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Abstract We provide some necessary and some sufficient conditions for the validity
of the inequality of Simes inmodelswith elliptical dependencies.Necessary conditions
are presented in terms of sufficient conditions for the reverse Simes inequality. One
application of our main results concerns the problem of model misspecification, in
particular the case that the assumption of Gaussianity of test statistics is violated. Since
our sufficient conditions require non-negativity of correlation coefficients between test
statistics, we also develop two exact tests for vectors of correlation coefficients and
compare their powers in computer simulations.

Keywords Covariance matrix · Distributional transform · Multiple testing ·
Multivariate normal distribution · p value · Student’s t · Total positivity

1 Introduction

It is fair to say that one of the major foundations of modern multiple test theory is
Simes’ inequality. This inequality concerns the joint distribution of the order statistics
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of m marginally uniformly distributed random variables U1, . . . ,Um . In its original
form, it was proven (as an equality) by Simes (1986) under joint independence of the
Ui : 1 ≤ i ≤ m.

Proposition 1 (Simes 1986)LetU1, . . . ,Um denote stochastically independent, iden-
tically UNI[0, 1]-distributed random variables and U1:m ≤ · · · ≤ Um:m their order
statistics. Define αi :m = iα/m, 1 ≤ i ≤ m, for α ∈ [0, 1]. Then, it holds

P(U1:m > α1:m, . . . ,Um:m > αm:m) = 1 − α.

The constants (αi :m)1≤i≤m are referred to as Simes’ critical values in the multiple
testing literature. Based on Proposition 1, they have been implemented into various
stepwise rejective multiple tests for testing m null hypotheses H1, . . . , Hm against
alternatives K1, . . . , Km . These stepwise rejective tests uniformly improve single-
step procedures like the Bonferroni correction in terms of power. For example, the
multiple test by Hommel (1988) is a powerful improvement of the Bonferroni test. It
keeps the family-wise error rate (FWER) at level α when applied to marginal p values
P1, . . . , Pm which are under the corresponding null hypotheses distributed as theUi in
Proposition 1. Moreover, Simes’ critical values also build the basis for the linear step-
up test ϕLSU by Benjamini and Hochberg (1995), and the authors proved that ϕLSU

controls the false discovery rate (FDR) under independence, again by making use of
Proposition 1. Nowadays, ϕLSU is presumably the most widely applied multiple test
procedure in practice, with more than 22,000 citations according to Google Scholar.

Already in his original article, Simes (1986) argued that the inequality

P(P1:m > α1:m, . . . , Pm:m > αm:m) ≥ 1 − α (1)

(which is actually sufficient for type I error control of multiple tests based on Simes’
critical values) is not valid in general, but “... may well be true for a large family
of multivariate distributions as suggested by [...] simulation studies”. This assertion
is known as the Simes conjecture. An important step towards the characterization of
multivariate distributions for which the Simes conjecture is true was the paper by
Sarkar (1998). He proved that multivariate total positivity of order 2 (MTP2 for short)
among P1, . . . , Pm is sufficient for the validity of (1). This considerably extends the
applicability of ϕLSU to models with dependency, see Benjamini and Yekutieli (2001)
and Sarkar (2002).

Often, the p values P1, . . . , Pm are constructed as distributional transforms (in the
sense of Rüschendorf 2009) of real-valued test statistics T1, . . . , Tm , meaning that

Pi = F(Ti ), 1 ≤ i ≤ m, (2)

where F denotes the (common)marginal cumulative distribution function (cdf) of each
Ti under Hi . This construction is reasonable if each Ti tends to smaller values under
the alternative Ki . A detailed discussion about the interrelation of test statistics and
p values in multiple hypotheses testing is provided in Chapter 2 of Dickhaus (2014).
Assuming F as known, one may equivalently analyze the dependency structure of
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the vector T = (T1, . . . , Tm)� of test statistics instead of that of P = (P1, . . . , Pm)�,
because the right-hand side of (2) is a deterministic transformation of Ti . If, moreover,
F is continuous and strictly increasing, Simes’ inequality can equivalently be stated
in terms of T as

