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Abstract In this study, we consider the parameter change test in nonlinear autore-
gressive conditional duration models. Particularly, we use the cumulative sum test
based on parameter estimates and verify that its limiting null distribution is the supre-
mum of a Brownian bridge. A simulation study and real data analysis are provided for
illustration.
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1 Introduction

Since Page (1955), testing for a parameter change has played an important role in
economics, engineering and medicine, and a vast number of articles exist in various
research areas: see Csörgő and Horváth (1997). The change-point problem has drawn
much attention from the researchers in financial time series analysis because time
series often suffer from structural changes owing to policy changes and critical social
events and ignoring it can lead to a false conclusion. The cumulative sum (cusum) test
has been broadly used to detect parameter changes since it is easy to implement in
many applications. Inclán and Tiao (1994) designed a variance change test. Later, their
method has been extended to various time series models such as ARMA–GARCH,
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ARCH regression, PoissonAR,multivariateGARCHmodels, and diffusion processes.
We refer to Lee et al. (2003, 2006), Lee and Song (2008), Kim and Lee (2009), Na
et al. (2012, 2013), and Kang and Lee (2014). However, these articles do not cover all
important time seriesmodels. Particularly, to our knowledge, the cusum test has not yet
been investigated for autoregressive conditional duration (ACD) models. Motivated
by this, we are led to study the cusum test for the ACD models.

Originally, Engle and Russell (1997, 1998) proposed ACDmodels to analyze irreg-
ularly spaced high-frequency data on durations between successive financial market
trades. Their method is well fitted to modeling transaction data with irregular time
intervals and studying the dynamics of the corresponding durations. Engle and Rus-
sell (1997) fitted an ACD model with a linear specification to IBM transactions data,
but later, Dufour and Engle (2000) pointed out that the linear specification could be too
restrictive in practice. Since then, many alternative nonlinear ACD models have been
proposed by many authors. For example, Bauwens and Giot (2000) proposed the log-
arithmic ACD (log-ACD) models, Dufour and Engle (2000) introduced the Box-Cox
ACD (BCACD) and the exponential ACD (EXPACD)models, and Zhang et al. (2001)
proposed the threshold ACD (TACD)models. More recent developments can be found
in Bauwens and Giot (2003) who proposed asymmetric ACD models, Bauwens and
Veredas (2004) who proposed stochastic conditional duration (SCD) models, Fernan-
des and Grammig (2006) who proposed augmented ACD (AACD) models, and Meitz
and Terasvirta (2006) who propose smooth-transition threshold (ST-ACD) models. In
this study, we consider the cusum test within the framework of these nonlinear ACD
models. Since our cusum method is based on the quasi-maximum likelihood estima-
tor (QMLE) from ACD models and heavily relies on its asymptotic properties, we
investigate the strong consistency and asymptotic normality of the QMLE. The result
is then used to derive the limiting null distribution of the cusum test.

The remainder of this paper is organized as follows. In Sect. 2.1, we present the
asymptotic properties of the QMLE in nonlinear ACDmodels. In Sect. 2.2, we present
the cusum test in nonlinear ACDmodels and show that under regularity conditions, the
cusum test based on theQMLEconvergesweakly to the supremum (sup) of aBrownian
bridge. In Sects. 3 and 4,we perform a simulation study and real data analysis, focusing
on the ACD and log-ACD models. In Sect. 5, we provide concluding remarks. In the
Appendix, we provide the proofs of the theorems in Sect. 2.

2 Cusum test for nonlinear ACD models

2.1 Asymptotics for nonlinear ACD models

Let us consider the nonlinear ACD(p, q) model:

{
xi = ψiεi ,

ψi = gθ (xi−1, xi−2, . . . , xi−p;ψi−1, ψi−2, . . . , ψi−q),
(1)

where {gθ : θ ∈ �} denotes a parametric family of non-negative functions on
[0,∞)p × [0,∞)q , and {εi } is a sequence of independently and identically dis-
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Parameter change test for ACD models 623

tributed (iid) positive random variables with Eε0 = 1. We also assume that ψi is
non-negative and Fi−1-measurable, where Fi = σ(εk; k ≤ i). In practice, xi is the
duration between two consecutive events, that is, ti − ti−1, where ti is the time that
the i th event (for instance, trade, quote, price change, etc.) occurs. The ψi denotes the
conditional expected value given past observations and εi are iid error terms. Basically,
the structure of the ACD models is similar in spirit to that of the GARCH models.

We express ψi = gθ (Xi−1, �i−1), where Xi = (xi , . . . , xi−p+1)
T and �i =

(ψi , . . . , ψi−q+1)
T. Let K be a compact subset of �. For any initial value ζ 0 ∈

[0,∞)q , we recursively define the following random vector functions �̂i on K :

�̂i =
{

ζ 0, i = 0,
φi−1(�̂i−1), i ≥ 1,

where the random maps φi : C(K , [0,∞)q) → C(K , [0,∞)q) are defined by

[φi (a)](θ) = (gθ (Xi , a(θ)), a1(θ), a2(θ), . . . , aq−1(θ))T

with a = (a1, . . . , aq)T ∈ C(K , [0,∞)q), the space of continuous [0,∞)q -valued
functions equipped with the sup-norm ‖a‖K = sups∈K |a(s)|. We can regard �̂i (θ) =
(ψ̂i (θ), . . . , ψ̂i−q+1(θ))T an “estimate” of the �i under the parameter hypothesis θ .

