
Ann Inst Stat Math (2017) 69:333–364
DOI 10.1007/s10463-015-0542-9

An approximation to the information matrix
of exponential family finite mixtures

Andrew M. Raim1,2 · Nagaraj K. Neerchal1 ·
Jorge G. Morel1

Received: 10 April 2014 / Revised: 19 May 2015 / Published online: 1 October 2015
© The Institute of Statistical Mathematics, Tokyo 2015

Abstract Asimple closed form of the Fisher informationmatrix (FIM) usually cannot
be obtained under a finite mixture. Several authors have considered a block-diagonal
FIM approximation for binomial and multinomial finite mixtures, used in scoring and
in demonstrating relative efficiency of proposed estimators. Raim et al. (StatMethodol
18:115–130, 2014a) noted that this approximation coincides with the complete data
FIM of the observed data and latent mixing process jointly. It can, therefore, be for-
mulated for a wide variety of missing data problems. Multinomial mixtures feature a
number of trials, which, when taken to infinity, result in the FIM and approximation
becoming arbitrarily close. This work considers a clustered sampling scheme which
allows the convergence result to be extended significantly to the class of exponential
family finite mixtures. A series of examples demonstrate the convergence result and
suggest that it can be further generalized.

Keywords Fisher information · Complete data · Clustered sampling ·
Misclassification rate

1 Introduction

We consider an approximation to the Fisher information matrix (FIM) for exponential
family finite mixtures. Obtaining a simple closed form for this matrix is generally not
possible. A computationally convenient approximation may be useful in frequentist
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estimation (e.g. the scoring algorithm), in inference (e.g. computing standard errors
and confidence intervals), and numerous other applications in which the information
matrix is used.

This paper follows on to Raim et al. (2014a), which considers a block-diagonal
matrix originally proposed in Blischke (1962, 1964) to approximate the FIM for the
finite mixture of binomials, and later extended tomultinomial finite mixtures byMorel
and Nagaraj (1993). The matrix is seen to be, in fact, a complete data information
matrix, where the missing data are the subpopulation indicators. The approxima-
tion and true FIM are shown to become close as the number of multinomial trials
are increased, which justifies the approximation. The approximation is shown to be
useful in Fisher scoring iterations, resulting in an estimation method comparable to
expectation–maximization. However, the FIM and the approximation are not neces-
sarily close for small to moderate m. It is noted that the complete data FIM can be
formulated for any finite mixture, or more generally, for likelihoods involving miss-
ing data. However, the convergence between approximation and true FIM could not
immediately be extended beyond the scope of multinomial data analysis, as it was
based on the number of trials becoming large.

This paper provides one such extension, to exponential family finite mixtures. We
consider a special clustered sampling scheme; suppose thatm observations are sampled
from one of s subpopulations. It is unknown to which subpopulation the observations
belong, as in the usual finite mixture, but it is known that they share a common
subpopulation. This provides an analogue to the trials of a binomial or multinomial
experiment and allows a convergence result to be formulated.

The proof in the multinomial setting (Morel and Nagaraj 1991; Raim et al. 2014a)
had been based on bounds for tail probabilities of binomial random variables and used
the fact that the sample space is bounded. The proof in the present paper utilizes the
exponential family form and does not require restrictions on the sample space. It is
shown that the FIM and the approximation converge together as m → ∞, and the
convergence is exponential inm.However, the exponent includes a termwhichdepends
on the distance between subpopulations so that the convergence is very slow when
subpopulations are similar and very fast when dissimilar. Therefore, the approximation
is most suitable when the mixed subpopulations are more distinct and m is larger.

Because of the intractability of deriving the expectations needed for the FIM of
a finite mixture, “observed” information quantities such as the Hessian of the log-
likelihood or outer product of the score vector are often used in inference applications.
For example, McLachlan and Peel (2000, Chapter 2) review several methods based on
observed information, such as one proposed by Louis (1982) to obtain standard errors
from the expectation–maximization algorithm. More recently, Boldea and Magnus
(2009) provide expressions for observed information under the multivariate normal
finite mixture. In the present work, we consider the FIM to be a quantity of interest in
its own right. One important distinction between expected and observed information
is the properties of the latter, such as invertibility, vary with the sample.

The rest of the paper proceeds as follows: Section 2 gives the formulation of the
problem. Section 3 proves that the complete data FIM and true FIM become arbitrarily
close as m becomes large, and provides rates of convergence. Section 4 highlights
a connection between the convergence rate and the probability of misclassification
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among the s subpopulations using an optimal classification rule. Section 5 provides
several examples of the convergence. Finally, Sect. 6 gives concluding remarks.

2 Problem formulation

Suppose a population consists of s subpopulations, and that the �th subpopulation
occurs with proportion π�, for � = 1, . . . , s. Let Z ∼ Discrete(1, . . . , s;π) be the
result of drawing one of the populations at random; that is, Z = � with probability
π� for � = 1, . . . , s. Consider drawing an independent and identically distributed
sampleX1, . . . ,Xm from the �th subpopulation, whereX j are d-dimensional random
variables. We will suppose an exponential family density for Xi , conditional on the
�th subpopulation,

f (x | η�) = exp{h(x) + ηT� u(x) − ψ(η�)}.

The quantity U(X) is the sufficient statistic in this formulation, assumed to be
a vector of dimension k. The subpopulation densities f (· | η�), � = 1, . . . , s, are
members of an exponential family F = { f (· | η) : η ∈ �} where η is the natural
parameter. We will assume � is an open convex set in Rk so that F is an exponential
family of full rank, and derivatives of the density orψ maybe taken at anyη ∈ �. These
assumptions ensure regularity conditions in the theory of Fisher information which
are discussed in Shao (2008, Section 3.1) and Lehmann and Casella (1998, Section
2.5), yet also cover a wide range of practically used densities. The joint density of
X1, . . . ,Xm conditional on selecting subpopulation Z = � can be written as

f (x1, . . . , xm | η�) = exp

{
m∑
i=1

h(xi ) + ηT�

m∑
i=1

ui − mψ(η�)

}
. (1)

By Lemma 2.7.2 of Lehmann and Romano (2005), the density of T = ∑m
i=1 Ui

conditional on the subpopulation Z = � can be obtained from (1) as

f (t | η�) = exp{ηT� t − mψ(η�)}, (2)

with respect to a σ -finite measure ν obtained by transforming the original dominating
measure. A distribution in the form of (2) is said to belong to a natural exponential
family. Unconditionally, the distribution of T is given by

f (t | θ) =
s∑

�=1

π� exp{ηT� t − mψ(η�)}, (3)

with respect to the measure ν, where θ = (η1, . . . , ηs, π1, . . . , πs−1). We will assume
η� are distinct for � = 1, . . . , s to prevent an obviously degenerate finite mixture. The
notation � will refer to the abstract sample space with a typical element ω. Let W�
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be a random variable with the distribution of T when Z = � is observed. Expectation,
variance, and moment generating function (MGF) of W� are given by

E(W�) = m
∂

∂η�

ψ(η�), Var(W�) = m
∂2

∂η�∂ηT�
ψ(η�), and

E(eτTW� ) = em[ψ(η�+τ )−ψ(η�)],

where the MGF exists for τ in some ball B(0, ε) of radius ε > 0 about 0 (Shao 2008,
Theorem 2.1). The score vector and Fisher information matrix of W� are

∂

∂η�

log f (t | η�) = t − E(W�) and E

{
− ∂2

∂η�∂ηT�
log f (T | η�)

}
= Var(W�).

The score vector of T can be obtained as

∂

∂η�

log f (t | θ) = π� f (t | η�)

f (t | θ)
[t − E(W�)] , for � = 1, . . . , s

∂

∂π�

log f (t | θ) = f (t | η�) − f (t | ηs)

f (t | θ)
, for � = 1, . . . , s − 1.

Denote I(θ) as the FIM of T under the finite mixture and Ĩ(θ) as the FIM of the
complete data (T, Z), both with respect to θ . Let q = sk+ s−1 denote the dimension
of θ so that I(θ) and Ĩ(θ) are q × q matrices. We will sometimes use the subscript m
to emphasize that the matrices depend on the number of observations m. The matrix
Ĩ(θ) has a simple closed form

Ĩ(θ) = Blockdiag (π1F1, . . . , πsFs,Fπ ) , where (4)

F� = m{Var(U1 | Z = �)}, for � = 1, . . . , s,

Fπ = D−1
π + π−1

s 11T.

Here, Dπ = Diag(π1, . . . , πs−1) and 1 denotes a vector of ones of the appropriate
dimension. Notice that F� is the k × k FIM with respect to W�, and Fπ is the (s −
1) × (s − 1) FIM of Mults(π , 1), the multinomial distribution on s categories with
probabilities π and a single trial. To obtain expression (4), the complete data density
for (T, Z) is

f (t, z | θ) =
s∏

�=1

[π� f (t | η�)]I (z=�).

