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Abstract The single-index model is a useful extension of the linear regression model.
Cui et al. (Ann Stat 39:1658–1688, 2011) proposed an estimating function method for
the estimation of index vector in an extended single-index model (ESIM). Neverthe-
less, how to conduct variable selection for ESIM has not been studied. To solve this
problem, we penalize the estimating equation with some types of penalty, such as
smoothly clipped absolute deviation penalty and adaptive lasso penalty. Under some
regularity conditions, the oracle property is established, i.e., the resulting estimator
can be as efficient as the oracle estimator, thus we improve the explanatory ability
and accuracy of estimator for the ESIM. A novel algorithm is proposed to solve the
penalized estimating equation by combining quasi-Fisher scoring type algorithm and
MM algorithm. Simulation study and real data application demonstrate the excellent
performance of the proposed estimators.

Keywords Single-index model · Penalized estimating equations ·Variable selection ·
Oracle property · Smoothly clipped absolute deviation · Adaptive lasso

1 Introduction

Consider the regression of a univariate response Y on a d-dimensional covariate vector
X = (X1, . . . , Xd)

�, where � denotes the transpose operator. When the dimension d
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is large, it suffers “curse of dimensionality” in nonparametric statistics. To address this
problem, Härdle et al. (1993) proposed single-index model (SIM) Y = g(β�X) + ε,
where β is an unknown index parameter vector of interest, g(·) is an unknown link
function and E(ε|X) = 0. It combines flexibility of modeling with interpretability of
(linear) coefficients. From then on, single-index model has been applied to a variety of
fields, such as econometrics, biostatistics, finance and so on, where high-dimensional
regression models are often employed.

Most existing research about SIM focuses on efficient estimation of β, see Härdle
and Stoker (1989), Powell et al. (1989), Carroll et al. (1997), Hristache et al. (2001)
and Xia et al. (2002), etc. However, much less has been done about its variable selec-
tion, which is important for any regression problems because ignoring any important
predictor can lead to seriously biased results, whereas including spurious covariates
can degrade the estimation efficiency substantially (Wang and Xia 2009). In linear
regression model, many methods have been proposed to select variables and estimate
their regression coefficients simultaneously, including least absolute shrinkage and
selection operator (LASSO) (Tibshirani 1996), smoothly clipped absolute deviation
(SCAD) (Fan and Li 2001), elastic net (EN) (Zou and Hastie 2005) and adaptive lasso
(ALASSO) (Zou 2006). Donoho and Johnstone (1994) proposed the oracle property
to measure the goodness of a variable selection scheme: if the method works asymp-
totically equivalent to the case as if the correct model was exactly known. Among
these methods, SCAD and ALASSO enjoy oracle property, whereas LASSO and EN
do not.

For single-index model, Kong and Xia (2007) proposed separated cross validation
to exclude irrelevant covariates from single-index model. However, the method needs
to compare all subsets of covariates, so it is computationally intensive and unstable.
Zhu and Zhu (2009) and Zhu et al. (2011) followed the idea of sufficient dimension
reduction and selected important variable in a class of single-index models via penal-
ized least square, which requires that the covariate vector X satisfies the linearity
condition, see Li (1991). Recently, Zeng et al. (2012) proposed a Lasso-type approach
for estimation and variable selection in SIM by combining MAVE (Xia et al. 2002)
and LASSO.

In this article, we consider the variable selection for an extended single-indexmodel
(ESIM), which only assumes the mean function and variance function of the response.
Let (Y j ,X j ), j = 1, . . . , n, denote the observed values with Y j being the response
variable andX j being the d-dimensional explanatory variable. The mean function and
variance function of Y j are specified as follows:

E(Y j |X j ) = μ
{
g(β�X j )

}
, Var(Y j |X j ) = σ 2V

{
g(β�X j )

}
, (1)

whereμ(·) is a knownmonotonic function, V (·) is a known covariance function, g(·) is
an unknown univariate link function and β is an unknown index vector which belongs
to the parameter space � = {β = (β1, . . . , βd)

� : ‖β‖ = 1, β1 > 0,β ∈ R
d}, where

‖ · ‖ denotes the l2-norm. Cui et al. (2011) proposed an estimating function method
(EFM) to estimate β in the ESIM (1) , and developed profile quasi-likelihood ratio test
to test the significance of certain variables in the linear index. However, to the best of
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our knowledge, no theoretical result or computational algorithm for variable selection
in the ESIM has been studied.