Suppose that x−p+1, . . . , x0, x1, . . . , xn are generated from Model (1) with the
true parameter θ0, wherein ψ̂i , 1 ≤ i ≤ n, are well defined. We define the conditional
exponential likelihood by

L̂n(θ) = −
n∑

i=1

(
xi

ψ̂i (θ)
+ log ψ̂i (θ)

)
:= −

n∑
i=1

l̂i (θ)

and the exponential QMLE by

θ̂n := argmax
θ∈K

L̂n(θ).

Further, we set

Ln(θ) = −
n∑

i=1

(
xi

ψi (θ)
+ logψi (θ)

)
:=

n∑
i=1

li (θ)

and

θ̃n := argmax
θ∈K

Ln(θ).

In the following, we denote φ
(r)
i = φi ◦ φi−1 ◦ · · · ◦ φi−r+1, r ≥ 1, for a sequence

of random mappings {φi } defined on C(K , [0,∞)q).
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The norm of a matrix A = (ai j ) ∈ Rn×n for any n ∈ N is defined as
‖A‖ = (

∑
a2

i j )
1/2, and the norm of a continuous matrix-valued function A on

any compact set M ∈ Rd is defined as ‖A‖M = sups∈M ‖A(s)‖. Further, we set

�(φi ) = supx,y∈C(M,[0,∞)q ),x 	=y

( ‖φi (x)−φi (y)‖M
‖x−y‖M

)
and use the notation vn

e.a.s.−→ 0 (vn

converges to zero exponential fast a.s.) as n → ∞ when there exist γ > 1 with
γ n‖vn‖ a.s.→ 0. We define log+(x) = log x if x > 1 and 0 otherwise.

To verify the strong consistency of the QMLE, we assume the following conditions:

(C.1) Model (1.1)with θ = θ0 admits a unique stationary ergodic solution {(xi , ψi,0)}
with E(log+ ψ0,0) < ∞.

(C.2) For every fixed x ∈ [0,∞)p, the map (θ ,ψ) 
→ gθ (x,ψ) is continuous; θ0 is
an interior point of K ; E(log+ ‖φ0(ζ 0)‖K ) < ∞; E[log+ �(φ0)] < ∞; there
exists an integer r ≥ 1 such that E[log�(φ

(r)
0 )] < 0, where E denotes the

expectation under the true parameter θ0.
(C.3) The class of functions {gθ |θ ∈ K } is uniformly bounded from below, that

is, there exists a constant g > 0 such that gθ (x,ψ) ≥ g for all (x,ψ) ∈
[0,∞)p × [0,∞)q and θ ∈ K .

(C.4) For all θ ∈ K ,

ψ0(θ) ≡ ψ0,0 a.s. if and only if θ = θ0.

These conditions are found in Straumann and Mikosch (2006). In fact, the proof of
the consistency is similar to that of Theorem 4.1 of Straumann and Mikosch (2006).
The detailed proof is provided in the supplementary material.

Theorem 1 Under conditions (C.1)–(C.4), we have

θ̂n
a.s.−→ θ0 as n → ∞.

Now, we turn our attention to the asymptotic normality of the QMLE. For
this, we introduce a map ϕi : K × [0,∞)q → [0,∞)q such as ϕi (θ , y) 
→
(gθ (Xi , y), y1, . . . , yq−1) with y = (y1, . . . , yq)T: here, [φi (a)](θ) = ϕi (θ , a(θ))

for every a ∈ C(K , [0,∞)q). In what follows, we use the notation [a]( j) and [A]( j,k)

to denote the j th component of vector a and the ( j, k)th entry of matrix A, respec-
tively. Further, for any real-valued function h defined on a subset of Rl , l ≥ 1, we

denote ∂kh(x1, . . . , xl) = ∂h(x1,...,xl )
∂xk

and ∂2k1,k2h(x1, . . . , xl) = ∂2h(x1,...,xl )
∂xk1∂xk2

; for vec-

tor function f with its j th component f j , f
′
denotes the matrix whose ( j, k)th entry is

∂k f j .
Since {�̂i } is a solution of the stochastic recurrence equation (SRE) ai+1 = φi (ai )

on C(K , [0,∞)q), as in Straumann and Mikosch (2006), it can be seen that the dif-
ferentiation with respect to θ on both sides of �̂i+1(θ) = φi (�̂i (θ)) = ϕi (θ , �̂i (θ))

leads to the SRE �̂ ′
i+1 = ˆ̇φi (�̂

′
i ) on C(K ,Rq×d), namely,

[∂k�̂i+1(θ)]( j) = [∂kϕi (θ , �̂i (θ))]( j) +
q∑

l=1

[∂(d+l)ϕi (θ , �̂i (θ))]( j)[∂k�̂i (θ)](l) (2)
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for j ∈ {1, . . . , q} and k ∈ {1, . . . , d}. Then, the replacement of �̂i and �̂ ′
i by �i and

Di in (2) leads to the SRE Di+1 = φ̇i (Di ) on C(K ,Rq×d), namely,

[Di+1(θ)]( j,k) = [∂kϕi (θ , �i (θ))]( j) +
q∑

l=1

[∂(d+l)ϕi (θ , �i (θ))]( j)[Di (θ)](l,k). (3)

Further, in the same spirit of Straumann and Mikosch (2006), we can also express

�̂ ′′
i+1 = ˆ̈φi (�̂

′′
i ) by differentiating both sides of (2) with respect to θ and obtain the

SRE Ei+1 = φ̈i (Ei ) on C(K ,Rq×d2
) similarly to the argument Di+1 = φ̇i (Di ).