Let � = (�1, . . . ,�s) with �� = I (Z = �) so that � ∼ Mults(1,π). Denote
�−s = (�1, . . . ,�s−1) and π−s = (π1, . . . , πs−1). This complete data density
yields a score vector with entries
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∂

∂ηa
log f (t, z | θ) = �a

∂

∂ηa
log f (t | ηa), for a = 1, . . . , s,

∂

∂π−s
log f (t, z | θ) = D−1

π �−s − �s

πs
1.

for a = 1, . . . s. Taking second derivatives yields

∂2

∂ηa∂ηTa
log f (t, z | θ) = �a

∂2

∂ηa∂ηTa
log f (t | ηa)

∂2

∂ηa∂ηTb
log f (t, z | θ) = 0, for a �= b,

∂2

∂ηa∂πT−s
log f (t, z | θ) = 0,

∂2

∂π−s∂πT−s
log f (t, z | θ) = −

[
D−2

π �−s + �s

π2
s
11T

]
,

for a, b ∈ {1, . . . , s}. Taking the expected value of the negative of these terms, jointly
with respect to (T, Z), obtains the blocks of (4).

In the specific case of multinomial finite mixtures, Ĩ(θ) is seen to serve the role of
an approximate information matrix in Raim et al. (2014a). In Section 3 we show that
Ĩm(θ) − Im(θ) → 0 as m → ∞.

In a practical data analysis situation under clustered sampling, a random sam-
ple T1, . . . ,Tn would be observed. Here, each Ti represents the sufficient statistic
based on mi individual observations Xi1, . . . ,Ximi drawn from the subpopulation
labeled by a common unobserved Zi . If we assume that the distribution of Zi is
Discrete(1, . . . , J ;π), we obtain the finite mixture model (3). The score vector, FIM,
and approximate FIM for the sample are formed by summing the corresponding n
quantities for each clustered observation. In this case, closeness of Ĩ(θ) and I(θ) will
be ensured when all mi are sufficiently large.

3 Convergence of approximate information matrix

The proof of the convergence of Ĩm(θ) − Im(θ) to 0 will proceed in several steps.
We will first show that this difference is the expected value of an information matrix;
one simple consequence is that it must be positive semidefinite. Denote IZ |T(θ) as the
FIM of Z conditional on T.

Lemma 1 The matrix Ĩ(θ) − I(θ) is equal to ET[IZ |T(θ)].
Proof Notice that

∂

∂θ
log fθ (T, Z) = ∂

∂θ
log fθ (Z | T) + ∂

∂θ
log fθ (T).
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Therefore,

Ĩ(θ) = ET,Z

[{
∂

∂θ
log fθ (T, Z)

}{
∂

∂θ
log fθ (T, Z)

}T]

= ET[IZ |T(θ)] + B + BT + I(θ), (5)

where

B = ET,Z

[{
∂

∂θ
log fθ (Z | T)

}{
∂

∂θ
log fθ (T)

}T]

= ET EZ |T

[{
∂

∂θ
log fθ (Z | T)

}{
∂

∂θ
log fθ (T)

}T]
= 0.

The result follows from rearranging terms in (5). ��
The quantity ET[IZ |T(θ)] has been referred to as the “missing information”

(Orchard and Woodbury 1972), so that we have

Actual information = complete information − missing information.

Before proceeding with the main result, we state several important consequences of
Lemma 1. AWald-like test statistic based on the approximation will be systematically
too large, and a Score-like test statistic will be too small. Also, standard errors obtained
from the approximate informationmatrix will be systematically too optimistic (small).
The notation e j will be used to represent the j th column of the identity matrix of the
appropriate dimension.

Corollary 1 (a) (Wald Statistic) For any θ̂ , θ0 ∈ 
,

(θ̂ − θ0)
TĨ(θ̂)(θ̂ − θ0) ≥ (θ̂ − θ0)

TI(θ̂)(θ̂ − θ0).

(b) (Score Statistic) Suppose I(θ) and Ĩ(θ) are nonsingular and that Ĩ(θ) − I(θ) is
positive definite. Then for any θ0 ∈ 
,

[S(θ0)]TI−1(θ0)[S(θ0)] > [S(θ0)]TĨ−1(θ̂0)[S(θ0)].

(c) (Standard Errors) Suppose I(θ) and Ĩ(θ) are nonsingular and that Ĩ(θ)−I(θ) is
positive definite. Denote by I i j (θ) and Ĩ i j (θ) the elements of I−1(θ) and Ĩ−1(θ),
respectively. Then {I j j (θ)}1/2 > {Ĩ j j (θ)}1/2 for j = 1, . . . , q.

Proof (a) From Lemma 1, Ĩ(θ̂) − I(θ̂) = ET[IZ |T(θ)], an expected value of a con-
ditional information matrix which is positive semidefinite. Therefore, the quantity
(θ̂ − θ0)

T(Ĩ(θ̂) − I(θ̂))(θ̂ − θ0) is nonnegative and the result follows.
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(b) Lemma 6 in theAppendix gives that I−1(θ0)−Ĩ−1(θ̂0) is positive definite, which
implies that the quantity [S(θ0)]T(I−1(θ0)− Ĩ−1(θ̂0))[S(θ0)] is strictly positive,
and the result follows.

(c) Lemma 6 gives that I−1(θ) − Ĩ−1(θ) is positive definite; therefore, the diagonal
elements eTj [I−1(θ) − Ĩ−1(θ)]e j are positive for j = 1, . . . , q. ��

A useful consequence of Lemma 1 is next given as Proposition 1, which states that
the off-diagonal elements of the matrix Ĩm(θ) − Im(θ) have magnitudes which are
bounded by the diagonal elements. This will allow our convergence proof to focus
only on the diagonal elements.

Proposition 1 Denote the (i, j)th element of IZ |T(θ) as Ci j . Then

E |Ci j | ≤ {E(Cii )}1/2{E(C j j )}1/2.

Proof Recall that E(Ci j ) is the (i, j)th element of Ĩm(θ) − Im(θ) by Lemma 1.
Because IZ |T(θ) is the covariance matrix of a score vector, we may apply the Cauchy-
Schwarz inequality to obtain

|Ci j | ≤ C1/2
i i · C1/2

j j ,

for any pair (i, j), which implies that

E |Ci j | ≤ E
{
C1/2
i i · C1/2

j j

}
.

Apply Cauchy–Schwarz again to the right-hand side to obtain

E
{
C1/2
i i · C1/2

j j

}
≤ {E[Cii ]}1/2 · {E[C j j ]}1/2,

which gives the result. ��
We focus on the parameterization θ = (η1, . . . , ηs,π−s) for convenience, but note

that the convergence behavior is preserved under transformations. Suppose θ(ϑ) is a
differentiable transformation of ϑ which does not depend on m. We have that

Ĩm(ϑ) − Im(ϑ) =
(

∂θ

∂ϑ

)T [
Ĩm(θ) − Im(θ)

] ( ∂θ

∂ϑ

)
,

so that Ĩm(ϑ) − Im(ϑ) → 0 as m → ∞ if and only if Ĩm(θ) − Im(θ) → 0, with
equivalent rates of convergence.

Now consider the block decomposition of the true information matrix

I(θ) =

⎛
⎜⎜⎜⎝
A11 . . . A1s A1π
...

. . .
...

...

As1 . . . Ass Asπ

Aπ1 . . . Aπs Aππ

⎞
⎟⎟⎟⎠ , (6)
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with blocks

Aab = E

[{
∂

∂ηa
log f (t | θ)

}{
∂

∂ηb
log f (t | θ)

}T]
, a, b ∈ {1, . . . , s},

AT
bπ = Aπb = E

[{
∂

∂π−s
log f (t | θ)

}{
∂

∂ηb
log f (t | θ)

}T]
, b ∈ {1, . . . , s},

Aππ = E

[{
∂

∂π−s
log f (t | θ)

}{
∂

∂π−s
log f (t | θ)

}T]
.

By Proposition 1, it is only necessary to show convergence of the diagonal elements
of Ĩ(θ)−I(θ) to zero. To do this, we will obtain expressions for the diagonal blocks.
It will be helpful to define

R(m)
i (t) =

s∑
� �=i

π� exp{(η� − ηi )
Tt − m[ψ(η�) − ψ(ηi )]} = f (t | θ)

f (t | ηi )
− πi , and

Q(m)
i (t) = πi f (t | ηi )

f (t | θ)
= πi

πi + R(m)
i (t)

.

Notice that Q(m)
i (T) = P(Z = � | T) is the posterior probability of observing the

�th subpopulation given an observed T; hence, taking expectation with respect to the
mixture density of f (t | θ) yields ET[Q(m)

� (T)] = P(Z = �) = π�. Later we will

encounter E[Q(m)
� (W�)], the expectation taken with respect to f (t | η�), which does

not simplify trivially.
Consider the decomposition of Ĩ(θ) − I(θ) into blocks according to (6); block

(i, i) can be written as

πiFi − Ai i = π2
i

∫
[1 − Q(m)

i (t)](t − E(Wi ))(t − E(Wi ))
T f (t | ηi )dν(t),

whose j th diagonal element is

eTj [πiFi − Ai i ]e j = π2
i E

{
[1 − Q(m)

i (Wi )][Wi j − E(Wi j )]2
}

. (7)

Here, Wi j represents the j th element of Wi . The lower right diagonal block of
Ĩ(θ) − I(θ) is

Fπ − Aππ = (D−1
π + π−1

s 11T)

− E

⎡
⎢⎢⎣ 1

f 2(T | θ)

⎛
⎜⎝

f (T | η1) − f (T | ηs)
...

f (T | ηs−1) − f (T | ηs)

⎞
⎟⎠
⎛
⎜⎝

f (T | η1) − f (T | ηs)
...

f (T | ηs−1) − f (T | ηs)

⎞
⎟⎠

T
⎤
⎥⎥⎦.

