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Abstract Whenusing an auxiliaryMarkov chain (AMC) to compute sampling distrib-
utions, the computational complexity is directly related to the number ofMarkov chain
states. For certain complex pattern statistics, minimal deterministic finite automata
(DFA) have been used to facilitate efficient computation by reducing the number
of AMC states. For example, when statistics of overlapping pattern occurrences are
counted differently than non-overlapping occurrences, a DFA consisting of prefixes of
patterns extended to overlapping occurrences has been generated and then minimized
to form an AMC. However, there are situations where forming such a DFA is compu-
tationally expensive, e.g., with computing the distribution of spaced seed coverage. In
dealing with this problem, we develop a method to obtain a small set of states during
the state generation process without forming a DFA, and show that a huge reduction
in the size of the AMC can be attained.
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1 Introduction

A statistic that has an exceptionally large or small value can signal the presence of
important phenomena. As examples, in DNA the chi motif has an exceptionally high
frequency due to its association with cellular recombination, and palindromes, which
are associated with restriction enzyme sites, are rare (Robin et al. 2005, pp. 6–9). To
determine the statistical significance of a statistic’s value requires distributional prop-
erties. Due to the numerous applications of pattern statistics, techniques for computing
their distribution have received much attention in mathematical statistics, computer
science, and application areas. We refer the reader to three books as well as a review
article that give good surveys of much of the work in this area (Balakrishnan and
Koutras 2002; Fu and Lou 2003; Robin et al. 2005; Lladser et al. 2008).

Onemethod that is frequently used to compute distributions associatedwith patterns
and more general statistics is to associate the statistic’s distribution with an auxiliary
Markov chain (AMC). Once this is done, the Chapman–Kolmogorov equations (see,
e.g., Parzen 1962, pp. 194–195) give a way to obtain probabilities of the auxiliary
chain lying in its various states at any particular time, leading to methods to compute
the desired distribution. Fu and Koutras (1994) forwarded this approach with their
finite Markov chain imbedding (FMCI) method, and AMCs have been used in many
papers since then (e.g., Koutras and Alexandrou 1995; Fu 1996; Ebneshahrashoob
et al. 2005; Aston and Martin 2007; Martin 2008; Martin and Aston 2008). Though
extremely useful, forming an AMC for computation has the drawback that for certain
complex patterns, the state space of the AMC can be prohibitively large.

In recent years, several authors (e.g., Nuel 2008; Kucherov et al. 2007; Lladser et al.
2008; Marshall and Rahmann 2008; Ribeca and Raineri 2008; Martin and Coleman
2011; Martin and Aston 2013) have used theory from computer science on minimiz-
ing a deterministic finite automaton (DFA) to turn an AMC into a smaller version,
thereby obtaining an “optimal Markov chain embedding” in the sense that the AMC
has the smallest number of states (for a given order of Markovian dependence) that is
sufficient for obtaining the desired probabilistic results. However, for certain complex
patterns, forming a DFA before applying a minimization algorithm is computation-
ally prohibitive, and can be infeasible for current computer memory. In this paper,
we bypass this problem by using clues from DFA minimization algorithms to delete
states in the process of forming the original AMC. We show that although the AMC
resulting from our implementation is not necessarily minimal, it can lead to a vastly
reduced number of states and thus more efficient computation.

The organization of the paper is as follows. The next section discusses background
information on computing a distribution through an AMC, and how minimizing an
associated DFA can be helpful in this regard. Section 3 then presents the problem
motivating this work, which is computing the distribution of the number of sequence
positions covered by spaced seed hits. After observing the intricacy of the problem,
which can render the forming of an associated DFA before applying a minimization
algorithm as computationally prohibitive, we show how to form a small set of states
in a sequential fashion that bypasses the need to first obtain the DFA. The process
of obtaining the states is integrated with obtaining state transitions and transition
probabilities, thus streamlining the process. The algorithm that is developed is applied

123



Pattern distributions through sequential state elimination 233

to relatively small spaced seeds to help make the presentation clearer, and then to a
long seed that has been used in the Patternhunter algorithm for similarity searches
over biosequences (Ma et al. 2002). The reduction in the size of the state space and
computation time is highlighted. The final section is a summary.

2 Auxiliary Markov chains and minimal DFA

A pattern u (also called a word or string) is a sequence of symbols from a state
space, or alphabet �. The length of a pattern u is denoted by |u| (|B| is also used
to denote the number of elements in a set B; the meaning should be clear from the
context). The concatenation of pattern v to the right of pattern u is denoted by u · v.
For u = u1, . . . , u|u|, and d ≤ |u|, (u)d ≡ u|u|−d+1, . . . , u|u| and d(u) ≡ u1, . . . , ud
are, respectively, the suffix and prefix of length d of pattern u. If d < |u|, (u)d and
d(u) are, respectively, a proper suffix and proper prefix.

Consider now anmth-order Markovian sequence X = X1, . . . , Xn with realization
x = x1, . . . , xn , where each xi lies in �. Denote xa, xa+1, . . . , xb by xa : xb for
1 ≤ a < b ≤ n and let x̃ j ≡ x j−m+1 : x j for j = m,m + 1, . . . , n. Let π̃ be
the initial probability distribution over m-tuples x̃m and p(x j+1|x̃ j ) the transition
probabilities of the sequence that are stored in a matrix T . When X is stationary, we
can obtain π̃ through the equation π̃T = π̃ , with the entries of π̃ summing to 1.
Otherwise, π̃ must be specified.

