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Abstract For incomplete data models, the classical U-statistic estimator of a func-
tional parameter of the underlying distribution cannot be computed directly since the
data are not fully observed. To estimate such a functional parameter, we propose a
U-statistic using a substitution estimator of the conditional kernel given the observed
data. This kernel estimator is obtained by substituting the non-parametric maximum
likelihood estimator for the underlying distribution function in the expression of the
conditional kernel. We study the asymptotic properties of the proposed U-statistic for
several incomplete data models, and in a simulation study, we assess the finite sample
performance of the Mann–Whitney U-statistic with conditional kernel in the current
status model. The analysis of a real-world data set illustrates the application of the
proposed methods in practice.
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1 Introduction

Since the pioneering work of Hoeffding (1948), the U-statistics have been actively
studied and used in data analysis due to their wide range of applications. They
are used for estimation of functional parameters involving multiple observations
of the distribution of interest and they are closely related to the V-statistics pro-
posed by von Mises (1947). Hoeffding (1961) established fundamental properties
of the U-statistics, Berk (1966) discovered their reverse martingale property, and Sen
(1974) made a number of contributions on this topic. Gregory (1977) obtained the
asymptotic distribution of degenerate U-statistics of order two, result which was fur-
ther generalized for degenerate U-statistics of arbitrary order by Janson (1979) and
Rubin and Vitale (1980), among others. Borovskikh (1986) extended the U-statistics
theory for Hilbert space valued parameters. A detailed review and major histori-
cal developments of U-statistics theory can be found in Korolyuk and Borovskikh
(1994).

Censored data models with medical applications have been extensively studied by
many researchers, such as Bennet (1983), Heagerty and Zheng (2005), Tsiatis (2006),
and Therneau and Grambsch (2010), among others. Akritas (1986) studied a class of
V-statistics under random censorship, Bose and Sen (1999, 2002) studied the asymp-
totic properties of U-statistics using the Kaplan–Meier estimator for right censored
observations, Datta et al. (2010) introduced a U-statistic for right censored data via
inverse probability weighting and studied its asymptotic properties, Schisterman and
Rotnitzky (2001) studied the mean of a k-sample U-statistic with missing outcomes,
and Tressou (2006) studied non-parametric modeling of left censored data in food risk
assessment. More recently, Kowalski and Tu (2007) collected a number of results and
modern applications of U-statistics including applications to missing data models, Hu
and Degrutolla (2011) proposed a U-statistic method for longitudinal biomarkers, and
Ma et al. (2010) investigated a U-statistic approach to modeling the Cronbach’s alpha
coefficient with missing data.

For incomplete data models, the classical U-statistic estimator of a functional para-
meter of the underlying distribution cannot be computed directly since the data are
not fully observed. In this paper, we propose a U-statistic using partially observed
data based on a substitution estimator of the conditional kernel. This kernel estima-
tor is obtained by substituting the non-parametric maximum likelihood estimator of
the underlying distribution function in the expression of the conditional kernel given
the observed data. We study the asymptotic properties of the proposed U-statistic
for several incomplete data models, such as the type I (current status) interval cen-
soring model, the type II interval censoring model, the double censoring model,
the convolution model, and the multiplicative censoring model, respectively. In a
simulation study, we assess the finite sample performance of the non-parametric
bootstrap (Efron 1979) in conjunction with the Mann–Whitney U-statistic with con-
ditional kernel in the current status model, and the analysis of a real-world data
set illustrates the application of the proposed methods in practice. We have cre-
ated a package UStat (Giurcanu et al. 2015) in the R language (R Core Team
2014) in which we have implemented the bootstrap methods in conjunction with
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the Mann–Whitney U-statistic with conditional kernel for the current status data
model.

We close this section with an outline. In Sect. 2, we make a short review on the
properties of the U-statistics for fully observed data models and introduce the U-
statisticswith conditional kernels for incomplete datamodels. In Sect. 3,we present the
theoretical properties of the proposed U-statistics for several incomplete data models.
In Sect. 4, we present the results of a simulation study of the finite sample performance
of the Mann–Whitney U-statistic for the current status model, and in Sect. 5, we
apply the proposed methods on a real-world data set consisting of the time to lung
tumor onset for two groups of mice. The proofs of the theorems are deferred to an
“Appendix”.

2 U-Statistics for complete and incomplete data models

2.1 Complete data models

A complete (fully observed) data model is given by a random sample of n
i.i.d. observations X = {X1, . . . , Xn} from an unknown distribution function (cdf)
F . The parameter of interest is given by

θ = E
(
h(X)

) =
∫

h(x) dFm(x),

where X = (X1, . . . , Xm)T ∈ R
m , h : R

m �→ R is a known kernel function, x =
(x1, . . . , xm)T ∈ R

m , Fm(x) = ∏m
i=1 F(xi ) is the cdf of X , R is the set of real

numbers, and m is the degree of the functional parameter θ , with m < n. We assume
that the kernel h is permutation symmetric in its m arguments (any kernel can be
always substituted with a symmetric kernel). The U-statistic with kernel h (Hoeffding
1948) is defined as

Û = (
Cm
n

)−1 ∑

i∈Dn,m

h(Xi ),

where
Dn,m = {

i = (i1, . . . , im) : 1 ≤ i1 < · · · < im ≤ n
}
,

Cm
n = n!/(m!(n − m)!) is the binomial coefficient, and Xi = (Xi1 , . . . , Xim )T ∈ R

m

for i = (i1, . . . , im) ∈ Dn,m . It is known that Û is a minimum variance unbiased
estimator of θ (see Serfling 1980, p. 176).

Let hc : R
c → R, h0c : R

c → R, and h̃c : R
c → R for c = 1, . . . ,m, be given by

hc(x1, . . . , xc) = E
(
h(X1, . . . , Xm)|X1 = x1, . . . , Xc = xc

)
,

h0c(x1, . . . , xc) = hc(x1, . . . , xc) − θ,

h̃1(x1) = h01(x1),

h̃2(x1, x2) = h02(x1, x2) − h̃1(x1) − h̃1(x2),
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and

h̃c(x1, . . . , xc) = h0c(x1, . . . , xc) −
∑

i∈Dc,1

h̃1(xi ) − · · · −
∑

i∈Dc,c−1

h̃c−1(xi ),

where xi = (xi1 , . . . , xi j )
T ∈ R

j for i = (i1, . . . , i j ) ∈ Dc, j and j = 1, . . . , c − 1.

Note that EF (h̃c) = 0, where EF (h̃c) = E
(
h̃c(X1, . . . , Xc)

)
. The functions

h̃1, . . . , h̃m are called the canonical forms of the kernel h. If VarF (h̃1) �= 0, then
Û is called nondegenerate. If VarF (h̃1) = · · · = VarF (h̃r−1) = 0 and VarF (h̃r ) �= 0,
where 1 < r ≤ m, then Û is called degenerate, with degeneracy of order r .

Hoeffding (1948, p. 300) showed that the variance of Û is given by

Var(Û ) = (
Cm
n

)−1
m∑

c=1

Cc
mC

m−c
n−mη2c ,

where η2c = EF (h̃2c). Hoeffding (1961) further showed that Û admits the following
representation

Û − θ =
m∑

c=1

Cc
mUnc, where Unc = (

Cc
n

)−1 ∑

i∈Dn,c

h̃c(Xi ).

If Û is nondegenerate, then

n1/2(Û − θ)
d−→ J1(h̃1),

where J1(h̃1) ∼ N (0,m2η21) and
d−→ denotes convergence in distribution. Note that

in this case, the rate of convergence of Û to θ is n1/2 and the limiting distribution is
normal. If Û is degenerate of order r > 1, then the limiting distribution of Û is not
normal, but rather a Gaussian chaos (see, e.g., Koroljuk and Borovskikh 1988; van der
Vaart 1998); specifically,

nr/2(Û − θ)
d−→ Jr (h̃r ),

where Jr (h̃r ) is defined in “Appendix”.