P(T1:m > a1, . . . , Tm:m > am) ≥ 1 − α = 1 − F(am), (3)

where ai = F−1(αi :m), 1 ≤ i ≤ m.
Recently, Block et al. (2013) extended thework by Sarkar (1998) by considering the

multivariate Student’s t distribution. This distribution is highly relevant formany appli-
cations in multiple testing (see, for instance, Hothorn et al. 2008), but unfortunately
does not exhibit MTP2 dependence. Block et al. (2013) derived sufficient conditions
for the validity of (3) in the case that the random vector T = (T1, . . . , Tm)� fol-
lows a multivariate Student’s t distribution; see Theorem 3.1(i) in their paper. Since
the multivariate Student’s t distribution belongs to the broad class of elliptical dis-
tributions (see the monograph by Gupta et al. 2013 for a comprehensive overview)
and the dependence structure among the components of a random vector T which
follows an elliptical distribution is entirely captured by the covariance matrix � of
T and the distribution of the generating variate R of the elliptical distribution, the
results by Block et al. (2013) provoke the question if sufficient conditions on �, R,
and a = (a1, . . . , am)� can be obtained such that (3) is generally valid for such T.
This issue is addressed in the present work.

Remark 1 If Ti tends to larger values under Ki , one typically considers Pi = 1−F(Ti ).
Then, the analog of (3) is given by

P(T1:m ≤ b1, . . . , Tm:m ≤ bm) ≥ 1 − α = F(b1), (4)

where bi = F−1(1 − αm−i+1:m), 1 ≤ i ≤ m. This case has been treated in part
(ii) of Theorem 3.1 by Block et al. (2013). However, as argued by Block et al.
(2013), (4) directly follows from (3) under, respectively, modified conditions on
b = (b1, . . . , bm)�. Therefore, we will mainly consider (3) in the present work.

The rest of the paper is structured as follows. In Sect. 2, we formally define the
class of elliptically contoured distributions and derive some sufficient and necessary
conditions for the validity of Simes’ inequality under such distributions of T. One
application of our results concerns the problem of model misspecification, i.e., the
case that F = � is assumed, where � denotes the cumulative distribution function
(cdf) of the standard normal law, but the actual distribution of T1 is elliptical with
F �= �. It will turn out that non-negativity of the entries of � is crucial for all of
our main results. Thus, for practical purposes, we develop exact confidence regions
for (vectors of) correlation coefficients in Sect. 3, and we compare the powers of the
corresponding tests for non-negativity of correlation coefficients in Sect. 4 by means
of a simulation study. We conclude with a discussion in Sect. 5.
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2 Simes’ inequality under elliptically contoured distributions

Throughout the work, we assume that the vector T of test statistics has an elliptically
contoured distribution.Assuming that the density ofT exists for allm ≥ 1,T possesses
the stochastic representation

T d= RZ, (5)

where R andZ are stochastically independent,Z ∼ Nm(0,�), and R is a non-negative
univariate random variable.We denote this class of distributions byT ∼ Em(0,�, R).

In the class of multivariate normal distributions of T (R ≡ 1), non-negativity of
all entries of � is sufficient for the validity of Simes’ inequality, because it entails
the positive dependent through stochastic ordering (PDS) property; cf. Block et al.
(1985). As mentioned in the introduction, Block et al. (2013) provided conditions
for the validity of Simes’ inequality for the class of multivariate t distributions of T,
where R follows an inverse gamma distribution. These conditions are stronger than the
ones in case of the multivariate normal distribution (see also Sarkar 2008). Namely,
it is required that all non-diagonal elements of � are non-negative (as for the normal
distribution) and, in addition, certain restrictions on a are imposed.

The latter conditions have been derived by Block et al. (2013) by exploiting the
identity

P(T1:m > a1, . . . , Tm:m > am) = 1 − F(am) +
m∑

i=1

m−1∑

j=1

�i, j (T, a), (6)

where

�i, j (T, a) = E

[(
1(Ti ≤ a j+1)

j + 1
− 1(Ti ≤ a j )

j

)

×1(T (−i)
j :m−1 > a j+1, . . . , T

(−i)
m−1:m−1 > am)

]
, (7)

which was presented in Lemma 2.1 of their paper. In (7), 1(A) denotes the indicator
function of set A, and T (−i)

1:m−1 ≤ T (−i)
2:m−1 ≤ · · · ≤ T (−i)

m−1:m−1 are the order statistics
obtained for the vector T after removing Ti . The derivations by Block et al. (2013)
depend on (6) and on specific properties of the multivariate t distribution, hence, they
do not generalize to the class Em(0,�, R).

