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Abstract In this article, we focus on the problem of testing the equality of several high
dimensional mean vectors with unequal covariance matrices. This is one of the most
important problems in multivariate statistical analysis and there have been various
tests proposed in the literature. Motivated by Bai and Saranadasa (Stat Sin 6:311-329,
1996) and Chen and Qin (Ann Stat 38:808-835, 2010), we introduce a test statistic
and derive the asymptotic distributions under the null and the alternative hypothesis.
In addition, it is compared with a test statistic recently proposed by Srivastava and
Kubokawa (J Multivar Anal 115:204-216, 2013). It is shown that our test statistic
performs better especially in the large dimensional case.
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1 Introduction

In the last three decades, more and more large dimensional data sets appear in sci-
entific research. When the dimension of data or the number of parameters becomes
large, the classical methods could reduce statistical efficiency significantly. In order
to analyze those large data sets, many new statistical techniques, such as large dimen-
sional multivariate statistical analysis based on the random matrix theory, have been
developed. In this article, we consider the problem of testing the equality of several
high dimensional mean vectors with unequal covariance matrices, which is also called
multivariate analysis of variance (MANOVA) problem. This problem is one of the
most common multivariate statistical procedures in the social science, medical sci-
ence, pharmaceutical science and genetics. For example, a kind of disease may have
several treatments. In the past, doctors only concern which treatments can cure the dis-
ease, and the standard clinical cure is low dimension. However, nowadays researchers
want to know whether the treatments alter some of the proteins or genes, thus then the
high dimensional MANOVA is needed.

Suppose there are k(k > 3) groups and X;y, ..., X;,, are p-variate independent
and identically distributed (i.i.d.) random samples vectors from the ith group, which
have mean vector u; and covariance matrix X;. We consider the problem of testing
the hypothesis:

Hyo:py=---=pup vs Hy:3i#j, wi #uj. @))

Notice that here we do not need normality assumption. The MANOVA problem has
been discussed intensively in the literature about multivariate statistic analysis. For
example, for normally distributed groups, when the total sample size n = Zi‘: 11
is considerably larger than the dimension p, statistics that have been commonly used
are likelyhood ratio test statistic (Wilks 1932), generalized T statistic (Lawley 1938;
Hotelling 1947) and Pillai statistic (Pillai 1955). When p is larger than the sample size
n, Dempster (1958, 1960) firstly considered this problem in the case of two sample
problem. Since then, more high dimensional tests have been proposed by Bai and
Saranadasa (1996), Fujikoshi et al. (2004), Srivastava and Fujikoshi (2006), Srivastava
(2007), Schott (2007), Srivastava and Du (2008), Srivastava (2009), Srivastava and
Yanagihara (2010), Chen and Qin (2010) and Srivastava et al. (2011, 2013). And
recently, Cai and Xia (2014) proposed a statistic to test the equality of multiple high-
dimensional mean vectors under common covariance matrix. Also, one can refer to
the book (Fujikoshi et al. 2011) for more details.

The statistic of testing (1) we proposed in this article is motivated by Bai and
Saranadasa (1996) and Chen and Qin (2010). Firstly, let us review the two test statistics
briefly. For k = 2 and ¥; = ¥, = ¥, Bai and Saranadasa (1996) proposed the test
statistic

ny+np
ninp

Tos = (X1 — X2)' (X1 — X2) —

trSp, )

and showed that under some conditions, as min{p, ny, np} — oo, p/(ny + nz) —
y>0andni/(n1 +ny) - « € (0,1)
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— N1 — pal?
4 N, D).
~/ Var (Tps)
Here
1 1 2 U
X =— , - Xii — XV (X:: —X;
P g‘, i S n1+n2—2§j§( ij — X)) (Xij — X))
and

2(ny +n2)*(ny +ny — 1)

r=2(1 + o(1)).
n%n%(nl +ny—2) ( )

Var(Ts) =

In addition, Bai and Saranadasa gave a ratio-consistent estimator of tr=2 (in the sense
that tr22/tr£? — 1), that was

ry? = (1 +n2 —2)° s — — 1 (s, )2
(ny+n)m+n—=3) U " m+mp-2" ")

If 31 # %5, Chen and Qin (2010) gave a test statistic

qo_ i XXy X XXy X0 20 Xy X
cq — - )

ni(ny —1) na(ny — 1) ning

which can be expressed as
Teq = (X1 — X2) (X1 — X2) — ny 'Sy — ny 'Sy, (3)

Here and throughout this paper, the sample covariance matrix of the ith group is
denoted as

ij — X)) (Xij — X;).