2.2 Incomplete data models

An incomplete data model is given by a random sample of n i.i.d. observations Y =
{Y1, . . . ,Yn} which contains information about F but is not an i.i.d. sample from F .
In this case, our interest is to estimate the parameter θ using the sample Y . Usually,
the underlying cdf F can be estimated by F̂ using Y , in which case, one may directly
estimate θ using a substitution estimator given by

θ̃ =
∫

h(x) dF̂m(x),
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where F̂m(x) = ∏m
i=1 F̂(xi ). Note that when F̂ is the empirical cdf, then θ̃ is just

a V-statistic, while for incomplete data models, F̂ is not the empirical cdf, and in
that case, θ̃ is not a V-statistic. It is known that although the U- and V-statistics are
asymptotically equivalent up to a term of order O(n−1) almost surely, their limiting
distributions are not the same if the kernel is degenerate (see, e.g., Leucht 2012).

For incomplete data models, we propose a U-statistic defined in terms of a condi-
tional expectation of the kernel h(X) given the observable vector Y , that is,

H( y) = E
(
h(X)|Y = y

)
, (1)

where Y = (Y1, . . . ,Ym)T and y = (y1, . . . , ym)T . Since the conditional kernel
H( y) = H( y|F) depends on the underlying F , it is thus unknown. However, we use
the non-parametric maximum likelihood estimator (NPMLE) F̂ of F and plug it into
(1) to obtain a substitution estimator of H( y), which we denote by Ĥ( y) = H( y|F̂).
Then, the U-statistic with conditional kernel is defined as follows

Û (F̂) = (
Cm
n

)−1 ∑

i∈Dn,m

Ĥ(Yi ),

where Yi = (Yi1 , . . . ,Yim )T for i = (i1, . . . , im) ∈ Dn,m . Note that the kernel of
Û (F̂) is random, and thus, it changes on random samples. Since we use Ĥ( y) in the
expression of Û (F̂), we expect that the convergence rate of Û (F̂) to θ may be slower
than that of Û obtained under the complete data model; for details on the asymptotic
behavior of Û (F̂) for several incomplete data models, see the next section.

3 Theoretical results

In this section, we study the asymptotic properties of Û (F̂) for some classical incom-
plete data models, such as the type I (current status) interval censoring model, the type
II interval censoring model, the double censoring model, the convolution model, and
the multiplicative censoring model.

3.1 Type I interval censoring model

The type I interval censoring model, also called the current status model, can be
described as follows. Let X ∼ F and T ∼ G be two independent random variables,
where F and G are unknown cdfs on the set of positive real numbers R

+. Let � =
I(X<T ) be a censoring indicator and Y = (T,�), where IA denotes the indicator
function of an event A. Assume that F and G have densities f and g with respect to
the Lebesguemeasure onR and that 0 < Pr(� = 1) < 1. The available data consist of
a random sample of n i.i.d. observationsY = {Y1, . . . ,Yn} from the distribution of Y ,
where Yi = (Ti ,�i ) for i = 1, . . . , n. The density–mass function of the distribution
of Y is given by
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pF,G(y) = F(t)δ
(
1 − F(t)

)1−δ
g(t), y = (t, δ) ∈ R

+ × {0, 1}.

The log-likelihood function of F , omitting the terms only containing g(t), is

�̂(F) =
n∑

i=1

(
�i log

(
F(Ti )

) + (1 − �i ) log
(
1 − F(Ti )

))
.

We write the parameter of interest θ as follows

θ = E
(
h(X)

) = E
[
E
(
h(X)|Y)] = E

(
H(Y)

)
,

where H( y) = E
(
h(X)|Y = y

)
. Note that

H( y) = H( y|F)

=
∫

h(x)

m∏

j=1

(
δ j

I[0,t j )(x j ) F(dx j )

F(t j )
+(1−δ j )

I[t j ,∞)(x j ) F(dx j )

1−F(t j )

)
. (2)

Since F is unknown, then H( y) is unknown, and thus, it needs to be estimated. To this
end, let Ĥ( y) = H( y|F̂) be a substitution estimator of H( y) obtained by substituting
F̂ for F in (2), where F̂ is the NPMLE of F ; that is,

Ĥ( y) =
∫

h(x)

m∏

j=1

(

δ j
I[0,t j )(x j )F̂(dx j )

F̂(t j )
+ (1 − δ j )

I[t j ,∞)(x j )F̂(dx j )

1 − F̂(t j )

)

.

The U-statistic with conditional kernel estimator of θ is thus given by

Û (F̂) = (
Cm
n

)−1 ∑

i∈Dn,m

Ĥ(Yi ).

The asymptotic properties of Û (F̂) depend on the asymptotic properties of F̂ ,
results which have been studied by Groeneboom and Wellner (1992). Specifically, let
{B(t) : t ∈ R} be a two-sided Brownian motion originating at zero, i.e., {B(t) : t ∈ R}
is a mean zero Gaussian process on R with independent increments, B(0) = 0 almost
surely, and the increments B(s) − B(t) ∼ N (0, |s − t |). Groeneboom and Wellner
(1992) showed that for all t > 0, we have

n1/3
(
F̂(t) − F(t)

) d−→ A(t)Z , (3)

where

Z = argmint∈R
{
B(t) + t2

}
and A(t) =

(
4F(t)

(
1 − F(t)

)
f (t)

g(t)

)1/3

. (4)
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The random variable Z follows the Chernoff distribution whose properties have been
analyzed by Groeneboom and Wellner (2001).

The asymptotic properties of Û (F̂) depend also on the first and higher order
Hadamard derivatives of H( y|F). Specifically, let H ( j)( y|F) denote the j th order
Hadamard derivative of H( y|F) with respect to F in �∞(R+), where �∞(R+) is the
space of bounded functions defined on R

+ equipped with the uniform norm. In partic-
ular, the first order Hadamard derivative of H( y|F) at α ∈ �∞(R+) (see “Appendix”
for more details) is given by

H (1)( y|F;α)=
m∑

k=1

∫
h(x)

m∏

j �=k

(
δ j

I[0,t j )(x j )F(dx j )

F(t j )
+(1−δ j )

I[t j ,∞)(x j )F(dx j )

1 − F(t j )

)

×
(

δk
I[0,tk )(xk)

(
F(tk)α(dxk) − α(tk)F(dxk)

)

F(tk)2

+(1 − δk)
I[tk ,∞)(xk)

[(
1 − F(tk)

)
α(dxk) + α(tk)F(dxk)

]

(
1 − F(tk)

)2

)

.

(5)

We say that H( y|F) is of rank k atα ∈ �∞(R+) if it is k timesHadamard differentiable
at F and

E
(
H ( j)(Y |F;α)

) = 0 for j = 1, . . . , k − 1 and 0 �= E
(
H (k)(Y |F;α)

)
< ∞.

Let H̃c( y) be the canonical forms of H( y), r be the order of H( y), and k be the rank
of H( y|F) at A, where A is given by (4). Theorem 1 shows the asymptotic properties
of Û (F̂); the regularity conditions and the proof are provided in “Appendix”. Note
that when 1 = r < k, then the convergence rate of Û (F̂) is n1/2 and the limiting
distribution is normal.

Theorem 1 (i) Assume that conditions (A1)–(A2) in “Appendix” hold. Then,

Û (F̂)
a.s.−→ θ.

(ii) Assume that conditions (A1)–(A4) in “Appendix” hold. Then

ns(Û (F̂) − θ)
d−→

{
Jr (H̃r ), s=r/2 if 1 ≤ r < 2k/3;
(1/k!)E(

H (k)(Y)|F, A)
)
Zk, s=k/3 if 1 ≤ k < 3r/2.