Below, we present the conditions to guarantee the existence of the first and second
derivatives of ψi :

(D.1) (C.1) and (C.2) hold with K ⊂ Rd ; K coincides with the closure of its interior;
and for every fixed x ∈ Rp, the function (θ ,ψ) 
→ gθ (x,ψ) on K × [0,∞)q

is continuously differentiable.
(D.2) For all j ∈ {1, . . . , q} and k ∈ {1, . . . , d + q},

E

[
log+

(
sup
θ∈K

∣∣∂k[ϕ0(θ , �0(θ))]( j)
∣∣)]

< ∞,

and furthermore, there exists a stationary sequence {C̄1(i)}with E[log+ C̄1(0)]
< ∞ and κ ∈ (0, 1] such that

sup
θ∈K

∣∣∂k[ϕi (θ, a)]( j) − ∂k[ϕi (θ , ã)]( j)
∣∣ ≤ C̄1(i)|a − ã|κ , a, ã ∈ [0,∞)q

for every j ∈ {1, . . . , q} and k ∈ {1, . . . , d + q}.
(D.3) For every fixed x ∈ Rp, the function (θ,ψ) 
→ gθ (x,ψ) on K × [0,∞)q

is twice continuously differentiable; for all j ∈ {1, . . . , q} and k1, k2 ∈
{1, . . . , d + q},

E

[
log+

(
sup
θ∈K

∣∣∣∂2k1,k2 [ϕ0(θ , �0(θ))]( j)

∣∣∣
)]

< ∞;

the sequence of the first derivative {� ′
i } satisfies E(log+ ‖� ′

0‖K ) < ∞; there
exists a stationary sequence {C̄2(i)} with E[log+ C̄2(0)] < ∞ and κ̄ ∈ (0, 1]
such that

sup
θ∈K

∣∣∣∂2k1,k2 [ϕi (θ , a)]( j) − ∂2k1,k2 [ϕi (θ , ã)]( j)

∣∣∣ ≤ C̄2(i)|a − ã|κ̄ , a, ã ∈ [0,∞)q

for every j ∈ {1, . . . , q} and k1, k2 ∈ {1, . . . , d + q}.
Remark 1 According to Straumann and Mikosch (2006), provided that (D.1) and
(D.2) hold, SRE (3) has a unique ergodic stationary solution {Di }. In addition, Di

is Fi−1-measurable and ‖�̂ ′
i − Di‖K

e.a.s.−→ 0 as i → ∞, namely, {Di } is a stationary
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approximation of {�̂ ′
i }. In addition, the random functions �i are a.s. continuously

differentiable on K , and thus, Di becomes the first derivative of �i : in other words,
Di ≡ � ′

i . Moreover, provided that (D.1)–(D.3) hold, the SRE Ei+1 = φ̈i (Ei ) has a

unique stationary solution {Ei } and ‖�̂ ′′
i − Ei‖K

e.a.s.−→ 0 as i → ∞. Therefore, Ei

becomes the second derivative of �i , that is, Ei ≡ � ′′
i .

To assert the asymptotic normality of the exponential QMLE, we assume the fol-
lowing conditions:

(N.1) (C.1)–(C.4) are fulfilled.
(N.2) (D.1)–(D.3) are fulfilled.
(N.3) The following moment conditions hold:

(i) Eε20 < ∞,

(ii) E

(
‖ψ ′

0(θ0)‖2
ψ2
0,0

)
< ∞,

(iii) E‖l ′0‖K < ∞,
(iv) E‖l ′′0‖K < ∞.

(N.4) The components of the vector ∂gθ

∂θ
(X0, �0,0)|θ=θ0 are linearly independent.

(N.2) allows the differentiation of Ln and with probability 1,

l ′i (θ) = −ψ ′
i (θ)

ψi (θ)

(
1 − xi

ψi (θ)

)
,

l ′′i (θ) = − 1

ψi (θ)2

(
(ψ ′

i (θ)(ψ ′
i (θ))T

(
2

xi

ψi (θ)
− 1

)
+ ψ ′′

i (θ)(ψi (θ) − xi )

)
.

Remark 2 Owing to Propositions 3.1, 3.12, 6.1, and 6.2 of Straumann and Mikosch
(2006), {l ′i } and {l ′′i } are stationary ergodic sequences of random elements with values
in C(K ,Rd) and C(K ,Rd×d), respectively.

Now, we are ready to state the asymptotic normality of the QMLE. Its proof is
similar to that of Theorem 7.1 of Straumann and Mikosch (2006) and is provided in
the supplementary material.

Theorem 2 Under conditions (N.1)–(N.4), θ̂n is asymptotically normal, that is,

√
n(θ̂n − θ0)

d→ N (0, V 0) as n → ∞,

where V 0 = E(ε20 − 1)(E[ψ ′
0(θ0)(ψ

′
0(θ0))

T/ψ2
0,0])−1.

Remark 3 It can be easily seen that ACD(1, 1) model ψi = ω + αxi−1 + βψi−1 with
the conditions below satisfies (C.1)–(C.4) and (N.1)–(N.4):

(A.1) θ = (ω, α, β) belongs to a compact set K ⊂ (0,∞)×[0,∞)×[0, 1); the true
parameter θ0 = (ω0, α0, β0) is an interior point of K .