(8)
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whose ath diagonal element can be expressed as

eTa [Fπ − Aππ ]ea = (π−1
a + π−1

s ) − π−1
a E[Q(m)

a (Wa)]
− π−1

s E[Q(m)
s (Ws)] + 2π−1

a E[Q(m)
a (Ws)]. (9)

The following lemma gives a simple convexity result for exponential family densi-
ties which will determine the behavior of R(m)

i (W j ) and Q(m)
i (W j ) as m → ∞. See

Boyd and Vandenberghe (2004) for background on convex analysis.

Lemma 2 Consider the density f (t | η) = exp{ηTt−mψ(η)}with natural parameter
space � an open convex set. Suppose its FIM Im(η) is positive definite on �. For any
η, η∗ ∈ �,

ψ(η) − ψ(η∗) > ψ ′(η∗)T(η − η∗), (10)

where ψ ′(η) denotes the derivative of ψ at η.

Proof Notice that

∂2

∂η∂ηT
log f (t | η) = m

∂2

∂η∂ηT
ψ(η) = Im(η),

implying ψ is a strictly convex function. Since ψ is differentiable on the convex set
� we have the result (10). ��

Next, the behavior of R(m)
i (W j ) and Q

(m)
i (W j )will be determined for largem. Note

that the behavior depends on the subpopulation, j = 1, . . . , s, which characterizes
the distribution of W j . The expressions

γI J K = −ψ ′(ηJ )
T(η I − ηK ) + [ψ(η I ) − ψ(ηK )],

c∗
i =

s∧
� �=i

γ�i i , d∗
i j =

s∨
� �=i

{−γ�j i
}
, and c∗∗ =

s∧
�=1

c∗
� , (11)

will be used for the remainder of the paper. To describe the almost sure behavior of a
sequence {Xm} of random variables, let {am} and {bm} be sequences of real numbers.
We will write:

1. Xm
a.s.= O(am) if there exists a set A having probability 1 where, for each ω ∈ A,

there exists a K (ω) such that |Xm(ω)/am | < K (ω) for all m ∈ {1, 2, . . .}. The
quantity K (ω) may depend on ω but is free of m.

2. O(am) ≤ Xm ≤ O(bm) almost surely if both am/Xm
a.s.= O(1) and Xm/bm

a.s.=
O(1).

Proposition 2 The sequence R(m)
i (W j ) behaves as follows for large m:

(a) R(m)
i (Wi )

a.s.= O(e−mc∗
i ) for c∗

i > 0, so that R(m)
i (Wi )

a.s.→ 0 as m → ∞.
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(b) If j �= i then for d∗
i j > 0 and γi j j > 0,

O(emγi j j ) ≤ R(m)
i (W j ) ≤ O(emd∗

i j ), almost surely.

As a consequence, R(m)
i (W j )

a.s.→ ∞ as m → ∞.

Proof Let g be the continuous function g(x) = (η� − ηi )
Tx. By the strong law of

large numbers, there exists an A ⊆ � having probability 1, where g(W j (ω)/m) →
g(ψ ′(η j )) as m → ∞ for all ω ∈ A. Select any ε ∈ (0, c∗

i ). For any ω ∈ A, there
exists an M(ω) such that for all m ≥ M(ω),∣∣∣g(ψ ′(η j )) − g(W j (ω)/m)

∣∣∣ < ε

⇐⇒ ψ ′(η j )
T(η� − ηi ) − ε < (η� − ηi )

TW j (ω)/m < ψ ′(η j )
T(η� − ηi ) + ε.

We have that

R(m)
i (W j (ω)) <

s∑
� �=i

π� exp{m[ψ ′(η j )
T(η� − ηi ) − [ψ(η�) − ψ(ηi )] + ε]}

=
s∑

� �=i

π� exp{m(−γ�j i + ε)}

and

R(m)
i (W j (ω)) >

s∑
� �=i

π� exp{m[ψ ′(η j )
T(η� − ηi ) − [ψ(η�) − ψ(ηi )] − ε]}

=
s∑

� �=i

π� exp{m(−γ�j i − ε)}

for all m ≥ M(ω).

Case (a) Suppose j = i . From Lemma 2 we have

γ�i i = −ψ ′(ηi )T(η� − ηi ) + [ψ(η�) − ψ(ηi )] > 0

for all � �= i , so that for m ≥ M(ω),

0 ≤ R(m)
i (Wi (ω))

<

s∑
� �=i

π�e
m(−γ�i i+ε) =

s∑
� �=i

π�e
−m(γ�i i−ε) < e−m(c∗

i −ε)
s∑

� �=i

π�

= (1 − πi )e
−m(c∗

i −ε). (12)
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Recall that c∗
i > ε, so the exponent on the RHS of (12) is negative. Since (12) can

be obtained for each ω ∈ A, and ε can be selected arbitrarily close to 0, we have
R(m)
i (Wi )

a.s.= O(e−mc∗
i ).

Case (b) Now suppose j �= i . Consider for � = 1, . . . , s,

−γ�j i = ψ ′(η j )
T(η� − ηi ) − [ψ(η�) − ψ(ηi )].

Notice that

−γ j j i = ψ ′(η j )
T(η j − ηi ) − [ψ(η j ) − ψ(ηi )]

= −ψ ′(η j )
T(ηi − η j ) + [ψ(ηi ) − ψ(η j )] = γi j j ,

where γi j j > 0 by Lemma 2. Then for m ≥ M(ω),

R(m)
i (W j (ω)) >

s∑
� �=i

π�e
m(−γ�j i−ε) > π j e

m(−γ j j i−ε) = π j e
m(γi j j−ε). (13)

Note that γi j j −ε > 0 through the choice of a sufficiently small ε. Since the expression
(13) can be obtained for each ω ∈ A, and ε could have been taken arbitrarily small,
we have that π j emγi j j /R(m)

i (W j )
a.s.= O(1). We can also obtain an upper bound using

R(m)
i (W j (ω)) <

s∑
� �=i

π�e
m(−γ�j i+ε) < (1 − πi )e

m(d∗
i j+ε)

, (14)

noting that d∗
i j = ∨s

� �=i {−γ�j i } ≥ −γ j j i = γi j j > 0. The expression (14) can be

obtained for eachω ∈ A for arbitrarily small ε; therefore, R(m)
i (W j )/e

m(d∗
i j ) a.s.= O(1).

We have obtained the desired almost sure bounds

O(emγi j j ) ≤ R(m)
i (W j ) ≤ O(emd∗

i j ).

��
Note that multipliers involving π are constant in m so we have dropped them from

the rates. However, the quality of the approximation of Ĩ(θ) to I(θ) is not uniform in
π ; this is demonstrated in Raim et al. (2014b).

Proposition 3 The sequence Q(m)
i (W j ) behaves as follows for large m:

(a) 1 − Q(m)
i (Wi )

a.s.= O(e−mc∗
i ), so that Q(m)

i (Wi )
a.s.→ 1 as m → ∞.

(b) If j �= i then Q(m)
i (W j )

a.s.= O(e−mγi j j ), so that Q(m)
i (W j )

a.s.→ 0 as m → ∞.

Proof Case (a) We have

1 − Q(m)
i (Wi ) = 1

πi [R(m)
i (Wi )]−1 + 1

.
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Since R(m)
i (Wi )

a.s.= O(e−mc∗
i ) by Proposition 2, there exists a constant K (ω) for each

ω in a set A with probability 1 such that

∣∣∣∣∣ R
(m)
i (Wi (ω))

e−mc∗
i

∣∣∣∣∣ < K (ω) ⇐⇒ [R(m)
i (Wi (ω))]−1 > K (ω)−1emc∗

i ,

so that

emc∗
i [1 − Q(m)

i (Wi (ω))] <
emc∗

i

K (ω)−1emc∗
i + 1

< K (ω).

This gives the desired rate 1 − Q(m)
i (Wi )

a.s.= O(e−mc∗
i ).

Case (b) Proposition 2 gives a set A ⊆ � of probability 1 where, for each ω ∈ A,
there exists a K (ω) such that R(m)

i (W j (ω)) > K (ω)−1emγi j j . Then, we have

emγi j j Q(m)
i (W j (ω)) = πi emγi j j

πi + R(m)
i (W j (ω))

<
πi emγi j j

πi + K (ω)−1emγi j j
< πi K (ω).

This gives the desired rate Q(m)
i (W j )

a.s.= O(e−mγi j j ). ��
Proposition 3 suggests that the convergence between the FIM and approximate

information will be fast when both of the following happen asm is increased. First, the
posterior probability of membership in the �th subpopulation should quickly approach
1when the true subpopulation Z = �. Second, the posterior probability ofmembership
in the �th subpopulation should quickly approach 0 when the true subpopulation
Z �= �. It is clear from Proposition 3 and dominated convergence that the expectation
(9) converges to zero. Also note that Wi j − E(Wi j ) is a sum of independent and

identically distributed random variables, so that [Wi j − E(Wi j )]2 a.s.= O(m2), and,
therefore,

π2
i [1 − Q(m)

i (Wi )][Wi j − E(Wi j )]2 a.s.= O(m2e−mc∗
i ). (15)

Then the expectation (7) converges to zero if and only if the LHS of (15) is uni-
formly integrable (Shao 2008, Theorem 1.8). The convergence of Ĩm(θ)−Im(θ) can,
therefore, be characterized in the following theorem:

Theorem 1 Ĩm(θ) − Im(θ) → 0 as m → ∞ if and only if the sequence (15) is
uniformly integrable for each i = 1, . . . , s and j = 1, . . . , k.