2.1 Computing distributions through auxiliary Markov chains

Fu and Koutras (1994) called a discrete random variable Z “finite Markov chain
imbeddable” if there exists a finite Markov chain At , t = 0, 1, . . . , n with state space
Q, initial row probability vector π0, and transition probability matrices �t such that
for z in the range ϒZ of Z , P(Z = z) = P(An ∈ Qz |π0), where Qz, z ∈ ϒZ is a
partition of the states of Q. Based on the Chapman–Kolmogorov equations,

P(Z = z) = π0

(
n∏

t=1

�t

)
V ′(Qz), (1)

where V (Qz) is a row vector with 1’s in positions corresponding to the states of Qz ,
and 0’s elsewhere.

Depending on the problem at hand, there are variations in how to set up the AMC
{At } and computeP(Z = z). Whereas Fu (1996) defined the Markov chain {At } oper-
ating on ω as At (ω) = (u, v), where u is the number of pattern occurrences in the first
t trials and v is the pattern prefix (called an “ending block” in that paper), Koutras and
Alexandrou (1995) cleverly formulated the transition probability matrix of the AMC
only for pattern prefixes, which are repeated for each possible pattern occurrence. This
approach reduces the order of the transition probability matrix from l|�| to |�|, where
|�| is the number of pattern prefixes used, and l is the maximum value of the statistic
that is possible in X.
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234 D. E. K. Martin, L. Noé

As for the computation of Eq. (1), when�t = �, a fixedmatrix, one could compute
πn = π0�

n sequentially through πt = πt−1�, t = 1, . . . , n, retaining the sparcity
of the multiplier �. In that case, each of the n vector-matrix multiplications requires
one to deal with the |�| × |�| non-zero elements of �, where |�| is the size of the
state space. Alternatively, �n can be obtained by matrix doubling (see, e.g., Martin
and Coleman 2011), thus requiring O(log2 n) multiplications as opposed to O(n)

(but losing the sparcity of �; each matrix–matrix multiplication then using O|�|3
multiplications/additions), or using the fast Fourier transform (whichmust be carefully
implemented due to numerical instability; see Ribeca and Raineri 2008). The choice
between sequentially multiplying by � or multiplying by �n can then be made based
on comparing n|�||�| and (log2 n)|�|3.

In either case, it is obvious that for computational efficiency, keeping the number
of states |�| small is of utmost importance. DFA and minimal DFA, which can help
with this task, will be discussed next.

2.2 AMC state minimization through DFA

A DFA D is a 5-tuple D = (Q, �, δ, q0, F), where Q is a set of states, � is the
alphabet, δ the transition function for states q ∈ Q, i.e., δ : Q × � → Q, q0 ∈ Q is a
start state, and F ⊂ Q is a set of “final” or “accepting” states. For an input sequence
(x1, x2, . . . , xn) (xi ∈ �), the DFA begins in state q0 and transitions according to δ

as symbols xi are fed in. If q j ∈ F for some j ∈ (1, . . . , n), then the string x1 : x j is
“accepted,” otherwise it is “rejected.” The language of a DFA is the set of strings that
it accepts. When a state of F is entered, an action is taken. For example, for a statistic
of a collection of patterns, F consists of the patterns, and the statistic is incremented
when a state of F is entered.

States q and q∗ are equivalent if beginning in each and entering an arbitrary string
(including the empty string), the result is either a final state in both cases or a non-
final state in both cases. A well-known result from computer science that is useful in
our framework is that beginning with any DFA, one can find an equivalent DFA that
recognizes the same language and has a minimal number of states (see, e.g., Hopcroft
1971; Hopcroft et al. 2001).

Minimizing a DFA is a special case of the multi-function “coarsest partition” prob-
lem (Tewari et al. 2002) where, given an initial partition H1, . . . , Hr of a set Q and
functions f1, . . . fγ over the states, one finds the partition G1, . . . ,Gs , s ≥ r with the
smallest number of equivalence classes s such that (i) eachGi is a subset of some class
Hj , and (ii) q and q∗ inGh imply that fα(q) and fβ(q∗) are both in some class Gk for
all α, β. For minimizing a DFA, r = 2, the initial partition is (H1, H2) = (F, Q/F),
and the resulting partition is the equivalence classes of the DFA, which are the states
of the minimal DFA. The minimal DFA has the smallest number of states for any DFA
that recognizes the same language, and is also unique, up to a renaming of the states
(see, e.g., Hopcroft 1971; Hopcroft et al. 2001, pp. 154–162).

Whereas in this work, we consider AMC state reduction in the context of pattern
statistics, minimal DFA can be helpful for more general statistics as well. In the more
general case, given any AMC, a DFA minimization algorithm can be applied to its
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Pattern distributions through sequential state elimination 235

states/transition function to obtain a minimal version. If no states are eliminated the
AMC states are already in minimal form. This is the case, for example, with the state
space for computing p values for scan statistics (Martin 2014).

Also note that aDFAwith states corresponding to pattern prefixes (anAho–Corasick
automaton; see Aho and Corasick 1975) can be modified to obtain an AMC suitable
to compute distributions of pattern statistics over mth-order Markovian X. To form
the state space, add to the pattern prefixes all m-tuples that are not pattern prefixes
(m-tuples are required due to the Markovian assumption), and then delete all strings
of length less than m, as the computation can be initialized at time m.