In Theorem 1, we analyze (6) for broader classes of elliptically contoured distri-
butions. This leads to sufficient conditions on �, a, and R which imply that Simes’
inequality holds.Moreover, we also provide related conditions underwhich the reverse
Simes inequality holds, meaning that the order relation in (3) is in the opposite direc-
tion. To this end, we define for any 1 ≤ j ≤ m − 1 the function G j : (0,∞) → R

by

G j (r) = P
(
Z1 ≤ a j+1

r

)

j + 1
− P

(
Z1 ≤ a j

r

)

j
= �

( a j+1
r

)

j + 1
− �

( a j
r

)

j
. (8)
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Theorem 1 Assume that T ∼ Em(0,�, R) and that a1 ≤ a2 ≤ · · · · ≤ am ≤ 0. Let

A j (R,�, a)

=
∫ ∞

0
P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

|Zi ≤ a j

r

]
G j (r) fR(r)dr.

Then, the following two assertions hold true.

(a) (Sufficient conditions for Simes’ inequality)
If A j (R,�, a) ≥ 0 for all 1 ≤ j ≤ m and � is such that the PDS condition is
satisfied for Z ∼ Nm(0,�), then Simes’ inequality holds for T.

(b) (Sufficient conditions for the reverse Simes inequality)
Assume that � is a diagonal matrix. If A j (R,�, a) ≤ 0 for all 1 ≤ j ≤ m, then
the reverse Simes inequality holds for T. If, furthermore, at least one of the m
inequalities is strict, then the reverse Simes inequality for T is also strict.

Proof To prove the statement of the theorem, it suffices to show that each �i, j (T, a)

is non-negative (part (a)) or non-positive (part (b)), respectively. We note that

�i, j (T, a) = 1

j + 1
P

[
T (−i)
j :m−1 > a j+1, . . . , T

(−i)
m−1:m−1 > am, Ti ≤ a j+1

]

− 1

j
P

[
T (−i)
j :m−1 > a j+1, . . . , T

(−i)
m−1:m−1 > am, Ti ≤ a j

]

=
∫ ∞

0

{
P

(
Zi ≤ a j+1

r

)

j + 1
P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

|Zi ≤ a j+1

r

]

− P
(
Zi ≤ a j

r

)

j
P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

|Zi ≤ a j

r

]}
fR(r)dr.

(9)

To prove part (a), we use that the PDS property for Z implies that (cf. Section 5 in
Block et al. 1985)

P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

|Zi ≤ a j+1

r

]

≥ P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

|Zi ≤ a j

r

]
.

Utilizing this relation in (9), we get that

�i, j (T, a) ≥
∫ ∞

0
P

[
Z (−i)
j :m−1>

a j+1

r
, . . . , Z (−i)

m−1:m−1>
am
r

|Zi ≤ a j

r

]
G j (r) fR(r)dr

= A j (R,�, a),

and our assumption on A j (R,�, a) yields the assertion.
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If � is a diagonal matrix, then the Zi are stochastically independent, leading to

P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

|Zi ≤ a j+1

r

]

= P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

]

= P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

|Zi ≤ a j

r

]
.

Consequently,

�i, j (T, a) =
∫ ∞

0
P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

]
G j (r) fR(r)dr

= A j (R,�, a),

and our assumption on A j (R,�, a) entails the first assertion of part (b). The second
assertion of part (b) follows immediately. ��

Theorem 1 has several interesting applications. First, we recover the previously
mentioned result by Sarkar (2008) and Block et al. (2013).

Corollary 1 (Sarkar 2008; Block et al. 2013) Assume that T follows a centered mul-
tivariate t distribution with dispersion matrix �. Let all non-diagonal elements of �

be non-negative and let a1 ≤ a2 ≤ · · · · ≤ am ≤ 0. If j−1F(a j ) is non-decreasing in
j = 1, . . . ,m, then Simes’ inequality holds for T.

Proof The assertion follows from Theorem 1 by analyzing A j (R,�, a) in an analo-
gous manner as done by Sarkar (2008) in the proof of his Theorem 3.1. ��

Next, we consider another class of elliptically contoured distributions for which
Simes’ inequality or the reverse Simes inequality, respectively, holds. In this class, the
support of R is restricted. To this end, we need the following auxiliary result.

Lemma 1 For each 1 ≤ j ≤ m − 1, the equation G j (r) = 0 has a unique solution
on (0,∞), which we denote by r j .

Proof The first derivative of G j defined in (8) is given by

∂G j (r)

∂r
= φ

( a j+1
r

)

j + 1

(
−a j+1

r2

)
− φ

( a j
r

)

j

(
−a j

r2

)

= − 1

r2

(
φ

(a j+1

r

) a j+1

j + 1
− φ

(a j

r

) a j

j

)
,

where φ denotes the probability density function (pdf) of the standard normal distribu-
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tion. Setting this derivative to zero and solving the equation, we get only one extremal
point of G j with abscissa

r j,max =
√√√√√

a2j − a2j+1

2 log
( −a j /j

−a j+1/( j+1)

) .