In this paper, inspired by Johnson et al. (2008), we penalize the estimating equation
of β to obtain a sparse estimator for ESIM, thus simultaneously select important
predictors and estimate their regression coefficients. The main contributions of our
work are as follows. First, we propose a penalized estimating equation approach.
Second, we prove the oracle property of the proposed estimator and conduct a BIC-
type criterion to select the regularization parameter, which can identify the true model
consistently. Finally, a novel algorithm is proposed to solve the penalized estimating
equation by combining quasi-Fisher scoring type algorithm and majorize–minimize
(MM) algorithm.

The rest of this article is organized as follows. The variable selection procedures
are proposed in Sect. 2. In Sect. 3, we study the asymptotic results of the method,
mainly including the oracle property and selection of regularization parameter. The
algorithm to solve the penalized estimating equation is presented in Sect. 4. In Sect. 5,
some simulation studies are conducted to show the finite sample performance of the
proposed methods. A real data case is analyzed in Sect. 6. All technical details are
deferred to Appendix 7.

2 Methodology

The parameter space � requires that ‖β‖ = 1 for the sake of identifiability. This
assumption means that the true value of β is a boundary point on the unit sphere,
and hence g(β�X) does not have a derivative at the point β. By eliminating β1, the
parameter space � can be rearranged to a form:

� =
⎧⎨
⎩

(
(1 −

d∑
r=2

β2
r )1/2, β2 . . . , βd

)�
:

d∑
r=2

β2
r < 1

⎫⎬
⎭ .

Thus, we transform the boundary of a unit ball in R
d to the interior of a unit ball

in R
d−1. Denote β(1) = (β2, . . . , βd)

� with the true value β
(1)
0 = (β02, . . . , β0d)

�,
then g(β�X) is infinitely differentiable with respect to β(1) in a neighborhood of true
parameter value β

(1)
0 .

Cui et al. (2011) proposed an EFM procedure to estimate β, which can be regarded
as a two-step estimation. Given β, the estimators ĝ(·) and ĝ′

(·) are obtained by solving
the following kernel estimating equations with respect to α0 and α1:

n∑
j=1

Kbn (β
�X j − t)μ

′ {
g0(β

�X j )
}
V−1

{
g0(β

�X j )
}

× [Y j − μ
{
g0(β

�X j )
}] = 0,

n∑
j=1

(β�X j − t)Kbn (β
�X j − t)μ

′ {
g0(β

�X j )
}
V−1

{
g0(β

�X j )
}

× [Y j − μ
{
g0(β

�X j )
}] = 0,

(2)
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where g0(β�X) = α0 + α1(β
�X − t) is local linear approximation for g(β�X) in a

neighborhood of t (see Fan and Gijbels 1996), α0 and α1 are the estimators of g(·) and
g

′
(·) evaluating at t , respectively, Kbn (·) = 1

bn
K (·/bn) with K (·) being a symmetric

kernel function and bn being a bandwidth.
After obtaining the estimates ĝ(·) and ĝ

′
(·), β can be estimated by the following

estimating equation:

Ĝ(β)=
n∑
j=1

J�ĝ′
(β�X j )

{
X j −ĥ(β�X j )

}
ρ1

{
ĝ(β�X j )

} [
Y j −μ

{
ĝ(β�X j )

}]
=0,

(3)
where J = ∂β/∂β(1) is the Jacobian matrix of size d × (d − 1) with

J =
(

−β(1)�/

√
1 − ‖β(1)‖2

Id−1

)
,

and ĥ(t) is the local linear estimator for h(t) = E(X|β�X = t),

ĥ(t) =
n∑

i=1

bi (t)Xi/

n∑
i=1

bi (t),

where bi (t) = Kbn (β
�Xi − t)

{
Sn,2(t) − (β�Xi − t)Sn,1(t)

}
, Sn,k = ∑n

i=1 Kh

(β�Xi − t)(β�Xi − t)k, k = 1, 2, and ρl(z) =
{
μ

′
(z)
}l

V−1(z), l = 1, 2.