3.2 Type II interval censoring model

Let (X,U, V ) ∈ R
+ × (R+)2, where X ∼ F and (U, V ) ∼ G are independent,

with U < V almost surely. Assume that F and G have densities f and g with
respect to the Lebesgue measures on R and R

2, respectively. Let further � = I(X<U ),
� = I(U≤X<V ), Y = (U, V,�, �), and assume that 0 < Pr(� = 1) < 1 and
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0 < Pr(� = 1) < 1. For the type II interval censoringmodel, the available data consist
of a random sample of n i.i.d. observations Y = {Y1, . . . ,Yn} from the distribution
of Y , where Yi = (Ui , Vi ,�i , �i ) for i = 1, . . . , n. This model is described in
Example 1.6 of Groeneboom and Wellner (1992, p. 5). The density–mass function of
the distribution of Y is given by

pF,G(y) = F(u)δ
(
F(v) − F(u)

)γ (
1 − F(v)

)1−δ−γ
g(u, v),

where y = (u, v, δ, γ ) ∈ R
+ × R

+ × {0, 1} × {0, 1}. Groeneboom and Wellner used
an iterative convex minorant algorithm to compute the NPMLE F̂ of F , and they
determined the limiting distribution of F̂ using the following hypothesis: starting with
the true underlying cdf F , the iterative convex minorant algorithm will give at the first
iteration an estimator which is asymptotically equivalent to the NPMLE. Groeneboom
and Wellner (1992, Theorem 5.3, p. 100) showed that

(n log n)1/3
(
F̂(t) − F(t)

) d−→ A(t)Z , (6)

where Z has the Chernoff distribution and

A(t) =
(
6 f (t)2

g(t, t)

)1/3

. (7)

Since {� = 0;� = 0} = {X ≥ V }, {� = 0;� = 1} = {U ≤ X < V }, and
{� = 1;� = 0} = {X < U }, then

F(x |Y = y) =

⎧
⎪⎨

⎪⎩

F(x)/
(
1 − F(v)

)
I(v≤x) if δ = 0 and γ = 0,

F(x)/
(
F(v) − F(u)

)
I(u≤x<v) if δ = 0 and γ = 1,

F(x)/F(u)I(x<u) if δ = 1 and γ = 0.

Similarly to the current status data model, we write the parameter of interest θ as
follows

θ = E
(
h(X)

) = E
[
E
(
h(X)|Y)] = E

(
H(Y)

)
,

where

H( y) = H( y|F)

=
∫

h(x)

m∏

j=1

(
(1 − δ j )(1 − γ j )

I[v j ,∞)(x j )F(dx j )

1 − F(v j )

+ γ j (1 − δ j )
I[u j ,v j )(x j )F(dx j )

F(v j ) − F(u j )
+ δ j (1 − γ j )

I[0,u j )(x j )F(dx j )

F(u j )

)
. (8)

Since F is unknown, we substitute the NPMLE F̂ for F in (8) to obtain a substitution
estimator of the conditional kernel Ĥ( y) = H( y|F̂), that is,
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Ĥ( y) =
∫

h(x)

m∏

j=1

(

(1 − δ j )(1 − γ j )
I[v j ,∞)(x j )F̂(dx j )

1 − F̂(v j )

+γ j (1 − δ j )
I[u j ,v j )(x j )F̂(dx j )

F̂(v j ) − F̂(u j )
+ δ j (1 − γ j )

I[0,u j )(x j )F̂(dx j )

F̂(u j )

)

.

The first-order Hadamard derivative of H( y|F) at α ∈ �∞(R+) (for more details, see
“Appendix” is given by

H (1)( y|F, α) =
m∑

k=1

∫
h(x)

m∏

j �=k

(
(1 − δ j )(1 − γ j )

I[v j ,∞)(x j )F(dx j )

1 − F(v j )

+γ j (1 − δ j )
I[u j ,v j )(x j )F(dx j )

F(v j ) − F(u j )
+ δ j (1 − γ j )

I[0,u j )(x j )F(dx j )

F(u j )

)

×
(

(1−δk)(1−γk)
I[vk ,∞)(xk)

[(
1−F(vk)

)
α(dxk)+α(vk)F(dxk)

]

(
1 − F(vk)

)2

+ γk(1 − δk)
I[uk ,vk )(xk)

[(
F(vk)−F(uk)

)
α(dxk)−

(
α(vk)−α(uk)

)
F(dxk)

]

(
F(vk)−F(uk)

)2

+ δk(1 − γk)
I[0,uk )(xk)

(
F(uk)α(dxk) − α(uk)F(dxk)

)

F2(uk)

)

. (9)

Theorem 2 shows the asymptotic properties of Û (F̂) for the type II interval censoring
model and its proof is provided in “Appendix”. Note that when 1 = r < k, then the
rate of convergence of Û (F̂) is n1/2 and the limiting distribution is normal.

Theorem 2 (i) Assume that (A1)–(A2) in “Appendix” hold. Then

Û (F̂)
a.s.−→ θ.

(ii) Assume that, in addition to conditions (A1)–(A3), condition (B1) in “Appendix”
holds, where A is given by (7). Then

an(Û (F̂) − θ)
d−→

{
Jr (H̃r ), an = nr/2 if 1 ≤ r < 2k/3;
(1/k!)E(

H (k)(Y |F, A)
)
Zk, an = (n log n)k/3i f 1≤k≤3r/2.

3.3 Double censoring model

The double censoring model was studied by Turnbull (1974) and Tsai and Crowley
(1985), among others. Let (X,U, V ) ∈ R

+ × (R+)2, where X ∼ F and (U, V ) ∼ G
are independent, with U < V almost surely, and let f and g be the densities of F
and G, respectively. Let Y = (

Z ,�, �
)
, where Z = (X ∨ U ) ∧ V , � = I(X<U ),

and � = I(U≤X<V ). For the double censoring model, the data consist of a random
sample of n i.i.d. observations Y = {Y1, . . . ,Yn} from the distribution of Y , where
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Yi = (
Zi ,�i , �i

)
and Zi = (Xi ∨ Ui ) ∧ Vi for i = 1, . . . , n. The density–mass

function pF,G of the distribution of Y is given by

pF,G(y) = (
M(z) f (z)

)γ (
F(z)gU (z)

)δ[(1 − F(z)
)
gV (z)

]1−γ−δ
, y = (z, δ, γ ),

where M(z) = Pr
(
U ≤ z < V

) = GU (z) − GV (z), GU and GV are the (marginal)
cdfs ofU and V , and gU and gV are the (marginal) densities ofU and V , respectively.

LetZ1 = {Z1, . . . , Zn1} be the observed values of Zi for which (�i , �i ) = (0, 1)
and we may be tempted to use Z1 to estimate θ using a classical U-statistic given by

Û1 = (
Cm
n1

)−1 ∑

i∈Dn1,m

h(Zi ),

where n1 = ∑n
i=1 �i . However, Z1 is not an i.i.d. sample from F but rather an

i.i.d. sample from the conditional distribution of X given (U ≤ X < V ). This has
important consequences on the asymptotic behavior of Û1. Specifically, using classical
U-statistics theory, we have Û1

a.s.−→ θ1, where

θ1 = E
(
h(X)|(U ≤ X < V )

)
.

If the kernel h is of order 1, then

n1/21 (Û1 − θ1)
d−→ N (0,m2η̃21),

where
η̃21 = E

(
h̃1(X)2|(U ≤ X ≤ V )

)
.

Note that, in this case, although it is asymptotically normal, Û1 converges to θ1 �= θ ,
and thus, it is inconsistent.

When m = 1, we have

E
(
h(X)|Y = y

) =
∫

h(x)

(
δ
I(x<z)

F(z)
F(dx) + γ ζz(dx) + (1 − δ − γ )

I(z<x)

1 − F(z)
F(dx)

)
,

where y = (z, δ, γ ) and ζz(ds) is theHeaviside function,with
∫ ∞
0 h(s)ζz(ds) = h(z).

When m > 1, we have

H( y|F) = E
(
h(X)|Y = y

) =
∫

h(x)

m∏

j=1

(
δ j

I(x j<z j )

F(z j )
F(dx j )

+ γ j ζz j (dx j ) + (1 − δ j − γ j )
I(z j<x j )

1 − F(z j )
F(dx j )

)
. (10)

Since F in the expression of H( y|F) at (10) is unknown, we use the NPMLE F̂ of F
to obtain a substitution estimator of the conditional kernel Ĥ( y) = H( y|F̂):
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Ĥ( y) =
∫

h(x)

m∏

j=1

(

δ j
I(x j<z j )

F̂(z j )
F̂(dx j ) + γ j ζz j (dx j ) + (1 − δ j − γ j )

I(z j<x j )

1 − F̂(z j )
F̂(dx j )

)

.