On symbol xi , pattern prefix q transitions to the longest suffix of q · xi that is in Q
(Aho and Corasick 1975). To compute probabilities, define an initial probability dis-
tribution over the m-tuples �m , along with transition probabilities Pr(q j−1 → q j ) =
Pr(x̃ j−1 → x̃ j ), where x̃r = (qr )m , r = j − 1, j . The states of the resulting Markov
chain can be minimized using an analog of the Hopcroft (1971) algorithm (with the
additional restriction that all states in an equivalence class must have the samem-tuple
as their suffix), to give an AMC with a minimal number of states for that particular
model order. The next two paragraphs give examples of AMC formation through DFA
minimization.

First, consider computing the distribution of the number of overlapping occurrences
of the chi motif ofH. influenza F = W8 = {GATGGTGG,GCTGGTGG,GGTG
GTGG,GTTGGTGG} (Ledent and Robin 2005) in a first-order Markovian
sequence X, with � = {A,C,G, T }. In the Aho–Corasick automaton, Q consists
of prefixes of the patterns of F (see Fig. 1a). The modified DFA with 1-tuples added
and the empty string ε deleted is shown in Fig. 1b. Final states F and Q/F form the ini-
tial state partition. StatesW7 = {GATGGTG,GCTGGTG,GGTGGTG,GTTG
GTG} can enter F on symbol G whereas other states of Q/F cannot, and thus W7
is split off as a separate class in the minimization process (these states transition the
same on other symbols as well, and thus they remain a single class throughout the
minimization process.) Then, states W6 that enter W7 on symbol G can be split from
those that do not, forming another equivalence class. In the end, states of length longer
than two are equivalent if they differ only in their second symbol, and thus four states
can be combined in each of the equivalence classesW3, . . . ,W8 (for length two, states
W2a = GG and W2b = {GA,GC,GT } are distinguishable because they transition
differently on symbols A, C , or G). The final partition for the chi motif is shown in
Figure 1c, with numbered states j representingWj . Fig. 1d shows the result of deleting
the final state from Fig. 1c, while re-mapping the entering transition. Notice that the
number of AMC states has been reduced from 30 to 9.

As a second example, consider computing the distribution of clumpcount and cover-
age. These statistics are incremented differently for overlapping and non-overlapping
occurrences of a collection AW of patterns, so that theymust be distinguished. Bassino
et al. (2008) and Martin and Coleman (2011) used a DFA with states that are prefixes
of the set Aext , where Aext itself is defined by:

Aext = {u|∃q, w ∈ AW with u = αq · vqw · βw, αq · vqw = q, vqw · βw = w,

and αq , vqw, βw are nonempty}. (2)
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Fig. 1 a Aho–Corasick DFA for the Chi motif {GATGGTGG,GCTGGTGG,GGTGGTGG,GTTG
GTGG} (note: in plots (a) and (b), some transitions are not shown for clarity); b modified version for
Markov chain (m = 1), with m-tuples replacing ε; c minimized version; d minimal version with state
representing chi motif eliminated and its transition (marked with a bold line) re-mapped. In plots a, b, and
c, final states are marked with a bold outline

Fig. 2 Transition systems for computing statistics of clumps of pattern W = {ab, bc, ba, abca, bcaba}:
a Prefixes of Aext ∪ �m ; b AMC states after minimization. Color code: Qpre (white), Qpre,new (yellow),
Qpre,ext (turquoise), QW (green), Qpath,ext (pink), Qext (light brown), Qm (light blue) (see Martin and
Coleman 2011 for definitions of the classes of states). For the sake of clarity, not all transitions are shown,
and edge labels are omitted. The state bab∗ in b represents {bab/abcab/bcabab}

In the latter reference, the minimization of the AMC used an initial partition into
multiple classes that were based on roles relative to updating the clump statistics, and
the Hopcroft algorithm was then applied. (See the initial and ending AMC states for
clumps of the collection of patterns W = {ab, bc, ba, abca, bcaba} in Fig. 2a, b,
where the various classes of the initial partition are color coded).
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Whereas using prefixes of an extended set Aext can be useful for computing pattern
statistics that are incremented differently for overlapping and non-overlapping pattern
occurrences, the current authors encountered a situation (computing the distribution of
spaced seed coverage) where forming an AMC/DFA before applying a minimization
algorithm is computationally expensive. After describing the spaced seed problem,
we give an approach to form an efficient AMC state space without first setting up a
full DFA, by which we mean, an automaton consisting of prefixes of patterns of the
extended set Aext .

3 Distribution of spaced seed coverage

Heuristicmethods are typically used to locate similar segments inDNAsequences. The
standard heuristic method is to initially search for relatively short matching (or nearly
matching) segments, and then look for alignments around a match with similarity
scores that are significantly high. Seeds give the shape of the matching segments.
Short seeds can occur many times even in sequences with non-similar structure, but
searching for long exact matches can result in missing segments whose underlying
structure is similar. Thus, a trade-off is beneficial.

In recent years, spaced seeds (Ma et al. 2002; Keich et al. 2004; Buhler et al. 2005)
have been used to provide a way to increase the probability of observing at least one
seed hit (matching segment) without simultaneously increasing the number of hits
that occur at random. A spaced seed is a pattern S = s1, . . . , sk from {1, ∗}, with the
restriction that s1 = sk = 1. A “1” indicates a position where sequence symbols must
match, and “*” indicates a position where a match is not required. When the number
of stars r equals zero, the seed is termed a contiguous seed (or a success run).