Some additional work will allow us to prove Ĩm(θ) − Im(θ) → 0 directly without
checking uniform integrability, and also to obtain rates of convergence. The following
corollary is an immediate consequence of Proposition 4 in the Appendix, noting that
1
2 [γ j i i + γi j j ] ≥ c∗∗.
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Corollary 2 There exist κ > 0 and ζ > 0 such that

E[1 − Q(m)
i (Wi )] = O(e−m(κc∗∗−ζ )),

where κc∗∗ > ζ .

Lemma 3 Let Sn = X1 + · · · + Xn where {Xi } are independent and identically
distributed and E(|X1|k) < ∞ for a given positive integer k ≥ 0. Then E(Skn ) =
O(nk).

Proof Notice that

E(Skn ) = E[(X1 + · · · + Xn)
k] =

∑
z∈�n,k

k!
z1! · · · zn ! E[Xz1

1 ] · · · E[Xzn
1 ]

where �n,k is the multinomial sample space with n categories and k trials. Let

ξ = max
z∈�n,k

∣∣∣E[Xz1
1 ] · · · E[Xzn

1 ]
∣∣∣

and note that ξ ≥ 0 is finite since the expression involves only moments of X1 up to
order k, which are all assumed to be finite. Now we have

∣∣∣E(Skn )
∣∣∣ ≤ ξ

∑
z∈�n,k

k!
z1! · · · zn ! = ξnk,

which gives the result. ��
The following theorem gives rates for the diagonal elements of the matrix Ĩ(θ) −

I(θ), which dominate the other elements of thematrix.We require that fourthmoments
are finite for all marginals of the original Xi given Z = � for � = 1, . . . , s. But this
does not represent any additional restriction; an exponential family of full rank has
finite MGF in a neighborhood of zero; therefore, all moments exist.

Theorem 2 There exist κ > 0 and ζ > 0 such that the diagonal elements of Ĩ(θ) −
I(θ) satisfy the following:

(a) For the j th diagonal element of the i th diagonal block, j = 1, . . . , k and i =
1, . . . , s,

eTj (πiFi − Ai i )e j = O(m2e−m
2 (κc∗∗−ζ )).

(b) For the j th diagonal element of the π diagonal block, j = 1, . . . , s − 1,

eTj (Fπ − Aππ ) e j = O(e−m(κc∗∗−ζ )).

Proof Corollary 2 provides a pair (κ�, ζ�) for the order of each E[1 − Q(m)
� (W�)],

� = 1, . . . , s.Define (κ, ζ ) to be thepairwhichminimizesκ�c∗∗−ζ� over � = 1, . . . , s.
For (a) we have
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π2
i E{[1 − Q(m)

i (Wi )][Wi j − E(Wi j )]2}
≤ π2

i {E[(1 − Q(m)
i (Wi ))

2]}1/2{E[(Wi j − E(Wi j ))
4]}1/2 (16)

≤ π2
i {E[1 − Q(m)

i (Wi )]}1/2{E[(Wi j − E(Wi j ))
4]}1/2 (17)

= π2
i {O(e−m(κc∗∗−ζ ))O(m4)}1/2 (18)

= O(m2e−m
2 (κc∗∗−ζ )).

Notice that (16) follows from the Cauchy–Schwarz inequality, (17) because 0 ≤
X ≤ 1 implies E(X2) ≤ E(X), and (18) by Corollary 2 and Lemma 3.

For (b), use Corollary 2 with the expectation (9) to obtain

eTj (Fπ − Aππ )e j

= π−1
j E[1 − Q(m)

j (W j )] + π−1
s E[1 − Q(m)

s (Ws)] + 2π−1
j E[Q(m)

j (Ws)]
= π−1

j O(e−m(κc∗∗−ζ )) + π−1
s O(e−m(κc∗∗−ζ )) + 2π−1

j O(e−m(κc∗∗−ζ )).

The fact that E[Q(m)
j (Ws)] = O(e−m(κc∗∗−ζ )) follows from

E[Q(m)
j (Ws)] =

∫
π j f (w | η j )

f (w)
f (w | ηs)dν(w)

≤
∫ ∑

� �=s

π� f (w | η�)

f (w)
f (w | ηs)dν(w) = E[1 − Q(m)

s (Ws)].

��
Because of the convenient block-diagonal formof the complete data FIM, its inverse

Ĩ−1
m (θ) = Blockdiag(π−1

1 F−1
1 , . . . , π−1

s F−1
s ,F−1

π ) is also block-diagonal. As inRaim
et al. (2014a, Theorem 2.5), the convergence result for Ĩm(θ) − Im(θ) can be used to
show convergence between the inverses. This is stated as a theorem, and the proof is
left to the Appendix.

Theorem 3 Suppose Im(θ) and Ĩm(θ) are nonsingular. Then I−1
m (θ) − Ĩ−1

m (θ) → 0
as m → ∞.

Remark 1 Until this point we have assumed a given θ to evaluate the information
matrix. An anonymous referee notes that, in practice, an unknown θ will be estimated
by some θ̂ based on the data. We can justify Ĩ−1

m (θ̂) as an estimator for the large
sample variance I−1

m (θ) as follows.
Note that I−1

m (·) and Ĩ−1
m (·) represent sequences of functions that vary withm and θ̂

represents a sequence of estimators based onm clustered observations. By the triangle
inequality,

‖Ĩ−1
m (θ̂) − I−1

m (θ)‖ ≤ ‖Ĩ−1
m (θ̂) − Ĩ−1

m (θ)‖ + ‖Ĩ−1
m (θ) − I−1

m (θ)‖.
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Theorem 3 gives that ‖Ĩ−1
m (θ) − I−1

m (θ)‖ → 0 as m → ∞. Taking ‖·‖ to be the
Frobenius norm and using a similar decomposition as in the proof of Theorem 3,

‖Ĩ−1
m (θ̂) − Ĩ−1

m (θ)‖2 =
s∑

�=1

m−2‖π̂−1
� I−1

1 (η̂�) − π−1
� I−1

1 (η�)‖2

+ ‖[Dπ̂ − π̂−s π̂
T
−s] − [Dπ − π−sπ

T−s]‖2,

where I1(η�) represents the exact FIM under the �th subpopulation for a single obser-
vation. The expressions

‖π̂−1
� I−1

1 (η̂�) − π−1
� I−1

1 (η�)‖2 and (19)

‖[Dπ̂ − π̂−s π̂
T
−s] − [Dπ − π−sπ

T−s]‖2 (20)

do not depend on m except through the estimator θ̂ . It is apparent that (20) is a
continuous function of θ̂ . Continuity of (19) in θ̂ can be verified by obtaining I−1

1 (η�)

for the distribution under consideration; this is a prerequisite in formulating Ĩ−1
m (θ).

Under continuity and given a consistent estimator θ̂ , we have that (19) and (20) are of
order op(1); therefore, ‖Ĩ−1

m (θ̂) − I−1
m (θ)‖ = op(1).

Neerchal and Morel (2005) and Raim et al. (2014a) have considered the setting of
multinomial finite mixtures where the FIM can be computed exactly (e.g. by brute
force, summing over the sample space), though it may be time-consuming. When
Ĩ−1(θ̂) itself does not provide an accurate estimate of the large sample covariance,
Ĩ−1(θ̂) is suggested as an aid to find the MLE, but I−1(θ̂) is used in the final steps of
estimation and to obtain standard errors.

4 Relationship to classification problem

There is a fundamental connectionbetween the convergence behavior of Ĩm (θ)−Im(θ)

and the probability of misclassification among s subpopulations using an optimal rule.
Namely, both properties depend on the separation between subpopulations in a similar
way. As in the finite mixture setting, suppose s subpopulations have densities f (x |
φ1), . . . , f (x | φs) from a common exponential family which occur in the overall
population with respective proportions π1, . . . , πs . Let X1, . . . ,Xm be independently
and identically distributed from the Z th subpopulation, but assume Z is not observed.
Consider classification rules using T = ∑m

i=1 U(Xi ) which is sufficient given Z . The
classification problem is to specify a rule, described by regions D = {D1, . . . ,Ds},
which partition the sample space T of T so that

T ∈ D� ⇐⇒ T belongs to �th subpopulation.