TheHadamardderivative of H( y|F) atα ∈ �∞(R+) (formore details, see “Appendix”
is given by

H (1)( y|F;α) =
m∑

k=1

∫
h(x)

∏

j �=k

(
δ j

I(x j<z j )

F(z j )
F(dx j ) + γ j ζz j (dx j )

+(1 − δ j − γ j )
I(z j<x j )

1 − F(z j )
F(dx j )

)

×
(

δk
I(xk<zk )

[
F(zk)α(dxk) − α(zk)F(dxk)

]

F(zk)2
+ γkζzk (dxk)

+ (1 − δk − γk)
I(zk<xk )

[(
1 − F(zk)

)
α(dxk) + α(zk)F(dxk)

]

(
1 − F(zk)

)2

)

.

(11)

Tsai and Crowley (1985) studied the asymptotic properties of the NPMLE F̂ of F .
They showed that

sup
L≤t≤R

|F̂(t) − F(t)| a.s.−→ 0 and n1/2(F̂ − F)
d−→ S in �∞([L , R]), (12)

where 0 < L < R < ∞ and S = {S(t) : t ≥ 0} is a mean zero Gaussian process on
[0,∞)whose covariance function is not given in explicit form. Let EY

(
H (k)(Y |F; S)

)

denote the expectation with respect to the distribution of Y only. Theorem 3 shows
the asymptotic behavior of Û (F̂) and its proof is provided in “Appendix”. Note that
when 1 = r < k or 1 = k < r , then the rate of convergence of Û (F̂) is n1/2 and the
limiting distribution is normal.

Theorem 3 (i) Assume that (A1)–(A2) in “Appendix” hold. Then

Û (F̂)
a.s.−→ θ.

(ii) Assume that in addition to conditions (A1)–(A2), the condition (C1) in “Appen-
dix” holds. Then,

ns(Û (F̂) − θ)
d−→

{
Jr (H̃r ), s = r/2 if 1 ≤ r < k;
(1/k!)EY

(
H (k)(Y |F; S)

)
, s = k/2 if1 ≤ k < r.

3.4 The convolution model

Let (X,W ) ∈ R × R, where X ∼ F , W ∼ G, X and W are independent, and let
Y = X + W . We assume that F is unknown and that G is known with density g. For
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the convolution model, the data consist of a random sample of n i.i.d. observations
Y = {Y1, . . . ,Yn} from the distribution of Y . The density of the distribution of Y is
given by

pF,G(y) =
∫

g(y − x) F(dx).

As before, we write the parameter of interest θ as follows:

θ = E
[
E
(
h(X)|Y)]= E

(
H(Y |F)

)
,

where

H( y|F) =
∫
h(x)g( y − x) F(dx)
∫
g( y − x) F(dx)

and g( y− x) F(dx) =
m∏

i=1

g(yi − xi ) F(dxi ).

(13)
The substitution estimator Ĥ( y) of H( y|F) is obtained by substituting the NPMLE
F̂ of F in (13); that is,

Ĥ( y)=
∫
h(x)g( y − x) F̂(dx)
∫
g( y − x) F̂(dx)

where g( y − x) F̂(dx)=
m∏

i=1

g(yi − xi ) F̂(dxi ).

The Hadamard derivative of H( y|F) at α ∈ �∞(R) is given by (for more details, see
“Appendix”

H (1)( y|F;α) =
m∑

k=1

∫
h(x)

(∏

j �=k

g(y j − x j )F(dx j )∫
g(y j − x j ) F(dx j )

)

×g(yk−xk)

∫
g(yk−u) F(du)α(dxk)−

∫
g(yk − u)α(du)F(dxk)

(∫
g(yk − u)F(du)

)2 .

(14)

The asymptotic properties of the NPMLE F̂ of F for the convolution model have
been derived by Groeneboom and Wellner (1992). Groeneboom and Wellner (1992,
Theorem 5.4) showed that

n1/3
(
F̂(y) − F(y)

) d−→ A(y)Z , (15)

where

A(y) =
⎛

⎝4 f (y)
k∑

j=0

h(y + a j )
(
g(a j ) − g(a j−)

)−1

⎞

⎠

1/3

, (16)

and Z has the Chernoff distribution. Theorem 4 shows the asymptotic properties of
Û (F̂) and its proof is provided in “Appendix”. Note that when 1 = r < k, then the
rate of convergence of Û (F̂) is n1/2 and the limiting distribution is normal.
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Theorem 4 (i) Assume that conditions (A1)–(A2) in “Appendix” hold. Then

Û (F̂)
a.s.−→ θ.

(ii) Assume that, in addition to conditions (A1)–(A3), with A given by (16), the
condition (D1) in “Appendix” holds. Then

ns
(
Û (F̂) − θ

) d−→
{
Jr (H̃r ), s = r/2 if 1 ≤ r < 2k/3;
(1/k!)E(

H (k)(Y |F; A)
)
Zk, s = k/3 if 1 ≤ k < 3r/2.

3.5 Multiplicative censoring model

The multiplicative censoring model has been studied by Vardi (1989) and Vardi and
Zhang (1992), among others. Let (X,W ) ∈ R

+ × R
+, with X ∼ F , F is unknown

with density f , W ∼ G, G = pξ1 + (1− p)U (0, 1), 0 < p < 1 is a known (mixing)
proportion, ξ1 is the point mass at 1, and X and W are independent. Let T = XW ,
� = I(W=1), and Y = (T,�); hence, T = X with probability p and T = XW
with probability 1 − p. For the multiplicative censoring model, the data consist of a
random sample of n i.i.d. observations Y = {Y1, . . . ,Yn} from the distribution of Y .
The density–mass function of the distribution of Y is given by

pF,G(y) = (
p f (t)

)δ
(

(1 − p)
∫ ∞

t
x−1 f (x) dx

)1−δ

, y = (t, δ).

If � = 1, we observe X , and thus, we can use the classical U-statistic estimator of
θ using only the subsample X1 = {X1, . . . , Xn1} for which �i = 1, where n1 =∑n

i=1 �i , given by

Û1 = (
Cm
n1

)−1 ∑

i∈Dn1,m

h(Xi ).

Using classical U-statistics theory, we have Û1
a.s.−→ θ , and if h(x) is a non-degenerate

kernel, then

n1/2(Û1 − θ)
d−→ N

(
0, p−1m2η21

)
.

Note that Û1 uses only the data from the subsample X1 for which �i = 1, and thus,
since the observations for which �i = 0 are totally ignored, we expect that the U-
statistic with conditional kernel is more efficient than Û1. To derive the expression of
the conditional kernel, note first that, when m = 1, we have
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H(y|F) = E
(
h(X)|Y = y

) =
∫

h(x)

(

δζt (dx) + (1 − δ)
I(t<x)x−1 F(dx)
∫ ∞
t x−1 F(dx)

)

,

where ζt (x) is the Heaviside function, with
∫
h(x)ζt (dx) = h(t). When m > 1, then

H( y|F) = E(h(X)|Y = y)

=
∫

h(x)

m∏

j=1

(

δ jζt j (dx j ) + (1 − δ j )
I(t j<x j )x

−1
j F(dx j )

∫ ∞
t j

u−1 F(du)

)

. (17)

As before, we substitute the NPMLE F̂ for F in (17) to obtain the substitution kernel
estimator Ĥ( y), that is

Ĥ( y) =
∫

h(x)

m∏

j=1

⎛

⎝δ jζt j (dx j ) + (1 − δ j )
I(t j<x j )x

−1
j F̂(dx j )

∫ ∞
t j

u−1 F̂(du)

⎞

⎠ .

