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Abstract The bent line quantile regression describes the situation where the con-
ditional quantile function of the response is piecewise linear but still continuous in
covariates. In some applications, the change points at which the quantile functions are
bent tend to be the same across quantile levels or for quantile levels lying in a certain
region. To capture such commonality, we propose a composite estimation procedure to
estimate model parameters and the common change point by combining information
across quantiles. We establish the asymptotic properties of the proposed estimator,
and demonstrate the efficiency gain of the composite change point estimator over that
obtained at a single quantile level through numerical studies. In addition, three differ-
ent inference procedures are proposed and compared for hypothesis testing and the
construction of confidence intervals. The finite sample performance of the proposed
procedures is assessed through a simulation study and the analysis of a real data.
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1 Introduction

In conventional regressionmodels, the response is oftenmodeled as a single parametric
function on the whole domain of the predictors. However, in some applications, this
assumption of the stability of the regression coefficients is not satisfied, and instead it
is more appropriate to consider a threshold model with a change point at an unknown
threshold in one covariate; see Vieth (1989), Pastor and Guallar (1998) and Fiteni
(2004). In this paper, we focus on a special case of the threshold model, the bent line
regression, also referred to as broken line regression or segmented linear regression
model. In bent line regression, the regression function has different linear forms in
different regions of the threshold covariate with continuity at the change point. One
can refer to Feder (1975), Chappell (1989), Muggeo (2003) and Li et al. (2011) for a
comprehensive review and various applications.

Numerous work has been done for the estimation and hypothesis testing in
segmented regression models. For example, Robinson (1964) discussed maximum
likelihood estimation with and without constraints on the change point assuming a
normal distribution. Feder (1975) studied the asymptotic distribution theory in seg-
mented least squares regression. Liu et al. (1997) studied multiple-segment least
squares regression, where a modified Schwarz criterion was used to determine the
number of segments. Chan and Tsay (1998) studied the limiting properties of least
squares estimator in a two-phase threshold autoregressive model, which includes bent
line regression as a special case. Muggeo (2003) developed an iterative estimation
algorithm based on a simple linearization technique for fitting the piecewise terms
in regression models with unknown change points. Liu and Qian (2010) proposed an
empirical likelihood method for hypothesis testing and estimation in a two-phase seg-
mented least squares regression model. Kosorok and Song (2007) studied estimation
and hypothesis testing for segmented transformation models applied to right censored
survival data.

Most existing work for segmented regression focused on modeling the mean func-
tion of the response variable. However, in some applications such as the studies of
blood pressure and birth weight, the upper or lower quantiles of the response vari-
able are of more scientific interest. Quantile regression, first developed by Koenker
and Bassett (1978), provides a natural and flexible way to capture the relationship
between the response and covariates at different locations of the response distribution.

There exists limited work for quantile regression with change points. Su and Xiao
(2008), Qu (2008) and Oka and Qu (2011) discussed the hypothesis testing and esti-
mation of change points in quantile regression for time series data, where the structural
change of the regression function is due to time change instead of covariate thresh-
old effect. Lee et al. (2011) developed a sup-likelihood-ratio-type method and Zhang
et al. (2014) developed a sup-score-type method for testing the existence of a covari-
ate threshold effect in regression models including quantile regression. Galvao et al.
(2014) developed a uniform test based on the supremumof theWald process for testing
the linearity against threshold effects in quantile regression. Li et al. (2011) proposed
a change point estimation approach for bent line quantile regression, where the change
point is estimated at each given quantile level separately. The maximal running speed
example in Li et al. (2011) suggested that the structural changes can be heterogenous
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Composite change point estimation for bent line quantile regression 147

in the sense that the changes in the regression slopes may have different magnitudes at
different quantiles, but they appeared to occur around the same location across quan-
tiles. In such situations, it is more informative to consider joint modeling of multiple
quantiles.

In this paper, we propose a composite change point estimator for bent line quan-
tile regression, where information from a range of quantiles is combined to estimate
the common change point. Compared to the literature, this paper has the following
main contributions. First, by accommodating the commonality of change points, the
proposed joint modeling of multiple quantiles often leads to more efficient estimation
than themethod based on a single quantile level (Li et al. 2011). To our knowledge, this
is the first time that a composite estimator is considered for bent line quantile regres-
sion. Second, by adopting noncrossing constraints, the proposed method ensures that
the estimated conditional quantile functions are nondecreasing in the quantile level.
Third, besides establishing the asymptotic properties of the proposed change point and
quantile coefficient estimators, we also develop and compare three approaches, Wald-
type, bootstrap and rank-score-based, for hypothesis testing and confidence interval
construction.

The rest of the paper is organized as follows. In Sect. 2, we describe the proposed
composite change point estimator obtained by joint modeling of multiple quantiles for
bent line regression. In addition, we present the asymptotic properties of the proposed
estimator, and discuss three hypothesis testing procedures. The finite sample perfor-
mance of the proposed method is investigated through a simulation study in Sect. 3
and the analysis of a blood pressure data set in Sect. 4. All the technical proofs are
given in the “Appendix”.

2 Estimating the common change point

2.1 Model and the proposed estimation method

Let Y be the response variable of interest. In addition, let X be the univariate threshold
variable, and Z be a q-dimensional vector of covariates. Denote W = (X,ZT )T .
Throughout the paper, we assume that the threshold variable X has a bounded support
[M1, M2], where M1 < M2 are constants. At any given quantile level τ ∈ (0, 1), the
τ th conditional quantile of Y givenW is defined as QY (τ |W) = F−1(τ |W) = inf{t :
F(t |W) ≥ τ }, where F(·|W) is the conditional distribution function of Y given W.

Suppose that the threshold variable X has segmented effects on the quantiles of Y
in the interval T = [ω1, ω2] with 0 < ω1 < ω2 < 1. We consider the following bent
line quantile regression model

QY (τ ; ητ,0, u0|W) = ατ,0 + β1,τ,0(X − u0)I (X ≤ u0)

+β2,τ,0(X − u0)I (X > u0) + ZT γ τ,0, for τ ∈ T , (1)

where ητ,0 = (ατ,0, β1,τ,0, β2,τ,0, γ
T
τ,0)

T , u0 ∈ (M1, M2) is the unknown change
point, ατ,0 is the baseline intercept, β1,τ,0 �= β2,τ,0 are the coefficients of X before
and after the change point, and γ τ,0 is the effect of Z. In Model (1), the covariate
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effects are allowed to vary at different quantiles, but the change point is assumed to
be the same for all τ ∈ T . If T = (0, 1), the model implies that the change point is a
constant across all quantile levels.