(A.2) E log(α0ε0 + β0) < 0; when β0 	= 0, α0 	= 0.
(A.3) ε0 has a non-degenerate distribution with Eε0 = 1 and Eε20 < ∞.
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Parameter change test for ACD models 627

The log-ACD(1, 1) model below could violate (C.2), (N.2) and (N.4):

xi = ψiεi ,

logψi = ω + α log xi−1 + β logψi−1. (4)

Nevertheless, Theorems 1 and 2 still hold under some regularity conditions presented
below:

Proposition 1 Suppose that {xi } in (4) satisfies

(L.1) θ = (ω, α, β) belongs to a compact set K ⊂ (−∞,∞)×(−∞,∞)×(−1, 1);
the true parameter θ0 = (ω0, α0, β0) is an interior point of K .

(L.2) α0 > 0 and 0 < α0 + β0 < 1.
(L.3) ε0 has a non-degenerate distribution withEε0 = 1,Eεν

0 < ∞ andE| log ε0|ν <

∞ for some ν ≥ 2.
(L.4) There exists a positive real number c such that ψi (θ) ≥ c for all θ ∈ K and i.

Then, θ̂n is strongly consistent and asymptotically normal.

We provide the proof of Proposition 1 in the supplementary material. The last
condition seems necessary to establish Proposition 1. Particularly, it holds if the density
of εi is bounded away fromzero. For instance, one can consider εi = δi ∨cwith positive
random variables δi and positive (small) constant c. In practice, though, the c can be
taken arbitrarily small, so that positive εi ’swithout such truncation could be considered
as errors. In our simulation study (see Sect. 3), exponential εi ’s are employed and the
cusum test in this case turns out to perform adequately.

2.2 Cusum test

Suppose that given observations x−p+1, . . . , x0, x1, . . . , xn , we wish to test the fol-
lowing hypotheses:

H0: The true parameter θ does not change over x−p+1, . . . , x0, x1, . . . , xn . vs.
H1: not H0.

To perform a test, we employ the cusum test based on the statistic:

Tn = max
1≤k≤n

k2

n
(θ̂k − θ̂n)T(V̂

(n)

0 )−1(θ̂k − θ̂n), (5)

where (V̂
(n)

0 )−1 is a consistent estimator of V−1
0 .

To obtain the limiting null distribution of Tn , we derive a functional central limit
theorem for θ̂ [ns], 0 ≤ s ≤ 1. Because L̂ ′[ns](θ̂ [ns]) = 0, by Taylor’s expansion
theorem,

0 = L̂ ′[ns](θ0) +
∫ 1

0
L̂ ′′[ns](θ0 + λ(θ̂ [ns] − θ0))dλ(θ̂ [ns] − θ0)
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628 S. Lee, H. Oh

and thus,

L̂ ′[ns](θ0)√[ns] = C̃[ns]
√[ns](θ̂ [ns] − θ0),

where C̃[ns] = − 1
[ns]

∫ 1
0 L̂ ′′[ns](θ0 + λ(θ̂ [ns] − θ0))dλ. Therefore, we can express

V
− 1

2
0

[ns]√
n

(θ̂ [ns] − θ0) = V
− 1

2
0 C−1

0

L̂ ′[ns](θ0)√
n

+ V
− 1

2
0 C−1

0

√[ns]√
n

�̃[ns],

where �̃[ns] = (C0 − C̃[ns])
√[ns](θ̂ [ns] − θ0) and C0 = E[ψ ′

0(θ0)(ψ
′
0(θ0))

T/ψ2
0,0].

Here, V−1/2
0 C−1

0 = E[l ′0(θ0)(l ′0(θ0))T]−1/2. Lemma 4 shows that the last term on the
right-hand side (RHS) of this equation is asymptotically negligible. Therefore, using
Lemma 1, we obtain the following result.

Theorem 3 Suppose that assumptions (N.1)–(N.4) hold with E(log+ ‖ψ ′′
0 ‖K ) < ∞.

Then, under H0, we have

V
− 1

2
0

[ns]√
n

(θ̂ [ns] − θ0)
w−→ Wd(s) in D([0, 1],Rd),

where Wd is a d-dimensional Wiener process, and thus,

T 0
n := max

1≤k≤n

k2

n
(θ̂k − θ̂n)TV−1

0 (θ̂k − θ̂n)
w−→ sup

0≤s≤1
‖W0

d(s)‖2,

where W0
d is a d-dimensional Brownian bridge.

In practice, we have to replace V−1
0 by its consistent estimator. Using the residuals

defined by ε̂
(n)
i = xi/(ψ̂i (θ̂n)), we can obtain

(V̂(n)
0 )−1 =

(
1

n

n∑
i=1

(ε̂2i − 1)

)−1 (
1

n

n∑
i=1

ψ̂ ′
i (θ̂n)(ψ̂ ′

i (θ̂n))
T

ψ̂i (θ̂n)2

)
.

To ensure the consistency of (V̂(n)
0 )−1 (Lemma 5), besides (N.1)–(N.4), a condition

like E‖ψ ′
0/ψ0‖2K < ∞ is additionally required: see the Appendix.

Theorem 4 Let Tn be the one defined in (5). Suppose that E‖ψ ′
0/ψ0‖2K < ∞,

E(log+ ‖ψ ′′
0 ‖K ) < ∞, and (N.1)–(N.4) hold. Then, under H0,

Tn
w−→ sup

0≤s≤1
‖W0

d(s)‖2.
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Parameter change test for ACD models 629

Table 1 (ω, α, β) =
(0.1, 0.2, 0.1) in the ACD(1, 1)
model

(ω′, α′, β ′) n = 500 n = 1000 n = 3000

Size 0.220 0.152 0.128

(0.1, 0.2, 0.5) 1.000 1.000 1.000

(0.1, 0.6, 0.1) 0.994 1.000 1.000

(0.3, 0.2, 0.1) 1.000 1.000 1.000

We reject H0 if Tn is large. The empirical (1 − α) quantile values for
sup0≤s≤1 ‖W0

p(s)‖2, α ∈ {0.01, 0.05, 0.1}, p ∈ {1, . . . , 10} can be found in Table 1
of Lee et al. (2003), p. 784.