Next, we consider variable selection for the extended single-index model. Without
loss of generality, we suppose that the first explanatory variable is important, i.e.,
β1 �= 0. Otherwise, we can always obtain a root-n-consistent estimate using EFM
method, and treat the covariate whose absolute value of estimated coefficient is the
largest as the first explanatory variable. A penalized estimating equation is then defined
as:

ĜP (β) = Ĝ(β) − np
′
λ

(
|β(1)|

)
sgn(β(1)), (4)

where p
′
λ

(|β(1)|) =
(
p

′
λ,2 (|β2|) , . . . , p

′
λ,d (|βd |)

)�
, λ is the regularization para-

meter, sgn(·) is the sign function, and the second term of (4) is the componentwise
product of p

′
λ

(|β(1)|) and sgn(β(1)).
In this article, two penalty functions are considered: (1) the SCAD penalty (Fan

and Li 2001), defined by

p
′
λ, j (|θ |) = λ

{
I (|θ | < λ) + (aλ − |θ |)+

(a − 1)λ
I (|θ | ≥ λ)

}

for a > 2; (2) the ALASSO penalty (Zou 2006), pλ, j (|θ |) = λ|θ |ω j , for a known
data-driven weight ω j . Zou (2006) used the ω j = 1/|β̂ j |γ for some γ > 0 where
β̂ j is the j th component of a root-n-consistent estimate of β. In this article, we use
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the weight ω j = 1/|β̂ j |, j = 2, . . . , d, where β̂
(1) = (β̂2, . . . , β̂d)

� refers to the
(d − 1)-dimensional vector of EFM estimator.

If the penalized estimating function (4) is continuous, the exact solution exists and

we would obtain the sparse estimator of β(1), denoted by β̂
(1)
λ = (β̂λ,2, . . . , β̂λ,d)

�,

then the estimator of β is β̂λ =
(√

1 − ||β̂(1)
λ ||2, β̂(1)�

λ

)�
. However, the penalty

functions may not be continuous, hence the penalized estimating function (4) may be
a discrete estimating function. Similar to Johnson et al. (2008), we introduce a zero-
crossing estimating function to accommodate the discrete estimating function. Let

β̂
(1)
λ be a zero-crossing to the penalized estimating function (4) if, for j = 2, . . . , d,

lim
ε→0+

1

n
ĜP

j

(
β̂

(1)
λ + εe j

)
Ĝ P

j

(
β̂

(1)
λ − εe j

)
≤ 0,

where e j is the j th canonical unit vector, ε is a small number and Ĝ P
j (·) is the j th

component of ĜP (·).

3 Theoretical properties

3.1 Basic theoretical properties

Recall that β
(1)
0 = (β02, . . . , β0d)

� denotes the true value of β(1). Without loss of
generality, suppose that β0 j �= 0 for j ≤ s and β0 j = 0 for j > s. The set of nonzero

entries in β
(1)
0 is labeled as A = { j : β0 j �= 0, j = 2, . . . , d} = {2, 3, . . . , s}.

Theorem 1 Assume that the estimating function Ĝ(β) = 0 has a unique solution.
Suppose the regularity conditions C1–C8 in Appendix 7 hold. If nh6 → 0 and nh4 →
∞, then there exists a root-n-consistent approximate zero-crossing of ĜP (β), i.e.,

β̂
(1) = β

(1)
0 + Op(n−1/2), such that β̂

(1)
is an approximate zero-crossing of ĜP (β).

Theorem 2 (Oracle property) Assume that the estimating function Ĝ(β) = 0
has a unique solution. Suppose the regularity conditions C1–C6 and C8 in the
Appendix 7 hold. For any root-n-consistent approximate zero-crossing of ĜP (β),

denoted by β̂
(1)
λ = (β̂λ,2, . . . , β̂λ,d)

�, let β̂λ,A = (β̂λ,2, . . . , β̂λ,s)
� and β0,A =

(β02, . . . , β0s)
�. If nh6 → 0 and nh4 → ∞, we then have

(a) Sparsity: limn P(β̂λ, j = 0 for j > s) = 1.
(b) Asymptotic normality:

√
n(I11 + 
11)

{
β̂λ,A − β0,A + (I11 + 
11)

−1b
} D−→ N (0, I11),

where I11,
11 are the first (s−1)×(s−1) submatrices of I = J��J|
β(1)=β

(1)
0

and

diag
{
−p

′′
λ(|β(1)

0 |)sgn(β
(1)
0 )
}
, and b = −

(
p

′
λ(|β02|)sgn(β02), . . . , p

′
λ(|β0s |)sgn
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(β0s)
)�

. J is the Jacobian matrix defined before, and

� = E

[{
XX� − E(X|β�X)E(X�|β�X)

}
ρ2

{
g(β�X)

} {
g

′
(β�X)

}2
/σ 2

]
.