The Hadamard derivative of H( y|F) at α ∈ �∞(R+) is given by

H (1)( y|F;α) =
m∑

k=1

∫
h(x)

∏

j �=k

(

δ jζt j (dx j ) + (1 − δ j )
I(t j<x j )x

−1
j F(dx j )

∫ ∞
t j

u−1 F(du)

)

×(1 − δk)
I(tk<xk )x

−1
k

(
α(dxk)

∫ ∞
tk

u−1F(du) − F(dxk)
∫ ∞
tk

u−1α(du)
)

(∫ ∞
tk

u−1F(du)
)2 .

(18)

Vardi and Zhang (1992) studied the asymptotic properties of the NPMLE F̂ of F .
They showed that, if p > 0, then

sup
t≥0

|F̂(t) − F(t)| a.s.−→ 0 and n1/2(F̂ − F)
d−→ S in D0[0,∞), (19)

where S = {S(t) : t ≥ 0} is a zero mean Gaussian process on D0[0,∞), D0[0,∞)

is the Banach space of all functions defined on [0,∞) which are right-continuous
with left limits, converge to 0 at ∞, and are equal to 0 at 0. Theorem 5 shows the
asymptotic properties of the U-statistic with conditional kernel for the multiplicative
censoringmodel and its proof is provided in “Appendix”. Note that when 1 = r < k or
1 = k < r , then the rate of convergence of Û (F̂) is n1/2 and the limiting distribution
is normal.

Theorem 5 (i) Assume that conditions (A1)–(A2) in “Appendix” hold. Then

Û (F̂)
a.s.−→ θ.
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(ii) Assume that conditions (A1)–(A2) in “Appendix” hold, and that the conditions
for (19) hold. Then,

ns(Û (F̂) − θ)
d−→

{
Jr (H̃r ), s = r/2 if 1 ≤ r < k;
(1/k!)EY

(
H (k)(Y |F; S)

)
, s = k/2 if 1 ≤ k < r.

4 Simulation study

In this section, we present the results of a simulation study to describe the finite sample
properties of the Mann–Whitney U-statistic with conditional kernel for the current
status model. We first contrast the finite sample properties of the Mann–Whitney
U-statistic with conditional kernel for the current status data model with the Mann–
Whitney U-statistic for the complete data model in terms of the bias, standard error,
and root mean squared error. We also present the finite sample properties of the non-
parametric bootstrap confidence intervals and tests of hypotheses in conjunction with
the Mann–Whitney U-statistic with conditional kernel for the current status model.
The simulations were performed in the statistical environment R (R Core Team 2014),
the NPMLE estimator of F is calculated using the R package fdrtool (Klaus and
Strimmer 2014). We implemented these methods in an R package UStat (Giurcanu
et al. 2015)which is available from the authors upon request. The routines that compute
the Mann–Whitney U-statistic with conditional kernel have been implemented in the
C language and compiled into a shared library to increase the speed of computations.
We used the Sweave utility of R for reproducibility of the simulation study and of the
data analysis of Sect. 5.

As a data generating process for the current status model, we consider the family
of exponential distributions. Specifically, a synthetic data set consists of two inde-
pendent i.i.d. samples Y (1) = {

Y (1)
1 , . . . ,Y (1)

m
}
and Y (2) = {

Y (2)
1 , . . . ,Y (2)

n
}
from

the distributions of Y (1) = (
T (1),�(1)

)
and Y (2) = (

T (2),�(2)
)
, respectively, where

�(1) = I(X (1)<T (1)) and �(2) = I(X (2)<T (2)), with X (1) ∼ Exp(λ1), T (1) ∼ Exp(η1),
X (2) ∼ Exp(λ2), T (2) ∼ Exp(η2), and Exp(λ) is the Exponential distribution with
rate parameter λ. The kernel of the Mann–Whitney U-statistic (see, e.g., van der Vaart
1998 p. 166) is given by

h
(
x (1), x (2)) = I(

x (1)≤x (2)
).

The parameter of interest θ is thus given by

θ = Pr
(
X (1) ≤ X (2))

=
∫

I(x (1)≤x (2))λ1 exp
(−λ1x

(1))λ2 exp
(−λ2x

(2)) dx (1)dx (2)

=
∫ ∞

0

[
1 − exp

(−λ1x
(2))]λ2 exp

(−λ2x
(2)) dx (2)

= λ1/(λ1 + λ2).
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For the complete data model, a synthetic data set consists of two independent
i.i.d. samples X (1) = {

X (1)
1 , . . . , X (1)

m
}
and X (2) = {

X (2)
1 , . . . , X (2)

n
}
from the dis-

tributions of X (1) and X (2), respectively; in this case, the Mann–Whitney U-statistic
is given by

θ̂ = (mn)−1
m∑

i=1

n∑

j=1

I
(X (1)

i ≤X (2)
j )

.

Let F̂ (1) and F̂ (2) be the NPMLEs of F (1) = Exp(λ1) and F (2) = Exp(λ2), respec-
tively. The Mann–Whitney U-statistic with conditional kernel is given by

Û
(
F̂ (1), F̂ (2)) = (mn)−1

m∑

i=1

n∑

j=1

Ĥ
(
Y (1)
i ,Y (2)

j

)
,

where

Ĥ
(
y(1), y(2)) =

∫
h
(
x (1), x (2))

(

δ(1) I[0,t (1))(x
(1))F̂ (1)(dx (1))

F̂ (1)(t (1))

+ (
1 − δ(1)) I[t (1),∞)(x

(1))F̂ (1)(dx (1))

1 − F̂ (1)(t (1))

)

×
(

δ(2) I[0,t (2))(x
(2))F̂ (2)(dx (2))

F̂ (2)(t (2))

+ (
1 − δ(2)) I[t (2),∞)(x

(2))F̂ (2)(dx (2))

1 − F̂ (2)(t (2))

)

, (20)

y(1) = (
t (1), δ(1)

)
, and y(2) = (

t (2), δ(2)
)
. Let M̂ (1) and M̂ (2) be the greatest convex

minorants of the piecewise linear functions that connect the set of points

⎧
⎨

⎩

⎛

⎝i,
i∑

j=1

�
(1)
( j)

⎞

⎠ ; i = 1, . . . ,m

⎫
⎬

⎭
and

⎧
⎨

⎩

⎛

⎝i,
i∑

j=1

�
(2)
( j)

⎞

⎠ ; i = 1, . . . , n

⎫
⎬

⎭
,

respectively, where �
(1)
( j) and �

(2)
( j) are the censoring indicators corresponding to the

j th order statistic T (1)
( j) and T (2)

( j) . Let further ν
(1)
1 , . . . , ν

(1)
m0 and ν

(2)
1 , . . . , ν

(2)
n0 be the

knots of the M̂ (1) and M̂ (2), respectively. Then, the NPMLE F̂ (1) and F̂ (2) of F (1)

and F (2) are the left derivatives of M̂ (1) and M̂ (2) (see, e.g., Groeneboom andWellner
1992). Hence, we have

F̂ (1)(dx (1)) =
m0∑

i=1

p(1)
i ξ

ν
(1)
i

(x (1)) with p(1)
i = F̂ (1)(ν

(1)
i ) − F̂ (1)(ν

(1)
i −)
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and

F̂ (2)(dx (2)) =
n0∑

j=1

p(2)
j ξ

ν
(2)
j

(x (2)) with p(2)
j = F̂ (2)(ν

(2)
j ) − F̂ (2)(ν

(2)
j −),

where F̂ (1)(dx) and F̂ (2)(dx) are the probability mass functions of F̂ (1) and F̂ (2),
f (x−) is the left limit of f at x , and ξx is the point mass at x . Therefore, by (20), we
obtain

Ĥ
(
y(1), y(2)) =

m0∑

i=1

n0∑

j=1

h
(
ν

(1)
i , ν

(2)
j

)
(

δ(1) I[0,t (1))(ν
(1)
i )p(1)

i

F̂ (1)(t (1))
+ (

1 − δ(1)) I[t (1),∞)(ν
(1)
i )p(1)

i

1 − F̂ (1)(t (1))

)

×
(

δ(2)
I[0,t (2))(ν

(2)
j )p(2)

j

F̂ (2)(t (2))
+ (

1 − δ(2)) I[t (2),∞)(ν
(2)
j )p(2)

j

1 − F̂ (2)(t (2))

)

.