Also they proved that under some conditions

ch — 1 — H«Z”2

5 N, 1)
VVar(Teq)
where
Var(T, —(#t 22+;t »2) + 4t22)1+(1
ar(Teq) = PR r(Z7) P r(%5) . r(Z1X2) ) (14 0(1)).
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And then Chen and Qin (2010) gave the ratio-consistent estimators of trEi2 and
tr(XqX;), that were

1

(= — ¢
T ni(”li_l)r

n
Z(Xij - Xi(j,k))X,/'j(Xik — Xi(j.0) Xix 4
J#k

and

— 1 o - -
(1 3) = mtr(ZZ(Xu—x1<z>)xil<X2k—Xz<k>)X’2k NG

=1 k=1

Here X i(j,k) 1s the ith sample mean after excluding X;; and X;i, and X i) 1s the ith
sample mean without Xj;.

When ¥; = X, it is apparent that the test statistic proposed by Chen and Qin
(2010) reduces to the one obtained by Bai and Saranadasa (1996). Compared to Bai
and Saranadasa (1996) and Chen and Qin (2010) generalized the test to the case when
31 # ¥, and used different estimators of the variance. This is indeed a significant
improvement to remove the assumption X; = 3, because such an assumption is
hard to verify for high-dimensional data. Thus based on these properties, we propose
a statistic of testing the equality of more than two high dimensional mean vectors with
unequal covariance matrices.

We assume the following general multivariate model:

(@) X;j =1iZjj +p,fori =1,...k,j=1.. n,,whereFisapxmmatrix
for some m > p such that I'; F’ = %;, and {Zl]} L, are m-variate i.i.d. random
vectors satisfying E(Z;;) =0 and Var(Z, ]) = Im, the m x m identity matrix;

(b) Zij = (Zijlv" Zt/m) with E(Z,ﬂl ljlz . lJl ) = E(Zl]ll)E(szlz) E(Z,]I )
and E(z?jk) < 00, for a positive integer g such that 21:1 op <8and !l #1 #

ly;

© % ke Di=1,...k asn— oco.Heren = > n;;

(d) (X 2% Zp) = olr (B 2t (Z 2], d, 1, h €{1,2,..., k};

k
© (a — 1) Ta(pa — pn) = oln™'a((Cimy M, d, 1 h € {1,2,... k).

It should be noted that all random variables and parameters here and later depend
on n. For simplicity we omit the subscript n from all random variables except those
statistics defined later.

Now we construct our test. Consider the statistic

k k
Tn(k) = Z()_(l — )_(j)/(}_(i - )_(]) — (k — I)an]trS,-

i<j i=1

(k—l) X, Xiky — X, X jky -
_1)

k1#ko i<j ninj ki,ka
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When k = 2, apparently T,fz) is the Chen—Qin test statistic. Next we will calculate the
mean and variance of T,,(k). Unlike the method used in Chen and Qin (2010), we give a
much simpler procedure. From X;; = I'; Z;; + u;, we can rewrite T,,(k) — ij i —
M % as Tl(k) + Tz(k), where

k k
(k) _ 2 : 1 z : / I 7. 2 : 2 2 : /
Tl = (k - 1) ' m Zl-kll"il",Z,kz - ' nin ; Zlkll" F Z]kz
i=1 k1#£k> i<j ki,ko

k

=3 —(ku, ZM;) Zr Zit,.

i= 1

Thus we can show immediately that

k
E(T) = llwi — wjll
i<j
and

k

Var(T,V) = Z ( _1) tr(2; )+Z—tr(zz)

i=1

!/

k 1 k k
+4§n7 jzz;ﬂj—k,ui i ]Zz;#j—klii

Then we have the following theorem:

Theorem 1 Under the assumptions (a)—(e), we obtain that as p — o0 and n — oo,

k k
Tn()_z;'<j lwi — M/”

\/ Var(1,)

It is worth noting that under Hy, assumption (e) is trivially satisfied and £ (Tn(k)) =0.
What is more, under H; and assumptions (a)—(e), Var(T,,(k)) = (o,gk))z(l + o(1)),
where