Denote Ã = {1} ∪ A. Let β̂Ã = (β̂λ,1 β̂
�
λ,A)�, where β̂λ,1 =

√
1 −∑d

i=2 β̂2
λ,i ,

and βÃ = (β01, β�
0,A)� = (β01, β02, . . . , β0s)

�. Partition the matrix J into block
matrix as follows:

J =
(
J11 J12
J21 J22

)
,

where J11 is a s × (s − 1) submatrix. Using the multivariate delta method, we obtain
the asymptotic normality of β̂Ã as Corollary 1.

Corollary 1 Under the conditions of Theorem 2, if limn p
′
λ(|θ |) = limn p

′′
λ(|θ |) = 0

for θ �= 0, we have

√
n
(
β̂Ã − βÃ

) D−→ N (0, J11I
−1
11 J11

�).

Remark 1 The asymptotic variance of β̂Ã is 1
n J11I

−1
11 J11

�, which is the same as that
of oracle estimator. The results of Corollary 1 and Theorem 2 (a) show the oracle
property of the proposed estimator.

3.2 Regularization parameter selection

We need to choose (a, λ) for SCAD penalty and λ for ALASSO penalty. Fan and Li
(2001) showed that the choice of a = 3.7 performs well in a variety of situations and
we use their suggestion throughout our numerical analysis. Hence, only the regular-
ization parameter λ should be appropriately selected. Some selection criterions such
as generalized cross-validation (GCV) (Tibshirani 1996; Fan and Li 2001), the Akaike
information criterion, and the Bayes information criterion (BIC) are used to choose
regularization parameter. In our practical implementation, we construct a BIC-type
criterion similar to Wang and Leng (2007) as follows:

BICλ =
(
β̂

(1)
λ − β̃

(1)
)�

Î−1
(
β̂

(1)
λ − β̃

(1)
)

+ d fλ log n/n, (5)

where β̃
(1)

is the solution of estimating Eq. (3), d fλ is the number of non-zero coeffi-

cients of β̂
(1)
λ , a simple estimator for degrees of freedom, and Î is the plug in estimator
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of I, i.e., Î = Ĵ��̂Ĵ, where Ĵ = J|
β(1)=β̂

(1)
λ

and

�̂ = 1

n

n∑
i=1

[
XiX�

i − ĥ(β̂
�
λ Xi )ĥ

�(β̂
�
λ Xi )

]
ρ2

{
ĝ(β̂

�
λ Xi )

} {
ĝ

′
(β̂

�
λ Xi )

}2
/σ̂ 2,

with σ̂ 2 = 1
n−1

∑n
i=1

(
ξ̂i − 1

n

∑n
j=1 ξ̂ j

)2
and ξ̂i =

(
Yi − μ

{
ĝ(β̂�

λ Xi )
})

/√
V
(
ĝ(β̂�

λ Xi )
)
for i = 1, . . . , n.

MinimizingBICλ, we obtain the optimal regularization parameter. Similar toWang
and Leng (2007), it is easy to conclude that this BIC-type criterion can identify the
true model consistently.

4 Algorithm

Solving the joint estimating Eqs. (2) and (4) poses some interesting challenges. Treat-
ing β�X as a new predictor (with given β), (2) gives us ĝ, ĝ

′
as in Fan et al. (1995).

Thus, we focus on the estimating Eq. (4). Cui et al. (2011) proposed a fixed-point iter-
ative algorithm to solve the unpenalized estimating Eq. (3). However, their algorithm
is hard to be extended to the penalized estimating Eq. (4). Inspired by Xu and Zhu
(2012), we propose a quasi-Fisher scoring type algorithm to solve the Eq. (3), which
is given as follows:

Set initial β0 = (1/
√
d, 1/

√
d, . . . , 1/

√
d)� such that ‖β0‖ = 1,

Repeat for k = 0, 1, 2, . . .

1. Obtain ĝ(β�
k Xi ), ĝ

′
(β�

k Xi ) for i = 1, . . . , n from (2).

2. Update β̃k+1 = βk + J|β=βk

[ ˙̂G(βk)
]−1

Ĝ(βk), where

˙̂G(β)=
n∑
j=1

J�ĝ′
(β�X j )

{
X j − ĥ(β�X j )

}
ρ2

{
ĝ(β�X j )

} {
X j − ĥ(β�X j )

}�

×ĝ
′
(β�X j )J.

3. Set βk+1 = β̃k+1/‖β̃k+1‖.
Until max1≤l≤d |βk,l − βk−1,l | < tol, where βk,l is the lth component of βk and tol
is a given tolerance.

