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Abstract For classic i.i.d. sampleswith an arbitrary nondegenerate and finite variance
distribution, Papadatos (1995, Annals of the Institute of Statistical Mathematics, 47,
185–193) presented sharp lower and upper bounds on the variances of order statistics,
expressed in population variance units.We provide here analogous results for spacings.
Also, we describe the parent distributions which attain the bounds.
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1 Introduction

We assume that a random variable X has a positive and finite variance. Let X1, . . . , Xn

denote n i.i.d. copies of X , and X1:n ≤ · · · Xn:n stand for the respective order statistics.
Their spacings are defined by Si :n = Xi+1:n − Xi :n , i = 1, . . . , n − 1. Under the
above assumptions, we derive sharp lower and upper bounds for the variance ratios
Var Si :n/Var X for all 1 ≤ i < n < ∞. Also, we describe the families of two-point
distributions which attain the bounds, possibly in the limit.

Spacings play important roles in various problems of statistical inference and other
branches of applied probability. Comprehensive discussions of their properties and
applications, especially in constructing goodness-of-fit tests, are presented, e.g., in
Pyke (1965, 1972) and David and Nagaraja (2003). Various evaluations of the expec-
tations of linear combinations of order statistics, and spacings in particular, were
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presented in the literature. The first ones are due to Moriguti (1953) who derived
sharp bounds on expected spacings in population standard deviation units. Raqab
(2003) presented optimal upper bounds on the expectations of spacings in more gen-
eral scale units, generated by central absolute populations moments of various orders
p ≥ 1. Danielak (2004) extended these results to arbitrary quasi-ranges, i.e., differ-
ences of order statistics X j :n − Xi :n , 1 ≤ i < j ≤ n. Kozyra and Rychlik (2015)
obtained tight lower and upper bounds on the differences of expected order statistics
measured in Gini mean difference units. More stringent standard deviation bounds
in the restricted families of decreasing density and decreasing failure rate distribu-
tions were determined by Danielak and Rychlik (2004). More general families of
distributions with decreasing density and failure rate on the average were studied in
Danielak and Rychlik (2003). Recently, Goroncy and Rychlik (2015a, b) presented
analogous results for the distributions with increasing density and increasing failure
rate functions, respectively.

By far less is known about evaluations of variances of order statistics and their
functions. Papadatos (1995) determined sharp lower and upper bounds on variances
of single order statistics, expressed in terms of single observation variance units. The
upper bound for the special case of sample median was earlier presented in Yang
(1982), and its tightness was proved by Lin and Huang (1989). Papadatos (1997)
refined these results for the families of symmetric parent distributions. More precise
solution to the problem was presented in Jasiński and Rychlik (2013). Much ear-
lier, lower and upper bounds for the variances of sample extremes were delivered by
Moriguti (1951).

This paper is a first attempt at evaluating the variances of nontrivial linear combi-
nations of order statistics. Main results are presented in Sect. 2. Section 3 contains
their proofs.

2 Results

Using the assumptions and notation of the first paragraph of Sect. 1 which shall hold
throughout the whole paper, we state the following.

Proposition 1 For arbitrary fixed 1 ≤ i < n < ∞, the bound

Var Si :n
Var X

≤ max
0≤u≤1

gi,n(u) (1)

with

gi,n(u) :=
(
n

i

)
ui−1(1 − u)n−i−1

[
1 −

(
n

i

)
ui (1 − u)n−i

]
(2)

is sharp. Let

Fu(x) :=
⎧⎨
⎩
0, if x < a,

u, if a ≤ x < b,
1, if x ≥ b,

(3)

denote the family of two-point distribution functions with arbitrary a < b and 0 <

u < 1. If max0≤u≤1 gi,n(u) = gi,n(u∗) for some u∗ = u∗(i, n) ∈ (0, 1), then the
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upper bound in (1) is attained iff the parent distribution function is (3) with u = u∗.
If max0≤u≤1 gi,n(u) = gi,n(0) (gi,n(1), respectively), then this is attained in the limit
by the parent distribution functions (3) with u ↓ 0 (u ↑ 1, respectively). For 1 ≤ i <

n ≥ 3, the trivial inequality
Var Si :n
Var X

≥ 0 (4)

cannot be improved, and becomes equality in the limit for the parent distribution
functions (3) with u ↓ 0 when i ≥ 2 and u ↑ 1 when i ≤ n − 2.