The objective is to specify a rule D which minimizes the probability of mis-
classification p(D). (Alternatively, the objective may be to minimize the cost of
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misclassification if the possible misclassifications are assigned different costs.) It is
well-known that the rule D∗ = {D∗

1, . . . ,D∗
s } given by

D∗
� =

{
t ∈ T : � = argmax

a
πa f (t | φa)

}
,

minimizes p(D) (Anderson 2003). Of course the rule D∗ assumes full knowledge
of all f (x | φ�) and π�, and, therefore, is not directly usable in practice. Under D∗,
we may consider the optimal probability of misclassification p(D∗), which provides
a measurement for the degree of mutual separation between the s subpopulations. A
larger p(D∗) indicates that it is more difficult to distinguish among them. We can
relate p(D∗) to the convergence rates obtained in Sect. 3 by

p(D∗) =
s∑

�=1

P(T /∈ D∗
� |Z = �)P(Z = �)

=
s∑

�=1

π� P

⎛
⎝⋃

j �=�

[T ∈ D∗
j ]
∣∣∣∣∣Z = �

)

=
s∑

�=1

π� P

⎛
⎝⋃

j �=�

[
π j f (T | φ j ) ≥ π� f (T | φ�)

] ∣∣∣∣∣Z = �

)

≤
s∑

�=1

π� P

⎛
⎝∑

j �=�

π j f (T | φ j ) ≥ π� f (T | φ�)

∣∣∣∣∣Z = �

⎞
⎠

=
s∑

�=1

π� P(Q(m)
� (W�) ≤ 1/2). (21)

Corollary 2, along with the Markov inequality, can be used to obtain a rate for the
RHS of (21),

s∑
�=1

π� P(Q(m)
� (W�) ≤ 1/2) ≤

s∑
�=1

π�2E[1 − Q(m)
� (W�)]

= O(e−m(κc∗∗−ζ )).

The optimal probability of misclassification will, therefore, decrease rapidly to 0 as
m increases if the s subpopulations are well-separated.

5 Examples

We now present several examples demonstrating the closeness of I(θ) and Ĩ(θ) in
the mixture setting.
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Example 1 (Multinomial Finite Mixture) Let X1, . . . ,Xm be independent and iden-
tically distributed as Multk+1(1,pZ ), with Z ∼ Discrete(1, . . . , s;π). Take T =∑m

i=1 Xi . The multinomial subpopulations are exponential families with f (t |
m,p�) = exp

{
ηT� t − mψ(η�) + h(t)

}
, where

η� =
(
log

p�1

p�,k+1
, · · · , log

p�k

p�,k+1

)
and ψ(η�) = − log p�,k+1,

with p�,k+1 = 1 − ∑k
a=1 p�a . The approximate information matrix with respect

to θ = (η1, . . . , ηs,π−s) is then Ĩ(θ) = Blockdiag(π1F1, . . . , πsFs,Fπ ), where
F� = m{Diag(p�) − p�pT� } and Fπ = D−1

π + π−1
s 11T. Transforming to ϑ(θ) =

(p1, . . . ,ps,π−s) gives ∂η�/∂p� = Diag(p�)
−1 + p−1

�,k+111
T so that

Ĩ(p�) =
(

∂η�

∂p�

)T

Ĩ(η�)

(
∂η�

∂p�

)
= m

{
Diag(p�)

−1 + p−1
�,k+111

T
}

.

Therefore, we obtain the form of Ĩ(ϑ) which was studied in Raim et al. (2014a).

Example 2 (Multivariate Normal FiniteMixture) LetX1, . . . ,Xm be independent and
identically distributed in R

k as N(μZ ,	), with Z ∼ Discrete(1, . . . , s;π). Then
T = ∑m

i=1 Xi ∼ N(mμZ ,m	) given Z . Let us compare the FIM and approximation
with respect to ϑ = (μ1, . . . ,μs,π−s), where 	 is taken to be known. The normal
subpopulations are exponential familieswith f (t | mμ j ,m	) = exp{ηTj t−mψ(η j )+
h(t)}, where η j = 	−1μ j and mψ(η j ) = m 1

2η
T
j 	η j . Under Z = j , the first and

second derivative of the log-density with respect to η j are given by

∂

∂η j
log f (t | η j ) = t − m	η j and − ∂2

∂η j∂ηTj
log f (t | η j ) = m	.

Therefore, the information contained in μ j in T under the j th subpopulation is
given by

I(μ j ) =
(

∂η j

∂μ j

)T

I(η j )

(
∂η j

∂μ j

)
= 	−1(m	)	−1 = m	−1.

The approximate information matrix for the mixed population with respect to ϑ is
then

Ĩ(ϑ) = Blockdiag(π1F1, . . . , πsFs,Fπ ), with F j = m	−1 for j = 1, . . . , s

and Fπ = D−1
π + π−1

s 11T. We now study the closeness between I(ϑ) and Ĩ(ϑ) by
numerical experiment. The true information matrix is computed using the cubature
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package1 in R for numerical multivariate integration. Let us concretely take dimension
k = 2 and number of populations s = 2, with

	 =
(

1 0.5

0.5 1

)
and π =

(
0.25

0.75

)
.

Notice that for a mixture with s = 2 components, we have

γ111 = −ψ ′(η1)T(η1 − η1) + [ψ(η1) − ψ(η1)] = 0,

and likewise γ121 = γ212 = γ222 = 0. We also have

γ112 = −ψ ′(η1)T(η1 − η2) + [ψ(η1) − ψ(η2)]
= ψ ′(η1)T(η2 − η1) − [ψ(η2) − ψ(η1)] = −γ211

and likewise γ221 = −γ122, where γ211 and γ122 are positive by Lemma 2. We have
listed all eight possible γI J K constants, and it is apparent that γ211 and γ122 together
characterize the convergence rates. We will consider three scenarios for the subpopu-
lation means:

• Scenario 1: μ1 = (−1, 1), μ2 = (1,−1), so that γ221 = γ122 = 8.
• Scenario 2: μ1 = (−0.5, 0.5), μ2 = (0.5,−0.5), so that γ221 = γ122 = 2.
• Scenario 3: μ1 = (−0.125, 0.125), μ2 = (0.125,−0.125), so that γ221 = γ122 =
0.125.

Figure 1 plots the mixed populations for the three scenarios. The subpopulations
are well-separated in Scenario 1, while in Scenario 2 there is only a small hint of
separation and in Scenario 3 the two groups are visually indistinguishable.

Table 1 shows the diagonal elements of Ĩm(ϑ) compared with those of Im(ϑ),
where the latter have been computed numerically. Also shown is the Frobenius norm
of the matrix Ĩm(ϑ)−Im(ϑ). Note from the proof of Theorem 3 in the Appendix that

‖Ĩm(ϑ) − Im(ϑ)‖2F = q2O(m4e−m(κc∗∗−ζ )).

Figure 2 plots the norms for the three scenarios. As expected, the elements of the
FIM and the approximation converge together quickly for Scenario 1, andmore slowly
for Scenario 2. For Scenario 3, the Frobenius norm initially increases with m because
of the extremely slow convergence rate, and eventually begins decreasing when m is
large.

Example 3 (Sampling iid from Normal Finite Mixture)
It is natural to ask if there is relationship between the information matrix of

X1, . . . ,Xm independently and identically distributed from f (x | φZ ), but where Z is
not observed, and the informationmatrix ofX1, . . . ,Xm independently and identically

1 http://cran.r-project.org/web/packages/cubature.
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Fig. 1 Densities for the bivariate normal finite mixture under the three scenarios. a Scenario 1, b Scenario
2, c Scenario 3

distributed from the finite mixture f (x | θ). The results in this paper were developed
strictly for the former case. As a concrete example, suppose X1, . . . , Xm are drawn
independently from N(μZ , 1), where Z ∼ Discrete(1, . . . , s;π). Let Im(θ) denote
the information matrix of T = ∑m

i=1 Xi , where θ = (μ1, . . . , μs, π1, . . . , πs−1) and
the density of T is

f (x | m, θ) =
s∑

�=1

π�

1√
2πm

exp

{
− 1

2m
(t − mμ�)

2
}

.

On the other hand, if Xi are drawn iid from the finite mixture

f (x | θ) =
s∑

�=1

π�

1√
2π

exp

{
−1

2
(x − μ�)

2
}

,
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Table 1 Results for bivariate normal mixture

m Entry (1, 1) Entry (2, 2) Entry (3, 3) Entry (4, 4) Entry (5, 5) ‖Ĩ − I‖F
(a) Scenario 1