We can easily extend the above algorithm to the penalized estimating Eq. (4). To
solve (4), we combine the above algorithmwith amajorize–minimize (MM) algorithm
(Hunter and Li 2005) as follows:

Set initial β0 = (1/
√
d, 1/

√
d, . . . , 1/

√
d)� such that ‖β0‖ = 1,

Repeat for k = 0, 1, 2, . . .

1. Obtain ĝ(β�
k Xi ), ĝ

′
(β�

k Xi ) for i = 1, . . . , n from (2).
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2. Update β̃k+1 = βk + J|β=βk

[ ˙̂G(βk) + n Ṗ(βk)
]−1

Ĝ
P
(βk), where

Ṗ(β) = diag
{
p

′
λ,2(|β2|)/(ε + |β2|), . . . , p′

λ,d(|βd |)/(ε + |βd |)
}

for ε a small number (ε = 10−6 in our example).
3. Set βk+1 = β̃k+1/‖β̃k+1‖.
Until max1≤l≤d |βk,l − βk−1,l | < tol, where βk,l is the lth component of βk and

tol is a given tolerance.

5 Simulation studies

To demonstrate the finite sample performance of the proposed method, we consider
some extended single-index models. Fore each simulated data, the Epanechnikov ker-
nel K (t) = 0.75(1 − t2)+ is used; the bandwidth is selected via generalized cross
validation (GCV). To summarize the variable selection results, similar to Wang and
Xia (2009), we consider three different situations. If the resulting model is exactly
the same as the true model, we denote it as the correctly fitted model. Whenever the
estimated model misses at least one relevant predictor, we denote it as the underfitted
model. Whenever the estimated model includes at least one irrelevant predictor but
does not miss any relevant one, we denote it as the overfitted model.

Furthermore, we consider another criterion of variable selection performances
using G-means, G = √

sensi tivi t y × speci f ici t y, which was also considered in
Jeng and Daye (2011), where sensitivity is the true-positive rate and specificity is
the true-negative rate. Denote TP to be number of true positive, i.e., nonzero coef-
ficient correctly estimated as nonzero, and FP to be number of false positive, i.e.,
zero coefficient incorrectly estimated as nonzero, then sensi tivi t y(Sen) = TP/s,
speci f ici t y(Spe) = (d − s − FP)/(d − s), where s is the number of relevant pre-
dictors and d is the dimension of predictors. A value close to 1 for G indicates good
selection, whereas a value close to 0 implies that few true predictor or too many
irrelevant variables are selected, or both.

Denote β̂ = (β̂1, β̂2, . . . , β̂d)
� one of the EFM, SCAD-EFM and ALASSO-EFM

estimators (SCAD-EFM and ALASSO-EFM are the proposed estimators of the vari-
able selectionmethods, depending on the penalty). To evaluate the estimation accuracy
of the proposed variable selection methods, we consider the absolute bias (AB), which
is defined as:

AB = 1

N

N∑
i=1

⎡
⎣ 1

d

d∑
j=1

|β̂[i]
j − β0 j |

⎤
⎦ ,

where N is the number of simulation replications, β̂
[i]
j is the j th component of β̂

[i]

with β̂
[i]

being β̂ obtained in the i th simulation. To investigate the oracle property
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of SCAD and ALASSO methods, we consider the following relative estimation error
(REE):

REE = 100% ×
∑d

j=1 |β̂ j − β0 j |∑d
j=1 |β̃ j − β0 j |

,

where β̃ = (β̃1, β̃2, . . . , β̃d)
� is the oracle estimator. Thus, the corresponding REE

value measures the estimation accuracy of each method to the oracle estimator. For
each example below, the median of REE values (denote as MREE) is calculated.

In the following examples, we numerically compare the proposed variable selection
methodswithEFM.All simulations are conducted usingMATLABcodes.We consider
two cases in each simulation example. In Case 1, the dimension of covariates is taken
d = 10, while taken d = 20 in Case 2. For each example, we simulated 500 data sets.

Example 1 (A simple model) We firstly consider the following simple single-index
model:

Y = (β�X)2 + ε. (6)

The underlying coefficients are assumed to beβ = (2, 1, 0, . . . , 0)/
√
5;X is generated

from Nd(2, 
), where 
 = (σi, j )1≤i, j≤d with σi, j = 0.8|i− j |, and ε ∼ N (0, 0.22). A
similar modeling setup was also used in Example 3 of Cui et al. (2011). The simulated
results are given in Table 1 with sample size n = 100, 200.