Note that

gi,n(u) =
(
n

i

)
ui−1(1 − u)n−i−1

n∑
j=0
j 	=i

B j,n(u),

where

Bj,n(u) :=
(
n

j

)
u j (1 − u)n− j , 0 ≤ j ≤ n,

denote the Bernstein polynomials of degree n. This implies that gi,n(u) > 0 for all
n ∈ N, i ∈ {1, . . . , n − 1} and u ∈ (0, 1). Moreover, gi,n(u) = 0 if either i ≥ 2 and
u = 0 or i ≤ n − 2 and u = 1. This observation is intimately connected with the tight
zero lower bound of Proposition 1. Also, relation gi,n(u) = gn−i,n(1 − u) together
with (1) imply that the upper bounds for the variances of Si :n and Sn−i :n coincide. The
same conclusion for the lower bounds results from the last claim of Proposition 1.

In Lemmas 1 and 2, we describe maxima of (2) for various parameters i and n.

Lemma 1 For every n ≥ 3

(i) function g1,n has a unique maximum at 0, and g1,n(0) = n,
(ii) function gn−1,n has a unique maximum at 1, and gn−1,n(1) = n.

Lemma 2 Fix n ≥ 4 and 2 ≤ i ≤ n − 2. Function (2) has either a unique local
and global maximum or two local maxima and one local minimum between them. The
local extreme arguments are the only zeros of the polynomial

hi,n(u) = [2(n − 1)u − 2i + 1]Bi,n(u) − u(n − 2) + i − 1. (5)

Let u∗ = u∗(i, n) denote the global maximum point. Then u∗(2, 4) ∈ { 12 −
√
6
6 +

√
3
6 ,

1
2 +

√
6
6 −

√
3
6

}
and g2,4(u∗(2, 4)) = 2

√
2

3 ≈ 0.94281. For n > 4 yields

(i) if i < n
2 (i > n

2 ), then u∗(i, n) < 1
2 (u∗(i, n) > 1

2 , respectively),
(ii) if n ≥ 6 is even, then u∗

( n
2 , n
) = 1

2 and

gn
2 ,n

(
1

2

)
=
(
n
n
2

)
1

2n−2

[
1 −

(
n
n
2

)
1

2n

]
.
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The proof of the first statement of Lemma 2 is based on the following variation dimin-
ishing property (VDP, for brevity) of Bernstein polynomials of Schoenberg (1959).

Lemma 3 [cf., e.g., Rychlik (2001), Lemma 14] The number of sign changes of a
non-zero linear combination of Bernstein polynomials

∑m
k=0 bk Bk,m of degree m on

the interval (0, 1) does not exceed the number of the sign changes of the sequence
(b0, . . . , bm). Moreover, the signs of the combination at the right neighborhood of 0
and the left neighborhood of 1 coincide with the signs of the first and last non-zero
elements of the sequence, respectively.

We are not able to arbitrate theoretically which functions gi,n , 2 ≤ i ≤ n − 2,
i 	= n

2 , have one and two local maxima. Also, in the latter case, we not not have
tools for deciding if both the local maxima are located in the same half of the unit
interval. Numerical analysis of functions (2) for small n shows that two maxima
appear only for i = 2, n = 4 (see Lemma 2). If n increases, the possibility of two
maxima becomes less likely. Note that (2) can be represented as a linear combination
of Bernstein polynomials Bj,2n−2, j = i − 1, . . . , 2i − 2, 2i, . . . , 2n − i − 1, with
positive coefficients. The full such combination with j = i − 1, . . . , 2n − i − 1
amounts to

(n
i

)
ui−1(1− u)n−i−1 which is certainly unimodal. It seems that removing

one component with j = 2i − 1 does not violate the property, and becomes almost
negligible, especially for large n.

Using Lemmas 1 and 2 we are able to specify general result of Proposition 1 for
particular i ∈ {1, . . . , n − 1} and n ∈ N. Only case i = 1 and n = 2 described
in Proposition 2 needs an additional justification. Propositions 3 and 4 are direct
conclusions of Proposition 1 and Lemmas 1 and 2.

Proposition 2 We have

2

3
≤ Var S1:2

Var X
≤ g1,2(0) = g1,2(1) = 2.