Let X = x1, . . . , xn be the binary sequence formed by aligning two DNA segments
of length n and assigning a value x j = 1 if the j th position of the segments match,
and x j = 0 for a mismatch. Spaced seed S hits or occurs in X at position υ if for
j = 1, . . . , k, xυ−k+ j = 1 whenever s j = 1. A “1” at position υ − k + j of X is
covered by a seed hit if there exists υ ∈ (k, . . . , n) and j ∈ (1, . . . , k) such that S
occurs at position υ and for that occurrence, s j = 1. For example, for spaced seed
S = 11 ∗ 1 and sequence segment

X = 1• 1• 1 1• 0 0 1 1• 1• 0 1• 1• 1• 1• 1•

of length n = 15, there are seed hits at sequence positions 4, 11, 14 and 15, and the
ten 1’s with “•” underneath are covered.

One solution to the trade-off between the use of short and long seeds is to use
short seeds, but to require multiple seed hits clustered close together to trigger an
alignment. This approachwas used in Benson’s algorithm for detecting tandem repeats
(Benson 1999). The criterion used in that algorithm was based on the number of
successes in success runs of length at least k (coverage of a contiguous seed), with the
null hypothesis of similarity (with the associated clumping of matches) only rejected
for small values of the statistic. The critical value was determined using a normal
approximation to the statistic’s distribution. Lou (2003), Fu et al. (2002) and Martin
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(2006) gave the exact distribution of the statistic for independent trials, first-order
Markovian sequences and Markovian sequences of a general order, respectively.

Coverage of spaced seeds can be used as the “matching” criterion under themultiple
seed hit paradigm, and also relates to the “group criterion” mentioned in Noé and
Kucherov (2004). However, distributional results for spaced seed coverage are rare.
The only known result is that of Benson and Mak (2009), who gave a method for
computing the distribution in the i.i.d. case, and illustrated their computational method
for relatively short seeds. We extend their work to higher-order Markovian sequences,
with the efficiency of the method allowing computation for the longer seeds that are
used in practice.

3.1 Computation procedure

For spaced seed S = s1, . . . , sk (k is assumed to be greater than the order ofMarkovian
dependence m) with r stars, let AS be the collection of the 2r seed words that may be
formed by replacing stars of the seed by either 0 or 1. Since a covered “1” can only
be counted once, the AMC used to compute the coverage distribution needs to keep
track of which positions have been covered previously. One option for the states is to
use prefixes of strings of Aext as in Martin and Coleman (2011) (see Eq. (2)), add in
m-tuples that are not pattern prefixes, and then delete any strings of length less thanm.
Such a representation allows the determination of covered positions from the prefix
string. However, the resulting state space (which we call �ext) may contain many
unnecessary strings, and is thus not efficient. An example for the small spaced seed
11 ∗ 1 is given in Fig. 3a (where covered positions are indicated by a coverage string
c for convenience). For that example, a minimization algorithm would discard 7 of
the 19 states, although that is not obvious from the representation. Minimizing �ext,
as in Martin and Coleman (2011), is thus a remedy when it is feasible, but for long
seeds with several stars, setting up �ext before applying a minimization algorithm is
computationally expensive. The question is then “Can one set up a state space with a
small number of states without forming a full automaton before state reduction?”

We begin with an alternate representation of the set of AMC states that will be used

(this set of states will be denoted by �). States λ ∈ � are represented as λ =
(
q
c

)
,

10

0

1 11

110

111

1101
(1101)

1111
(1101)

11011
(11010)

11110
(11010)

11111
(11111)

110110
(110100)

110111
(110100)

111101
(111101)

111110
(111110)

111111
(111111)

1101101
(1101101)

1101111
(1101101)

1111101
(1111101)

1111111
(1111111) 11

1 11

110

111

1
(1)

111
(101)

11
(10)

110
(010)

111
(111)

110
(100)

111
(100)

1
(1)

110
(110)

111
(111)

1
(1)

111
(101)

1
(1)

111
(111)

0

Fig. 3 a States of the AMC for computing the coverage distribution for spaced seed 11 ∗ 1 in a first-order
Markovian sequence; b alternate representation with no q strings of length greater than k − 1 = 3. States
colored red are those that would be eliminated by a minimization algorithm
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with q ∈ Q = �m ∪ Q̃, where �m are m-tuples and Q̃ are prefixes of words of
AS . Here, �m may be partitioned as �m = Q̂nosuf ∪ Q̂suf ∪ Q̃m , where Q̃m are
prefixes of words of AS of length m, Q̂suf contains the m-tuples that are not prefixes
of words of AS , but have a proper suffix that is, and Q̂nosuf = �m/(Q̂suf ∪ Q̃m). Also,
Q̃ = Q̃m ∪ Q̃>m , where Q̃>m are strings that are prefixes of words of AS of lengths
m + 1 ≤ |q| ≤ k − 1). Thus, Q = �m ∪ Q̃>m = Q̂nosuf ∪ Q̂suf ∪ Q̃.

The fact that no string q ∈ Q has length greater than k − 1 reduces the storage
requirement compared with strings of �ext, while serving the same purpose. Also,
the strings q ∈ Q transition the same regardless of their associated coverage string,
reducing the number of transitions and transition probabilities that need to be specified.

