
n

(an − x)2
,

then they converge absolutely in each compact set not containing {an}n≥1. We have
that

dom(S) = dom(s) = ∪n(a(n+1), a(n)), S′(x) = s(x),∀x ∈ dom(S).

Moreover for each n,

lim
x→a+

(n+1)

S(x) = −∞, lim
x→a−

(n)

S(x) = +∞, S′(x) > 0,∀x ∈ (a(n+1), a(n)).

Hence, there exists a unique ãn ∈ (a(n+1), a(n)) such that S(ãn) = 1, i.e., for which
(23) holds. The unique corresponding eigenfunction is given by (22) that implies also
mãn = 1:

f (t) = a0
a0 − ãn

+ √
2

∞∑

n=1

an

an − ãn
cn(t).

To complete the proof, we show that there are not eigenvalues greater than a(1) =
maxn an or smaller than any an > 0.

In fact, if we assume that there exists an eigenvalue â > max an , then (22) shows
that the sequence { f c

k }k≥0 is made of either nonnegative or nonpositive numbers that
together with Lemma 1 implies f c

k = 0, for any f .
In the same way, it can be shown that there are no eigenvalues smaller than any

an > 0. ��

Appendix 3: Proofs of results of Sect. 4

We simply deduce the results based on the fact that if Y ≈ N (0, σ 2), then E(|Y |p) =
σ p 2

p
2 �
(

p+1
2

)

√
π

, (see, e.g., Patel and Read 1982).

Proof of the Theorem 7 Observe that

E(|xt+h − xt |2) = E(x2t + x2t+h − 2xt+h xt ) = R(t + h, t + h)

+ R(t, t) − 2R(t + h, t).

Since there exists an M such that |R(s + δ1, t + δ2) − R(s, t)| ≤ M‖(δ1, δ2)‖α , then
there exists a D such that

E(|xt+h − xt |2) ≤ D|h|α.
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The thesis follows. ��
Proof of the Theorem 8 The first part of the theorem is a simple calculation. The sec-
ond holds is a consequence of Theorem 6, since

E(|xt+h − xt |2) = E(E(|xt+h − xt |2|x0)) = E(E((xt+h − x0) − (xt − x0))
2|x0))

= R(t + h, t + h) + R(t, t) − 2R(t + h, t) ≤ D|h|α.

��
Proof of the Theorem 10 It is clear that

∂2C̃(δ) = 2∂2
∞∑

k=1

c2k cos(2kπ(δ)) = −2
∞∑

k=1

(2π)2k2c2k cos(2kπ(δ))

and that ∂2C̃ ∈ C0,α([0, 1]), for some 0 < α ≤ 1. Moreover, we have that uniformly
in t and in mean square

xt = c0Y ′
0 +

∞∑

k=1

ck(Yksk(t) + Y ′
kck(t)).

and, from Theorem 2, there also exists a stochastic process inH such that uniformly
in t and in mean square

x̃t = 2π
∞∑

k=1

kck(Ykck(t) − Y ′
ksk(t)),

which has covariogram function belonging to C0,α([0, 1]) given by

˜̄C(δ) = 2
∞∑

k=1

(2π)2k2c2k cos(2kπ(δ)).

If we define

y(n)
t := c0Y ′

0 +
n∑

k=1

ck(Yksk(t) + Y ′
kck(t))

ỹ(n)(t) := 2π
n∑

k=1

kck(Ykck(t) − Y ′
ksk(t)),

than y(n)
t = y(n)

0 + ∫ t
0 ỹ(n)

τ dτ , a.s. for any n, while for each fixed t , in mean square we

have
∫ t
0 ỹ(n)

τ dτ → ∫ t
0 x̃τdτ. Since
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√

E
(
[xt − x0 −

∫ t

0
x̃τdτ ]2

)
≤
√

E
(
[xt − y(n)

t ]2
)

+
√

E
(
[y(n)

0 +
∫ t

0
ỹ(n)
τ dτ − x0 −

∫ t

0
x̃τdτ ]2

)
−→
n→∞ 0,

it follows that a.s. xt = x0+
∫ t
0 x̃τdτ.ByTheorem 7, we know that almost all trajectory

path of x̃t belongs to C0,β([0, 1]), with β < α
2 , and thesis follows. ��

Appendix 4: Proofs of results of Sect. 5

Proof of Theorem 11 Assume p0 be the true parameter, we may define a sequence of
i.i.d. random variables {Zk}k≥0 in the following way:

Zk ∼ k2p0ok

a2
0

∼ χ2
2 ∼ exp

( 1
2

)
. (24)

Equation (7), as a function of (p, p0) and {Zk}k≥1, becomes

∂�n

∂p
=

n∑

k=1

log(k)
(
2 − k2(p−p0)Zk

)
.