Particularly, it canbe easily seen that the result ofTheorem4holds for theACD(1, 1)
model satisfying (A.1)–(A.3) inRemark 1. Further, the above theorem still holds for the
log-ACD(1, 1) model, the proof of which is provided in the supplementary material.

Proposition 2 Suppose that the log-ACD(1, 1) process {xi } in (4) satisfies the condi-
tions in Proposition 1. Then, under H0,

Tn
w−→ sup

0≤s≤1
‖W0

d(s)‖2.

3 Simulation study

In this section, we evaluate the performance of the test statistic Tn through a simu-
lation study. In this simulation study, we perform all tests at the nominal level 0.1.
The empirical sizes and powers are calculated as the rejection number of the null
hypothesis, under which no model parameters are assumed to experience changes, out
of 500 repetitions. To see the performance of Tn , we focus on the ACD(1, 1) and log-
ACD(1, 1) models with standard exponential distributed innovations({εi } ∼ Exp(1)).
We choose these models because the computational process in these cases is much
less time consuming.

We consider the problem of testing the following hypotheses:

H0: θ are constant during the observation i = 1, . . . , n. vs.
H1: θ change to θ ′ at [n/2].

We first evaluate the QMLE θ̂n and implement a test with sample sizes n =
500, 1000, 3000. The empirical sizes and powers are summarized in Tables 1, 2, 3
and 4, which show that the test has no severe size distortions in most cases, and as
anticipated, the empirical size gets closer to the nominal level 0.1 as n increases in all
cases. There is a little power loss with sample size n = 500, but the power loss is not
so significant when the sample size is large enough.

It is quite well known that the cusum test produces less powers when the change
point is not located in the middle. To showcase this, we implement the cusum
test for the log-ACD model in the same setting as before under the alternatives as
follows:
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Table 2 (ω, α, β) =
(0.3, 0.1, 0.2) in the ACD(1, 1)
model

(ω′, α′, β ′) n = 500 n = 1000 n = 3000

Size 0.234 0.184 0.104

(0.7, 0.1, 0.2) 1.000 1.000 1.000

(0.3, 0.5, 0.2) 0.998 1.000 1.000

(0.3, 0.1, 0.8) 1.000 1.000 1.000

Table 3 (ω, α, β) =
(0.1, 0.2, 0.1) in the
log-ACD(1, 1) model

(ω′, α′, β ′) n = 500 n = 1000 n = 3000

Size 0.154 0.094 0.104

(0.1, 0.2, 0.5) 0.518 0.714 0.988

(0.1, 0.6, 0.1) 1.000 1.000 1.000

(0.3, 0.2, 0.1) 0.664 0.896 1.000

Table 4 (ω, α, β) =
(0.3, 0.3, 0.2) in the
log-ACD(1, 1) model

(ω′, α′, β ′) n = 500 n = 1000 n = 3000

Size 0.204 0.168 0.136

(0.3, 0.3, 0.6) 1.000 1.000 1.000

(0.8, 0.3, 0.2) 1.000 1.000 1.000

(0.3, 0.1, 0.2) 0.754 0.954 1.000

Table 5 Empirical powers for hypotheses H2 and H3, sample size n = 1000

Model (ω, α, β) → (ω′, α′, β ′) Power

H2 log-ACD(1, 1) (0.1, 0.2, 0.1) → (0.3, 0.2, 0.1) 0.806

H3 log-ACD(1, 1) (0.1, 0.2, 0.1) → (0.3, 0.2, 0.1) 0.848

H2 log-ACD(1, 1) (0.3, 0.3, 0.2) → (0.3, 0.1, 0.2) 0.910

H3 log-ACD(1, 1) (0.3, 0.3, 0.2) → (0.3, 0.1, 0.2) 0.898

H2: θ changes to θ ′ at [n/3];
H3: θ changes to θ ′ at [2n/3].

Table 5 shows that the test produces less powers under H2 and H3 than under H1.
Although we do not report here, we also experimented a simulation in the same

setting as before with the nominal level 0.05. In this case, the empirical sizes appeared
to be around 0.07 to 0.2 for both the ACD and log-ACDmodels when n = 500, 1000,
and further, 0.06 to 0.1when n = 3000. This indicates that some severe size distortions
exist when the sample size is relatively small. Meanwhile, empirical powers appeared
to be just a little bit less than 1.0. All these results recommend us to perform a test at
the nominal level 0.1 rather than 0.05 since the former outperforms the latter. Overall,
our findings in this simulation study demonstrate the validity of our cusum test.
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4 Real data analysis

In this section, we apply the cusum test to analyze data from Samsung Electronics. We
use observations from 9:30 to 15:30 on September 18, 2013, that is, 8045 data points
with 5592 non-zero data points. Thus, we analyze 5592 non-zero data points, themean,
variance, and maximum of which are 3.219063, 9.5411644, and 43, respectively. We
fit a log-ACD(1, 1)model, proposed by Bauwens and Giot (2000), to this data. To test
for a change in (ω, α, β), Tn is implemented at the nominal level 0.1. To detect multiple
change points, we use the ICSS algorithm (cf. Inclán and Tiao 1994). According to
our analysis, four change points are found at t = 113, 1893, 3567, and 4631 (see the
dashed line in Figs. 1, 2). The fitted models are as follows:

[1:113] logψi = 2.216353 + 0.2265579 log xi−1 − 0.5316102 logψi−1, AI C =
591.7089;

[113:1893] logψi = 0.1941864 + 0.08628728 log xi−1 + 0.788548 logψi−1,
AI C = 8278.29;

[1893:3567] logψi = 1.200563 − 0.005242558 log xi−1 + 0.02966062 logψi−1,
AI C = 7477.79;

[3567:4631] logψi = 1.461848 + 0.004032696 log xi−1 − 0.5232957 logψi−1,
AI C = 4178.785;

[4631:5592] logψi = 0.8072267 − 0.02545355 log xi−1 + 0.02001325 logψi−1,
AI C = 3479.61.

Ifwe ignore the change andfit the log-ACD(1, 1)model to all observations [1:5592],
the fitted model is as follows:

logψi =0.00734247 + 0.0280057 log xi−1 + 0.972976 logψi−1, AIC=24048.65.

Comparing these AIC values also ensures the existence of change points.
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observations

lo
g(
du

ra
tio

ns
)

0 1000 2000 3000 4000 5000

0
1

2
3
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5 Concluding remarks

In this study, we investigated the cusum test based on the QMLE in nonlinear ACD
models and derived its null limiting distribution under regularity conditions. To this
task, we verified the strong consistency and asymptotic normality of the QMLE, and
then, showed that the cusum test asymptotically behaves like the sup of the squares of
independent Brownian bridges. For illustration, we implemented a simulation study
and real data analysis. Na et al. (2011) studied the monitoring procedure to detect a
parameter change as quickly as possible based on the cusum test. In many situations
from finance to weather forecast, the online detection of parameter changes in time
series models can be a crucial issue. In the same spirit, it would be of considerable
interest to apply the monitoring procedure to nonlinear ACD models. Owing to its
importance, we leave this as a task of our future study.

Appendix

Lemma 1 Suppose that (N.1)–(N.4) hold. Then, under H0,

V
− 1

2
0 C−1

0

L̂ ′[ns](θ0)√
n

w−→ Wd(s) in D

(
[0, 1],Rd

)
.

Proof Since the random element ψ ′
i /ψi,0 is Fi−1-measurable and since Fi−1 is inde-

pendent of εi andEεi = 1, the sequence {l ′i (θ0)} forms a stationary ergodic martingale
difference sequence with respect to the filtration {Fi }. By (N.3), the sequence {l ′i (θ0)}
is square integrable. Hence, using Theorem 18.3 of Billingsley (1999) and the Wold–
Cramer device, we can express

V
− 1

2
0 C−1

0

L ′[ns](θ0)√
n

= V
− 1

2
0 C−1

0
1√
n

[ns]∑
i=1

l ′i (θ0)
w−→ Wd(s) in D

(
[0, 1],Rd

)
. (6)

Further, (C.3) implies ψ̂i (θ), ψi (θ) ≥ g > 0 for all θ ∈ K . Hence, the mean value
theorem yields

‖l̂ ′i − l ′i ‖K =
∥∥∥∥∥

ψ̂ ′
i

ψ̂i

(
1 − xi

ψ̂i

)
− ψ ′

i
ψi

(
1 − xi

ψi

)∥∥∥∥∥
K
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≤ C(1 − xi ){‖ψ̂ ′
i − ψ ′

i ‖K + ‖ψ̂i − ψi ‖K ‖ψ ′
i ‖K + ‖ψ̂i − ψi ‖K ‖ψ̂ ′

i − ψ ′
i ‖K }

(7)

for some C > 0. Now, (7) together with an application of Lemmas 2.1 and 2.2 of
Straumann and Mikosch (2006) shows that

∑∞
i=1 ‖l̂ ′i − l ′i‖K < ∞ a.s. Hence,

sup
0≤s≤1

∥∥∥∥ 1√
n

(
L̂ ′[ns](θ0) − L ′[ns](θ0)

)∥∥∥∥ ≤ 1√
n

n∑
i=1

‖l̂ ′i (θ0) − l ′i (θ0)‖

≤ 1√
n

∞∑
i=1

‖l̂ ′i − l ′i‖K = o(1), a.s. (8)

Combining (6) and (8), we establish the lemma. ��
Lemma 2 If (N.1)–(N.4) hold and E(log+ ‖ψ ′′

0 ‖K ) < ∞, we have that under H0,

1

n
‖L ′′

n − L̂ ′′
n‖K = o(1) a.s.