Moreover, it holds that
∂G j (r)

∂r > 0 for r ∈ (0, r j,max) and
∂G j (r)

∂r < 0 for r ∈
(r j,max,∞), implying that the extremum is amaximum. Finally, we note thatG j (r) →
0 as r → 0 and

G j (r) → 1

2( j + 1)
− 1

2 j
< 0 as r → ∞.

This completes the proof. ��
Corollary 2 Let T ∼ Em(0,�, R) and assume that a1 ≤ a2 ≤ · · · · ≤ am ≤
0. Let (r j )1≤ j≤m−1 be as in Lemma 1. Define r̄ = min1≤ j≤m−1{r j } and r =
max1≤ j≤m−1{r j }.
(a) (Sufficient conditions for Simes’ inequality)

If all non-diagonal elements of � are non-negative and P(0 ≤ R ≤ r̄) = 1, then
Simes’ inequality holds for T.

(b) (Sufficient conditions for the reverse Simes inequality)
If � is a diagonal matrix and P(r ≤ R ≤ ∞) = 1, then the reverse Simes
inequality holds for T.

Proof To prove part (a), we notice that our assumptions and the curvature of the
functions G j which we have discussed in Lemma 1 imply that

�i, j (T, a) =
∫ r̄

0
P

[
T (−i)
j :m−1 >

a j+1

r
, . . . , T (−i)

m−1:m−1 >
am
r

|Ti ≤ a j

r

]
G j (r) fR(r)dr

≥ 0.

Furthermore, recall from the proof of Theorem 1 that under the conditions of part
(b) we have

�i, j (T, a) =
∫ ∞

r
P

[
Z (−i)
j :m−1 >

a j+1

r
, . . . , Z (−i)

m−1:m−1 >
am
r

]
G j (r) fR(r)dr.

Now, the curvature of G j leads to G j (r) ≤ 0 for all 1 ≤ j ≤ m − 1 under the
assumptions of part (b), completing the proof. ��

Corollary 2 can be used to analyze the effect of model misspecification on the
validity of Simes’ inequality or the reverse Simes inequality, respectively. Namely,
consider a j = �−1( jα/m) for 1 ≤ j ≤ m. In view of the discussion around (3),
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these constants correspond to the assumption that F = �. Corollary 3 analyzes the
effect of making this assumption, while the true distribution of T is elliptical, but
non-Gaussian.

Corollary 3 Assume thatT ∼ Em(0,�, R) and let a j = �−1( jα/m), j = 1, . . . ,m.

(a) (Sufficient conditions for Simes’ inequality)
If all non-diagonal elements of � are non-negative and P(0 ≤ R ≤ 1) = 1, then
Simes’ inequality holds for T.

(b) (Sufficient conditions for the reverse Simes inequality)
If � is a diagonal matrix and P(1 ≤ R ≤ ∞) = 1, then the reverse Simes
inequality holds for T.

Proof For the vector a = (a1, . . . , am)�, we have r j = 1 for all j ∈ {1, 2, . . . ,m−1}.
Hence, r̄ = r = 1 and the assertion follows from Corollary 2. ��
Remark 2 The reasoning of Theorem 1 and Corollaries 1–3 can also be applied to the
analog of Simes’ inequality considered in Remark 1. For example, we get that

P(T1:m < b1, . . . , Tm:m < bm) ≥ F(b1)

if 0 ≤ b1 ≤ b2 ≤ · · · ≤ bm , all elements of � are non-negative, and P(0 ≤ R ≤
r̄b) = 1, where r̄b = min1≤ j≤m−1{r j,b} and r j,b is the unique solution of

1 − �
(
bm− j
r

)

j + 1
−

1 − �
(
bm− j+1

r

)

j
= 0.

3 Exact tests on vectors of correlation coefficients

In practical applications of multiple testing, the joint distribution of test statistics is
often not known exactly, even under the global hypothesis. As mentioned in Sect.
1, we make the general assumption that the common marginal cdf F of each test
statistic under the respective null hypothesis is specified. This implies that conditions
imposed on the quantile function F−1 (as in the case of the multivariate t distribution;
see Corollary 1) as well as conditions imposed on the support of the distribution of
R (cf. Corollary 2) can be checked straightforwardly. However, the correlation (or
covariance) matrix is often an unknown nuisance parameter. As a result, the non-
negativity of its non-diagonal elements (a sufficient condition for Simes’ inequality
which appeared throughout Sect. 2) cannot be checked analytically and has to be
tested. This is the motivation to deal with the latter problem in this section.