Suppose we observe a random sample {(Yi , Xi ,Zi )}ni=1 of (Y, X,Z). Let τ1 ≤
· · · ≤ τK be a set of quantile levels in T . Denote ηk = (ατk , β1,τk , β2,τk , γ

T
τk

)T for
k = 1, . . . , K , η = (ηT

1 , . . . , ηT
K )T and θ = (ηT , u)T . Define

Sn(η, u) = n−1
K∑

k=1

n∑

i=1

ρτk {Yi − QY (τk; η, u|Wi )}, (2)

where ρτ (v) = v{τ − I (v < 0)} is the quantile loss function, and I (·) is the indicator
function. Throughout, let θ0 denote the true value of θ , we propose to estimate θ0 by

θ̂ = (η̂
T
, û)T = argmin

η∈B,u∈(M1,M2)

Sn(η, u), (3)

where B ⊂ RK (q+3) is a compact set.
Different from the quantile-specific estimator in Li et al. (2011), our proposed

change point estimator is obtained by combining information across quantiles. From
now on, we refer to the proposed change point estimator û as the composite change
point estimator. Composite estimators have been considered in different settings for
models without change points; see for instance Zou and Yuan (2008), Kai et al. (2010,
2011), Jiang et al. (2012, 2013). When the change point is indeed constant, the com-
posite change point estimator often leads to higher efficiency than the quantile-specific
estimator.

Similar to Chan and Tsay (1998) and Li et al. (2011), we solve the minimization
problem in (3) using a two-stage profile procedure. First, define the profile estimator
of η at a given candidate u as

η̂(u) = argmin
η∈B

Sn(η, u). (4)

For analysis at multiple quantiles, the estimated quantile curves may cross, yielding
a larger quantile estimate at a lower quantile than that at an upper quantile. Quantile
crossing issues have been discussed in He (1997), Dette and Volgushev (2008),
Chernozhukov et al. (2010), Bondell et al. (2010), among others, for regressionmodels
without change points. To avoid quantile crossing, we adopt the noncrossing constraint
of Bondell et al. (2010) in the estimation of η(u) using the R function at http://www4.
stat.ncsu.edu/~hdbondel/Software/NoCross.

In the second stage, the common change point u0 can be estimated by

û = argmin
u∈[M1+ε1,M2−ε2]

Sn{η̂(u), u},

where ε1 and ε2 are two small positive constants. The trimming parameters ε1 and ε2
are included to avoid searching u on the boundaries of X , which corresponds to the
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regression model with no structural changes and thus the change point is not identifi-
able. The final estimator of θ is obtained by θ̂ = (η̂(û)T , û)T . With the noncrossing
constrained estimator of η(u), the proposed estimation procedure ensures that the esti-
mated quantile function QY (τ ; η̂(u), u|Wi ) is nondecreasing in τ at any candidate u
and thus at û. In addition, the asymptotic properties of the estimator θ̂ are not affected
by the noncrossing constraints.

In practice, we need to choose T and τk, k = 1, · · · , K . The interval T is often
determined given the problem of interest. In our context, we also need to carry out
hypothesis testing to assess the constancy of change points across quantiles in T . The
Wald-type test suggested in Li et al. (2011) for general linear hypothesis testing can
be adapted for this purpose. Once T is determined, the quantile levels τk can be cho-
sen uniformly spaced within T . For linear quantile regression without change points,
Koenker (1984) showed that as K → ∞, the optimally weighted composite quan-
tile regression estimator can achieve the same efficiency as the maximum likelihood
estimator. However, a larger number of K is associated with higher computational
cost as more unknown parameters are involved. Evidence from our empirical studies
suggests that letting K ≥ 9 often gives little additional efficiency gain; see a detailed
sensitivity analysis in Sect. 3.

2.2 Asymptotic properties

We first introduce some notations. Denote η̂k = (α̂τk , β̂1,τk , β̂2,τk , γ̂
T
τk

)T and η̂ =
(η̂

T
1 , . . . , η̂

T
K )T . Let ηk,0 = (ατk ,0, β1,τk ,0, β2,τk ,0, γ

T
τk ,0

)T , η0 = (ηT
1,0, . . . , ηT

K ,0)
T

and θ0 = (ηT
0 , u0)T denote the corresponding true parameter vectors. Throughout the

paper, we use ‖z‖ to denote the Euclidean norm of any vector z. Furthermore, define

Cn = n−1
K∑

j=1

K∑

k=1

n∑

i=1

{min(τ j , τk) − τ jτk}E{h j (Wi ; θ0)hTk (Wi ; θ0)}, (5)

and

Dn = n−1
K∑

k=1

n∑

i=1

∂

∂θ
E

[
ψτk {Yi − QY (τk; θ |Wi )}hk(Wi ; θ)

] ∣∣∣
θ=θ0

,

where hk(Wi ; θ) = (0T(k−1)(q+3),m
T (Wi ; u), 0T(K−k)(q+3),−β1,τk I (Xi ≤ u) −

β2,τk I (Xi > u))T ,m(Wi ; u) = (1, (Xi − u)I (Xi ≤ u), (Xi − u)I (Xi > u),ZT
i )T ,

ψτ (v) = τ − I (v ≤ 0), and 0q is a q-dimensional vector of zeros.
To establish the asymptotic distribution of the proposed estimator, we make the

following assumptions.

A1 For each i = 1, . . . , n and k = 1, . . . , K , Fi ≡ F(·|Wi ) has a continuous density
fi (·) that is uniformly bounded away from 0 and ∞ at the points F−1(τk |Wi ).

A2 The density function of Xi is continuous with a compact support [M1, M2].
A3 E(‖Zi‖3) is bounded.
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A4 There exist two positive definite matrices C and D such that limn→ ∞ Cn = C
and limn→∞ Dn = D.

Assumption A1 is standard in quantile regression. Assumptions A2–A3 give some
conditions on the covariates. Assumptions A1–A3 are needed to show the consistency
of θ̂ . Assumption A4 is an additional condition needed to establish the asymptotic
normality of θ̂ .

The following theorem states the asymptotic normality of the proposed estimator
of θ0.

Theorem 1 Suppose that Model (1) and Assumptions A1–A4 hold, as n → ∞, we
have

n1/2(θ̂ − θ0)
d−→ N (0,�),

where � = D−1CD−1.

2.3 Construction of confidence intervals

In this section,we propose three different procedures for constructing confidence inter-
vals of elements of θ0, includingWald-type, bootstrap and rank-score-based methods.
The Wald-type and rank-score-based methods are large-sample inference procedures,
while the performance of the former method is more sensitive to the estimation of the
error density function in finite samples.

2.3.1 Wald-type method

Based on the asymptotic normality in Theorem 1, an asymptotic confidence interval
for any element of θ0 can be constructed by directly estimating the covariance matrix
� = D−1CD−1. The matrix C can be estimated consistently by

Ĉn = n−1
K∑

j=1

K∑

k=1

n∑

i=1

{min(τ j , τk) − τ jτk}h j (Wi ; θ̂)hTk (Wi ; θ̂).