The lower inequality becomes equality iff X is uniformly distributed.

Writing here and later that Var Si :n
Var X ≤ (≥)gi,n(u∗), we mean that the upper (lower,

respectively) bound amounts to gi,n(u∗) and is attained by the two-point distribution
(3) with u = u∗ if 0 < u∗ < 1, and in the limit by a sequence of Fu with u → u∗ if
u∗ = 0 or u∗ = 1. We use the convention for the sake of brevity.

Proposition 3 If n ≥ 3, then:

0 = g1,n(1) ≤ Var S1:n
Var X

≤ g1,n(0) = n,

0 = gn−1,n(0) ≤ Var Sn−1:n
Var X

≤ gn−1,n(1) = n.

Proposition 4 If n ≥ 4 and 2 ≤ i ≤ n − 2, then

0 = gi,n(0) = gi,n(1) ≤ Var Si :n
Var X

≤ gi,n(u∗),
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Table 1 Upper bounds on variances of spacings from samples of size n = 20

i u∗(i, 20) gi,20(u∗(i, 20)) i u∗(i, 20) gi,20(u∗(i, 20))

1 0 20 6 0.27038 0.75942

2 0.04347 3.25396 7 0.32794 0.67092

3 0.09792 1.71152 8 0.38537 0.61799

4 0.15502 1.17002 9 0.44271 0.58958

5 0.21270 0.90714 10 0.5 0.58061

where u∗ is described in Lemma 2.
In particular, for even n and i = n

2 , we have

0 = g2,4(0) = g2,4(1) ≤ Var S2:4
Var X

≤ g2,4

(
1

2
−

√
6

6
+

√
3

6

)

= g2,4

(
1

2
+

√
6

6
−

√
3

6

)
= 2

√
2

3
≈ 0.94281,

0 = gn
2 ,n(0) = gn

2 ,n(1) ≤ Var Sn
2 :n

Var X
≤ gn

2 ,n

(
1

2

)

=
(
n
n
2

)
1

2n−2

[
1 −

(
n
n
2

)
1

2n

]
, n ≥ 6.

Table 1 presents numerical values of upper bounds gi,20(u∗(i, 20)) on variances of
spacings Si :20 for samples of size n = 20 and 1 ≤ i ≤ 10, together with respective
arguments u∗(i, 20) which describe the two-point distribution functions (3) attaining
the bounds. Respective values for 11 ≤ i ≤ 19 are immediately deduced from the
relations u∗(i, n) = 1 − u∗(n − i, n) and gi,n(u∗(i, n)) = gn−i,n(u∗(n − i, n)). We
can see that if i increases from 1 to 10, then u∗(i, 20) increases from 0 to 0.5, whereas
gi,20(u∗(i, 20)) decreases from 20 to 0.58061. From Proposition 4 and the Stirling
formula we deduce that the upper bounds for the central spacings with i = n

2 decrease

to 0 at the rate 4
√

2π
n as n increases to infinity. By Proposition 3, the respective bounds

for the extreme spacings tend to infinity faster.

3 Proofs

Proof of Propostion 1. If X1, . . . , Xn are i.i.d. copies of X with a common cumulative
distribution function F , then

Var X =
∫∫

R2
F(x ∧ y)F̄(x ∨ y)dxdy, (6)
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E Si :n =
(
n

i

)∫
R

Fi (x)F̄n−i (x)dx,

E S2i :n =
(
n

i

)∫∫
R2

Fi (x ∧ y)F̄n−i (x ∨ y)dxdy, (7)

where x ∧ y = min{x, y}, x ∨ y = max{x, y}, and F̄(x) = 1 − F(x) denotes the
survival function of F . The first formula is ascribed to Hoeffding (1940). The others
were presented by Pearson (1902) and Irwin (1925), respectively. These and many
other similar formulas may be also found in Jones and Balakrishnan (2002). We also
have

(E Si :n)2 =
(
n

i

)2 ∫∫
R2

Fi (x)F̄n−i (x)Fi (y)F̄n−i (y)dxdy

=
(
n

i

)2 ∫∫
R2

Fi (x ∧ y)F̄n−i (x ∧ y)Fi (x ∨ y)F̄n−i (x ∨ y)dxdy.