Proof Similarly to (7), we can obtain

‖l̂ ′′i − l ′′i ‖K =
∥∥∥∥∥

1

ψ̂2
i

(
ψ̂ ′

i (ψ̂
′
i )
T

(
2xi

ψ̂i
− 1

)
+ ψ̂ ′′

i (ψ̂i − xi )

)

− 1

ψ2
i

(
ψ ′

i (ψ
′
i )
T

(
2xi

ψi
− 1

)
+ ψ ′′

i (ψi − xi )

)∥∥∥∥∥
K

≤
∥∥∥∥∥
ψ̂ ′

i (ψ̂
′
i )
T

ψ̂2
i

(
2xi

ψ̂i
− 1

)
− ψ ′

i (ψ
′
i )
T

ψ2
i

(
2xi

ψi
− 1

)∥∥∥∥∥
K

+
∥∥∥∥∥
ψ̂ ′′

i

ψ̂2
i

(ψ̂i − xi ) − ψ ′′
i

ψ2
i

(ψi − xi )

∥∥∥∥∥
K

≤ C(1 + xi )
{
‖ψ̂ ′

i (ψ̂
′
i )
T − ψ ′

i (ψ
′
i )
T‖K + ‖ψ̂i − ψi‖K ‖ψ ′

i (ψ
′
i )
T‖K

+‖ψ̂i − ψi‖K ‖ψ̂ ′
i (ψ̂

′
i )
T − ψ ′

i (ψ
′
i )
T‖K + ‖ψ̂ ′′

i − ψ ′′
i ‖K

+‖ψ̂i − ψi‖K ‖ψ ′′
i ‖K + ‖ψ̂i − ψi‖K ‖ψ̂ ′′

i − ψ ′′
i ‖K

}
(9)

for some C > 0. Since E(log+ ‖ψ ′
0‖K ) < ∞ implies that E(log+ ‖ψ ′

0(ψ
′
0)

T‖K ) <

∞, (9) with Lemmas 2.1 and 2.2 of the Straumann and Mikosch (2006) implies that
‖L̂ ′′

n − L ′′
n‖K ≤ ∑∞

i=1 ‖l̂ ′i − l ′i‖K < ∞ a.s. This completes the proof. ��
Lemma 3 Under (N.1)–(N.4) with E(log+ ‖ψ ′′

0 ‖K ) < ∞ and H0, we have

C̃n → C0 a.s.
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Proof Since E‖l ′′0‖K < ∞, for any neighborhood N (θ0) ⊂ K , the ergodic theorem
implies that

1

n

n∑
i=1

sup
θ∈N (θ0)

‖l ′′i (θ) − l ′′i (θ0)‖ a.s.→ E sup
θ∈N (θ0)

‖l ′′i (θ) − l ′′i (θ0)‖.

Hence, for any ε > 0, if the neighborhood N (θ0) decreases sufficiently, we get

lim
n→∞

1

n

n∑
i=1

sup
θ∈N (θ0)

‖l ′′i (θ) − l ′′i (θ0)‖ ≤ ε a.s.

Hence, for any ε > 0, there exist a set K ′′ = {θ : ‖θ − θ0‖ ≤ r(ε)} ⊂ K and N1 ≥ 1
such that for all n ≥ N1,

sup
θ∈K ′′

1

n
‖L ′′

n(θ) − L ′′
n(θ0)‖ ≤ 1

n

n∑
i=1

sup
θ∈K ′′

‖l ′′i (θ) − l ′′i (θ0)‖ ≤ ε a.s.

Since θ̂n
a.s.→ θ0, there exists N2 ≥ 1 such that ‖θ̂n − θ0‖ < r(ε) a.s. for all n ≥ N2.

Letting Cn = − 1
n

∫ 1
0 L ′′

n(θ0 + λ(θ̂n − θ0))dλ, we have that for n ≥ max{N1, N2},

‖Cn − C0‖ ≤ 1

n

∫ 1

0
‖L ′′

n(θ0 + λ(θ̂n − θ0)) − L ′′
n(θ0)‖dλ +

∥∥∥∥ L ′′
n(θ0)

n
+ C0

∥∥∥∥
≤ 1

n

∫ 1

0
sup

θ∈K ′′
‖L ′′

n(θ) − L ′′
n(θ0)‖dλ +

∥∥∥∥ L ′′
n(θ0)

n
+ C0

∥∥∥∥
≤ ε +

∥∥∥∥ L ′′
n(θ0)

n
+ C0

∥∥∥∥ .

This together with the fact that L ′′
n(θ0)/n

a.s.→ −C0 implies ‖Cn − C0‖ = o(1) a.s.
Further, for all n ≥ max{N1, N2},

‖C̃n − Cn‖ ≤ 1

n

∫ 1

0
‖L ′′

n(θ0 + λ(θ̂n − θ0)) − L̂ ′′
n(θ0 + λ(θ̂n − θ0))‖dλ

≤ sup
θ∈K ′′

1

n
‖L ′′

n(θ) − L̂ ′′
n(θ)‖ a.s.,

and thus, ‖C̃n −Cn‖ = o(1) a.s. owing to Lemma 2, which establishes the lemma. ��
Lemma 4 Suppose that (N.1)–(N.4) hold and E(log+ ‖ψ ′′

0 ‖K ) < ∞. Then, under
H0,

max
1≤k≤n

√
k√
n
‖�̃k‖ = oP(1).
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Proof Since the sequence {l ′i (θ0)} is stationary ergodic and E‖l ′0(θ0)‖ < ∞, we

have 1√
n

∑nδ

i=1 ‖l ′i (θ0)‖ = Op(nδ− 1
2 ) for any δ ∈ (0, 1

2 ). By the Cauchy–Schwarz
inequality, we have

∣∣∣∣∣∣
1√
n

nδ∑
i=1

‖l ′i (θ0)‖ − 1√
n

nδ∑
i=1

‖l̂ ′i (θ0)‖
∣∣∣∣∣∣ ≤ 1√

n

nδ∑
i=1

∣∣∣‖l ′i (θ0)‖ − ‖l̂ ′i (θ0)‖
∣∣∣

≤ 1√
n

nδ∑
i=1

‖l ′i (θ0) − l̂ ′i (θ0)‖

≤ 1√
n

∞∑
i=1

‖l ′i − l̂ ′i‖K = o(1) a.s.