As we can see from Table 1, the performances of SCAD-EFM and ALASSO-EFM
are similar. The percentage of the correctly fitted models is 100%, which confirms
that our BIC criterion (5) can indeed identify the true model consistently. The absolute
bias (AB) is much smaller than that of EFM. The MREE approaches 100% when n is
relatively large. The AB and MREE of EFM are much larger than that of SCAD-EFM
andALASSO-EFM, especially when n is small or d is large. The proposed approaches
improve the explanatory ability and accuracy of estimator for the extended single-index
model.

Example 2 (An oscillating functionmodel) In this example, we consider the following
single-index model with the link function g(·) and oscillating function:

Y = sin
(π

2
· β�X

)
+ ε,

whereβ,X and ε are set in the sameway as in Example 1. Table 2 reports the simulation
results with sample size n = 100, 200, 400.

In this example, when n is relative smaller (n = 100), the percentage of the correctly
fitted models is 90% (d = 10) or 81% (d = 20), mainly because of the missing of
relevant predictors. However, the percentage steadily increases as the sample size
increases, and approaches 100% quickly. TheMREE of ALASSO-EFM is larger than
SCAD-EFM, especially when the sample size is small, which is due to the use of EFM
estimator as the weights of penalty for ALASSO. Nevertheless, it decreases towards
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100% as the sample size increases. Similar to Example 1, the AB and MREE of EFM
are much larger than those of SCAD-EFM and ALASSO-EFM, especially when n is
small or d is large.

Example 3 (An heterogeneous error model) To illustrate the adaptivity of our algo-
rithm to heterogeneous error model, we consider the regression model (6) in Example
1, where the true parameter is β = (2/

√
5, 1/

√
5, 0, . . . , 0); X is generated from

Nd(2, I ), and ε ∼ N
(
0, exp( 2X1+X2

7 )
)
. The simulation results are summarized in

Table 3 with simple size n = 100, 200, 400. Similar conclusion to the former exam-
ples can bemade,which shows that our algorithm is also attractive to the heterogeneous
cases.

Example 4 (A binary responsemodel) TheESIM includes a series of commonmodels,
especially, Y is discrete, for example Y = 0, 1. Hence, we consider the follow binary
response model:

P(Y = 1|X) = μ{g(β�X)} = exp{g(β�X)}/[1 + exp{g(β�X)}], (7)

where g(β�X) = exp(5β�X − 2)/(1 + exp(5β�X − 3)) − 1.5. The true parameter
is β = (2/

√
5, 1/

√
5, 0, . . . , 0) and X1, X2, . . . , Xd are independent and identical

distribution from U (−2, 2). Similar designs for generalized partially linear single-
index models are assumed in Kane et al. (2004), and Cui et al. (2011) also considered
this model. Here, the sample size takes 500 and 1000, which is different from the other
examples due to complexity of the this example. For this example, 250 replications
are simulated and the results are displayed in Table 4. Similar conclusion to Example
1 can be made, which shows that the proposed method works well for the discrete
response.

6 Real data analysis

Here, we consider the body fat data, which is available at http://lib.stat.cmu.edu/
datasets/bodyfat. A variety of popular health books suggest that the readers assess
their health, at least in part, by estimating their percentage of body fat. However,
accurate measurement of body fat is inconvenient/costly and it is desirable to have
easy methods of estimating body fat that are not inconvenient/costly. The data of 252
men contain thirteen baseline predictors. Body mass index (BMI) is a useful measure
of body fat based on height and weight. Hence we calculate BMI for each sample
and omit the predictors height and weight. Then, we have twelve baseline predictors
X: age (x1), BMI (x2), circumference of the skinfold measurements neck (x3), chest
(x4), 2 abdomen (x5), hip (x6), thigh (x7), knee (x8), ankle (x9), biceps (x10), forearm
(x11) and wrist (x12). The response Y is the percentage of body fat. We aim at building
a predictive model to relate the response to the predictors and meanwhile selecting
important predictors. We delete possible outliers to a sample of size 244.

We compare the performance of EFMwith the proposed variable selectionmethods
SCAD-EFMandALASSO-EFM. The estimated coefficients β̂ and adjustedR squared
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Table 5 The estimates from the
body fat data