With the notation of (Hall and Heyde 1980, pp. 155–161), we have

In(p) =
n∑

1

log2(k)E
(
(2 − k2(p−p0)Zk)

2|Z1, . . . , Zk−1

)

=
n∑

1

log2(k)2(1 + (1 − 2k2(p−p0))2),

Jn(p) = − 2

a2
0

n∑

k=1

log2(k)k2pok = −2
n∑

k=1

log2(k)k2(p−p0)Zk

and, in particular,

In(p0) = 4
n∑

1

log2(k), (25)

Jn(p0) = −2
n∑

1

log2(k)Zk . (26)

The thesis is a consequence of (Hall and Heyde 1980, pp. 155–161), where the
Assumption 1 and Assumption 2 on page 160 guarantee the existence of an ML
estimator { p̂n}n≥1 such that
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p̂n
a.s.−→

n→∞ p0,
p̂n − p0√

In(p0)
L−→

n→∞ N (0, 1).

Check of (Hall and Heyde 1980, Assumption 1, p. 160). The fact that In(p0)
a.s.−→

n→∞ ∞
is a consequence of (25). As In(p0) = E(In(p0)), then In(p0)/E(In(p0)) → 1
uniformly on compacts. By (25) and (26), we have

Jn(p0)

In(p0)
= −2

∑n
1 log

2(k)Zk

4
∑n

1 log
2(k)

,

and hence, by (24), we have

E

(
Jn(p0)

In(p0)

)

= 1, Var

(
Jn(p0)

In(p0)

)

=
∑n

1 log
4(k)

(∑n
1 log

2(k)
)2 .

Since, for n ≥ 4,

log2(n)
∑n

1 log
2(m)

≤ 1
∑n

n/2

( log(n/2)
log(n)

)2 ≤ 1
∑n

n/2

( 1
2

)2 ≤ 8

n
(27)

then
∑∞

n=1

( log2(n)
∑n

1 log
2(m)

)2
< ∞, and hence V ar

( Jn(p0)
In(p0)

)→ 0 by Kronecker’s Lemma,

which ensures that In(p0)/E(In(p0)) → −1 in probability uniformly on compacts.
Check of (Hall and Heyde 1980, Assumption 2, p. 160). Since, for any p, E p(In(p))

does not change, then Assumption 2.i) is automatically satisfied.
Now, if |pn − p0| ≤ δ/

√
In(p0), we get

|Jn(pn) − Jn(p0)| ≤ 2
n∑

k=1

log2(k)

(

k
δ√∑n

1 log2(m) − 1

)

Zk (28)

|In(pn) − In(p0)| ≤
n∑

k=1

log2(k)8k
2 δ√

In (p0) (k
2 δ√

In (p0) − 1).

Note that, since k ≤ n, we have

1 ≤ k
2 δ√

In (p0) ≤ e
2 δ√

In (p0)
log(n) ≤ exp(2δ)

and hence, for sufficient large n and k ≤ n, since

k
2 δ√

In (p0) − 1 ≤ C02
δ√

In(p0)
log(k), (29)
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we obtain

∣
∣
∣

In(pn) − In(p0)

In(p0)

∣
∣
∣ ≤

C1

∑n
k=1 log

3(k)√∑n
1 log

2(k)

4
∑n

1 log
2(k)

= C2

n∑

k=1

(
log2(k)

∑n
1 log

2(m)

) 3
2

.

By (27), then
∑∞

n=1

( log2(n)
∑n

1 log
2(m)

) 3
2 < ∞, and hence, by Kronecker’s Lemma, we get

Assumption (2.ii), namely

∣
∣
∣

In(pn) − In(p0)

In(p0)

∣
∣
∣→ 0.