In consequence,

Var Si :n =
∫∫

R2

[(
n

i

)
Fi (x ∧ y)F̄n−i (x ∨ y)

−
(
n

i

)2
Fi (x ∧ y)F̄n−i (x ∧ y)Fi (x ∨ y)F̄n−i (x ∨ y)

]
dxdy

=
∫∫

R2

(
n

i

)
Fi−1(x ∧ y)F̄n−i−1(x ∨ y)

×
[
1 −

(
n

i

)
Fi (x ∧ y)F̄n−i (x ∨ y)

]
F(x ∧ y)F̄(x ∨ y)dxdy

≤ max
0≤u=F(x∧y)≤v=F(x∨y)≤1

fi,n(u, v)

∫∫
R2

F(x ∧ y)F̄(x ∨ y)dxdy, (8)

where

fi,n(u, v) :=
(
n

i

)
ui−1(1 − v)n−i−1

[
1 −

(
n

i

)
vi (1 − u)n−i

]
, 0 ≤ u ≤ v ≤ 1.

Noting that for every fixed 1 ≤ i ≤ n − 1 and 0 ≤ u ≤ 1, we have

fi,n(u, v) ≤ fi,n(u, u) = gi,n(u)

for all u ≤ v ≤ 1, and recalling (6), we complete the proof of inequality (1).
Nowwe justify its sharpness. Suppose that u∗ = argmax gi,n(u) ∈ (0, 1). Then we

get the equality in (8) iff either F(x ∧ y)F̄(x ∨ y) = 0 or F(x ∧ y) = F(x ∨ y) = u∗
almost surely with respect to the Lebesgue measure on R

2. This is equivalent to the
condition that 0, u∗ and 1 are the only values of F . Assume now that u∗ = 0, and
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X, X1, . . . , Xn are i.i.d. with parent distribution function Fu defined in (3) for some
0 < u < 1. Then clearly

Varu X = (a − b)2u(1 − u).

The spacing Si :n has two-point distribution

Pu(Si :n = b − a) = Pu(X1:n = · · · = Xi :n = a, Xi+1:n = · · · = Xn:n = b)

=
(
n

i

)
ui (1 − u)n−i = Bi,n(u),

Pu(Si :n = 0) = 1 − Bi,n(u).

Therefore

Varu Si :n = (a − b)2Bi,n(u)
[
1 − Bi,n(u)

] = gi,n(u)Varu X,

and

lim
u↓0

Varu Si :n
Varu X

= lim
u↓0 gi,n(u) = gi,n(0),

by continuity of gi,n . The proof for u ↑ 1 is analogous.
It remains to verify attainability of the lower bounds (4). If i ≥ 2, then gi,n(0) = 0,

and mimicking arguments of the previous reasoning we obtain

lim
u↓0

Varu Si :n
Varu X

= lim
u↓0 gi,n(u) = gi,n(0).

The similar claim is concluded if i ≤ n − 2 and gi,n(1) = 0. ��
Proof of Lemma 1. (i) We first focus on the case i = 1 and show that g1,n is strictly
decreasing on the interval [0, 1]. Consider

g′
1,n(u) = n(1 − u)n−3h1,n(u),

where

h1,n(u) = n(1 − u)n−1(2(n − 1)u − 1
)− n + 2.

Observe that h1,n(0) = −2(n − 1), h1,n(1) = −(n − 2) and

h′
1,n(u) = n(n − 1)(1 − u)n−2(3 − 2nu),

which implies that h1,n is increasing on
[
0, 3

2n

]
and decreasing on

[ 3
2n , 1

]
. We show

that

h1,n

(
3

2n

)
= 2n

(
1 − 3

2n

)n
− (n − 2) < 0, n ≥ 3,
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which means that

2n − 3

n − 2
<

(
2n

2n − 3

)n−1

, n ≥ 3.

By the Bernoulli inequality,

(
2n

2n − 3

)n−1

> 1 + 3(n − 1)

2n − 3
= 5n − 6

2n − 3
, n ≥ 2,

it remains to notice that 5n−6
2n−3 ≥ 2n−3

n−2 , which is equivalent to (n − 1)(n − 3) ≥ 0,
n ≥ 3, and verifies desired claim. Summing up, we have hn(u) < 0 and g′

n,1(u) < 0
for all 0 < u < 1 and n ≥ 3, which implies that

max
u∈[0,1] g1,n(u) = g1,n(0) = n, n ≥ 3.