The estimation of D is more complicated, since the matrix involves the unknown
error densities fi {QY (τk; θ0|Wi )}, k = 1, . . . , K . Adopting the difference quotient
idea in Hendricks and Koenker (1992), we propose to estimate fi {QY (τk; θ0|Wi )} by

f̂i {QY (τk; θ0|Wi )} = 2�n,k

QY (τk + �n,k, θ̂ |Wi ) − QY (τk − �n,k, θ̂ |Wi )
, (6)

where �n,k is a bandwidth parameter going to zero as n −→ ∞, and QY (τk ±
�n,k; θ̂ |Wi ) are the estimated (τk ±�n,k)th conditional quantiles of Yi . In our empir-
ical studies, following the suggestion in Hall and Sheather (1988) we choose �n,k

based on Edgeworth expansions of studentized quantiles by
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Composite change point estimation for bent line quantile regression 151

�n,k = 1.57n−1/3(1.5φ2{−1(τk)}/[2{−1(τk)}2 + 1])2/3,

where φ and  are the density and distribution functions of the standard normal
distribution.

Therefore, D can be consistently estimated by

D̂n =
(

− D̂n11 D̂n12

D̂
T
n12 −D̂n22

)
,

where D̂n11 = diag( D̂n11,1, . . . , D̂n11,K ) with D̂n11,k = n−1 ∑n
i=1 f̂i {QY (τk; θ0

|Wi )}m(Wi ; û)mT (Wi ; û), D̂n12 = ( D̂
T
n12,1, . . . , D̂

T
n12,K )T with D̂n12,k = n−1

∑n
i=1 f̂i {QY (τk; θ0|Wi )}{β̂1,τk I (Xi ≤ û) + β̂2,τk I (Xi > û)}m(Wi ; θ̂) and D̂n22 =

n−1 ∑K
k=1

∑n
i=1 f̂i {QY (τk; θ0|Wi )}{β̂2

1,τk
I (Xi ≤ û) + β̂2

2,τk
I (Xi > û)}.

2.3.2 Bootstrap method

The Wald-type method is easy to implement, but its finite sample performance could
be sensitive to the choice of bandwidth �n,k ; see for instance in Kocherginsky et al.
(2005) for comparison of different inference methods for linear quantile regression.
Our simulation study in Sect. 3 shows that the directly estimated variance tends to be
underestimated in small samples for the scenarios considered, leading to confidence
intervals with coverage lower than the nominal level.

We consider a simple paired bootstrap method (Freedman (1981)). The method
works by first resampling the paired observations {(Yi ,Wi )}ni=1 with replacement, and

then calculating the bootstrap estimator {θ̂∗
b, b = 1, . . . , B} based on the bootstrap

samples, where B is the number of bootstrap repetition. The confidence interval for
any element of θ0 can then be constructed by the sample percentiles of the bootstrap
estimates.

2.3.3 Rank score test

The direct variance estimation method involves estimating the unknown conditional
density functions, while the bootstrap method is computationally intensive. In linear
quantile regression, rank score test was shown to be a stable alternative inference
procedure; see for instance Gutenbrunner et al. (1993), Koenker (1994), Chen and
Wei (2005), Kocherginsky et al. (2005), Wang and He (2007) and Wang et al. (2009).

We adapt the rank score method to inference for bent line quantile regression. We
focus on constructing confidence intervals for the common change point u0, since
this is the parameter of main interest in this paper. Let uτk denote the change point
associated with the τk th quantile, k = 1, . . . , K . We first consider the following
hypotheses

H0 : uτ1 = · · · = uτK = u0 v.s. H1 : uτk �= u0 for some 1 ≤ k ≤ K . (7)

The null hypothesis states that the change points at all K quantiles are the same as u0.
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152 L. Zhang et al.

Under H0, for each quantile τk , the regression coefficients ηk can be esti-
mated by fitting the segmented quantile regression model (1) with the known
change point u0 using existing software. For k = 1, . . . , K , we denote the
resulting estimator of ηk as η̂k(u0), and the corresponding estimated residuals as
êi,τk = Yi − QY {τk; η̂k(u0), u0|Wi }, i = 1, . . . , n. Define M(u) = (m(W1; u),

. . . ,m(Wn; u))T and Pk = (p1{τk; η̂k(u0), u0}, . . . , pn{τk; η̂k(u0), u0})T , where
pi (τk; ηk, u0) = −β1,τk I (Xi ≤ u0) − β2,τk I (Xi > u0) is the first deriva-
tive of QY (τk; ηk, u|Wi ) with respect to u evaluated at u = u0. In addition,
define P∗

k ≡ (p∗
1{τk; η̂k(u0), u0}, . . . , p∗

n{τk; η̂k(u0), u0})T = (In − �k)Pk with

�k = M(u0){MT (u0)Bk M(u0)}−1MT (u0)Bk, where Bk = diag( f̂1{QY (τk; ηk,0,

u0|W1)}, . . . , f̂n{QY (τk; ηk,0, u0|Wn)}) with f̂i {QY (τk; ηk,0, u0|Wi ) defined in (6).
The proposed rank score test statistic is defined as

Tn = STn V
−1
n Sn,

where

Sn = (Sn,1, . . . , Sn,K )T , Sn,k = n−1/2
n∑

i=1

p∗
i {τk; η̂k(u0), u0}ψτk (êi,τk ),

for k = 1, . . . , K and V n is a K × K matrix with the (k, k′)th element equal to

n−1
n∑

i=1

ψτk (êi,τk )ψτk′ (êi,τk′ )p
∗
i {τk; η̂k(u0), u0}p∗

i {τk′ ; η̂k′(u0), u0}.

Before presenting the asymptotic distribution of Tn under H0, we impose the fol-
lowing additional assumptions.

A5 For i = 1, . . . , n, Fi has a Lebesgue density that has a bounded first-order
derivative.

A6 The minimum eigenvalue ofVn is bounded away from zero for sufficiently large
n.

The following theorem gives the asymptotic distribution of Tn under H0.

Theorem 2 Suppose that Assumptions A1 and A3–A6 hold. Under the null hypothesis

H0 in (7), as n −→ ∞, we have Tn
d→ χ2

K .

Using the asymptotic result in Theorem 2, the rank score test rejects the null hypoth-
esis H0 when the observed test statistic Tn exceeds χ2

K (1−α), the (1−α)th quantile of
the χ2

K distribution, where α is the pre-specified nominal level. By inverting the rank
score test,we can construct the (1−α) confidence interval for the commonchangepoint
u0 by including all the ũ for which the null hypothesis H0 : uτ1 = · · · = uτK = ũ will
not be rejected. Below is the proposed procedure for constructing a 95 % confidence
interval for u0.
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Step 1. Obtain the composite estimator û using the profile estimating method intro-
duced in Sect. 2.1, and calculate the estimated standard error of û using the direct
variance estimation method described in Sect. 2.3.1, denoted as σ̂u .