Strings c ∈ C indicate previously covered positions (C is the set of possible cov-
erage strings). A coverage string c has the same length as the corresponding string
q. This representation is depicted in Fig. 3b for seed 11 ∗ 1. For that example, the
representation makes it clear that six of the seven states that would be eliminated by a
minimization algorithm are redundant. In what follows, using the latter representation
alongwith properties of states that render them as equivalent, we effect sequential state
elimination. Before proceeding, we give some definitions and also useful properties
of a concept we call active proper suffixes.

Definition 1 On symbol x , state q ∈ Q transitions to the longest suffix of q · x that is
in Q.

Definition 2 A direct hit associated with q ∈ Q̃ is the occurrence of a word α ∈ AS

with α = q ·u. A future hit associated with q ∈ Q̃ is the occurrence of a word β ∈ AS ,
where β = (q)d · v (d < |q| so that (q)d is a proper suffix of q).

Informally, a direct hit must start from the beginning of a string q ∈ Q̃ (pattern
prefixes), whereas future hits begin at the beginning of a proper suffix of string q (an
overlapping pattern occurrence). A future hit requires that the direct hit has occurred
previously. Note that a prefix of length less than m of a word of As is represented in
Q by an m-tuple of Q̂suf .

Definition 3 The longest proper suffix of q ∈ Q>m that is in Q̃ is called its active
proper suffix, and is denoted by aps(q). If no such suffix exists, then aps(q) = (q)m .

Note that aps(q) is only defined for strings of length greater thanm. An aps(q) ∈ Q̃
gives the maximal progress towards an overlapping (future) seed hit. If aps(q) ∈ Q̂suf ,
the progress toward an overlapping seed hit is of length less than m, and if aps(q) ∈
Q̂nosuf , there is no progress towards an overlapping seed hit.

To illustrate these concepts, if S = 11∗1 (where AS = {1101, 1111}) withm = 2,
�m = {00, 01, 10, 11}, Q̂nosuf = {00, 10}, Q̂suf = {01}, Q̃m = {11}, and Q̃>m =
{110, 111}, so that Q = {00, 01, 10, 11, 110, 111}. If x1 : x5 = 11111 and q = x1 :
x3 = 111, then x1 : x4 is a direct hit associated with q, and x2 : x5 is a future hit
that begins with aps(q) = 11 ∈ Q̃m . If x1 : x3 = q = 110, aps(q) = 10 ∈ Q̂nosuf ,
meaning that although q is a prefix of 1101, there is no current progress towards a
future seed hit.

Lemma 1 If q ∈ Q̃>m, no symbol of q preceding its proper suffix aps(q) can be in a
future seed hit.
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240 D. E. K. Martin, L. Noé

Proof Assume that a future seed hit relative to q begins to the left of aps(q). This
contradicts the definition of aps(q) itself, and thus the result follows. �


For m-tuple q ∈ �m , no symbol preceding its longest suffix that is a prefix of a
word of AS (which can be empty if q ∈ Q̂nosuf) can be in a future hit.

Lemma 2 If q, q∗ ∈ Q̃>m, states

(
q
c1

)
and

(
q∗
c2

)
may be combined as a single

state if |q| = |q∗|, c1 = c2, and aps(q) = aps(q∗)
(
or if

(
aps(q)

0

)
and

(
aps(q∗)

0

)
have been previously combined

)
.

Proof For strings q, q∗ ∈ Q̃>m of the same length andwith the same coverage history,
on a direct seed hit the coverage increments and the updated coverage strings will be
the same. If, in addition, the strings q1 and q2 have the same active proper suffix (or if
the active proper suffixes were previously combined), the resulting prefix strings on
the direct hit will be equivalent. Strings with the same (or combined) active proper
suffix behave the same on any future hits since the active proper suffix contains the
only part of the string that can possibly be involved in a future hit. Such strings must
have the same m-tuples as their suffix (since |aps(q)| ≥ m for all q), and therefore
have the same transition probabilities on any symbol. The result follows. �


If

(
q
0

)
and

(
q∗
0

)
are combined states, (or if q = q∗), we write q ∼ q∗ to denote

their equivalence.
Based on these results we can use the following basic sequential method for setting

up �. First form the m-tuples. Then, sequentially over lengths m + 1, . . . , k − 1,
generate the proper prefixes of seed words of AS , and note their active proper suffixes.
Strings q and q∗ satisfying the conditions of Lemma 2 are combined by discarding
the one not already in Q. The strings of Q are associated with coverage strings c = 0
of length q to represent prefixes of non-overlapping occurrences of strings of AS . The
transitions q → q ′ with |q| < k − 1 (or if |q| = k − 1 and the symbol is “0”) are
defined according to Definition 1.

We thengenerate statesλ =
(
q
c

)
withq ∈ Q andnon-zero coveragevectors c, as in

Fig. 3b. If q ∈ Q̃ with |q| = k − 1 and the input symbol is “1”, q → q ′ = aps(q · 1),
and the new coverage string is c′ = (ctem)|aps(q·1)|, where the coverage template
ctem ≡ (ctem,1, . . . , ctem,k) has entries ctem, j = 1 if s j = 1, ctem, j = 0 otherwise,
j = 1, . . . , k. The number of new states added in this stage, η, is recorded, and the
total number of states is incremented. Also, we record the update to coverage k−r for
the transition q → q ′ in the appropriate entry of a |�| × |�| update matrix denoted
by U .