(ii) The conclusion for i = n − 1 follows from the relation gi,n(u) = gn−i,n(1 − u)

and the previous statement. ��

Proof of Lemma 2. For given n ≥ 4 and 2 ≤ i ≤ n − 2 we have:

g′
i,n(u) =

(
n

i

)
ui−2(1 − u)n−2−i hi,n(u)

=
(
n

i

)
ui−2(1 − u)n−2−i

n + 1

n+1∑
j=0

a j,n+1Bj,n+1(u)

[cf. (5)], where

a j,n+1 =
⎧⎨
⎩

−2(n − i)i, if j = i,
2(n − i)i, if j = i + 1,
(i − 1)(n + 1) − j (n − 2), otherwise.

(9)

Since 2 ≤ i ≤ n − 2, the arithmetic sequence ã j,n+1 = (i − 1)(n + 1) − j (n − 2),
j ∈ {0, . . . n + 1}, decreases from ã0,n+1 = (i − 1)(n + 1) > 0 to ãn+1,n+1 =
−(n + 1)(n − 1 − i) < 0. For any fixed i ∈ {2, . . . , n − 2}, if we replace any pair
ãi,n+1, ãi+1,n+1 by arbitrary a < 0 and b > 0, we obtain another sequence with
consecutive signs + − +− (we suppressed here multiple pluses and minuses, and
dropped a possible zero at j = (i−1)(n+1)

n−2 ). This holds true for (9), in particular.
By Lemma 3, gi,n is either first increasing and then decreasing or it is consecutively
increasing, decreasing, increasing and ultimately decreasing.
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We now treat the case i = 2, n = 4 with use of standard calculus tools. Then

g′
2,4(u) = 6(2u − 1)[18u2(1 − u)2 − 1]

= 6(2u − 1)[3√2u(1 − u) − 1][3√2u(1 − u) + 1]

= 108

(
u − 1

2
+

√
6

6
+

√
3

6

)(
u − 1

2
+

√
6

6
−

√
3

6

)(
u − 1

2

)

×
(
u − 1

2
−

√
6

6
+

√
3

6

)(
u − 1

2
−

√
6

6
−

√
3

6

)
.

Hence the derivative g′
2,4 restricted to [0, 1] has three zeros at 1

2 ,
1
2 −

√
6
6 +

√
3
6 ,

and 1
2 +

√
6
6 −

√
3
6 . Moreover g′

2,4(u) > 0 iff either u ∈
(
0, 1

2 −
√
6
6 +

√
3
6

)
or u ∈(

1
2 ,

1
2 +

√
6
6 −

√
3
6

)
. By symmetry of the function about 1

2 , we get

max
u∈[0,1] g2,4(u) = g2,4

(
1

2
−

√
6

6
+

√
3

6

)
= g2,4

(
1

2
+

√
6

6
−

√
3

6

)

= 2
√
2

3
≈ 0.94281.

(i) Now we proceed to n ≥ 5. Observe that

gi,n(u) =
(
n

i

)
ui−1(1 − u)n−1−i

⎡
⎢⎢⎢⎣

n∑
j=0

i 	= j 	=n−i

(
n

j

)
u j (1 − u)n− j +

(
n

i

)
un−i (1 − u)i

⎤
⎥⎥⎥⎦

=
(
n

i

)
[u(1 − u)]i−1(1 − u)n−2i

n∑
j=0

i 	= j 	=n−i

(
n

j

)
u j (1 − u)n− j

+
(
n

i

)2
[u(1 − u)]n−1,

and

gi,n(1 − u) =
(
n

i

)
[u(1 − u)]i−1un−2i

n∑
j=0

i 	= j 	=n−i

(
n

j

)
u j (1 − u)n− j

+
(
n

i

)2
[u(1 − u)]n−1.
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In consequence,

gi,n(u) − gi,n(1 − u) =
(
n

i

)
[u(1 − u)]i−1

n∑
j=0

i 	= j 	=n−i

(
n

j

)
u j (1 − u)n− j

×[(1 − u)n−2i − un−2i ].