Step 2. Search for the lower bound of the confidence interval ul . Define a grid of
N points in the left neighborhood of û: Ul = [û − 3σ̂u, û]. Test H0 : uτ1 = · · · =
uτK = ũ for any ũ ∈ Ul at the significance level of 0.05. Define ul = min{ũ ∈ Ul :
ũ is not rejected}, that is, the minimum accepted point. One could also define ul as the
maximum rejected point. Theoretically, the two definitions are equivalent. However, in
finite samples, the former definition often leads to wider while the later gives narrower
confidence intervals. To account for this possible discrepancy, we propose a further
adjustment. Due to the convexity of Tn in ũ, ideally points within [ul , û] should all be
accepted. However, if ul is too low, some points in this interval may be rejected. If the
number of rejected points within [ul , û] exceeds a pre-specified value � > 0, ul will
be replaced by the maximum rejected point and is kept unchanged otherwise.

Step 3. Follow the similar procedure as in Step 2 to search for the upper bound
uh ∈ Uh = [û, û + 3σ̂u]. Define uh = max{ũ ∈ Uh : ũ is not rejected}. If the number
of rejected points within [û, uh] exceeds �, we replace uh by uh = min{ũ ∈ Uh :
ũ is rejected} and keep it unchanged otherwise.

The parameter � provides a balance between the length and coverage of confidence
intervals. A smaller value of � tends to give narrower confidence intervals with lower
coverage, and vice versa. In our empirical studies, we let N = 50 and choose a con-
servative value � = 16 to ensure the desired coverage probability. This combination
was shown to perform reasonably well in Sect. 3.

3 Simulation study

For this simulation study, we consider six different cases. Data for Cases 1–4 are
generated from the following model

Yi = 1 + 3(Xi − u0)I (Xi ≤ u0) − 3(Xi − u0)I (Xi > u0) + σ(Xi )εi ,

where Xi ∼ U (0, 10), εi ∼ N (0, 1) for Cases 1, 2 and 4, and εi ∼ t3 for Case
3. The function σ(·) determines the model heteroscedasticity. We let σ(Xi ) = 1 in
Case 1 corresponding to a homoscedastic case, and σ(Xi ) = 1+ 0.2Xi in Cases 2–4
corresponding to heteroscedastic cases. We let the change point u0 = 5 in Cases 1–3
and u0 = 2 in Case 4 corresponding to scenarios with symmetric and asymmetric
change points, respectively.

For Case 5, we consider the following model with an additional predictor

Yi = 1 + 3(Xi − u0)I (Xi ≤ u0) − 3(Xi − u0)I (Xi > u0) + 2Zi + σ(Xi , Zi )εi ,

where Xi ∼ U (0, 10), Zi ∼ U (−5, 5), σ(Xi , Zi ) = 1 + 0.2Xi + 0.2Zi , u0 = 5 and
εi ∼ N (0, 1).
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Table 1 Average bias (bias) and mean squared error (MSE), multiplied by a factor of 100, of different
change point estimators

Case LSE LAD CQRNC

Bias MSE Bias MSE Bias MSE

n = 200

1. Normal-HO −0.21 0.26 −0.02 0.41 −0.15 0.28

2. Normal-HE −0.18 1.15 0.21 1.66 −0.09 1.19

3. T-HE 2.67 4.24 0.29 2.21 0.74 1.81

4. Normal-HE-AS 0.70 0.80 0.98 1.38 0.60 0.83

5. Normal-HE-Z 0.85 1.18 1.21 1.30 0.95 0.92

6. Normal-HE-AS-SE 21.36 75.95 30.92 109.81 15.66 49.50

n = 500

1. Normal-HO 0.08 0.10 0.03 0.15 0.14 0.11

2. Normal-HE 0.18 0.43 0.04 0.63 0.30 0.44

3. T-HE 1.33 1.38 0.70 0.78 0.81 0.67

4. Normal-HE-AS 0.11 0.33 0.12 0.43 0.22 0.31

5. Normal-HE-Z −0.01 0.43 −0.10 0.46 0.04 0.33

6. Normal-HE-AS-SE 1.81 6.56 1.83 4.89 1.38 3.39

1,Normal-HO:Case 1with homoscedastic normal errors; 2,Normal-HE:Case 2with heteroscedastic normal
errors; 3, T-HE:Case 3with heteroscedastic t3 errors; 4,Normal-HE-AS:Case 4with heteroscedastic normal
error and a change point asymmetric from the center; 5, Normal-HE-Z: Case 5 with heteroscedastic normal
errors and an additional predictor Z ; 6, Normal-HE-AS-SE: Case 6 with heteroscedastic normal errors, a
change point asymmetric from the center and smaller threshold effect

For Case 6, data are generated from the following model

Yi = 1 + (Xi − u0)I (Xi ≤ u0) − (Xi − u0)I (Xi > u0) + σ(Xi )εi ,

where Xi ∼ U (0, 10), σ(Xi ) = 1 + 0.2Xi , u0 = 2 and εi ∼ N (0, 1). The threshold
effect (i.e., change in the slope before and after the change point) in Case 6 is smaller
than those in other cases.

We compare three change point estimators: the proposed composite quantile estima-
torwith noncrossing constraints (CQRNC), the least squares estimator (LSE) proposed
in Chan and Tsay (1998), and the least absolute deviation (LAD) estimator of change
point proposed in Li et al. (2011). For the composite estimator, we set K = 9 and let
the equally spaced quantile levels be τk = k/10, k = 1, . . . , 9. To avoid searching
change points on the boundary, we let the trimming parameters ε1 = ε2 = 1 for all
three methods. We consider two sample sizes n = 200 and 500. The simulation is
repeated 500 times for each scenario.

Table 1 summarizes the average bias and mean squared error of three change point
estimators. All estimators have ignorable biases. For Cases 1, 2 and 4 with nor-
mal errors, the composite estimator has efficiency comparable to that of LSE. For
Cases 5 and 6 with heteroscedastic normal errors, the CQRNC estimator shows higher
efficiency than the LSE. The advantage of composite estimator over LSE is more pro-
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nounced in Case 3 when errors follow a heavy-tailed distribution. Case 6 represents
a more challenging case with weaker threshold effects and the change point located
asymmetric from the center, consequently the change point estimation has larger bias
and mean squared error than in other cases. Across all different scenarios considered,
the CQRNC estimator exhibits higher efficiency than the LAD estimator, confirming
the efficiency gain by pooling information across multiple quantiles.