First, we derive a test under the assumption of normality. To this end, we assume
that a data matrix X = (X1, . . . , Xn) ∈ R

m×n is available from which the vector T of
test statistics is computed. Let X ∼ Nm,n(μ1�

n ,� ⊗ In) (m × n-dimensional matrix-
variate normal distribution with mean matrix μ1�

n and covariance matrix � ⊗ In),
where 1n denotes the n-dimensional vector of ones and In is the n × n-dimensional
identitymatrix. For clarity of exposition,we introduce the following assumptionwhich
connects � with the covariance matrix of T.
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Assumption 1 There exists a constant γ ∈ (0,∞) such that Cov(T) = γ�.

Assumption 1 justifies our slight abuse of notation (the symbol � was used to
denote the covariance matrix of T in Sect. 2).

Remark 3 Assumption 1 is for instance fulfilled if T is the vector of row-wise means
of X (with γ = 1/n). However, in other practical applications, it is often violated. In
asymptotic considerations (n → ∞), one can relax Assumption 1 and only assume
that Cov(T) = h(�), where h : R

m×m → R
m×m is a known deterministic function.

Application of the Delta method then leads to asymptotic analogs of our proposed
tests.

The covariance matrix � is estimated by its empirical counterpart

S̃ = 1

n − 1

n∑

i=1

(Xi − X̄)(Xi − X̄)� with X̄ = 1

n

n∑

i=1

Xi .

It holds that S = (n − 1)S̃ ∼ Wm(n − 1,�) for n ≥ m + 1 (cf. Muirhead 1982),
where the symbolWm(n−1,�) denotes them-dimensional Wishart distribution with
n − 1 degrees of freedom and covariance matrix �. Moreover, it holds that S and
X̄ are stochastically independent; see, e.g., Theorem 3.1.2 in Muirhead (1982). Our
proposed tests rely on S.

Let us consider the problem of simultaneous testing for non-negativity of all non-
diagonal elements of� in a given column i . This condition ensures positive regression
dependency of X1 on the subset (PRDS) I0 = {i} in the sense of Benjamini and
Yekutieli (2001). If Z in the stochastic representation of T in (5) is PRDS on {i} for
any 1 ≤ i ≤ m, then Z fulfills the PDS property used in the proof of Theorem 1. This
is indicated in the discussion on page 1173 in Benjamini and Yekutieli (2001), see also
Condition 1.1 by Sarkar (2008). The advantage of column-wise testing is that exact
tests can be derived which do not depend on unknown model parameters and can be
applied to any matrix-variate elliptical distribution of X.

For given index 1 ≤ i ≤ m, we are thus interested in testing

H<
i : σi j < 0 for at least one 1 ≤ j ≤ m, j �= i versus K<

i : σ i ≥ 0, (10)

whereσ i = (σi1, . . . , σi,i−1, σi,i+1, . . . , σim)�. The test problem in (10) canbe solved
by constructing a confidence region in R

m−1 for the standardized version of σ i . Fol-
lowing Aitchison (1964), we exploit the duality of tests and confidence regions and
consider the (auxiliary) family of point hypotheses

H (δ)
i : σ−1

i i σ i = δ versus K (δ)
i : σ−1

i i σ i �= δ, δ ∈ R
m−1. (11)

Let sii be the i th diagonal element of S, let si denote the i th column of S without
sii , and let S(i i) stand for S without its i th row and i th column. We denote Vi =
S(i i) − si s�

i /sii . For testing (11) we consider the test statistic
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Q(δ)
i = Q(δ)

i (X) = n − m

m − 1

(
si
sii

− δ

)�
V−1
i

(
si
sii

− δ

)
sii .

Let �(i i) be obtained from � by deleting its i th row and i th column and let �i =
�(i i) − σ iσ

�
i /σi i . In Theorem 2, we derive the distribution of Q(δ)

i both under H (δ)
i

and under K (δ)
i .

Theorem 2 Let X ∼ Nm,n(μ1�
n ,� ⊗ In).

(a) Under H (δ)
i it holds that Q(δ)

i ∼ Fm−1,n−m.