N(O D). (6)

k

S S P _1)t(2)+2—tr(22>

i=1

Then Theorem 1 is still true if the denominator of (6) is replaced by a,gk). Therefore, to
complete the construction of our test statistic, we only need to find a ratio-consistent
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estimator of (ovn(k))2 and substitute it into the denominator of (6). There are many

estimators for (a,gk))z, and in this paper we choose two of them:

Lemma 2 [Uniformly minimum variance unbiased estimators (UMVUE)] Under the
assumptions (a)—(d), we obtain that as p — 0o and n — oo,

ws? (3
i 2y and w(Zi%)) Ly
trx? (% %))

wherei #= j € {l1,2,...,k},

—_— PRp— 2
SR G R R (PN tr2S; %)
! (n; +1D(n; —2) n;i — 1
and
tr(/Z;Ej) =trS; Sj. (3)

Remark 3 Under the normality assumption (7) and (8) are uniformly minimum vari-
ance unbiased estimators. The proof of this lemma was given in Bai and Saranadasa
(1996) and Srivastava (2009), and we omit it in this paper.

Lemma 4 [Unbiased nonparametric estimators (UNE)] Under the assumptions (a)—
(d), we obtain that as p — oo and n — oo,

wx? (%)
—5 L1 and w(Zi%)) 2
try; r(Z;Z))

wherei # j € {1,2,...,k},

)
= e
x> Xiky — Xikg)' (Xiky — Xiky) Xiky — Xing) (Xik, — Xing)  (9)
ki,..., ke
distinct
and
TP P
)=
T (n)3n )3

X z ity — Xiky) (X jiy — X jis) X jky — X jig) Xiky — Xiks)-
k1,k2, k3 distict
kaks,ke distinct

(10)

Here (n)j=nn—1)...(n—1+1).
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—

Remark 5 By assumption (a), the unbiasedness of estimators tr Eiz and tEEj can be
easily proved and their ratio-consistency can be found in Li and Chen (2012).

Remark 6 Li and Chen (2012) mentioned that the computation of the estimators in
Lemma 4 would be extremely heavy if the sample sizes are very large. Thus to increase
the computation speed, we simplify the estimator (9) further to:

) 2
try; = 1©:ll; — —

AR
ni(ng —2)(n; —3)" 12

ni(n; —3)
1

2
" ni(nj — (n; —2)(n; — 3)(”@:”1)

where ©; = X/X; — Diag[X/X;], X; = (Xi1,...Xin;)pxn; and Diag[X/X;] is a
diagonal matrix consisting of the diagonal elements of X X;. Notice that for any matrix
A = (ajj)mxn. the norm [l -1lq is entr}.lwise norm, i.e., [|[All, = QL ;’-:1 |a,'j|q)1/‘1
and the norm || - || .4 is L 4 norm, i.e.,

a/p\ V4

m n
1Alp.g = D D laijl?

i=1 \j=1

What is more, from a direct calculation we can show that the estimator (10) is
exactly equal to the estimator (8) in Lemma 2. That is because,

2
1 1 ni nj
(10) (n; — 1)(nj -1 kzk( iky jk4) (n; — l)nj(nj -1 kz kz iky X ks
1,k4 , -
1 nj n; 2
- X/ Xk
ni(ni — D(n; —1) % % iky 4 jka
2

|

n,-(n,- — l)nj(nj

-1 Z Xikl/ka4

ki,ka

1
- X, XX,;X —
(ni = Dnj—1) !

n; + n,-nj
(ni —Dmj—1)  (n; —Dn; —1)

SC BSOS
(i — D(nj — 1) J

tr)_(i}_(;)_(j)_(; = trS,-Sj.

Apparently, using the simplified formulas instead of the original ones can make the
computation much faster.

Now, by combining Theorem 1 and Lemma 2 (or Lemma 4), we obtain our test
statistic under Hy and have the following theorem:

Theorem 7 Under Hy and the assumptions (a)—(d), we obtain that as p — oo and
n— oo,
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N d
Towr = TP /60 5 N (O, 1),

where (8,5’())2 = zk 8 tr(Ziz) + Zk <itr(/2;-§j) with tr(Eiz) and

i=1 ni(n;—T) i<] ninj

tr(EEj) given in Lemma 2 or Lemma 4.