SCAD-EFM ALASSO-EFM EFM
β̂ β̂ β̂

x1 0 0 0.1085

x2 0.1929 0.1968 0.1882

x3 0 0 −0.1232

x4 0 0 −0.1348

x5 0.9539 0.9522 0.9207

x6 −0.1027 −0.1029 −0.1370

x7 0 0 0.0433

x8 0 0 −0.0253

x9 0 0 0.0183

x10 0 0 0.0372

x11 0 0 0.0470

x12 −0.2053 −0.2094 −0.215

Adjusted R2 0.7423 0.7423 0.7403

Mean MAPE 2.9253 2.9921 3.1125

Fig. 1 The estimation of link
function of SCAD-EFM

−2 −1 0 1 2 3
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of the above three methods are listed in Table 5. The estimate of link function g(·)
is similar among three methods, hence we only show that of SCAD-EFM in Fig. 1.
The figure shows that link function is strictly increasing, approximately linear but not
exactly. Both SCAD and ALASSO select parsimonious model (only select x2, x5, x6
and x12 as the important predictors), while having competitive adjusted R squared
compared with the full model (EFM).
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To assess the prediction power of the proposed estimators, we use the following
procedure. The data are randomly split into two separate groups with equal observa-
tions, i.e., 122 samples are used to fit the model, while the remaining observations are
used to evaluate the predictive ability of the selected model. The prediction perfor-
mance is measured by the median absolute prediction error (MAPE). We apply the
procedure 200 times, and the mean MAPE for each methods is reported in Table 5. It
appears that the model chosen by SCAD-EFM and ALASSO-EFM has lower mean
MPAE than the full model. In summary, from the results of Table 5, we can see that
the proposed methods improve explanatory ability and give better predictions.

Zhang and Wang (2013) also considered this body fat data and used the a semi-
parameter model Y = exp

(
X�β + h(U )

)
ε to fit the data, where h(·) is a unknown

nonlinear function, U = x4 and X is the predictor vector containing x1 − x12 except
for x4. Both their method and the proposed SCAD-EFM, ALASSO-EFM select x5
(2 abdomen) as the most important predictor, which means that it has the largest
estimated coefficient. Nevertheless, the mean MAPE of their model is 2.9930, which
is a little larger than the proposed SCAD-EFM (2.9253) and ALASSO-EFM (2.9921).
The reason may be that the estimate of link function g(·) is approximately linear but
not exactly, while they postulated an exponential function.

7 Appendix

Regularity conditions
Before we present the proofs of the theorems, we first introduce some regularity

conditions.

(C1) μ(·), V (·), g(·) and h(·) = E(X|β�X = ·) have bounded and continuous
derivatives of order two. V (·) is uniformly bounded and bounded away from 0.

(C2) Let q(z, y) = μ
′
(z)V−1(z) (y − μ(z)). Assume that ∂q(z, y)/∂z < 0 for z ∈ R

and y in the range of the response variable.
(C3) Define the block partition of matrix � as follows:

� =
(

�11 �12
�21 �22

)
,

where�11 is a positive constant,�12 is a (d−1)-dimensional row vector,�21 is
a (d−1)-dimensional column vector and�22 is a (d−1)× (d−1) nonnegative
definite matrix. The largest eigenvalues of �22 are bounded away from infinity.

(C4) The density function of X has continuous derivative of order two on its support.
The density function fβ�X(β�X) of random variable β�X is bounded away
from 0 on Tβ and satisfies the Lipschitz condition of order 1 on Tβ , where
Tβ = {β�X : X ∈ T } and T is the compact support set of X.

(C5) Let Q∗(β) = ∫
Q
[
μ
{
g(β�x)

}
, y
]
f (y|β�

0 x) fβ�x(β
�
0 x)dyd(β�

0 x) with β0

denoting the true parameter value and Q[μ, y] = ∫ y
u

s−y
V {μ−1(s)}ds. Here,

f (y|β�
0 x) is the conditional density function of Y given β�

0 X = β�
0 x. Assume
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that Q∗(β) has a unique maximum at β = β0,

E

[
sup
β(1)

sup
β�X

∣∣∣μ′ {
g(β�X)

}
V−1{g(β�X)}

[
Y − μ{g(β�X)}

]∣∣∣
2
]

< ∞,

and E‖X‖2 < ∞.
(C6) The kernel function K (·) is a bounded and symmetric density function with a

bounded derivative, and satisfies

∫ +∞

−∞
|t |2K (t)dt < ∞.

(C7) For any fixed θ �= 0, limn
√
n p

′
λ(|θ |) = 0 and limn p

′′
λ(|θ |) = 0.

(C8) For any positive constant C , lim
√
n inf |θ |<Cn−1/2 p

′
λ(|θ |) → ∞.