Table 1 (p. 14) shows the simulation estimates of the bias, standard error (SE), and
root mean squared error (RMSE) of the Mann–Whitney U-statistic for complete data
(C) and the Mann–Whitney U-statistic with conditional kernel for the current status
data model (I), with λ1 = λ2 = η1 = η2 = 1, for sample sizes n = 100, 200, 400;
the number of simulated samples is S = 1000. Note that, as expected, the RMSEs of
θ̂ are smaller than those of Û

(
F̂ (1), F̂ (2)

)
for all sample sizes under consideration.

We next describe the results of the simulation study for the bootstrap confi-
dence interval estimation. To this end, let γα,E and γα,S be the α-quantiles of
L

(
Û

(
F̂ (1), F̂ (2)

) − θ
)
and L

(|Û(
F̂ (1), F̂ (2)

) − θ |), where L (
Û

(
F̂ (1), F̂ (2)

) − θ
)

denotes the distribution of Û
(
F̂ (1), F̂ (2)

) − θ . The (1 − α)100% equal-tailed confi-
dence interval for θ (see, e.g., Hall 1992) is given by

I1,n =
(
Û

(
F̂ (1), F̂ (2)) − γ1−α/2,E, Û

(
F̂ (1), F̂ (2)) − γα/2,E

)
, (21)

and the (1 − α)100% symmetric confidence interval for θ is given by

I2,n =
(
Û

(
F̂ (1), F̂ (2)) − γ1−α,S, Û

(
F̂ (1), F̂ (2)) + γ1−α,S

)
. (22)

Table 1 Simulation estimates of the bias, the standard error (SE), and the root mean squared error (RMSE)
of the Mann–Whitney statistic for complete data model (C) and for the Mann–Whitney U-statistic with
conditional kernel for the current status data model (I), with λ1 = λ2 = η1 = η2 = 1, for sample sizes
n = 100, 200, 400, respectively; the number of simulated samples is S = 1000

n BIAS(C) SE(C) RMSE(C) BIAS(I) SE(I) RMSE(I)

100 0.000 0.041 0.041 0.017 0.079 0.081

200 0.001 0.028 0.028 0.012 0.051 0.052

400 −0.000 0.020 0.020 0.005 0.035 0.036
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Table 2 Simulation estimates of the coverage probability (CPr), the average length (ML), and the standard
error of the length (SEL) of the bootstrap equal-tailed (ET) and symmetric (S) confidence intervals for θ ,
at nominal confidence levels (Lev) 1 − α = 0.90, 0.95, 0.99, and sample sizes n = 100, 200, 400

n Lev CPr(ET) CPr(S) ML(ET) ML(S) SEL(ET) SEL(S)

100 0.90 0.907 0.950 0.299 0.311 0.036 0.042

100 0.95 0.957 0.984 0.361 0.376 0.046 0.053

100 0.99 0.987 0.999 0.489 0.521 0.073 0.089

200 0.90 0.914 0.952 0.194 0.202 0.018 0.021

200 0.95 0.961 0.982 0.233 0.243 0.022 0.027

200 0.99 0.989 0.998 0.311 0.328 0.037 0.044

400 0.90 0.900 0.900 0.128 0.133 0.009 0.012

400 0.95 0.946 0.946 0.153 0.159 0.011 0.014

400 0.99 0.987 0.987 0.202 0.211 0.018 0.022

The rate parameters of the exponential distributions generating the data for the current status model are
λ1 = λ2 = η1 = η2 = 1, the number of simulated samples is S = 1000, and for each simulated sample,
the number of bootstrap resamples is B = 999

Since γα,E and γα,S are unknown, we use the non-parametric bootstrap (Efron 1979)
to estimate them. A non-parametric bootstrap resample is obtained by combining the
with replacement random samples from each sample Y ∗(1) and Y ∗(2). The bootstrap
confidence intervals are obtained by replacing the bootstrap estimates of the quantiles
for the theoretical values in (21) and (22). Table 2 (p. 14) shows the simulation estimates
of the coverage probability (CPr), the average length (ML), and the standard error of
the length (SEL) of the bootstrap equal-tailed (ET) and symmetric (S) confidence
intervals for θ at nominal confidence levels (Lev) 1 − α = 0.90, 0.95, 0.99, and
sample sizes n = 100, 200, 400. The number of simulated samples is S = 1000, and
for each simulated sample, the number of bootstrap resamples is B = 999. We can
see that the empirical coverage probabilities of the bootstrap equal-tailed confidence
intervals are very close to the nominal levels for all sample sizes under consideration,
and that the bootstrap symmetric confidence intervals are slightly conservative for
smaller sample sizes (n = 100 and n = 200).

We finally describe the results of the simulation study for hypothesis testing of θ

in conjunction with the Mann–Whitney U test statistic with conditional kernel for
the current status model. Let us suppose that we want to test the null hypothesis
H0 : θ = θ0 versus the alternative hypothesis Ha : θ �= θ0. For example, if we are
interested to test if the survival functions of two treatment groups are different, then
θ0 = 1/2. Let Tn = Û

(
F̂ (1), F̂ (2)

) − θ0, let L0
(
Tn

)
denote the null distribution of

Tn , and let Ln(t) denote the cdf ofL0(Tn). The p-value of the Mann–Whitney U test
statistic with conditional kernel is given by

p-value = 2 × min
{
Ln(Tn), 1 − Ln(Tn)

}
, (23)

and thus, the test rejects H0 at α nominal level (type I error rate) if p-value ≤ α.
Since L0(Tn) is unknown, we use the non-parametric bootstrap to estimate the null
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distribution of Tn ; the bootstrap p-value is obtained by substituting the bootstrap
estimator for the null distribution of Tn in (23). A non-parametric bootstrap resample
is obtained by combining the with replacement random samples from each sample
Y ∗(1) and Y ∗(2). The bootstrap version of Tn is defined in such a way that the null
hypothesis holds in the bootstrap world irrespective of whether the null hypothesis
holds or not in the population. For common pitfalls in devising bootstrap tests of
hypotheses, see, e.g., Becher et al. (1993). Thus, the bootstrap p-value is given by

p̂-value = 2 × min
{
L̂n(Tn), 1 − L̂n(Tn)

}
,

where L̂n(t) is the (conditional) cdf of

T ∗
n = Û∗(F̂ (∗1), F̂ (∗2)) − Û

(
F̂ (1), F̂ (2))

given the combined sample Y = {
Y (1),Y (2)

}
. Table 3 (p. 15) shows the empir-

ical rejection rates of the Mann–Whitney U test under H0 at nominal levels (Lev)
α = 0.10, 0.05, 0.01, and sample sizes n = 100, 200, 400. The number of simu-
lated samples is S = 1000, and for each simulated sample, the number of bootstrap
resamples is B = 999.