Remark 8 When the number of groups k is small, the hypothesis Hy can be considered
as a multiple hypothesis of testing each two sample. And the test for each sub-
hypothesis can be tested by Chen and Qin (2010). However, for each sub-hypothesis,
there is a test statistic of Chen and Qin (2010). The problem is how do we set up
the critical value for the simultaneous test of the compound hypothesis Hp. In the
literature, there is a famous Bonferroni correction method can be used. But it is well
known that Bonfferoni correction is much conservative. Form this theorem, we can
see that using our test, one may set up an asymptotically exact test.

Due to Theorem 7, the test with an « level of significance rejects Hy if Tour > &y
where &, is the upper « quantile of N (0, 1). Next we will discuss the power properties
of the proposed test. Denote ||| = Zf; j i — |2. From the above conclusions,
we can easily obtain that

[l

J Var(T,®)

Tour — —d> N, 1).

This implies

Bur (Il = Prt, (Toue > &) = d>(—sa + %) o),
On

where ® is the standard normal distribution function.

2 Other tests and simulations

Due to the fact that the commonly used likelihood ratio test performs badly when
dimension is large has been considered in a lot of literature such as Bai and Saranadasa
(1996), Bai et al. (2009), Jiang et al. (2012) and Jiang and Yang (2013), the discus-
sion of the likelihood ratio test is left out in this paper. Recently, Srivastava and
Kubokawa (2013) proposed a test statistic of testing the equality of mean vectors
of several groups with a common unknown non-singular covariance matrix. Denote

1, = (1,...,1) as an r-vector with all the elements equal to one and define
Y =(X11, - s Xings oo s Xicts o0 Xing)s L = (=1, —1k—1) (k—1)xk and
1,, 0 0
0 1,, 0
E= ,
0 0 1, uxk
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Then it is proposed that

. tr(BDg' — (n — k) p(k — D)(n —k —2)~")
sk —
J2epnlk = DWR? — (0 — k)~1 p?)

’

where B = Y'E(E'E)"'L'[L(E'E)~'L'I"'L(E'E)"'E'Y, Ds = Diag[(n —
'Y (I, — E(E'E)""E"Y],R = D5 *Y(I, — E(E'E)"'E)YDy'* and ¢, , =
1 +tr(R?)/p3/?. Notice that Diag[A] denotes a diagonal matrix with the same diago-
nal elements as the diagonal elements of matrix A. Under the null hypothesis and the
conditionn = O(p®) with § > 1/2, Ty is asymptotically distributed as N (0, 1). That
isasn, p — 00,

Phy(Tsx > &0) — P(—6y).

In this section we compare the performance of the proposed statistics Toyr and Tgk
in finite samples by simulation. Notice that the data is generated from the model

Xij:FiZij“‘,ui: i=1,...,k,j=],...,l’li

where I'; is a p X p such that 1"i2 = ;. Here Z;; = (zij1, .. .,zij,,)/ and z;ji’s
are independent random variables which are distributed as one of the following three
distributions:

) N, 1), (i) O —2)/2, (i) (x5 —8)/4.

For the covariance matrix X;, i = 1, 2, 3, we consider the following two cases:

Casel X; =T; =1p;
Case?2 %; = Fl-z = W;¥; W;, W; = Diaglw;, ..., wipl, wij =2*%i+(p—j+1D/p,

1 1 i i | j—kl01 .
Wi = (@), ¢} =1,0%) = (=172 x I j k.

We first compare the convergence rates of the estimators (7) and (9) based on the
above models, see Figs. 1 and 2. Here the dimension p = 100 and the sample sizes
n are from 10 to 1000. The results are based on 1000 replications. From these two
figures we can easily find that in both cases, the UNE (9) and UMVUE (7) are almost
the same if the data sets come from standard normal distribution. But UNE is much
better than UMVUE if the data sets come from x?2 distribution, especially when 7 is
small. .

Next let us see the performance of the estimator tr¥; X; = trS;§; in Case 1 and
Case 2 (see Figs. 3, 4). Also the dimension p = 100 and the sample sizes n; = nj are
from 10 to 1000. The results are based on 1000 replications. both cases, the estimator
tr/E,E j = wS;S; performs very well at all the three distributions. Thus when the
sample size n is large, we can safely use these estimators in the applications.