1 0.333 (0.276) 0.333 (0.276) 1 (0.921) 1 (0.921) 5.333 (4.921) 0.6459

2 0.667 (0.643) 0.667 (0.643) 2 (1.971) 2 (1.971) 5.333 (5.290) 0.1419

3 1.000 (0.994) 1.000 (0.994) 3 (2.993) 3 (2.993) 5.333 (5.328) 0.0304

4 1.333 (1.332) 1.333 (1.332) 4 (3.999) 4 (3.999) 5.333 (5.333) 0.0060

5 1.667 (1.666) 1.667 (1.666) 5 (5.000) 5 (5.000) 5.333 (5.333) 0.0011

6 2.000 (2.000) 2.000 (1.999) 6 (6.000) 6 (6.000) 5.333 (5.333) 0.0002

(b) Scenario 2

1 0.333 (0.192) 0.333 (0.192) 1 (0.777) 1 (0.777) 5.333 (2.729) 3.0005

2 0.667 (0.452) 0.667 (0.452) 2 (1.670) 2 (1.670) 5.333 (3.968) 2.1626

3 1.000 (0.761) 1.000 (0.761) 3 (2.653) 3 (2.653) 5.333 (4.592) 1.7011

– – – – – – –

23 7.667 (7.666) 7.667 (7.666) 23 (23.000) 23 (23.000) 5.333 (5.333) 0.0013

24 8.000 (8.000) 8.000 (8.000) 24 (24.000) 24 (24.000) 5.333 (5.333) 0.0009

25 8.333 (8.333) 8.333 (8.333) 25 (25.000) 25 (25.000) 5.333 (5.333) 0.0006

(c) Scenario 3

1 0.333 (0.100) 0.333 (0.100) 1 (0.746) 1 (0.746) 5.333 (0.245) 5.1939

2 0.667 (0.227) 0.667 (0.227) 2 (1.488) 2 (1.488) 5.333 (0.480) 5.2334

3 1.000 (0.375) 1.000 (0.375) 3 (2.231) 3 (2.231) 5.333 (0.703) 5.3942

– – – – – – –

28 9.333 (6.118) 9.333 (6.118) 28 (22.989) 28 (22.989) 5.333 (3.736) 13.4860

29 9.667 (6.393) 9.667 (6.393) 29 (23.913) 29 (23.913) 5.333 (3.798) 13.7348

30 10.000 (6.670) 10.000 (6.670) 30 (24.844) 30 (24.844) 5.333 (3.857) 13.9718

– – – – – – –

78 26.000 (21.770) 26.000 (22.770) 78 (73.692) 78 (73.692) 5.333 (5.084) 13.7007

79 26.333 (23.138) 26.333 (23.138) 79 (74.748) 79 (74.748) 5.333 (5.093) 13.5528

80 26.667 (23.506) 26.667 (23.506) 80 (75.804) 80 (75.804) 5.333 (5.102) 13.4030

The five “entry” columns show the diagonal elements Ĩi i along with corresponding Ii i in parentheses. The
last column shows the Frobenius norm of Ĩ − I

then the information matrix is mI1(θ). Suppose we take s = 2 mixing components
with μ1 = −1, μ2 = 1, and π = 1/4. Comparing the two information matrices, we
have

• for m = 3, Im(θ) vs. mI1(θ) is

⎛
⎜⎝

0.5370 −0.2023 −0.3692

−0.2023 1.9289 −0.4653

−0.3692 −0.4653 4.5916

⎞
⎟⎠ vs.

⎛
⎜⎝

0.4177 −0.0951 −1.1399

−0.0951 1.6739 −1.7900

−1.1399 −1.7900 8.1871

⎞
⎟⎠ .
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Fig. 2 Frobenius norm of
Ĩm − Im , as m varies, for the
three normal scenarios
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• for m = 50, Im(θ) vs. mI1(θ) is

⎛
⎜⎝
12.5 0.0 0.0000

0.0 37.5 0.0000

0.0 0.0 5.3333

⎞
⎟⎠ vs.

⎛
⎜⎝

6.9612 −1.5853 −18.9977

−1.5853 27.8981 −29.8327

−18.9977 −29.8327 136.4524

⎞
⎟⎠ .

It is evident that mI1(θ) does not become close to Ĩm(θ), and, therefore, convergence
of the complete data FIM may not occur when the sample is not drawn in a clustered
manner.

Example 4 (Dirichlet-Multinomial) A Dirichlet-multinomial random variable may be
obtained from the marginal distribution of T when

T | μ ∼ MultJ (m,μ), μ ∼ DirichletJ (α).

This marginal distribution is a continuous mixture of multinomials. In the special case
of J = 2 categories, a beta-binomial random variable is obtained. The complete data
density of (T,μ) is

f (t,μ | α) = f (t | μ) f (μ | α), where

f (t | μ) = m!
t1! · · · tJ !μ

t1
1 · · · μtJ

J and f (μ | α) = μ
α1−1
1 · · · μαJ−1

J

B(α1, . . . , αJ )
.

123



354 A. M. Raim et al.

Let k = J − 1 to ensure the parameter space of the multinomial family contains an
open set in R

k . The Dirichlet-multinomial density is

f (t | α) = m!
t1! · · · tJ !

∏J
j=1 �(α j + t j )

�(
∑J

j=1 α j )

�(
∑J

j=1 α j + m)∏J
j=1 �(α j )

. (22)

Although the results in this paper have been developed for finite mixtures of expo-
nential families and not continuous mixtures, we may consider the complete data
information matrix and ask whether it approximates the true information matrix.
Note that the distribution of T | μ is free of α so that ∂

∂α
log f (t,μ | α) =

∂
∂α

log f (μ | α); therefore, the complete data information matrix is just the FIM
with respect to DirichletJ (α). This is an analog to the finite mixture case, where
the first s diagonal blocks correspond to the support points of the mixing distribution,
Discrete(φ1, . . . ,φs;π−s), and the lower-right block corresponds to π . Here the mix-
ing process follows a Dirichlet distribution whose support is the probability simplex
in RJ , which is known and does not require corresponding entries in the information
matrix. Neerchal and Morel (1998, Theorem 1) show that the FIM of T converges
to the FIM of Dirichletk(α) as m → ∞. Therefore, the results in this paper may
extend beyond the assumption of the latent mixing process following a finite mixture
distribution.

Example 5 (Normal–Normal) Let us consider a second continuous mixture along the
lines of Example 4. The normal–normal hierarchical model is popular in Bayesian
analysis (Gelman et al. 2003, Section 5.4), with one application, for example, in the
Fay-Herriot model for small area estimation (Rao 2003). The results from this paper
can be applied in the following sense. Suppose

X̄ | μ ∼ N(μ, σ 2/m), μ ∼ N(θ, τ 2).

and take σ 2 and τ 2 to be known for the sake of demonstration. Recall that if T =∑m
i=1 Xm ∼ N(mμ,mσ 2), then X̄ = T/m ∼ N(μ, σ 2/m) and we may obtain the

density of X̄ by transformation using

f X̄ (x | θ) =
∫

f X̄ (x | μ) fμ(μ | θ)dμ =
∣∣∣∣ ∂T∂ X̄

∣∣∣∣
∫

fT (t | μ) fμ(μ | θ)dμ

=
∣∣∣∣ ∂T∂ X̄

∣∣∣∣ fT (x | θ).

Therefore, ∂
∂θ

log f X̄ (x | θ) = ∂
∂θ

log fT (t | θ), and the information is the
same whether we work with X̄ or T . It can be shown that marginally, X̄ ∼
N
(
μ, σ 2/m + τ 2

)
; therefore, the true information about θ in X̄ is Im(θ) = (σ 2/m +

τ 2)−1. The complete data information about θ in (X̄ , μ) is Ĩ(θ) = τ−2. Now we have
convenient forms for both the true information and complete data information, and it
is clear that Im(θ) → Ĩ(θ) as m → ∞. Note that the right-hand side of the limit is
fixed, as in Example 4.
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Example 6 (Mixture of Finite Mixtures) Consider the random-clumped binomial
(RCB) distribution introduced in Morel and Nagaraj (1993) to model binomial data
with extra variation. AnRCB random variable T can bewritten as T = NY +(X | N ),
where

Y ∼ Ber(π), N ∼ Bin(m, ρ), (X | N ) ∼ Bin(m − N , π),

so that N of the m trials mimic the outcome in Y , and the remaining trials are drawn
independently for X . The RCB density can be expressed as the finite mixture of two
binomial densities, RCB(t | m, ρ, π) = πBin(t | m, ξ1) + (1 − π)Bin(t | m, ξ2),
where ξ1 = (1− ρ)π + ρ and ξ2 = (1− ρ)π . Consider now a finite mixture of RCB
densities

f (t | m,ϑ) =
s∑

�=1

w�RCB(t | m, ρ�, π�),

where ϑ = (ρ1, π1, . . . , ρs, πs, w1, . . . , ws−1). This does not immediately appear to
be an exponential family finite mixture; however, the density may be rewritten as a
binomial finite mixture

f (t | m,ϑ) =
s∑

�=1

w�

2∑
j=1

π�jBin(t | m, ξ�) =
2s∑

�=1

λ�Bin(t | m, ξ�),

where

ξ� =
{

(1 − ρ�+1
2

)π �+1
2

+ ρ�+1
2

if � is odd

(1 − ρ�/2)π�/2 o.w.
and λ� =

{
w�+1

2
π�+1

2
if � is odd

w�/2(1 − π�/2) o.w.

for � = 1, . . . , 2s. It is now clear that the approximate information Ĩm(ϑ) may be
formulated by first forming the matrix,

Ĩm(θ) = Blockdiag

(
m

ξ1(1 − ξ1)
, . . . ,

m

ξ2s(1 − ξ2s)
,D−1

λ + λ−1
2s 11

T
)

with respect to θ = (ξ1, . . . , ξ2s, λ1, . . . , λ2s−1), and then using the Jacobian of the
transformation ϑ �→ θ to obtain

Ĩm(ϑ) =
(

∂θ

∂ϑ

)T

Ĩm(θ)

(
∂θ

∂ϑ

)
.

The convergence of Ĩm(ϑ) − Im(ϑ) to zero follows from Theorem 2.