To assess the performance of the proposed inference methods, we report in Table
2 the coverage probabilities and average lengths of 95 % confidence intervals for the
change point, constructed by the Wald, bootstrap (Boot) and inversion of rank score
(Score) methods. The bootstrap repetition B is set to be 500. For the comparison of
computational efficiency, we also present the average CPU time (in seconds) used
to construct one confidence interval using the same computer. Generally speaking,
the coverage probabilities of the Wald-type confidence intervals are lower than the
nominal level for both n = 200 and n = 500, and the coverage probabilities increase to
close 95 %when n ≥ 1000 (additional simulation not shown due to space limit). Both
bootstrap and rank scoremethods give confidence intervalswith coverage probabilities
close to 95 %, but the latter leads to slightly wider intervals with significantly much
less computing time. In finite samples, we observe that the bootstrap method gives
wider confidence intervals than Wald and rank score methods in Case 6, where the
change point is asymmetric and threshold effect is small.When the sample size is larger
(n ≥ 1000), confidence intervals from three methods have similar widths (results not
shown for space reasons).

The proposed composite estimator requires choosing K , the number of quantile
levels. To examine the sensitivity of the composite change point estimator to K , we
report in Table 3 the mean squared errors of the composite change point estimator
obtained by combining information from quantiles τk = k/(K + 1), k = 1, . . . , K ,
where K = 1, 3, 6, 9, 19 and 29. The estimator with K = 1 is based on τ = 0.5 and
thus is equivalent to the LAD estimator in Table 1. Generally speaking, combining
information across quantiles as few as three gives more efficient estimation than using
a single quantile. The efficiency of the composite estimator tends to increase with K
initially, but it becomes stable when K ≥ 9. This suggests that in finite samples it
suffices to consider K around 10 to achieve a good balance between the numerical
and computational efficiency.

4 Blood pressure and body mass index analysis

It is well known that high blood pressure (BP) is a serious chronic condition that may
lead to coronary heart disease, kidney failure, stroke and many other health problems.
One interest in epidemiological research is to understand the association of BP with
body mass index (BMI). Even though linear regression has been widely used, many
medical studies targeted on different populations found that threshold effect models
provide better fits to BP and BMI data. For instance, Bunker et al. (1995) found there
exists a threshold at 21.5 kg/m2 in men and 24.0 kg/m2 in women for BMI in very lean
rural African populations. Kaufman et al. (1997) showed there is a threshold effect at
21 kg/m2 in women but not for men among the low-BMI populations in Africa and the
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Table 3 Mean squared error (multiplied by a factor of 100) of the composite change point estimator with
different K

Case K = 1 K = 3 K = 6 K = 9 K = 19 K = 29

n = 200

1. Normal-HO 0.41 0.30 0.28 0.28 0.27 0.28

2. Normal-HE 1.66 1.28 1.22 1.19 1.19 1.19

3. T-HE 2.21 1.87 1.84 1.81 1.85 1.85

4. Normal-HE-AS 1.38 0.91 0.87 0.83 0.83 0.87

5. Normal-HE-Z 1.30 1.01 0.93 0.92 0.92 0.92

6. Normal-HE-AS-SE 109.81 52.60 48.27 49.50 48.83 48.53

n = 500

1. Normal-HO 0.15 0.12 0.11 0.11 0.10 0.10

2. Normal-HE 0.63 0.49 0.45 0.44 0.44 0.43

3. T-HE 0.78 0.71 0.70 0.67 0.68 0.68

4. Normal-HE-AS 0.43 0.34 0.33 0.31 0.31 0.33

5. Normal-HE-Z 0.46 0.35 0.34 0.33 0.32 0.32

6. Normal-HE-AS-SE 4.89 3.65 3.40 3.39 3.34 3.34

Caribbean. In a study of lean rural and semi-urban in West Africa, Kerry et al. (2005)
showed that BMI has a nonlinear effect on diastolic BP with a significant “knot” point
at BMI equal to 18 kg/m2 for younger women. All these studies have focused on
mean regression. In this section, we analyze a BP and BMI data from the National
Health and Nutrition Examination Survey (NHAENES) by quantile regression. The
NHAENES was designed to study the health and nutritional status of the adults and
children in the United States. We focus on a subset of NHAENES collected from 2005
to 2006, including 789 non-hispanic black males. Different from the analysis in the
literature, we aim to examine the impacts of BMI at different locations of the systolic
BP distribution using the proposed method for bent line quantile regression.

We carry out a preliminary analysis to identify an appropriate model for
lower/central and upper quantiles separately. We first focus on twelve lower and cen-
tral quantiles τ = 0.1, 0.2, . . . , 0.8, 0.81, . . . , 0.84. To examine the existence of a
threshold effect of BMI on BP, we employ the sup-likelihood-ratio test procedures
proposed in Lee et al. (2011) at each of the twelve quantile levels. In the presence
of a BMI threshold effect, at a given quantile level τ , the linear bent line quantile
regression model becomes

QY (τ |Xi , Zi ) =
{
a1(τ ) + Xib1(τ ) + Zic(τ ), Xi ≤ u(τ ),

a2(τ ) + Xib2(τ ) + Zic(τ ), Xi > u(τ ),

where Xi and Zi represent BMI and the age, respectively, (a1(τ ), a2(τ ), b1(τ ),

b2(τ ), c(τ ))T are the regression coefficients, u(τ ) is the unknown change point at the
τ th quantile, and τ = 0.1, 0.2, . . . , 0.8, 0.81, . . . , 0.84. The lower and upper bounds
of the searching interval of the change point are taken to be 10th and 90th percentiles
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Table 4 The p values of the sup-likelihood-ratio test for the existence of BMI threshold effect at different
quantiles of the BP distribution, and the quantile-specific change point estimates

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.81 0.82 0.83 0.84

LRT 0.01 0.00 0.00 0.02 0.04 0.01 0.00 0.01 0.01 0.01 0.01 0.02

û(τ ) 19.25 19.71 20.63 20.55 20.51 20.53 20.82 21.74 21.41 21.39 20.82 21.41

τ 0.85 0.86 0.87 0.88 0.89 0.90

LRT 0.02 0.01 0.00 0.00 0.00 0.00

û(τ ) 26.05 26.05 26.25 27.03 26.51 27.11

of BMI, respectively. We impose a condition a2(τ ) = a1(τ ) + {b1(τ ) − b2(τ )}u(τ )

for ensuring the continuity of quantile regression model at the point u(τ ). The result-
ing p values (see Table 4) suggest that BMI has a significant threshold effect in
all twelve quantile regression models. Then, following the estimation method in Li
et al. (2011), we obtain the quantile-specific change point estimates. Results sug-
gest that the change points at these quantiles are close to each other. Application of
the Wald-type test in Li et al. (2011) for testing the constancy of change point across
τ = 0.1, 0.2, . . . , 0.8, 0.81, . . . , 0.84 yields a p value of 0.447, indicating that change
points across these quantiles are constant.

Next, we examine the high quantiles by focusing on six quantiles τ =
0.85, 0.86, . . . , 0.9. The testing results suggest that there exist significant threshold
effects at these quantiles, and the quantile-specific change point estimates tend to be
close to each other; see Table 4. In addition, the Wald-type test gives a p value of
0.996.