Now for each of the η new states just defined and input symbol xi ∈ {0, 1}we obtain
the transitions of their prefix string q and coverage string c, as well as the coverage
increment on a seed hit (i.e., if q ∈ Q̃ with |q| = k − 1 and xi = 1). The prefix q
transitions exactly as when there is no coverage. To update c, if there is no seed hit,
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then c → c′ = (c · 0)|q ′| (concatenate a zero to the end of c and then take the suffix of
the same length as the new prefix string q ′). Otherwise, c → c′, where c′ is the suffix
of length |q ′| of the string of length k that has a “1” in any position where at least
one of c · 0 or ctem has a “1”, and zeroes elsewhere. The increase of coverage for the
transition q → q ′ is obtained by computing the number of newly covered positions
with the seed hit. This coverage increment is stored in U (i, j), where (i, j) are the

indices for the transition λi =
(
q
c

)
→ λ j =

(
q ′
c′

)
.

If, during any stage of the state generation process, a destination state

(
q ′
c′

)
already

exists in�, the transition ismapped there. Otherwise a new state is generated to receive
the transition. At the beginning of each stage, η is set to 0 and incremented by one as
each new state is generated. The procedure for generating states on state transitions is
repeated for the new strings at each stage while η > 0. In this manner, we end up with
a sufficient number of states to carry out the computation, while keeping the number
of states small. Transition probabilities for states of � are stored in the transition
probability matrix �.

This basic algorithm is augmentedwith further (possible) combining/elimination of
states thatwill be described below. To illustrate the basic setup of� given above aswell
as the additional reductions that are possible, consider first the seed 1*11*1 for which
AS = {101101, 101111, 111101, 111111}, and assume that the Markov order is m =
1. First generate them-tuples 0 and 1 along with prefixes of seed words of lengths 2 to
4 (all these strings are needed in� because for each of those lengths, the active proper
suffixes are unique). For length 5, according to Lemma 2, strings {10110, 11110}may
be combined as a single state (they both have 10 as their active proper suffix). Then, the
set Q = {0, 1, 10, 11, 101, 111, 1011, 1111, 10110, 10111, 11111}, with 10110 also
representing 11110, which is discarded. Obtaining transitions of 10110, 10111, and

11111 on symbol 1, we generate the respective new states of the form

(
q
c

)
:

(
101
101

)
,(

1111
1101

)
, and

(
11111
01101

)
.

We then obtain transitions of these states and generate new states as needed, repeat-
ing the process for the new states at each stage. The resulting state space, of size
|�| = 27, is depicted in Fig. 4. For this seed, |�ext | = 84, and thus the reduction is
substantial.

In Fig. 4, notice the transition of

(
1111
1101

)
on symbol “0”. Concatenating “0” to the

end of 1111 gives 11110, however, by Lemma 2 this prefix string is represented by
10110. Using the rules for obtaining coverage strings given above, the corresponding
coverage string would be 11010, which means that the second position of the prefix
string 10110 is a 0, whereas the second position of the coverage string 11010 is a 1.
There is no need to indicate that a position is covered when the position itself is a “0”,
and thus we make the adjustment to the basic algorithm that a coverage value is set
to zero if the corresponding position of q is zero. Whereas this gives no reduction of
states for this example, in general it can lead to a large reduction, because the algorithm
then “sees” more common coverage strings.
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DFA for 1*11*1, m=1

1

11

101

111

1111

11111

1011
10110

101
(101)

0

10111
1111
(1101)

10

11111
(01101)

10
(10)

1011
(1010)

10110
(10010)

11111
(11010)

11111
(11111)

10110
(10110)

11111
(11101)

10111
(10100)

10110
(10100)

101
(100)

1011
(1000)

10110
(10000)

10111
(10000)

+4 +3

+2+1

+4

+2

+2

+4

+2

+1

+2

Fig. 4 a States of the AMC for seed 1 ∗ 11 ∗ 1 with m = 1. Coverage for strings is shown in parentheses.
For clarity, not all transitions are shown. On the symbol 1, state 10110 (10000) transitions to 101 (101) with
coverage increment 3, and state 10111 (10000) transitions to 1111 (1101), also with coverage increment
3. State 11110 is merged with 10110, both with and without coverage. The m-tuples are shaded in peach,
prefixes with no coverage in white, counting states in green, and the other states with non-zero coverage in
blue. Increments to the coverage count are indicated for transitions into counting states

Onemore adjustment is made to the basic algorithm. For the seed 11∗1 withm = 1

(see Fig. 3b), the state

(
110
100

)
is obtained in the state generation process, and based

on the rules above it would be added to the automaton. However, the state

(
110
010

)
is already in the automaton at that point. With the direct hit, the update to coverage
would be the same for these two states. Also, since the active proper suffix of 110
is 0, the “1” in the second position of q = 110 cannot possibly be in a future seed
hit. Thus, probabilities and coverage updates for the two states will be exactly the
same, and a minimization algorithm would combine them. We add a rule, which is
given in the next paragraph, to combine such states as well. Whereas for this small
seed, combining these states leads to a reduction of only one state, for longer, more
complicated seeds, large reductions can be obtained through a cascading of combined
states.