The last Assumption (2.iii) requires that

Jn(pn) − Jn(p0)

In(p0)
→ 0, a.s.

To check this, we first note that

∑n
k=1 log

2(k)
(
k

δ√∑n
1 log2(m) − 1

)

∑n
1 log

2(k)
→ 0,

as a consequence of Kronecker’s Lemma, (29) and (27). Then,

∣
∣
∣E
( Jn(pn) − Jn(p0)

In(p0)

)∣
∣
∣ ≤ E(|Jn(pn) − Jn(p0)|)

In(p0)
→ 0,

and hence, a sufficient condition for Jn(pn)−Jn(p0)
In(p0)

→ 0 to hold, is that

V ar
( Jn(pn) − Jn(p0)

In(p0)

)
→ 0. (30)

By (28), since V ar(Xk) = 4, we obtain

V ar(Jn(pn) − Jn(p0)) ≤ 8
n∑

k=1

log4(k)

(

k
δ√∑n

1 log2(m) − 1

)2

.

Again, by (29), we obtain

V ar

(
Jn(pn) − Jn(p0)

In(p0)

)

≤
C1

∑n
k=1 log

6(k)
∑n

1 log
2(k)

(
4
∑n

1 log
2(k)

)2 = C2

n∑

k=1

(
log2(k)

∑n
1 log

2(m)

)3

.

As above, by (27) and Kronecker’s Lemma, we obtain (30).
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We sketch the second part of the proof, with the notation of (Heyde 1997, pag. 191).
If we define

Gn(θ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G(1)
n (a, p) = 1

a

n∑

k=1

(k2p

a2 ok − 2
)

= 1

a

n∑

k=1

(k2(p−p0)a2
0

a2 Zk − 2
)

G(2)
n (a, p) =

n∑

k=1

log(k)
(
2 − k2p

a2 ok

)
=

n∑

k=1

log(k)
(
2 − k2(p−p0)a2

0

a2 Zk

)

and

H−1
n (a0, p0) =

( a0
2
√

n
0

0 1
2
√∑n

k=1 log
2(k)

)

it is simple to state that

H−1
n (a0, p0) · Gn(a0, p0)

L−→
n→∞

(
1

−1

)

Z . (31)

In fact, since {Zk}k≥0 is a i.i.d. sequence of random variables withmean 2 and variance
4 (see (24)), we get

E(G(1)
n (a0, p0)G

(2)
n (a0, p0)) = −E

(
1

a0

n∑

k=1

log(k)(2 − Zk)
2
)

= − 4

a0

n∑

k=1

log(k)

and hence

Corr

⎛

⎝ a0
2
√

n
G(1)

n (a0, p0),
G(2)

n (a0, p0)

2
√∑n

k=1 log
2(k)

⎞

⎠ = −∑n
k=1 log(k)

√
n
√∑n

k=1 log
2(k)

−→
n→∞ −1.

Now, since

Ġ(a0, p0)

=
⎛

⎜
⎝

− 4n
a20

(
1 + 3

4

∑n
k=1(Zk−2)

n

)
4
∑n

k=1 log(k)
a0

(
1 +

∑n
k=1 log(k)(Zk−2)
2
∑n

k=1 log(k)

)

4
∑n

k=1 log(k)
a0

(
1 +

∑n
k=1 log(k)(Zk−2)
2
∑n

k=1 log(k)

)
−4
∑n

k=1 log
2(k)

(
1 +

∑n
k=1 log

2(k)(Zk−2)
2
∑n

k=1 log
2(k)

⎞

⎟
⎠

�
⎛

⎝
− 4n

a20

4
∑n

k=1 log(k)
a0

4
∑n

k=1 log(k)
a0

−4
∑n

k=1 log
2(k)

⎞

⎠

then, by (31) (see Heyde 1997, pag.191), we get

H−1
n (a0, p0) · (−Ġ(a0, p0)) ·

(
ân − a0
p̂n − p0

)
L−→

n→∞

(
1

−1

)

Z ,
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which is the thesis, once the conditions of uniformly boundedness are checked as for
the previous case. ��
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