Therefore, we consider two separate bent line quantile regression models, one
assumes a common change point for lower quantiles (LQ) τ ∈ [0.1, 0.84], and the
other assumes a common change point for high quantiles (HQ) τ ∈ [0.85, 0.9].

Let u1 and u2 be the common change points under LQ and HQ, respectively.
Since we need to separate the quantiles into two parts, we propose the following
modified algorithm to estimate the twocommonchangepoints jointlywith noncrossing
constraints. We define the joint objective function as

Sn(η, u1, u2) = n−1
n∑

i=1

{ K1∑

k=1

ρτk {Yi − QY (τk; η, u1|Wi )}

+
K2∑

k=K1+1

ρτk {Yi − QY (τk; η, u2|Wi )}
}
,

where K1 = 12 and K2 = 18, τ1 = 0.1, τ2 = 0.2, . . . , τ8 = 0.8, τ9 = 0.81, τ10 =
0.82, . . . , τ18 = 0.9. Then, the regression coefficients and the common change points
can be estimated by
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Table 5 Parameter estimates and confidence interval estimates from different methods

LSE Single Composite

LAD 0.9 LQ HQ

â1 56.18 60.62 81.33 62.39 81.51

â2 100.77 100.95 117.78 100.95 112.93

b̂1 2.56 2.35 1.50 2.25 1.50

Wald [1.29, 3.82] [1.42, 3.29] [1.12,1.88] [1.46, 3.04] [1.20, 1.79]

Boot [0.95, 3.50] [0.90, 3.48] [1.20, 3.03] [0.87, 3.22] [1.20, 2.96]

b̂2 0.38 0.39 0.16 0.39 0.30

Wald [0.19, 0.56] [0.13, 0.65] [−0.31, 0.62] [0.14, 0.64] [−0.13, 0.72]
Boot [0, 0.53] [−0.07, 0.62] [−0.35, 0.69] [−0.09, 0.57] [−0.22, 0.72]
ĉ 0.38 0.33 0.67 0.33 0.67

Wald [−1.55, 2.31] [−1.61, 2.27] [−3.51, 4.85] [0.26, 0.40] [0.51, 0.83]

Boot [0.31, 0.45] [0.25, 0.41] [0.51, 0.86] [0.24, 0.39] [0.51, 0.84]

û 20.43 20.51 27.11 20.67 26.18

Wald [18.50, 22.36] [18.57, 22.45] [22.93, 31.29] [19.02, 22.31] [24.14, 28.22]

Boot [19.58, 29.77] [19.04, 32.15] [19.88, 29.57] [19.70, 28.75] [19.82, 29.14]

Rank [19.72, 21.34] [25.33, 27.57]

θ̂ = (η̂
T
, û1, û2)

T = argmin
η∈B,u j∈(M1,M2); j=1,2

Sn(η, u1, u2),

where the minimization is solved using the similar two-stage method as described in
Sect. 2.1 with noncrossing constraints.

We summarize the estimations of the regression coefficients and the common
change points using the proposed composite method in Table 5, where the estimated
regression coefficients âi , b̂i , i = 1, 2 and ĉ correspond to τ = 0.5 for LQ and τ = 0.9
for HQ. For comparison, we also include the estimations from the least squaresmethod
and the single quantile method of Li et al. (2011) at τ = 0.5 and 0.9.We also report the
95 % confidence intervals for regression coefficients obtained by the Wald-type and
bootstrap methods, and for the common change points using the Wald-type, bootstrap
and rank-score-based methods. In addition, we plot the estimated conditional quantile
functions of BP against BMI at quantile levels 0.2, 0.5, 0.8 and 0.9 in Fig. 1. It is clear
that with the proposed algorithm, the estimated quantile curves do not cross in the
covariate region under study.

At all quantiles considered, we observe that the change point estimations under
LQ and HQ are asymmetric and the threshold effect is small. Similar to Case 6 in
the simulation study, the bootstrap method gives wider confidence intervals than the
other two methods. The systolic blood pressure tends to increase with BMI but the
relationship becomes weaker for those with BMIs exceeding certain thresholds. Table
5 shows that the change of pattern occurs at BMI 20.67 for lower quantiles τ ≤ 0.84.

123



160 L. Zhang et al.

20 30 40 50 60

80
10

0
12

0
14

0
16

0
18

0
20

0
22

0

Body Mass Index

S
ys

to
lic

 B
lo

od
 P

re
ss

ur
e

τ = 0.2
τ = 0.5
τ = 0.8
τ = 0.9

Fig. 1 Estimated quantile regression functions with noncrossing constraints for BP versus BMI for male
subjects at the mean age

However, for those at the right tail of the blood pressure distribution, the impact of
BMI is not weakened until BMI exceeds 26.18.

Not surprisingly, age shows a positive effect on the blood pressure at both the mean
and all the quantiles considered. Comparing to the LSEmethod and the single quantile
analysis approach in Li et al. (2011), the proposed composite method gives shorter
confidence intervals for the change points, indicating higher accuracy as observed in
the simulation study.

Appendix

Lemma 1 Suppose Assumptions A1–A3 hold, then θ̂ is a consistent estimator of θ0.

Proof At a fixed point u, we need to minimize the following objective function

n−1
K∑

k=1

n∑

i=1

ρτk {Yi − QY (τk; θ |Wi )},

which is equivalent to minimize

n−1
n∑

i=1

ρτk {Yi − QY (τk; η, u|Wi )},

for any 1 ≤ k ≤ K . The rest of the proof follows the similar arguments as that of
Lemma 1 in Li et al. (2011) and thus is omitted. ��
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Lemma 2 Suppose Assumptions A1–A3 hold, we have

sup
‖θ−θ0‖≤C2n−1/2

∥∥∥∥n
−1/2

K∑

k=1

n∑

i=1

[ψτk {Yi − QY (τk; θ |Wi )}hk(Wi ; θ) − ψτk {Yi

− QY (τk; θ0|Wi )}hk(Wi ; θ0)] − n−1/2E

[ K∑

k=1

n∑

i=1

ψτk {Yi − QY (τk; θ |Wi )}

× hk(Wi ; θ)

]∥∥∥∥ = op(1), (8)

where C2 is some positive constant.

Proof Let

ui (Vi ; θ , θ0) =
K∑

k=1

ψτk {Yi − QY (τk; θ |Wi )}hk(Wi ; θ)

−
K∑

k=1

ψτk {Yi − QY (τk; θ0|Wi )}hk(Wi ; θ0),

where Vi includes all the random variables Yi and Wi . Therefore, it can be rewritten
as the following

ui (Vi ; θ , θ0) = ui1(Vi ; θ , θ0) + ui2(Vi ; θ , θ0) + ui3(Vi ; θ , θ0) + ui4(Vi ; θ , θ0),

where ui1(Vi ; θ , θ0) = ui (Vi ; θ , θ0)I {Xi ≤ min(u, u0)}, ui2(Vi ; θ , θ0) =
ui (Vi ; θ , θ0)I (u0 < Xi ≤ u), ui3(Vi ; θ , θ0) = ui (Vi ; θ , θ0)I (u < Xi ≤ u0) and
ui4(Vi ; θ , θ0) = ui (Vi ; θ , θ0) I {Xi > max(u, u0)}.