(b) Let ϑ i ∈ K (δ)
i . Then, the pdf of Q(δ)

i under ϑ i is given by

f
Q(δ)
i

(x) = fm−1,n−m(x)

(1 + λi )(n−1)/2 2F1

(
n − 1

2
,
n − 1

2
; m − 1

2
; λi

(1 + λi )

m−1
n−m x

1 + m−1
n−m x

)
,

where
λi = σi i (ϑ i − δ)��−1

i (ϑ i − δ). (12)

Proof Applying Theorem 3.2.10 byMuirhead (1982), we get that sii ∼ W1(n−1, σi i )
(i. e., sii/σi i ∼ χ2

n−1), Vi ∼ Wm−1(n − 2,�i ),

si |sii ∼ Nm−1

(
σ i

sii
σi i

, sii�i

)
,

and that Vi is stochastically independent of sii and si .
Now, we consider the representation

Q(δ)
i = n − m

m − 1

(
si
sii

− δ

)�
V−1
i

(
si
sii

− δ

)

(
si
sii

− δ

)�
�−1

i

(
si
sii

− δ

)
(

si
sii

− δ

)�
�−1

i

(
si
sii

− δ

)
sii .

Because Vi is stochastically independent of sii and si , application of Theorem
3.2.12 of Muirhead (1982) leads to

(
si
sii

− δ

)�
�−1

i

(
si
sii

− δ

)

(
si
sii

− δ

)�
V−1
i

(
si
sii

− δ

) ∼ χ2
n−m, (13)

where the latter statistic is stochastically independent of sii and si .
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Since σ−1
i i σ i = δ under H (δ)

i , we have

(
si
sii

− δ

)�
�−1

i

(
si
sii

− δ

)
sii ∼ χ2

m−1 (14)

in this case. Noticing that the statistic in (14) depends only on sii and si , the assertion
of part (a) follows by combining (13) and (14).

For proving part (b), we use that

(
si
sii

− δ

)�
�−1

i

(
si
sii

− δ

)
sii |sii = y ∼ χ2

m−1(yλ̃i ), (15)

where λ̃i = σ−1
i i λi with λi defined in (12). Hence, from (13) and (15), we get

Q(δ)
i |sii = y ∼ Fm−1,n−m(yλ̃i ).

Making use of sii/σi i ∼ χ2
n−1 yields that

f
Q(δ)
i

(x) = 1

2(n−1)/2σ
(n−1)/2
i i �

( n−1
2

)

×
∫ ∞

0
y(n−1)/2−1 exp

(
−1

2

(
y

σi i

))
fFm−1,n−m(yλ̃i )

(x)dy.

Let fm−1,n−m denote the pdf of the Fm−1,n−m distribution. Application of Theorem
1.3.6 in Muirhead (1982) leads to

f
Q(δ)
i

(x) = fm−1,n−m(x)

2(n−1)/2σ
(n−1)/2
i i �

( n−1
2

)
∫ ∞

0
y(n−1)/2−1 exp

(
−1

2
(σ−1

i i + λ̃i )y

)

× 1F1

(
n − 1

2
; m − 1

2
; 1
2

m−1
n−m x

1 + m−1
n−m x

λ̃i y

)
dy.

The last integral can be evaluated using Lemma 1.3.3 ofMuirhead (1982), yielding

f
Q(δ)
i

(x) = fm−1,n−m(x)

(1 + σi i λ̃i )(n−1)/2

× 2F1

(
n − 1

2
,
n − 1

2
; m − 1

2
; λ̃i

(σ−1
i i + λ̃i )

m−1
n−m x

1 + m−1
n−m x

)
.

Noting that λi = σi i λ̃i completes the proof of Theorem 2. ��
Corollary 4 For each 1 ≤ i ≤ m, the following assertions hold true.

(a) The test ϕ
(δ)
i = 1{Q(δ)

i > cα} is a level α test for H (δ)
i versus K (δ)

i , where
cα = Fm−1,n−m;1−α .
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(b) The set Cα,i = {δ ∈ R
m−1 : Q(δ)

i ≤ cα} constitutes a (1 − α)-confidence region
for σ−1

i i σ i .
(c) The hypothesis H<

i can be rejected at significance level α if H<
i ∩ Cα,i = ∅.

Proof Part (a) is an immediate consequence of part (a) in Theorem 2. Parts (b) and
(c) follow from Section 1 by Aitchison (1964). ��

Next, we extend the results obtained for the normal distribution of X to the family
of elliptically contoured distributions.

Theorem 3 Assume thatX ∼ Em,n(μ1�
n ,�⊗In, R) (matrix-variate elliptically con-

toured distributed with location matrix μ1�, scale matrix � ⊗ In and generating
variable R) with P(X = μ1�

n ) = 0. Let n > m and Y ∼ Nm,n(μ1�
n ,� ⊗ In). Then,

for any 1 ≤ i ≤ m and any δ ∈ R
m−1, the distribution of Q(δ)

i (X) is the same as the

distribution of Q(δ)
i (Y), i.e., these distributions do not depend on R.