5 Mice data set

In this section, we analyze themice data set (Hoel andWalburg 1972) using theMann–
Whitney U-statistic with conditional kernel for the current status data model. The data
set has been recently analyzed by Choi et al. (2013). The mice data set consists of
age-to-death with lung tumor of 144 RFM mice exposed to 300 R X radiation for two
groups ofmice: the conventional group, which consists of 96mice kept in conventional
environment, and the germ-free group, which consists of 48 mice that were kept in
a germ-free environment. The event of interest is the time to tumor onset (in days),
variable which is not directly observable. Specifically, the available data consist of the
sacrifice time for each mouse and a censoring indicator of whether or not the mouse
has lung tumor at the time of sacrifice. It is of interest to test if the time to lung tumor
onset is different among the two treatment groups, and we will be using the Mann–

Table 3 Empirical rejection rates of the bootstrap Mann–Whitney U test with conditional kernel under
H0 : θ = 1/2 at nominal levels (Lev) α = 0.10, 0.05, 0.01, and sample sizes n = 100, 200, 400

n Lev = 0.10 Lev = 0.05 Lev = 0.01

100 0.087 0.042 0.007

200 0.079 0.042 0.010

400 0.098 0.050 0.010

The rate parameters of the exponential distributions generating the data for the current status model are
λ1 = λ2 = η1 = η2 = 1, the number of simulated samples is S = 1000, and for each simulated sample,
the number of bootstrap resamples is B = 999
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Table 4 Bootstrap lower (LCL) and upper (UCL) confidence limits of the equal-tailed (ET) and symmetric
(S) confidence intervals for θ at nominal confidence levels (Lev) 1 − α = 0.90, 0.95, 0.99

Lev (%) LCL(ET) UCL(ET) LCL(S) UCL(S)

90 0.12 0.57 0.16 0.61

95 0.04 0.61 0.10 0.67

99 −0.08 0.70 −0.03 0.79

The number of bootstrap resamples is B = 1999

Whitney U-statistic with conditional kernel in conjunction with the non-parametric
bootstrap confidence intervals and test of hypotheses described in Sect. 4 to test this
hypothesis.

The value of theMann–WhitneyU test statistic with conditional kernel for the mice
data is Û (F̂ (1), F̂ (2)) = 0.384. Table 4 (p. 16) shows the bootstrap equal-tailed (ET)
and symmetric (S) lower (LCL) and upper (UCL) confidence limits for θ at nominal
confidence levels (Lev) 1−α = 0.90, 0.95, 0.99. The number of bootstrap resamples
is B = 1999. Since the 95%bootstrap equal-tailed and symmetric confidence intervals
for θ contain 0.5, we conclude that we do not have statistical evidence that the two
treatment groups have different survival functions (at α = 0.05 nominal level). This
claim is further supported by the bootstrap Mann–Whitney U test with conditional
kernel; indeed, the bootstrap p-value of the Mann–Whitney U test with conditional
kernel is 0.27, and thus, we again find that there is not statistical evidence that the
survival functions of the two treatment groups are significantly different at α = 0.05
nominal level.

Appendix: Proof of Theorem 1

We first introduce some notation to describe the limit distribution of degenerate
U-statistics following closely van der Vaart (1998, Sect. 12.3). Let {G( f ); f ∈
L2(R,B, F)} be an F-Brownian bridge process, i.e., a mean zero Gaussian process
indexed by functions in L2(R,B, F) with covariance function E(G( f )G(g)) =
EF ( f g) − EF ( f )EF (g). Let Hj (x) be the j th (non-normalized) Hermite polyno-
mial, that is, the monic polynomial of degree j such that

∫
Hi (x)Hj (x)φ(x) dx = 0

for all i �= j ≥ 1, where φ(z) is the standard normal density function. Let
{ fk; k ≥ 1} be an orthonormal basis in L2(R,B, F), where f1 = 1. Then the func-
tions { fk1 × · · · × fkr ; k1, . . . , kr ≥ 1} form an orthonormal basis in (Rr ,Br , Fr ),
where r ≥ 1. For any K ∈ L2(R

rBr , Fr ), let

〈K , fk1 × · · · × fkr 〉 =
∫

K (x1, . . . , xr ) fk1(x1) . . . fkr (xr )dx1 . . . dxr

denote the inner product of K with the basis functions. If the kernel h of a degenerate
U-statistic is of order r > 1, then by Theorem 12.10 of van der Vaart (1998), we have:

nr/2
(
Û (F̂) − θ)

d−→ Jr (h̃r ),
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where

Jr (h̃r ) =
∑

k=(k1,...,kr )∈Nr

〈hr , fk1 × · · · × fkr 〉
d(k)∏

i=1

Hai (k)
(
G(ψi (k))

)
,

where N is the set of positive integers, ψ1(k), . . . , ψd(k)(k) are the different elements
in { fk1 , . . . , fkr } and ai (k) is the number of times ψi (k) occurs among { fk1 , . . . , fkr }.

Regularity conditions

We assume the following regularity conditions:

(A1) E
(
h2(X)

)
< ∞.

(A2) The mapping H( y|F) : R
d × �∞(R+) �→ R is k-times Hadamard continuously

differentiable at F uniformly in y, i.e.,

sup
y

∣∣
∣∣∣∣
H( y|F + snαn) − H( y|F) −

k∑

j=1

(1/j !)H ( j)( y|F, snα)

∣∣
∣∣∣∣
= o

(|sn|k
)

for all sequences sn → 0, ‖αn − α‖ → 0, with sn ∈ R and α, αn ∈ �∞(R+),
n ≥ 1.

(A3) A ∈ �∞(R+).

We first derive the expression of the Hadamard derivative of H( y|F) for the cur-
rent status model. For fixed y, the mapping H( y|·) : �∞(R+) �→ R is Hadamard
differentiable at F ∈ �∞(R+) if there exists a continuous linear map H (1)( y|F, ·) :
�∞(R+) �→ R, which is called the Hadamard derivative of H( y|F), such that

H( y|F + snαn) − H( y|F)

sn
→ H (1)( y|F, α) as n → ∞

for all sequences sn → 0, ‖αn − α‖ → 0, with sn ∈ R and αn ∈ �∞(R+) for all n.
By (2), we have

H( y|F + snαn) − H( y|F)

sn
=

m∑

k=1

∫
h(x)

m∏

j �=k

(

δ j
I[0,t j )(x j )

(
F + ζ k

j snαn
)
(dx j )

(
F + ζ k

j snαn
)
(t j )

+ (1 − δ j )
I[t j ,∞)(x j )

(
F + ζ k

j snαn
)
(dx j )

1 − (
F + ζ k

j snαn
)
(t j )

)

× s−1
n

[(

δk
I[0,tk )(xk)

(
F + snαn

)
(dxk)(

F + snαn
)
(tk)

+ (1 − δk)
I[tk ,∞)(xk)

(
F + snαn

)
(dxk)

1 − (
F + snαn

)
(tk)

)

−
(

δk
I[0,tk )(xk) F(dxk)

F(tk)
+ (1 − δk)

I[tk ,∞)(xk) F(dxk)

1 − F(tk)

)]
,
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where ζ k
j = 0 for j < k and ζ k

j = 1 for j > k. The first term in the product above
tends to

(
δ j

I[0,t j )(x j ) F(dx j )

F(t j )
+ (1 − δ j )

I[t j ,∞)(x j ) F(dx j )

1 − F(t j )

)
as n → ∞,

and the second term tends to
(

δk
I[0,tk )(xk)

(
F(tk)α(dxk) − α(tk)F(dxk)

)

F(tk)2

+(1 − δk)
I[tk ,∞)(xk)

[(
1 − F(tk)

)
α(dxk) + α(tk)F(dxk)

]

(
1 − F(tk)

)2

)

,

for all j = 1, . . . ,m, as claimed at (5).
For part (ii) of Theorem 1, we need the following additional condition:

(A4) n1/3(F̂ − F) is asymptotically tight in �∞(R+).

Proof (Theorem 1) Groeneboom andWellner (1992, p. 79) showed that ‖F̂−F‖ a.s.−→
0, where ‖α‖ is the uniform norm of α ∈ �∞(R+). By condition (A2), it follows that

sup
y

|H( y|F̂) − H( y|F)| a.s.−→ 0.

Hence, Û (F̂) − Û (F)
a.s.−→ 0. Since Û (F)

a.s.−→ θ by classical U-statistics theory, it
follows that Û (F̂)

a.s.−→ 0, as stated at (i).
Note that H ( j)( y|F, Az) = H ( j)( y|F, A)z j for z ∈ R and j = 1, . . . , k. Since

H( y|F) is k times Hadamard differentiable at F , by the Functional Delta Theorem
(van der Vaart 1998 Theorem 20.8) and condition (A4), it follows that

sup
y

∣∣∣
∣∣∣
nk/3

(
H( y|F̂) − H( y|F)

) −
k∑

j=1

(1/j !)H ( j)( y|F, n1/3(F̂ − F)
)
∣∣∣
∣∣∣
= oP (1),

where oP (1) denotes convergence in probability to 0. We thus obtain the following
asymptotic expansion of nk/3

(
Û (F̂) − Û (F)

)
:

nk/3
(
Û (F̂) − Û (F)

) = (
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, n1/3(F̂ − F)
) + oP (1).