To obtain (8), it is sufficient to show

sup
‖θ−θ0‖≤C2n−1/2

∥∥∥∥∥n
−1/2

n∑

i=1

{Bi − E(Bi )}
∥∥∥∥∥ = op(1),

where Bi representsui j (Vi ; θ , θ0) for j = 1, 2, 3, 4.These results follow fromLemma
4.6 inHe andShao (1996),we only show the proof for Bi = ui1(Vi ; θ , θ0) for instance.
To verify this, we need to check the conditions (B1), (B3) and (B5

′
) of He and Shao

(1996).
For (B1), the measurability is easy to show.
For (B3), take r = 1, for any ‖θ − θ0‖ ≤ C2n−1/2, we have

‖ui1(Vi ; θ , θ0)‖

=
∥∥∥∥

[ K∑

k=1

ψτk {Yi − QY (τk; θ |Wi )}hk(Wi ; θ)
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−
K∑

k=1

ψτk {Yi − QY (τk; θ0|Wi )}hk(Wi ; θ0)

]
I {Xi ≤ min(u, u0)}

∥∥∥∥

≤
∥∥∥∥

K∑

k=1

ψτk {Yi − QY (τk; θ |Wi )}{hk(Wi ; θ) − hk(Wi ; θ0)}I {Xi ≤ min(u, u0)}
∥∥∥∥

+
∥∥∥∥

K∑

k=1

[ψτk {Yi − QY (τk; θ |Wi )} − ψτk {Yi − QY (τk; θ0|Wi )}]hk(Wi ; θ0)

×I {Xi ≤ min(u, u0)}
∥∥∥∥

= ‖I1i‖ + ‖I2i‖. (9)

For I1i , it is easy to obtain

E(‖I1i‖2|Wi ) = n−1Op(1). (10)

For I2i , we have

‖I2i‖ =
∥∥∥∥

K∑

i=1

[I {Yi ≤ QY (τk; θ0|Wi )} − I {Yi ≤ QY (τk; θ |Wi )}]hk(Wi ; θ0)

I {Xi ≤ min(u, u0)}
∥∥∥∥

≤ L1‖Ui‖
K∑

k=1

I {Q1(τk; θ , θ0) ≤ Yi ≤ Q2(τk; θ , θ0)}I {Xi ≤ min(u, u0)},

where L1 is some constant,Ui = (1, Xi ,ZT
i )T , Q1(τk; θ , θ0) = min{QY (τk; θ0|Wi ),

QY (τk; θ |Wi )} and Q2(τk; θ , θ0) = max{QY (τk; θ0|Wi ), QY (τk; θ |Wi )}. Thus

E(‖I2i‖2|Wi )

≤ L2
1‖Ui‖2 I {Xi ≤ min(u, u0)}E

[ K∑

k=1

K∑

k′=1

I {Q1(τk; θ , θ0) ≤ Yi ≤ Q2(τk; θ , θ0)}

×I {Q1(τk′ ; θ , θ0) ≤ Yi ≤ Q2(τk′ ; θ , θ0)}|Wi

]
.

Without loss of generality, we assume Q1(τk; θ , θ0) < Q2(τk′ ; θ , θ0) and Q1
(τk′ ; θ , θ0) < Q2(τk; θ , θ0).DenoteQ1(τk, τk′)=min{Q1(τk; θ , θ0), Q1(τk′ ; θ , θ0)}
and Q2(τk, τk′) = max{Q2(τk; θ , θ0), Q2(τk′ ; θ , θ0)}. Hence
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E(‖I2i‖2|Wi )

≤ L2
1‖Ui‖2

K∑

k=1

K∑

k′=1

fi (ξk,k′){Q2(τk, τk′) − Q1(τk, τk′)}I {Xi ≤ min(u, u0)}

≤ L2n
−1/2‖Ui‖3

K∑

k=1

K∑

k′=1

fi (ξk,k′), (11)

where the first inequality follows from the mean value theorem with ξk,k′ between
Q1(τk; τk′) and Q2(τk; τk′), the second inequality follows from

|{Q2(τk; τk′) − Q1(τk; τk′)}I {Xi ≤ min(u, u0)}|
≤ |{QY (τk; θ |Wi ) − QY (τk; θ0|Wi )}I {Xi ≤ min(u, u0)}|

+|{QY (τk′ ; θ |Wi ) − QY (τk′ ; θ0|Wi )}I {Xi ≤ min(u, u0)}|
≤ |(ατk − ατk ,0) + (β1,τk − β1,τk ,0)Xi − (β1,τk u − β1,τk ,0u0) + ZT

i (γ τk
− γ τk ,0)|

+|(ατk′ − ατk′ ,0) + (β1,τk′ − β1,τk′ ,0)Xi − (β1,τk′ u − β1,τk′ ,0u0) + ZT
i (γ τk′

−γ τk′ ,0)|
≤ L3n

−1/2‖Ui‖,

where L2 and L3 are some positive constants satisfying L2 = L2
1L

2
3. By Assumptions

A3 and A4, combining (9), (10) and (11), for large n we have

E{‖ui1(Vi ; θ , θ0)‖2|Wi )} ≤ Ln−1/2‖Ui‖3
K∑

k=1

K∑

k′=1

fi (ξk,k′).

It is obvious to obtain (B3) by taking ai =
√
L‖Ui‖3 ∑K

k=1
∑K

k′=1 fi (ξk,k′).

For (B5
′
), let An = L

∑n
i=1 ‖Ui‖3 ∑K

k=1
∑K

k′=1 fi (ξk,k′). From Assumptions A2
and A3, we have E(An) = O(n). For any positive constant C3 > 0, taking the
decreasing sequence of positive number dn satisfying n−1/2(log n)4 = o(dn) and
dn = o(1), we can show

P

(
‖ max
1≤i≤n

ui1(Vi ; θ , θ0)‖ ≥ C3A
1/2
n d1/2n (log n)−2

)

≤
n∑

i=1

P(‖ui1(Vi ; θ , θ0)‖ ≥ C3A
1/2
n d1/2n (log n)−2)

≤
n∑

i=1

E‖ui1(Vi ; θ , θ0)‖2
C2
3 Andn(log n)−4

≤ n−1/2(log n)4

C2
3dn

= o(1).
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Hence,

max
1≤i≤n

‖ui1(Vi ; θ , θ0)‖ = Op(A
1/2
n d1/2n (log n)−2),

thus (B5’) is satisfied. This completes the proof of Lemma 2. ��
Proof of Theorem 1 By Lemmas 1 and 2, we obtain

n−1/2
K∑

k=1

n∑

i=1

[ψτk {Yi − QY (τk; θ̂ |Wi )}hk(Wi ; θ̂) − ψτk {Yi − QY (τk; θ0|Wi )}

×hk(Wi ; θ0)] − n−1/2
[
E

K∑

k=1

n∑

i=1

ψτk {Yi − QY (τk; θ |Wi )}hk(Wi ; θ)