Proof We only provide the proof of part (a) and note that the results of part (b) are
obtained in the same way.

Let A = In − 1n1�
n . Then, the sample covariance matrix for a data matrix Y is

calculated by S̃(Y) = 1
n−1YAY�. First, note that S̃(Y) = S̃(Y −μ1�

n ) and, therefore,
without loss of generality, we can assume μ = 0.

Clearly, if Y ∈ R
m×n and a > 0, then aY ∈ R

m×n as well. Furthermore, if
Y ∈ R

m×n and a > 0, then obviously, Q(δ)
i (aY) = Q(δ)

i (Y). Now, applying Theorem

5.12 of Gupta et al. (2013) with K = Q(δ)
i , we obtain the assertion of Theorem 3. ��

Finally, consider the problem of testing all non-diagonal elements in � simultane-
ously for non-negativity. This condition entails the PDS property of Z. The alternative
hypothesis that all non-diagonal elements in � are simultaneously non-negative can
be expressed as K< = ⋂m−1

i=1 K<
i , with corresponding null hypothesis given by

H< = ⋃m−1
i=1 H<

i . Let for each 1 ≤ i ≤ m − 1 the test ϕ<
i be defined via the

decision rule given in part (c) of Corollary 3.1. Then, a test for H< versus K< is
defined by

ϕ< =
m−1∏

i=1

ϕ<
i , (16)

meaning that we reject H< iff all H<
i are rejected for 1 ≤ i ≤ m − 1.

Theorem 4 Let X be distributed as in Theorem 3. Then, the test ϕ< has level α.

Proof Assume that� is such that H< holds true. This means that at least one H<
i must

hold true. Let i∗ denote one of the indices for which H<
i∗ is true. Then, the rejection

probability of ϕ<
i∗ under this � is bounded by α due to Corollary 4. But, the rejection

event of the test ϕ< is a subset of the rejection event of ϕ<
i∗ . Thus, its probability under

the considered � is bounded by α. ��
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Remark 4 If one is only interested in testing H< versus K<, one may consider the
modified pairs of hypotheses

H̃<
i : σ j i < 0 for at least one i < j ≤ m versus

K̃<
i : σ j i ≥ 0 for all i < j ≤ m, (17)

where 1 ≤ i ≤ m − 1, because it still holds that K< = ⋂m−1
i=1 K̃<

i .
Let L = [0 Im−i ] be a (m − i) × (m − 1) matrix of zeros and ones. Then, the

(auxiliary) family of point hypotheses pertaining to (17) is given by

H̃ (δ)
i : σ−1

i i Lσ i = δ versus K̃ (δ)
i : σ−1

i i Lσ i �= δ, δ ∈ R
m−i (18)

for i = 1, . . . ,m − 1. For testing (18), we construct the test statistic

Q̃(δ)
i = n − m

m − i

(
Lsi
sii

− δ

)�
(LViL)−1

(
Lsi
sii

− δ

)
sii . (19)

In analogy to the proof of Theorem 2, the distribution of Q̃(δ)
i can be derived both

under H̃ (δ)
i and under K̃ (δ)

i . In particular, under H̃ (δ)
i , it holds that Q̃(δ)

i ∼ Fm−i,n−m .

Consequently, the test ϕ̃
(δ)
i = 1{Q̃(δ)

i > Fm−i,n−m;1−α} is a level α test for H̃ (δ)
i

versus K̃ (δ)
i . Exploiting again the duality of tests and confidence regions, the test for

H̃<
i versus K̃<

i is defined according to the decision rule in part (c) of Corollary 4.
Finally, a test ϕ̃< for H< versus K< is obtained as in (16), i.e., H< is rejected iff all
H̃<
i are rejected.

4 Simulation study

In this section, we study the power functions of the two tests on non-negativity of
correlation coefficients suggested in Sect. 3. In Theorem 3, we proved that the distrib-
ution of the test statistic Q(δ)

i does not depend on the type of elliptical distribution. For
this reason and for convenience, we simulated samples of size n ∈ {150, 250} from
the m-variate normal distribution, m ∈ {10, 20}, with mean vector zero and covari-
ance matrix � = (1 − ρ)Ip + ρ1p1�

p , where ρ ∈ [0, 0.5]. The results are based on
B = 10,000 independent Monte Carlo repetitions.