Now we examine the attained significance level (ASL) of the test statistics T,y and
Ty compared to the nominal value @ = 0.05, and then examine their attained power.
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T T T T T T T T

sl —&— N(0,1) UMVUE

450 —+#— N(0,1) UNE 7
% (4 - 2)f2 UMVUE
14 + - (B -2)f2 UNE B
— B8 — (- 8)/4 UMVUE
135 -
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13- —
i
125 —
12— -
H

115 — % —

e =
1= x, -

Hx
I'M_%b ﬂ":”” =
L N, .

'ﬁgw%?‘?gﬁ“ﬁﬂﬁmma’Z;Zﬁm;ﬁ“"””""“"“””f"f T P s
005 | 1 L 1 | 1 L 1 1

0 100 200 300 400 500 600 700 800 900 1000

Sample size

Fig. 1 Graph of the ratio between the estimators %trE% and the true value %trE% inCase 1,i.e., ) = 1Ip

125 T T T T

—&— N(0,1) UMVUE
—+— N(0,1) UNE
# - (33 - 2){2 UMVUE
+(-2)/2 UNE
— & - (23 - 8)/4 UMVUE
(x5 = 8)/4 UNE
145 —

105, * —

e

g

1 1 |

500 . 600
Sample size

—

Fig. 2 Graph of the ratio between the estimators %trE% and the true value %trzlz in Case 2, i.e., X1 =
Wi wy

Ll

L
900

8
8-

The ASL is computed as & = #(T > &|_,)/r where T are values of the test statistic
Tour or Ty obtained from data simulated under Hy, r is the number of replications and
&1_y is the 100(1 — &) % quantile of the standard normal distribution. The attained
power of the test T,y and Ty is also computed as ,3 =#T > & _y)/r, where T
are values of the test statistic Toyr or Tk computed from data simulated under the
alternative.

For simulation, we consider the problem of testing the equality of three mean
vectors, that is, k = 3. Choose p € {20, 50, 100, 500, 800}, n; = 0.5 x n*, np = n*,
n3 = 1.5 x n*, where n* € {20, 50, 100, 200}. For the null hypothesis, without loss of
generality we choose 1 = o = u3 = 0. For the alternative hypothesis, we choose
w1 =0, ur = (uq, ..., up)/ and 43 = —uo, where u; = (=Div; with v; are i.i.d.
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Fig. 3 Graph of the ratio between the estimators %HE]\ZZ and the true value %ter Y, in Case 1, i.e.,
Yp=%=1I)

1.015 |
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Fig. 4 Graph of the ratio between the estimators %trfi\zz and the true value %trEl ¥ in Case 2, i.e.,
Y = Wi W) and Xy = Wow, Wh

U (0, a) which denotes uniform distribution with the support (0, a). Here in Case 1
we choose a = 0.1 and in Case 2 we choose a = 0.2, respectively.

The ASL and the powers are obtained based on 10,000 replications and the 95 %
quantile of the standard normal distribution is 1.64485. The four tables report the ASL
and the power in the null hypothesis and the alternative hypothesis of the two tests.
For illustration, in the tables we respectively use the estimators proposed in Lemmas
2 and 4 to obtain two different test statistics, Tonr ' and Ty It is shown in Tables 1

and 3 that the ASL of the proposed tests To""® and Ta® approximate o = 0.05 well

our
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in both cases, and T, is even better at nonnormal dlstrlbutlons Because it is shown
that UNE is better than UMV UE if the data sets come from y 2 distribution, especially
when n is small. But the ASL of test T in case 2 performs substantially worse. In
addition, in Case 1 the test Tgx seems worse when dimension p is much larger than
the sample size n*. This is probably because Ty is under common covariance matrix
assumption and needs condition n = O(p®) with § > 1/2 to obtain the asymptotic
distribution. As reported in Tables 2 and 4, the powers of the test T° perform better
than T in Case 2 and worse in Case 1. But actually in Case 1, when the dimension p
and sample size n* are large, the powers of the test 7o are also good enough. Thus
when the dimension is much larger than the sample size, or the dimension and the

sample size are both large, our test statistic is recommended, as it is more stable.