In general, when attempting to enter a state

(
q ′
c′

)
into � and searching for a

possible matching state, if there is a state

(
q∗
c∗

)
with q∗ ∼ q ′ but c∗ �= c′, the

algorithm checks to see if aps(q ′) ∈ Q̂nosu f . In that case, none of the 1’s of q ′ and q∗
can possibly be involved in a future seed hit. Then, if the updates to coverage on the
direct hits of q ′ and q∗ are the same, the two states may be combined, since coverage
updates and probabilities are guaranteed to be the same for any input string.
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We point out here that it is possible to have states with q∗ ∼ q ′ and c∗ �= c′,
and aps(q ′) /∈ Q̂nosuf , yet have exactly the same coverage updates for all possible
input strings. Such strings would be combined by a minimization algorithm. In our
sequential algorithm, we do not search for such situations, believing that such a search
may be more computationally costly than the advantage in possibly finding a smaller
state space, and thus we do not obtain the minimal state space in all cases. (This
conjecture will be examined in future work). However, we do obtain the minimal state
space in many cases, and in all cases get a vastly reduced state space that facilitates
fast computation. If the minimal state space is sought, it can be obtained by applying
a minimization procedure to �, while avoiding the need to ever form a full automaton
with states �ext. In the next subsection, we compare the size of the state spaces �ext
and � to show the vast reduction in states that is attained, and also compare |�| to
minimal automata either with or without q values representing seed words.

3.2 Reduction in the number of states

Table 1 presents the number of states |�ext| in �ext (formed from prefixes of Aext;
see Eq. (2)), and the number of states |�| in the reduced AMC based on the algorithm
above. For comparison purposes, we also applied DFA minimization algorithms to
determine the number of states in a minimized version of � [we call this number
|�Mealy| in the case where seed words are not included in Q and coverage updates
are incorporated on the appropriate state transitions (Mealy 1955), and |�Moore| in
the case where seed words are included in Q and coverage updates take place when
strings of AS are reached (Moore 1956)].

The reduction in the number of states in � when compared with �ext is apparent.
In the most extreme case of the table, for seed 1∗1∗1∗1, |�ext| = 286 and |�| = 25.
In many cases, � achieves the minimal number of states |�Mealy|, and for every case,
� has less states than�Moore. Thus, we attain a small state space without ever forming
a full automaton with state space �ext, and one that compares well with minimized

Table 1 Size of state spaces �ext(extended Aho–Corasick), �Moore and �Mealy (minimal versions using
updates on entering states and on transitions), and � (the sequentially reduced state space forwarded in this
paper)

Seed |�ext | |�Moore| |�Mealy| |�| Seed |�ext | |�Moore| |�Mealy| |�|
1*111 26 17 15 15 1*1111*1 112 45 36 36

11*11 29 20 16 16 1*111*11 132 42 35 38

111*1 24 20 15 15 1*11*111 144 50 44 44

1*1*1 66 20 16 16 1*1*1111 142 39 35 35

1*1*1*1 286 30 25 25 1**11111 132 56 51 51

11*11*1 99 36 28 29 1**1*111 444 85 76 76

1**11 72 37 31 31 1**11*11 512 61 53 53

11**1 67 48 36 36 1**111*1 356 79 68 70

11*1*1 85 50 37 38 1*1*11*1 362 69 56 58
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versions in terms of the number of states. In Sect. 3.4, we illustrate how the reduction
in states is important in an application to a long spaced seed.

3.3 Computing the distribution

After setting up the state space � and its transition probability matrix �, we use an
adaptation of a computation method used in Aston and Martin (2007) to obtain the
distribution of spaced seed coverage for a seed of length k with r stars. The computation
follows the basic principle of the efficient FMCI computation technique of Koutras
and Alexandrou (1995) in that the transition probability matrix � of the AMC has
order equal to |�|, and not |�| multiplied by the number of possible coverage counts,
as would be the case with the original FMCI formulation.

Probability matrices�t , t = m,m+1, . . . , n hold probabilities for the AMC lying
in the various states of �, where the subscript t indicates the time point. The matrices
each have n − k + r + 2 rows that correspond to all the reachable coverage values
0, k − r, k − r + 1, . . . , n (Koutras and Alexandrou 1995 use probability vectors for
each of the possible values of the statistic of interest, so using a probability matrix is
analogous.) The |�| columns of the matrices hold probabilities of the AMC lying in
the various states of � for each particular coverage value. The sum of the elements in
each matrix is one, with the sum over row i of �t giving the probability of coverage
i at time t , so that the coverage distribution may be obtained as �n1, with 1 being a
column vector of 1′s of length |�|.

We initialize the computation at time t = m, with the non-zero elements of the
first row of �m holding initial probabilities for them-tuples (these initial probabilities
are input to the algorithm in row vector π̃ or computed using the input transition
probability matrix T if stationarity is assumed). The remaining rows of �m contain
all zeroes. To update the system from time t to t + 1, two steps are carried out: (i)
multiplication by � to update state probabilities, and (ii) moving the probabilities for
transitions corresponding to seed hits to the correct row. More details are given in the
next paragraph.

After multiplying �t by �, a column j that corresponds to a non-zero entry of
U (i, j) for transitions λi → λ j will hold probabilities for a seed hit at time t +
1. However, since the coverage count increases when λ j is entered, if h > 1, the
probability ei, j = �t (h, i) × �(i, j) for entering λ j from λi with current coverage
h+k−r−2 is added to�t+1(h +U (i, j), j), and subtracted from�t+1(h, j). When
h = 1 (corresponding to no coverage), ei, j is added to�t+1(2, j) (which corresponds
to coverage k − r) and subtracted from �t+1(1, j). Steps (i) and (ii) are repeated to
obtain �m+1, . . . , �n , and the probability of coverage i is obtained as the sum of the
elements of row i of �n .