The sign of the difference is identical with that of the expression in square brackets.
Therefore for i < n

2 this difference is positive on (0, 1
2 ) and negative on ( 12 , 1). If

i > n
2 , the signs are reversed. This immediately implies our claims.

(ii) Suppose finally that n ≥ 6 is even and i = n
2 . Due to (2), gn

2 ,n is symmetric about
1
2 , and gn

2 ,n(
1
2 ) is a local extreme. We prove that this is a maximum, verifying that

g′′
n
2 ,n(

1
2 ) < 0. Using i = n

2 for simplicity of notation we have

g′′
i,2i (u) = (2i)![u(1 − u)]i−3

i !4
[
i !2(i − 1)(4iu2 − 4iu − 6u2 + i + 6u − 2)

−2ui (1 − u)i (2i)!(2i − 1)(4iu2 − 4iu − 3u2 + i + 3u − 1)

]
,

g′′
i,2i

(1
2

)
= (2i)!

22i−1i !4 h(i),

where

h(i) = 4−i (2i)!(2i − 1) − i !2(i − 1)

determines the sign of g′′
i,2i

(
1
2

)
. We shall prove that h(i) < 0 for i ≥ 3 by induction.

We check that h(3) = − 63
4 and assume that h(i) < 0 for some i ≥ 3 which is

equivalent to
(2i
i

)
4−i
(
2 + 1

i−1

)
< 1. We show that the relation holds for i + 1 as

well. Indeed,

(
2i + 2

i + 1

)
4−i−1

(
2 + 1

i

)
=
(
2i

i

)
4−i
(
2 + 1

i

)
2i + 1

2(i + 1)

<

(
2i

i

)
4−i
(
2 + 1

i − 1

)
2i + 1

2i + 2

<

(
2i

i

)
4−i
(
2 + 1

i − 1

)
< 1,

by the inductive assumption. This ends the proof. ��
Proof of Proposition 2. The upper bound is evident by Proposition 1, since

g1,2(u) = 2[1 − 2u(1 − u)] = 2 − 4u + 4u2, 0 ≤ u ≤ 1,
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attains its maximal value 2 at 0 and 1. In order to establish the lower one, we first note
that

E S21:2 = E (X1 − X2)
2 = 2Var X

[cf. also (6) and (7)]. Accordingly the problem of minimizing

Var S1:2
Var X

= 2 −
(
E S1:2

)2
Var X

(10)

is dual to that of maximizing

∣∣E S1:2
∣∣

√
Var X

. We focus on the later one. Suppose that X1, X2

are independent, and have a common distribution function F with mean μ and finite
and positive variance σ 2. Then

E S1:2 = E[F−1(U2:2) − μ] − E[F−1(U1:2) − μ]
=
∫
R

[F−1(x) − μ][ f2:2(x) − f1:2(x)]dx,

whereU1:2 andU2:2 denote the minimum andmaximum of two i.i.d. standard uniform
random variables, and

f1:2(x) =
{
2(1 − x), if 0 < x < 1,
0, otherwise,

f2:2(x) =
{
2x, if 0 < x < 1,
0, otherwise,

stand for the respective density functions. By Cauchy–Schwarz inequality,

|E S1:2| = 2

∣∣∣∣
∫ 1

0
[F−1(x) − μ](2x − 1)dx

∣∣∣∣
≤ 2

√∫ 1

0
[F−1(x) − μ]2dx

∫ 1

0
(2x − 1)2dx = 2

√
3

3
σ.

This is a special case of the classic bounds on the expectation of sample ranges due to
Plackett (1947), and together with (10), determine the lower variance bound. Observe
that equality holds in the Cauchy–Schwarz inequality iff

F−1(x) − μ = α(2x − 1), 0 < x < 1, (11)

for some real α. Since F−1 is nondecreasing and nonconstant function, α has to
be positive. Condition

∫ 1
0 [F−1(x) − μ]2dx = σ 2 implies that α = √

3 σ . Hence,
equation (11) uniquely determines the quantile function of the uniform distribution on
the interval [μ − √

3 σ,μ + √
3 σ ]. Clearly, changing parameters μ and σ we obtain
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the uniform distribution on arbitrary intervals. These distributions attain the lower
variance bound of Proposition 2. ��
Acknowledgements The authors are grateful to the associate editor and referee for helpful comments that
allowed them to correct mistakes and improve the presentation.
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