In case of ϕ<, the empirical power of the test is defined as the relative frequency
of Monte Carlo simulation runs in which all the confidence sets Cα,i , i = 1, . . . ,m,
defined in Corollary 4 are contained in R

m−1+ , i.e.,

p̂ower(ϕ<) = 1

B

B∑

b=1

m∏

i=1

1(C(b)
α,i ⊆ R

m−1+ ), (20)

where C(b)
α,i is the confidence region in the bth simulation run. In the analogous way,

we define the empirical power of the test ϕ̃<.

123



228 T. Bodnar, T. Dickhaus

The condition Cα,i ⊆ R
m−1+ appearing in (20) means that the ellipsoid {Q(δ)

i ≤ cα}
with cα = Fm−1,n−m;1−α lies inside R

m−1+ . This condition is checked in two steps:

– Check if the central point of {Q(δ)
i ≤ cα} lies in R

m−1+ , i. e., if all components of
si are non-negative.

– If the first condition is fulfilled, then check if the ellipsoid {Q(δ)
i ≤ cα} does not

intersect the axes. The latter condition is equivalent to

(
s(− j)
i

)� (
V− j
i

)−1 (
s(− j)
i

)

s2i i
− cα

sii
≥ 0 for j = 1, . . . ,m − 1,

where s(− j)
i is obtained from si by deleting its j th element and, similarly, V− j

i is
obtained from Vi by deleting its j th column and its j th row.

In Fig. 1, we present the results of the simulation study. The solid lines correspond
to ϕ<, whereas the dashed lines refer to ϕ̃<. We observe that already for ρ = 0.3 the
empirical powers of both tests approach one, meaning that the decision in favor of the
alternative hypothesis of non-negative correlations is taken with probability close to
one. The multiple test ϕ̃< is slightly more powerful than ϕ<. The difference between
the empirical powers of the two tests becomes larger for larger values ofm. If n equals
250, then the empirical powers of the tests approach one already for ρ = 0.2.

m = 10, n = 150 m = 10, n = 250
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Fig. 1 Empirical powers of the tests ϕ< and ϕ̃< in case of � = (1 − ρ)Ip + ρ1p1�
p as functions of

ρ ∈ [0, 0.5] for m ∈ {10, 20} and n ∈ {150, 250}
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5 Discussion

We have provided necessary and sufficient conditions for the validity of Simes’
inequality in the broad class of elliptically contoured distributions. Our sufficient con-
ditions can be checked in practice by means of the cdf F of T1 under the null, together
with the tests on � that we have derived in Sect. 3. Our necessary conditions (i.e.,
the sufficient conditions for the validity of the reverse Simes inequality) contribute
to a characterization of classes of multivariate probability distributions for which the
Simes conjecture is true. The latter problem is still an active area ofmultiple test theory,
not least because of its practical relevance due to the popularity of ϕLSU. For exam-
ple, Läuter (2013) conjectured, based on extensive computer simulations, that Simes’
inequality is always valid in applications of the two-sided F or Beta test to normally
distributed data with any covariance matrix �. In contrast, part (b) of our Theorem 1
shows that conditions on � are necessary for the validity of Simes’ inequality in the
broader class Em(0,�, R). Further counterexamples (in non-elliptical models) have
been presented by Finner and Strassburger (2014).

Furthermore, our tests on non-negativity of correlation coefficients are contributions
tomultivariate analysis of independent value. It is well known (see, e.g., Theorem5.1.8
in Muirhead 1982) that a uniformly most powerful test for the one-sided hypothesis
about a single population correlation coefficient ρi j (say) with corresponding pair of
indices (i, j) in the vector X1 can be based on the test statistic

Qi j = √
n − 2

r ji√
1 − r2j i

,

where r ji = s ji/
√
sii s j j is the corresponding sample correlation coefficient. Under

ρi j = 0, Qi j follows a central univariate Student’s t distribution. However, the joint
distribution of several of the Qi j , which is needed for multiple test problems regarding
several ρi j simultaneously, is not pivotal, because the dependency structure among the
Qi j depends on unknown model parameters. Therefore, Westfall and Young (1993,
pp. 194–199) have considered resampling-based approaches which reproduce this
unknown dependency structure at least asymptotically as n → ∞. In contrast, the
exact tests developed in Sect. 3 are non-asymptotic and distribution free for any sample
size n.

Acknowledgements The authors are grateful to the Chief Editor Professor Kenji Fukumizu and two
anonymous reviewers for their careful reading of the paper and for constructive suggestions which have
lead to an improvement of the presentation.
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