3 Technical details

In this section we give the proof of Theorem 1. We restricted our attention to the case
in which k = 3 for simplicity and the proof for the case of k > 3 is the same. Here
we use the same method as in Chen and Qin (2010), hence some of the derivations
are omitted. The main difference is that we need to verify the asymptotic normality of

T,,(S). Because it does not follow by any means that the random variable ¢, + 8, will

e . d d
converge in distribution to & + B, if o, — o and B, — B.
Denote T(3) T(3) + Tn(g), where

3 ng ’ g n /
3) (Xki — ) (Xk] i) (Xki — )" (X5 — )
Tnl - 222 _ - ZZZZ
et ni (ng ngny
k=1i#j k<l i=1 j=1

and

3
(s) _» Z nzk (Xki — uk) (k — 1) n Z | e — g |12

k,l=1i=1 k<l

We can verify that E(Tn(f)) =0, E(Tn(;)) = Zid | wx — p ||* and

3
Var(T\5) = 4> (e — ) (0] Sy + S0 e — 1)
k<l

4 D (i = i) ng i — ).
i#jFk

From condition (e), that is,

3 3 2
TS — -
Var( n2 Zk<l(i|)“k /Jl/l ” ):0(1)’
On
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we get

3 3 3)
T — 30 e — w12 T

e
\/ Var(T,”) On

Next we will prove the asymptotic normality of T;S)' Without loss of generality we
assume that w1 = up = pu3 =0.LetY; = Xy;(0 =1,...,m1), Y, = X2;(j =
L....n2), Yjpn 4, = X3;(j=1,...,n3).Fori # j,

+0,(1).

20y — DTYY,, ifi e {12, mi)

—ny'ny 'Yy, ifi e{1,2,....,n1}andj € {n1 + 1,...,n1 + na);
2ny ny — )7VY)Y;, ifiLj e {ng + 1, .. 0+ nak;
—ny '3 'YV, ifiefn +1,...,n +n)

9 = and j € {1 +ny+1,....n1 +na+n3k;

2n3_1(n3 - 1)_1Yi/Yj, ifi,je{ni+ny+1,...,n1+ny+n3};
—n3'ny 'Yy, ifiefl,2,....n}
and j € {ny +na+1,...,n1 +ny+n3}.

For j = 2,3,...,n1 + na + n3, denote V,;; = Z{:—ll Gijs Sum = ZTZZ Vyj and
Fum = o{Y1,Ya,...,Y,} which is the o algebra generated by {Y1, Y2, ..., Yiu}.
Then we have

ni+na+n3

T =2 > V.
j=2

Itis easy to verify that { S, Fum },,_, forms a sequence of zero mean and square inte-

grable martingale. Then the asymptotic normality of T,,G) can be proved by employing
Corollary 3.1 in Hall and Heyde (1980) with routine verification of the following:

SRR BV Fu ] po
% -7 (11)
(0)
and
ni+nz+n3 »
> O TEWVEI(Vajl > €0 Fyj1] > 0. (12)
j=2

Thus next we prove (11) and (12) respectively.
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382 J.Huetal.

3.1 Proof of (11)

Verify that

E(V,,zjlfn,j—l) =E Z¢ij Foj-1| = Z Giy jDirj| Fn,j—1

i1,ip=1

Z ciyjCini Vi EYV Y| Fujo)Yiy = Z ciyjcin Y EQ Y)Yy

i1,io=1 i1,ip=1
j—1
= E Cll]ClZJY 3; jYiss

i1,i2=1

Wherec,] is the coefficient of ¢;; and if j € [1, nl] ZJ = Xy;if j € [n1+1,n1+n2],
Y =Xpifjeln +na+1,n +ny+n3), E; = Ts.

Denote
ni+na+n3
= . EWVHIFuj1.
j=2
Then we have
2tr(2?) 2tr(%3) 2tr(%3)

tr(¥1 2 r(X 2 tr(¥3% 1
n (12)Jr (2 3)+ (23 2):_(0”(3))2.

niny nins n3np
Now consider
2
ni+ny+n3 j—1
EGp=E| D, D cyjcii¥,E¥, | =2E(A)+ E(B), (13)
j=2 i1,ip=1
where

ni+ny+n3 -1 jp—1

A= Z Z Z Cll]lclzjlcl%jzcusz E Y12Y1/32 Y,

2<ji<j2 i1,i2=1i3,ig=1

and

B = CileisznqujY £YY 25,
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On testing the equality of mean vectors 383