Example 7 (Weibull Finite Mixture) Consider the Weibull density

f (x | β, λ) = β

λ

( x
λ

)β−1
e−(x/λ)β I (x > 0),
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where β > 0 and λ > 0. For a random variable X with this distribution we will write
X ∼ Weibull(β, λ). Consider the case when λ is known but β is unknown so that
{ f (· | β, λ) : β > 0} is not an exponential family. In this case, the score vector can
be written as

∂

∂β
log f (x | β, λ) = 1

β
−
[
1 −

( x
λ

)β
]
log
( x

λ

)
,

and the Fisher information is, therefore, found by computing

I(β) =
∫ ∞

0

{
1

β
−
[
1 −

( x
λ

)β
]
log
( x

λ

)}2
f (x | β, λ)dx . (23)

Although the results developed in this paper do not apply because of the departure
from exponential family, we will proceed to investigate the convergence of the approx-
imate information. Suppose X = (X1, . . . , Xm) given Z are a random sample from
Weibull(βZ , λZ ) and Z ∼ Discrete(1, . . . , s;π). The marginal density of X is then
given by

f (x | θ) =
s∑

�=1

π�

⎡
⎣(β�

λ�

)m
(

m∏
i=1

xi
λ�

)β�−1

exp

{
−

m∑
i=1

(xi/λ�)
β�

]⎫⎬
⎭ , (24)

where θ = (β1. . . . , βs, π1, . . . , πs−1). The corresponding score vector contains
entries

∂

∂βa
log f (x | θ)

= πa f (x | βa, λa)

f (x | θ)

[
m

βa
+

m∑
i=1

log xi − m log λa −
m∑
i=1

(
xi
λa

)βa

log

(
xi
λa

)]
,

for a = 1, . . . , s and

∂

∂πa
log f (x | θ) = f (x | βa, λa) − f (x | βs, λs)

f (x | θ)

for a = 1, . . . , s − 1. The approximate information matrix is given by

Ĩ(θ) = Blockdiag(π1F1, . . . , πs Fs,Fπ ),

where F� is given by multiplying the Weibull(β�, λ�) information (23) by m, and
Fπ = D−1

π + π−1
s 11T as usual for finite mixtures.

Consider a numerical study comparing I(θ) and Ĩ(θ) under the density

πWeibull(β1, λ1) + (1 − π)Weibull(β2, λ2)
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Fig. 3 Densities for the Weibull finite mixture under the two scenarios. a Scenario 1, b Scenario 2

Table 2 Results for Weibull mixture

m Entry (1, 1) Entry (2, 2) Entry (3, 3) ‖Ĩ − I‖F
(a) Scenario 1

1 0.6079 (0.3787) 0.0760 (0.0535) 4.5 (3.2304) 1.3201

2 1.2158 (1.0521) 0.1520 (0.1279) 4.5 (4.0346) 0.5472

3 1.8237 (1.7571) 0.2280 (0.2112) 4.5 (4.3218) 0.2397

4 2.4316 (2.3626) 0.3039 (0.2926) 4.5 (4.4237) 0.1256

5 3.0395 (2.9479) 0.3799 (0.3772) 4.5 (4.4805) 0.1122

6 3.6474 (3.5409) 0.4559 (0.4494) 4.5 (4.4914) 0.1097

7 4.2553 (4.3264) 0.5319 (0.5281) 4.5 (4.5106) 0.0729

8 4.8632 (4.9649) 0.6079 (0.6077) 4.5 (4.4984) 0.1082

9 5.4711 (5.4920) 0.6839 (0.6854) 4.5 (4.5032) 0.0257

10 6.0790 (6.0419) 0.7599 (0.7637) 4.5 (4.5010) 0.0404

(b) Scenario 2

1 0.6079 (0.3919) 0.3039 (0.1696) 4.5 (1.0642) 3.4731

2 1.2158 (0.8718) 0.6079 (0.3840) 4.5 (1.7997) 2.8164

3 1.8237 (1.3980) 0.9118 (0.6135) 4.5 (2.3182) 2.3894

4 2.4316 (1.9380) 1.2158 (0.8703) 4.5 (2.7546) 2.0388

5 3.0395 (2.5468) 1.5197 (1.1423) 4.5 (3.0743) 1.7982

– – – – –

23 13.9816 (13.7489) 6.9908 (6.8029) 4.5 (4.4462) 0.3482

24 14.5895 (14.5347) 7.2947 (7.1399) 4.5 (4.4513) 0.2575

25 15.1974 (15.0696) 7.5987 (7.5052) 4.5 (4.4704) 0.2163

26 15.8053 (15.9109) 7.9026 (7.8191) 4.5 (4.4645) 0.1920

27 16.4132 (16.3579) 8.2066 (8.1740) 4.5 (4.4682) 0.1320

The three “entry” columns show the diagonal elements Ĩi i along with corresponding Ii i in parentheses.
The last column shows the Frobenius norm of Ĩ − I
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for the following two scenarios:

• Scenario 1: (β1 = 1, λ1 = 1), (β2 = 4, λ2 = 4), and π = 1/3.
• Scenario 2: (β1 = 1, λ1 = 1), (β2 = 2, λ2 = 2), and π = 1/3.

Figure 3 plots the subpopulations and mixed population for each scenario. Table 2
compares the approximate and true informationmatrices in these scenarios. Evaluation
of (23) for the approximate FIM is carried out by numerical integration. The true FIM
is computed by basic Monte Carlo simulation using 100,000 draws. While a more
sophisticated method could be used to improve the accuracy, there is clear evidence
of the convergence in Table 2. As expected, the rate is faster in Scenario 1 where the
subpopulations are further apart.

6 Conclusions

This paper extended Raim et al. (2014a) from multinomial finite mixtures to the more
general class of exponential family finite mixtures, making the work relevant to sta-
tistical analysis beyond binomial and multinomial data. The main convergence result
showed that the true FIM and complete data FIM become close as the number of
observations m becomes large, provided that the observations are drawn according to
the clustered sampling scheme. This justifies the use of the complete data FIM as an
approximation to the true FIM. Rates of convergence were seen to be exponential, but
the exponent depends on both m and the similarity between subpopulations. Exam-
ple 3 suggests that the complete data FIM does not become close to the information
matrix of an independent and identically distributed sample of size m drawn from the
finite mixture.

There are several interesting questions to consider at this point. The setting of
exponential family finite mixtures covers many cases that may be useful in applica-
tion. Our convergence proof relies on this setting; for example, the Ri (·) and Qi (·)
functions are critical to the proof. However, Examples 4 and 5 provide evidence of
the convergence even when the latent mixing process has a continuous distribution.
Example 7 shows the convergence in aWeibull finite mixture which does not meet the
exponential family assumption. These examples suggest that the convergence result
can be generalized further. It would also be of interest to establish a reliable and easily
computable method to improve accuracy of the approximation when m is not large or
the subpopulations are not well-separated.

7 Appendix: additional results

Lemma 4 and Proposition 4 below are needed for Corollary 2. These results generalize
an argument used in Raim et al. (2014a). Lemma 4 gives bounds for tail probabilities
involving a linear transformation of a random variable in a natural exponential family.
The result is similar in spirit to Okamoto (1959), which specifically considers the
binomial distribution. Subsequently, Proposition 4 obtains an upper bound for E[1−
Q(m)

i (Wi )].
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Lemma 4 Suppose U1, . . . ,Um are independent and identically distributed copies
of U with natural exponential family density f (u | η) = exp{ηTu − ψ(η)}, and let
T = U1 + · · · + Um and α ∈ R

k . For any c > 0,

(a) there exist λ > 0 and δ > 0 such that

P[αT(T/m − E(U)) ≥ c] ≤ e−m[λc−δ], with λc > δ.

(b) there exist λ > 0 and δ > 0 such that

P[αT(T/m − E(U)) ≤ −c] ≤ e−m[λc−δ], with λc > δ.

Proof Recall that E(U) = ψ ′(η), Var(U) = ψ ′′(η), and the MGF E(eτTU) =
exp{ψ(η + τ ) − ψ(η)} exists for all τ in some ball B(0, ε) of radius ε > 0 cen-
tered around 0. If Var(U) is strictly positive definite for all η ∈ �, Lemma 2 gives

ψ(η + τ ) − ψ(η) > τTψ ′(η). when η + τ , η ∈ �. (25)

Let λ > 0 so that λα ∈ B(0, ε); we have

P[αT(T/m − E(U)) ≥ c] = P[eλαT(T−mE(U)) ≥ eλmc]
≤ e−λmcE{eλαT(T−mE(U))}
= e−λmc exp{m[ψ(η + λα) − ψ(η) − λαTψ ′(η)]}.

(26)

Define p(η,α, λ) = ψ(η + λα) − ψ(η) − λαTψ ′(η), which is positive for all λ from
(25) when η+λα ∈ � and η ∈ �. Also, p(η,α, λ) → 0 as λ ↓ 0. Then (26) becomes

P[αT(T/m − E(U)) ≥ c] ≤ e−m[λc−p(η,α,λ)].

To obtain a useful upper bound, define g(λ) = λc − p(η,α, λ); our goal is to find λ

with g(λ) > 0. We have g′(λ) = c − αTψ ′(η + λα) + αTψ ′(η) and g′(0) = c > 0.
Notice that g′(λ) → c as λ → 0; then for any g∗ > 0 there exists a λ∗ > 0 so that

λ ∈ B(0, λ∗) �⇒ g′(λ) ∈ B(c, g∗).