Remark 2 Conditions (C1)–(C6) are some regularity conditions for the extended
single-index models, which are similar to Cui et al. (2011). Conditions (C7) and
(C8) are the key for obtaining the oracle property. For SCAD penalty, if we choose
appropriate regularization parameter such that λ → 0 and

√
nλ → ∞ as n → ∞,

then condition (C7) holds because
√
n p

′
λ(|θ |) = p

′′
λ(|θ |) = 0 as n → ∞ for θ �= 0

and
√
n inf |θ |<Cn−1/2 p

′
λ(|θ |) = √

nλ. For ALASSO penalty, Conditions (C7) and
(C8) are also hold by choosing the appropriate regularization parameter (see Johnson
et al. 2008).

Proof of Theorem 1 Under the regularity conditions C1–C6 and nh6 → 0 and nh4 →
∞, from the proof of Theorem 2.1 in Cui et al. (2011), we have

√
n
(
β̃

(1) − β
(1)
0

)
= 1√

n
I+Ĝ(β0) + op(1), (8)

where I(d−1)×(d−1) = J��J|
β(1)=β

(1)
0
, I+ denote the Moore–Penrose inverse of the

matrix I and β̃
(1)

is the solution of estimating Eq. (3). Let β̆
(1) =

(
β̃

(1)�
A 0�

(d−s)×1

)�
,

where β̃
(1)
A = β

(1)
0A + n−1I−1

11 ĜA(β0), with β
(1)
0A and ĜA(β0) being the first s − 1

component of β
(1)
0 and Ĝ(β0), respectively, and I11 is the first (s − 1) × (s − 1)

submatrices of I. Thus, we have β̆
(1) = β

(1)
0 + OP (n−1/2). Under the condition (C7)

with lim
√
n p

′
λ(|θ |) = 0 for j = 2, . . . , s, it follows that

1√
n
ĜP

j (β̆
(1) ± εe j ) = op(1) − 1√

n
p

′
λ(|β̂ j ± ε|)sgn(β̂ j ± ε) = op(1),

where e j is the j th canonical unit vector and ε is a small number.

For j > s, under Condition (C8), 1√
n
Ĝ P

j (β̆
(1) + εe j ) and 1√

n
Ĝ P

j (β̆
(1) − εe j )

are dominated by −√
n p

′
λ(ε) and

√
n p

′
λ(ε), which have opposite signs when ε → 0.
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Hence β̆
(1)

is an approximate zero-crossing by definition. Thus, we complete the proof
of Theorem 1. ��
Proof of Theorem 2 Inspired by the proof of Theorem 1(b) in Johnson et al. (2008),
we define probability space Bj = {β̂λ, j �= 0} for j > s. To prove the sparsity, we
only need to show that for any ε > 0, P(Bj ) < ε when n is sufficiently large.

β̂
(1)
λ is root-n-consistent approximate zero-crossing, hence β̂λ, j = Op(n−1/2), j >

s, and there exists some constant C > 0 such that when n is large enough,

P(Bj ) = P{β̂λ, j �= 0, |β̂λ, j | ≥ Cn−1/2} + P{β̂λ, j �= 0, |β̂λ, j | < Cn−1/2}
< ε/2 + P{β̂λ, j �= 0, |β̂λ, j | < Cn−1/2}.

The j th penalized estimating function of (4) is

n−1/2Ĝ j (β̂
(1)
λ ) − √

n p
′
λ(|β̂(1)

λ, j |)sgn(β̂
(1)
λ, j ) = op(1). (9)

Equation (8) shows that the first term of (9) is Op(1), then there exists some C
′
> 0

such that for large n,

P
{
β̂λ, j �= 0, |β̂λ, j | < Cn−1/2,

√
n p

′
λ(|β̂(1)

λ, j |) > C
′}

< ε/2.

From Condition (C8), we know that β̂λ, j �= 0 and |β̂λ, j | < Cn−1/2 imply that√
n p

′
λ(|β̂(1)

λ, j |) > C
′
for large n. Therefore,

P(Bj ) < ε/2 + P{β̂λ, j �= 0, |β̂λ, j | < Cn−1/2} < ε,

which proves the sparsity.
Next, we prove the asymptotic normality. After the Taylor expansion of first term

of (4) at the point β(1)
0 , we have

op(1) = n−1/2ĜA(β
(1)
0 ) + n−1/2I11

(
β̂λ,A − β0,A

)
− √

np
′
λ(|β̂λ,A|)sgn(β̂λ,A).

After the Taylor series expansion of the last term, it follows by Slutsky’s theorem and
the central limit theorem that

√
n(I11 + 
11)

{
β̂λ,A − β0,A + (I11 + 
11)

−1b
} D−→ N (0, I11).

Thus, we complete the proof of Theorem 2. ��
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