The term B can be further partitioned as B = By + By + B3, where

n  j—1

E(B) =FE Z Z Z Ciljcizjcixjcujy 1Y ir RzlYM

Jj=21i1,i2=11i3,i4=1

ni+ny -

E(By) =FE Z Z Z CileiQJCiszij >0, ir lezYM

j=ni1+1liy,ix=1i3,is=1

ni+na+n3 -

E(B3) =FE Z Z Z Ciljcizjci3jci4jy E3Y,2YHE3Y,'4

j=ni+n2+1iy,iz=11i3,i4=1

We only compute E(B3) here as E(B1) and E(B) can be computed following the
same procedure. As u; = pup = p3 = 0, we only need to consider iy, ip, i3 and
iq in these three cases: (a) (i1 = i2) # (i3 = ig); (b) (i1 = i3) # (i = iy) or
(i1 = i4) # (i = i3); (c) i} = ip = i3 = i4. Thus we obtain that

E(B3) = E(B31) + E(B32) + E(B33),

where
ni+na+nz  j—1
EBy)=0m ME[ D DY %Y, Y, %Y,
Jj=n1+n2+1i1#iz
3
=0@mn™) z e T3y
ij=1
ni+na4nz j—1
EB) =0 HE( > > Y Z¥,Y, 5,
j=ni1+na+1i1#in
3
=0(n™) Z ¥ 233, 5,
i,j=1
and

n1+nz+nz Jj—1
E(By)=0@n™® > ¥/ B3Y Y55,

j= n1+nz+l i=1

3
— 0% (Z (E(Z,f]r;23r,-z,-1 T2 4 tr2232i))
i=1
3

=0n% Z(tr(Zgﬁi)2 + 2353,
i=1
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Thus we obtain that

E(B3) = o((c)h).

As we can similarly get E(By) = 0((0,53))4) and E(By) = 0((0,53))4), we conclude
that

E(B) = o((0,")". (14)
Using the same method of deriving (14), we have
L oy

2E(A) = E(G” ) (1 +0(1)),

which together with (13) and (14) implies
1

E(n) = e @) + 00",

Then we have
Var(n,) = E(ny) — E* () = o((0,7))").

Therefore we obtain

ni+nz+n3

1
3)y—2 2 3)\—2
(o) °E §'1 EVyilFajmn) | = (@) E(m) = §
]:

and

ni+na+n3
@)™ Var 3 DT EVEF. -0t = @) Var(n,) = o(1).
j=1

which complete the proof of (11). O

3.2 Proof of (12)

As

nij+ny+n3

> O TEV 1 Vijl > eo)F, ;)
j=2

ny+nz+n3
<@ e D EWVlFu o),
j=I1
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On testing the equality of mean vectors 385

we just need to show that

ni+ny+ns3
E( D> EWiF. 0| =0(d)".
j=2
Note that
ni+nz+ns3
E1l > EWV5Fuj-)
j=2
. 4
ny+ny+n3 ny+ny+n3 Jj—1
- X o 3 (X
j=2 i=1
ni+ny+nsz j—1 ni+ny+nsz j—1
=0m™% D> D EWX)Iyyph+oat D D EXY)!
Jj=2  s#t j=2 s=1
ni+na+nz j—1 ~ ~ ni+na+n3 j—1
=0 > D EYEY;Y[EY)+0n® Z > EWY)h
j=2 s#t = s=1

The first term of last equation has the order o((a,53))4) which can be proved by the

same procedure in last subsection. It remains to consider the second term. As proved
in Chen and Qin (2010), we have

ni+ny j—1 2
> D EXypt = 0(n2>(2<tr2<2%> +u(ZH) + (2 %) + tr(zlzz)z),

j=2 s=1 i=1

and
ni+na+n3 j—1 ni+na+ny ni+na+n3  ni+ny
/ 4 / 4 / 4
IRDIILAEID YD WACAEIED SN WS
j=ni+n2+1 s=1 j=ni+n2+1 s=1 j=n1+n2+1s=n;+1

ni+nz+n3

+ > Z E,Y)?*

Jj=ni1+n2+1s=n1+nz+1

2
= 0n?) (tr2(232) + (29 + D (5 53)

i=1

2
—i—Ztr(Ei 23)2).

i=1
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Thus we conclude that

ny+na+nz j—1
om™ > D Ewypt
j=2 s=1
ni+ny j—1 ni4ny+nz j—1
=0 > D EXYpt+om D D Ewyp
j=2 s=1 Jj=n1+n2+1 s=1

3 3 3
=0 ) | D @) +w(Eh) + D eA(EiT) + D w(iz))?

i=1 i<j i<j

= o((o\)").

Then the proof of (12) is complete. O
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