Thus, for any δ ∈ (0, 1
2 ),

max
1≤k≤nδ

∥∥∥∥∥
L̂ ′

k(θ0)√
n

∥∥∥∥∥ ≤ 1√
n

nδ∑
i=1

‖l̂ ′i (θ0)‖ = oP(1). (10)

Since C̃n
a.s.→ C0 (Lemma 3) andC0 is invertible, Egoroff’s theorem implies that given

ε > 0 and η > 0, there exists an event A with P(A) < ε and an N ≥ 1, such that on
Ac and for all n ≥ N , there exists C̃−1

n and

‖C̃−1
n ‖ < ‖C−1

0 ‖ + η.

On Ac and for all n > N , we have

�̃n = (C0 − C̃n)C̃−1
n

L̂ ′
n(θ0)√

n
,

and further, since maxk≤nδ ‖C0 − C̃k‖ = Op(1), maxnδ≤k≤n ‖C0 − C̃k‖ = o(1) a.s.,

(10) and maxk≤n ‖ L̂ ′
k (θ0)√

n
‖ d→ sup0≤s≤1 ‖C0V

1/2
0 Wd(s)‖ (Lemma 1), we have

max
N≤k≤n

√
k√
n
‖�̃k‖ = max

N≤k≤n

√
k√
n

∥∥∥∥∥(C0 − C̃k)C̃
−1
k

L̂ ′
k(θ0)√

k

∥∥∥∥∥
≤ (‖C−1

0 ‖ + η) max
N≤k≤n

√
k√
n

∥∥∥∥∥(C0 − C̃k)
L̂ ′

k(θ0)√
k

∥∥∥∥∥
≤ (‖C−1

0 ‖ + η)

{
max

N≤k≤nδ
‖(C0 − C̃k)‖ max

N≤k≤nδ

∥∥∥∥∥
L̂ ′

k(θ0)√
n

∥∥∥∥∥
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+ max
nδ≤k≤n

‖(C0 − C̃k)‖ max
nδ≤k≤n

∥∥∥∥∥
L̂ ′

k(θ0)√
n

∥∥∥∥∥
}

= oP(1).

This in turn implies that for any ε > 0,

P

(
max
1≤k≤n

√
k√
n
‖�̃k‖ > ε

)

≤ P(A) + P

(
max

1≤k≤N

√
k√
n
‖�̃k‖ > ε

)
+ P

(
max

N≤k≤n

√
k√
n
‖�̃k‖ > ε, Ac

)
.

This asserts the lemma. ��
Lemma 5 Under (N.1)–(N.4) with E‖ψ ′

0/ψ0‖2K < ∞ and under H0, (V̂
(n)
0 )−1 is a

consistent estimator of V−1
0 .

Proof Since ψ̂i (θ), ψi (θ) ≥ g > 0 for all θ ∈ K , E(log+ ‖ψ ′
0‖K ) < ∞, and

E(log+ ‖ψ ′
0(ψ

′
0)

T‖K ) < ∞, using the mean value theorem and Lemmas 2.1 and 2.2
of the Straumann and Mikosch (2006), we can have

∥∥∥∥∥
ψ̂ ′

i (ψ̂
′
i )
T

ψ̂2
i

− ψ ′
i (ψ

′
i )
T

ψ2
i

∥∥∥∥∥
K

≤ C

(
‖ψ̂ ′

i (ψ̂
′
i )
T − ψ ′

i (ψ
′
i )
T‖K + ‖ψ̂i − ψi‖K ‖ψ ′

i (ψ
′
i )
T‖K

)
e.a.s.−→ 0

for some constant C > 0. Hence,
∥∥∥∥∥
1

n

n∑
i=1

ψ̂ ′
i (ψ̂

′
i )
T

ψ̂2
i

− 1

n

n∑
i=1

ψ ′
i (ψ

′
i )
T

ψ2
i

∥∥∥∥∥
K

≤ 1

n

∞∑
i=1

∥∥∥∥∥
ψ̂ ′

i (ψ̂
′
i )
T

ψ̂2
i

− ψ ′
i (ψ

′
i )
T

ψ2
i

∥∥∥∥∥
K

→ 0 a.s.

(11)

Note that due to Theorem 2.7 of Straumann and Mikosch (2006) and the fact that
E‖ψ ′

0/ψ0‖2K < ∞,

1

n

n∑
i=1

ψ ′
i (ψ

′
i )
T

ψ2
i

a.s.−→ E

(
ψ ′

i (ψ
′
i )
T

ψ2
i

)
in C(K ,Rd×d), (12)

which together with (11) and (12) implies

1

n

n∑
i=1

ψ̂ ′
i (ψ̂

′
i )
T

ψ̂2
i

a.s.−→ E

(
ψ ′

i (ψ
′
i )
T

ψ2
i

)
in C(K ,Rd×d).

Therefore, since θ̂n → θ0 a.s., we can conclude that
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1

n

n∑
i=1

ψ̂ ′
i (θ̂n)(ψ̂ ′

i (θ̂n))
T

(ψ̂i (θ̂n))2

a.s.−→ C0 = E

(
ψ ′
0(θ0)(ψ

′
0(θ0))

T

ψ2
0,0

)
.

Similarly, it can be shown that n−1 ∑n
i=1((ε̂

(n)
i )2 − 1) converges to E(ε20 − 1) a.s.

Hence, the lemma is validated. ��
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