3.4 Application to Patternhunter seed

Version 1 of the Patternhunter software (Ma et al. 2002) used the spaced seed
111∗1∗∗1∗1∗∗11∗111 that is optimal in the sense that it has the highest single
hit probability for Bernoulli trials with match probability p = 0.7 on alignment

123



Pattern distributions through sequential state elimination 245

Fig. 5 Distribution of coverage of the Patternhunter seed for a first-order Markovian sequence X of length
n = 100, with transition probabilities P(Xt = 1|Xt−1 = 0) = 0.45; P(Xt = 1|Xt−1 = 1) = 0.85, and
stationary distribution π̃0 = 1/4, π̃1 = 3/4

length n = 64 (Ma et al. 2002). The algorithm of the last section was pro-
grammed in MATLAB (version R2010b), and applied to compute the distribution
of coverage for seed 111∗1∗∗1∗1∗∗11∗111. The underlying sequence was assumed
to be a stationary Markovian sequence of order m = 1, with transition probabil-
ities defined by P(Xt = 1|Xt−1 = 0) = 0.45; P(Xt = 1|Xt−1 = 1) = 0.85 and
P(Xt = 0|Xt−1 = x) = 1 − P(Xt = 1|Xt−1 = x), x ∈ {0, 1} (the corresponding
stationary distribution is π̃0 = 1/4, π̃1 = 3/4). Figure 5 displays the computed
distribution for n = 100.

The size of the state space used was |�| = 4215, compared with |�Moore| = 4260,
|�Mealy| = 3782 and |�ext| = 321596. Note that �ext is the state space of the AMC
that would be obtained (before minimization) using the Markov chain embedding
procedure of Martin (2013), and thus a substantial improvement is obtained using the
current procedure. The computation took 91 s (33.7 s for setting up � and 57.3 s to
compute the distribution) using aDell PCwith an Intel Core i7CPU873with 2.93GHz
and 8 GB RAM. We point out here that a program to set up the state space �ext (and
not compute the distribution) took over 26 h to run on the same computer. Thus, we
see the importance of avoiding setting up�ext. Note also that to compute probabilities
for single or multiple hits requires only 322 states when seed words are included,
and 278 when they are not (these numbers were derived using a DFA minimization
algorithm), highlighting the difficulty of computing the “coverage” distribution. The
feasibility of the algorithm for computing distributions for the long seeds that are used
in bioinformatics is apparent from the results of this section.

4 Summary

This paper deals with computing distributions of statistics using an auxiliary Markov
chain. As stated previously, the computation itself is similar in nature to the efficient
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FMCI formulation of Koutras and Alexandrou (1995), in that the AMC states of
� are not repeated for each of the possible coverage counts. A difference in the
procedures is that whereas the latter reference dealt with statistics that either stay the
same or increase by one (called Markov chain imbeddable of the binomial type in
that work), we deal with statistics whose value can increase by an arbitrary amount
on a pattern occurrence. The main difference, however, is in the nature of the problem
on which the current paper focuses, as the focus of this paper is on reducing the
number of AMC states |�| in problems where |�ext| can be very large, so large, in
fact, that setting up a DFA before minimizing it is prohibitive. A situation where this
can occur is where overlapping pattern occurrences are reckoned differently than non-
overlapping occurrences, rendering a need for using prefixes�ext of patterns extended
to overlapping occurrences.

In the example of Sect. 3.4, searching for hits of the Patternhunter spaced seed
required 278 AMC states (in minimal form), whereas a minimal AMC to determine
spaced seed coverage required 3782 states (compared with 321,596 states in an AMC
set up using a reasonable Markov chain embedding procedure). The computation of
the distribution of spaced seed coverage is especially difficult because one must keep
track of the overlapping structure of pattern occurrences since a “1” of the sequence
can only be counted once in coverage. As was shown in that example, the reduction of
states (and computation time) afforded by our algorithm can be considerable. This is
the main contribution of the present work. Thus, whereas our procedure would obtain
no reductions of |�| for situations such as those handled in Koutras and Alexandrou
(1995), we do add to the Markov chain embedding toolkit for situations as described
above.

In the context of spaced seed coverage, active proper suffixes are used to assist in
producing a reduced state space sequentially without ever generating a full determin-
istic finite automaton with states �ext. Transition probabilities for AMC states and
updates of the statistic’s values for certain transitions are determined during the state
generation process. In many cases, a minimal state space is attained, and even in those
when it is not, the size of the state space compares well with the minimized version. If
one seeks a minimal state space, then applying a minimization algorithm to our state
space is much more efficient than minimizing a full automaton with states �ext.

In future work, the authors would like to explore the efficacy of obtaining minimal
state spaces using a sequential procedure, and answer the question of whether such
a pursuit is worthwhile, or whether or not we are better off stopping with a vastly
reduced state space, as in the example of Sect. 3.4. The authors have already obtained
preliminary results applying spaced seed coverage to string kernels and alignment-free
distances (Noé and Martin 2014) and are working on extending the algorithm of this
paper to coverage of multiple spaced seeds for applications in similarity searches over
biosequences. The need to keep the state space small without ever forming a full DFA
is even more pronounced when dealing with that problem.
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