]∣∣∣∣
θ=θ̂

= op(1). (12)

Applying the Taylor expansion, we get

[
E

K∑

k=1

n∑

i=1

ψτk {Yi − QY (τk; θ |Wi )}hk(Wi ; θ)

]∣∣∣∣
θ=θ̂

= nDn(θ̂ − θ0)

+ Op(n(θ̂ − θ0)
2), (13)

where

Dn = n−1
K∑

k=1

n∑

i=1

∂Eψτk {Yi − QY (τk; θ |Wi )}hk(Wi ; θ)

∂θ

∣∣∣∣
θ=θ0

= n−1
K∑

k=1

n∑

i=1

∂([τk − Fi {QY (τk; θ |Wi )}]hk(Wi ; θ))

∂θ

∣∣∣∣
θ=θ0

= n−1
K∑

k=1

n∑

i=1

(
[− fi {QY (τk; θ0|Wi )}hk(Wi ; θ0)hTk (Wi ; θ0)]

+ [τk − Fi {Q(τk)}]∂hk(Wi ; θ)

∂θ

∣∣∣∣
θ=θ0

)

= n−1
K∑

k=1

n∑

i=1

[
− fi {QY (τk; θ0|Wi )}hk(Wi ; θ0)hTk (Wi ; θ0)

]
.

In addition, by the subgradient condition of quantile regression (pages 34–38 in
Koenker 2005), we have

n−1/2
K∑

k=1

n∑

i=1

ψτk {Yi − QY (τk; θ̂ |Wi )}hk(Wi ; θ̂) = op(1). (14)
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Combining (12), (13) and (14), we have

−n−1/2
K∑

k=1

n∑

i=1

[ψτk {Yi − QY (τk; θ0|Wi )}hk(Wi ; θ0)] = n1/2Dn(θ̂ − θ0)

+ Op(n
1/2(θ̂ − θ0)

2) + op(1).

This results in θ̂ − θ0 = Op(n−1/2). Therefore,

n1/2(θ̂ − θ0) = −D−1
n n−1/2

K∑

k=1

n∑

i=1

ψτk
{Yi − QY (τk; θ0|Wi )}hk(Wi ; θ0) + op(1).

Following central limit theorem, by Assumption A4 and some simple calculation, we
can obtain that n1/2(θ̂ − θ0) is asymptotically normal with mean zero and variance
D−1CD−1. This completes the proof of Theorem 1. ��

Proof of Theorem 2 Denote

T ∗
n = S∗T

n (V ∗
n )−1S∗

n,

where S∗
n = {S∗

n,1, . . . , S
∗
n,K }T , S∗

n,k = n−1/2 ∑n
i=1 p

∗
i (τk; ηk,0, u0|Wi )ψτk (ei,τk ),

ei,τk = Yi − QY (τk; ηk,0, u0|Wi ), V ∗
n is a K × K matrix with the (k, k

′
)th element

Cov(S∗
n,k, S

∗
n,k′ )

= Cov

{
n−1/2

n∑

i=1

p∗
i (τk; ηk,0, u0)ψτk (ei,τk ), n−1/2

n∑

i=1

p∗
i (τk′ ; ηk′

,0, u0)ψτ
k
′ (ei,τ

k
′ )

}

= n−1
n∑

i=1

Cov{p∗
i (τk; ηk,0, u0)ψτk (ei,τk ), p∗

i (τk′ ; ηk′
,0, u0)ψτ

k
′ (ei,τ

k
′ )}

= n−1
n∑

i=1

{min(τk, τk′ ) − τkτk′ }p∗
i (τk; ηk,0, u0)p

∗
i (τk′ ; ηk′

,0, u0).

Following central limit theorem, we have S∗
n

d−→ N (0, V ∗
n). Therefore, we can

obtain

T∗
n

d−→ χ2
K .

To obtain the desired result, we need to show

V n = V ∗
n + op(1), (15)
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and

Sn = S∗
n + op(1), (16)

It is easy to show that (15) holds since by Theorem 1,

‖η̂k(u0) − ηk,0‖ = Op(n
−1/2). (17)

For (16), it is sufficient to show that Sn,k = S∗
n,k + op(1) for any 1 ≤ k ≤ K .

Denote Sn,k(ηk) = n−1/2 ∑n
i=1 p

∗
i (τk; ηk, u0)ψτk {Yi − QY (τk; ηk, u0|Wi )}, because

we have

Sn,k(ηk) − S∗
n,k = n−1/2

n∑

i=1

p∗
i (τk; ηk, u0)ψτk {Yi − QY (τk; ηk, u0)}

−n−1/2
n∑

i=1

p∗
i (τk; ηk,0, u0)ψτk {Yi − QY (τk; ηk,0, u0)}.

Because E(S∗
n,k) = 0, following He and Shao (2000), we have

sup
‖ηk−ηk,0‖≤C4n−1/2

‖Sn,k(ηk) − S∗
n,k − E{Sn,k(ηk)}‖ = op(1), (18)

where C4 is some positive constant. For any ηk such that ‖ηk − ηk,0‖ ≤ C4n−1/2 , by
the Taylor expansion, we get

E{Sn,k(ηk)} = n−1/2
n∑

i=1

E(p∗
i (τk; ηk, u0)[τk − Fi {QY (τk; ηk, u0)|Wi }])

= n−1/2
n∑

i=1

E(p∗
i (τk; ηk, u0) [− fi {QY (τk; ηk,0, u0)|Wi }mT (Wi , u0)(ηk − ηk,0)

− f
′
i {QY (τk; ηk,0, u0)}{mT (Wi , u0)(ηk − ηk,0)}2 + op(‖ηk − ηk,0‖2)])

= −n−1/2
n∑

i=1

E( p∗
i (τk; ηk, u0) f

′
i {QY (τk; ηk,0, u0)|Wi }

[{mT (Wi , u0)(ηk − ηk,0)}2 + o(1)])
= o(1), (19)

where the third equality follows from the orthogonalization between p∗
i (τk; ηk, u0)

and m(Wi , u0), the fourth equality is based on ‖n−1 ∑n
i=1 E p∗

i (τk; ηk, u0)‖ ≤
‖n−1 ∑n

i=1 E pi (τk; ηk, u0)‖ ≤ o(1). Let ηk = η̂k(u0), note that Sn,k = Sn,k{η̂k(u0)}.
By combining (16) with (19), we obtain (16). This completes the proof of Theorem 2.

��
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