Let g∗ > 0 be chosen so that B(c, g∗) does not contain 0 and therefore contains only
positive numbers. Then g′(λ) > 0 for all λ ∈ (0, λ∗), which implies that g(λ) is
increasing on this interval and, therefore, g(λ) > 0. A satisfactory λ can now be found
in the set (0, λ∗) ∩ {λ : λα ∈ B(0, ε)}. With this choice of λ, let δ = p(η,α, λ) to
obtain part (a) of the result.
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To obtain a bound for the probability of the lower tail, take λ < 0 such that
λα ∈ B(0, ε), and note that

P[αT(T/m − E(U)) ≤ −c] = P[eλαT(T−mE(U)) ≥ e−λmc]
≤ eλmcE{eλαT(T−mE(U))}
= e−m[−λc−p(η,α,λ)].

A similar argument as above gives a δ > 0 to satisfy part (b) of the result. ��
Proposition 4 There exists a κ > 0 and ζ > 0 such that

E[1 − Q(m)
i (Wi )] ≤ 1

πi

s∑
j �=i

e−m( κ
2 [γ j i i+γi j j ]−ζ ).

Proof We have

E[1 − Q(m)
i (Wi )] =

∫ s∑
j �=i

π j f (w | η j )

f (w)
f (w | ηi )dν(w).

Let α ∈ R
k and β ∈ R, to be determined explicitly. For a particular j ∈ {1, . . . , s}\{i},

we obtain∫
π j f (w | η j )

f (w)
f (w | ηi )dν(w)

=
∫

[αTw≤β]
π j f (w | η j )

f (w)
f (w | ηi )dν(w)+

∫
[αTw>β]

π j f (w | η j )

f (w)
f (w | ηi )dν(w)

≤
∫

[αTw≤β]
f (w | ηi )dν(w) +

∫
[αTw>β]

π j

πi
f (w | η j )dν(w)

= P[αTWi ≤ β] + π j

πi
P[αTW j > β].

Let us select β so that

m[αTE(Wi ) − c] = β and m[αTE(W j ) + c] = β,

which implies that β = m
2 {αTE(Wi )+αTE(W j )} and 2c = αTE(Wi )−αTE(W j ).

Let us make the selection α = −(η j − ηi ) so that

2c = −(η j − ηi )
TE(Wi ) + −(ηi − η j )

TE(W j )

= −(η j − ηi )
TE(Wi ) + [ψ(η j ) − ψ(ηi )] + −(ηi − η j )

TE(W j )

+ [ψ(ηi ) − ψ(η j )]
= γ j i i + γi j j ,
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which is positive by Lemma 2. Now by Lemma 4, there is a τ > 0 and δ > 0 such
that

P[αTW i ≤ β] = P
[
αTW i ≤ m[αTE(W i ) − c]

]
= P[αT(Wi/m − E(Wi )) ≤ −[γ j i i + γi j j ]/2]
≤ e−m(τ [γ j i i+γi j j ]/2−δ)

and similarly a λ > 0 and ρ > 0 such that

P[αTW j > β] ≤ e−m(λ[γ j i i+γi j j ]/2−ρ),

where τ [γ j i i + γi j j ]/2− δ > 0 and λ[γ j i i + γi j j ]/2− ρ > 0. Define κ and ζ so that

κ[γ j i i + γi j j ]/2 − ζ = min{τ [γ j i i + γi j j ]/2 − δ, λ[γ j i i + γi j j ]/2 − ρ},

and, therefore,

P[αTWi ≤ β] + π j

πi
P[αTW j > β] ≤

(
π j

πi
+ 1

)
e−m(κ[γ j i i+γi j j ]/2−ζ ).

Now we have

E[1 − Q(m)
i (Wi )] =

∫ s∑
j �=i

π j f (w | η j )

f (w)
f (w | ηi )dν(w)

≤
s∑
j �=i

(
π j + πi

πi

)
e−m(κ[γ j i i+γi j j ]/2−ζ )

≤ 1

πi

s∑
j �=i

e−m( κ
2 [γ j i i+γi j j ]−ζ ).

��
Lemma 5 Suppose A and B are q × q nonsingular matrices. Then A−1 − B−1 =
B−1(B − A)A−1.

Lemma 6 Suppose A,B are q × q symmetric positive definite matrices, and B − A
is positive definite. Then A−1 − B−1 is positive definite.

Proof By Lemma 5, A−1 − B−1 = B−1(B − A)A−1. Suppose λ is an eigenvalue of
A−1 − B−1, then

det(B−1(B − A)A−1 − λI ) = 0

⇐⇒ det(B−1/2(B − A)1/2A−1(B − A)1/2B−1/2 − λI ) = 0.
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Therefore, A−1 − B−1 and B−1/2(B − A)1/2A−1(B − A)1/2B−1/2 have the same
eigenvalues. Since the latter is symmetric positive definite, all eigenvalues are positive
and the result follows. ��

The following proof of Theorem 3 follows a similar argument to that of Raim et al.
(2014a, Theorem 2.5) but is included in its entirety for completeness.

Proof (Theorem 3) Lemma 5 gives I−1(θ)− Ĩ−1(θ) = I−1(θ)[I(θ)− Ĩ(θ)]Ĩ−1(θ)

for any θ ∈ 
. For any matrix norm,

‖I−1(θ) − Ĩ−1(θ)‖ ≤ ‖I−1(θ)‖ · ‖Ĩ−1(θ)‖ · ‖I(θ) − Ĩ(θ)‖;

therefore, it is sufficient to show that the RHS converges to 0 as m → ∞. To do this,
we will consider the three terms separately. Note that for a q × q matrix A, the matrix
2-norm ‖ · ‖2 and the Frobenius norm ‖ · ‖F are related by ‖A‖2 ≤ ‖A‖F ≤ √

q‖A‖2.
Therefore, in showing the convergence of ‖Am‖ to zero, we may consider whichever
norm is more convenient.

Recalling that ‖A‖2F = ∑
i
∑

j a
2
i j , Proposition 1 and Theorem 2 give the simple

bound

‖Ĩm(θ) − Im(θ)‖2F = q2O(m4e−m(κc∗∗−ζ )).

Next, we have

‖Ĩ−1(θ)‖2F =
s∑

�=1

‖π−1
� F−1

� ‖2F + ‖F−1
π ‖2F

=
s∑

�=1

m−2π−2
� ‖Ĩ−1

1 (η�)‖2F + ‖Dπ − π−sπ
T−s‖2F

= ‖Dπ − π−sπ
T−s‖2F + O(m−2),

where Ĩ1(η�) = Var(U1 | Z = �) is free of m.
Let λ1(m) ≥ · · · ≥ λq(m) be the eigenvalues of I(θ) for a fixed m, all assumed

to be positive. Since the 2-norm of a symmetric positive definite matrix is its largest
eigenvalue, we have

0 ≤ ‖I−1(θ)‖2 = 1

λq(m)
= 1

min‖x‖=1
xTI(θ)x

= 1

min‖x‖=1

{
xT
[
I(θ) − Ĩ(θ)

]
x + xTĨ(θ)x

} .
Notice that

min‖x‖=1
xT[I(θ) − Ĩ(θ)]x + min‖x‖=1

xTĨ(θ)x ≤ min‖x‖=1
{xT[I(θ)−Ĩ(θ)]x+xTĨ(θ)x}
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since both LHS and RHS are lower bounds for xT[I(θ) − Ĩ(θ)]x + xTĨ(θ)x, and
the RHS is the greatest such bound. Therefore, denoting the eigenvalues of Ĩ(θ) as
λ̃1(m) ≥ · · · ≥ λ̃q(m) > 0 and the eigenvalues of I(θ)− Ĩ(θ) as 0 ≥ β1(m) ≥ · · · ≥
βq(m),

1/λq(m) ≤ 1

min‖x‖=1
xT[I(θ) − Ĩ(θ)]x + min‖x‖=1

xTĨ(θ)x
= 1

βq(m) + λ̃q(m)
.

Themapping fromamatrix to its eigenvalues is a continuous function of its elements
(Meyer 2001, Chapter 7); therefore, I(θ) − Ĩ(θ) → 0 as m → ∞ implies that
βq(m) → 0.

Now for any ε > 0, there exists a positive integer m0 such that |βq(m)| < ε for all
m ≥ m0, and so we have

1

βq(m) + λ̃q(m)
≤ 1

λ̃q(m) − ε
(27)

for all m ≥ m0. Because 1/̃λq(m) = ‖Ĩ−1
m (θ)‖ = O(1), there exists a K > 0 such

that 1/̃λq(m) ≤ K . WLOG assume that ε has been chosen so that λ̃q(m) ≥ 1/K > ε

to avoid division by zero. The RHS of (27) is bounded above by (1/K − ε)−1 for all
m ≥ m0, which implies ‖I−1(θ)‖2 is bounded when m ≥ m0.

We now have

‖I−1
m (θ) − Ĩ−1

m (θ)‖F
≤ O(1) · {‖Dπ − π−sπ

T−s‖2F + O(m−2)} · {q2O(m4e−m(κc∗∗−ζ ))}1/2,

which gives the result. ��
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