Since the rank of H( y) at A is k, then E
(
H ( j)(Y |F, A)

) = 0 for all j < k. Hence, for
all zn → z ∈ R,

(
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, Azn)
a.s.−→ (1/k!)E(

H (k)(Y |F, A)
)
zk .
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By condition (A3) and (3), it follows that

n1/3(F̂ − F)
d−→ AZ in �∞(R+), (24)

where A ∈ �∞(R+) is given by (4) and Z has a Chernoff distribution. By (24),
Slutsky’s theorem, and continuous mapping theorem in �∞(R+) (see, e.g., van der
Vaart 1998 Chapter 18), we obtain

nk/3
(
Û (F̂) − Û (F)

) d−→ (1/k!)E(
H (k)(Y |F, A)

)
Zk . (25)

Since, H( y) is a kernel of order r , by classical U-statistics theory, then

nr/2(Û (F) − θ)
d−→ Jr (H̃r ). (26)

If 1 ≤ r < 2k/3, then by (25) we obtain nr/2
(
Û (F̂)− Û (F)

) = oP (1). Thus, by (25)
and (26), it follows that

nr/2(Û (F̂) − θ) = nr/2
(
Û (F̂) − Û (F)

) + nr/2
(
Û (F) − θ

)

= nr/2
(
Û (F) − θ

) + oP (1)
d−→ Jr (H̃r ),

as claimed at (ii). If 1 ≤ k < 3r/2, then by (26), we have nk/3(Û (F) − θ) = oP (1).
Thus, by (25) and (26), it follows that

nk/3
(
Û (F̂) − θ

) = nk/3
(
Û (F̂) − Û (F)

) + nk/3
(
Û (F) − θ

)

= nk/3
(
Û (F̂) − Û (F)

) + oP (1)
d−→ (1/k!)E(

H (k)(Y |F, A)
)
Zk,

as claimed at (ii). This completes the proof of the theorem. ��

Proof of Theorem 2

We first obtain the expression of the Hadamard derivative for the type II interval
censoring model. Using the notation used for the current status model, by (8), we
have

H( y|F + snan) − H( y|F)

sn
=

m∑

k=1

∫
h(x)

m∏

j �=k
(

(1 − δ j )(1 − γ j )
I[v j ,∞)(x j )

(
F + ζ k

j snan
)
(dx j )

1 − (
F + ζ k

j snan
)
(v j )

+ γ j (1 − δ j )
I[u j ,v j )(x j )

(
F + ζ k

j snan
)
(dx j )

(
F + ζ k

j snan
)
(v j ) − (

F + ζ k
j snan

)
(u j )
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+ δ j (1 − γ j )
I[0,u j )(x j )

(
F + ζ k

j snan
)
(dx j )

(
F + ζ k

j Snan
)
(u j )

)

× s−1
n

[(

(1 − δk)(1 − γk)
I[vk ,∞)(xk)

(
F + snan

)
(dxk)

1 − (
F + snan

)
(tk)

+ γk(1 − δk)
I[uk ,vk )(xk)

(
F + snan

)
(dxk)(

F + snan
)
(vk) − (

F + snan
)
(uk)

+ δk(1 − γk)
I[0,uk )(xk)

(
F + ζksnan

)
(dxk)(

F + ζk Snan
)
(uk)

)

(
(1 − δk)(1 − γk)

I[vk ,∞)(xk) F(dxk)

1 − F(tk)
+ γk(1 − δk)

I[uk ,vk )(xk) F(dxk)

F(vk) − F(uk)

+ δk(1 − γk)
I[0,uk )(xk)F(dxk)

F(uk)

) ]

.

The first term in the product above tends to

(
(1 − δ j )(1 − γ j )

I[v j ,∞)(x j ) F(dx j )

1 − F(v j )
+ γ j (1 − δ j )

I[u j ,v j )(x j ) F(dx j )

F(v j ) − F(u j )

+δ j (1 − γ j )
I[0,u j )(x j )F(dx j )

F(u j )

)
as n → ∞

and the second term tends to

(1 − δk)(1 − γk)
I[vk ,∞)(xk)

[(
1 − F(νk)

)
α(dxk) + α(νk)F(dxk)

]

(
1 − F(vk)

)2

+ γk(1 − δk)
I[uk ,vk )(xk)

[(
F(vk) − F(uk)

)
α(dxk) − (

α(vk) − α(uk)
)
F(dxk)

]

(
F(vk) − F(uk)

)2

+ δk(1 − γk)
I[0,uk )(xk)

(
F(uk)α(dxk) − α(uk)F(dxk)

]

F2(uk)
as n → ∞

for all j = 1, . . . ,m, as claimed at (9).
For the part (ii) of Theorem 2, we need the following additional condition:

(B1) f (t) > 0, g(t, t) > 0, g(t, ·) is left continuous at t , and (
n log(n)

)1/3
(F̂ − F)

is asymptotically tight in �∞(R+).

Proof (Theorem 2) Groeneboom andWellner (1992) showed that ‖F̂−F‖ a.s.−→ 0. By
condition (A2), similarly to the proof of Theorem 1, it follows that Û (F̂)−Û (F)

a.s.−→
0. Since Û (F)

a.s.−→ θ by classical U-statistics theory, it follows that Û (F̂)
a.s.−→ θ , as

claimed at (i).
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Since H( y|F) is k times Hadamard differentiable at F , by the Functional Delta
Theorem and condition (B1), it follows that

sup
y

∣
∣∣
(
n log(n)

)k/3(
H( y|F̂) − H( y|F)

)

−
k∑

j=1

(1/j !)H ( j)( y
∣∣F, n1/3 log(n)(F̂ − F)

)
∣∣
∣∣∣∣
= oP (1).

Hence

(
n log(n)

)k/3(
Û (F̂) − Û (F)

)

= (
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F,
(
n log(n)

)1/3
(F̂ − F)

) + oP (1).

Since the rank of H( y) at A is k, then E
(
H ( j)(Y |F, A)

) = 0 for all j < k. Hence, for
all zn → z ∈ R,

(
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, Azn)
a.s.−→ (1/k!)E(

H (k)(Y |F, A)
)
zk .

By condition (B1) and (6), it follows that

(
n log(n)

)1/3
(F̂ − F)

d−→ AZ in �∞(R+) (27)

where A ∈ �∞(R+) is given by (7) and Z has a Chernoff distribution. By (27),
Slutsky’s theorem, and continuous mapping theorem in �∞(R+), we obtain

(
n log(n)

)k/3(
Û (F̂) − Û (F)

) d−→ (1/k!)E(
H (k)(Y |F, A)

)
Zk . (28)

Since H( y) is a kernel of order r , by classical U-statistics theory, we have

nr/2(Û (F) − θ)
d−→ Jr (H̃r ). (29)

If 1 ≤ r < 2k/3, then by (28) we have nr/2(Û (F̂) − Û (F)) = oP (1). Thus, by (28)

and (29), it follows that nr/2(Û (F̂)−θ)
d−→ Jr (H̃r ), as claimed at (ii). If 1 ≤ k < 3r/2,

then by (29), we have
(
n log(n)

)k/3
(Û (F) − θ) = oP (1). Thus, by (28), it follows

that
(
n log(n)

)k/3
(Û (F̂) − θ)

d−→ (1/k!)E(
H (k)(Y |F, A)

)
Zk , as claimed at (ii). This

completes the proof of the theorem. ��
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Proof of Theorem 3

We first derive the expression of the Hadamard derivative for the double censoring
model. By (10), for all sequences sn → s and ‖αn − α‖ → 0, as before we have

H( y|F + snαn) − H( y|F)

sn
=

m∑

k=1

∫
h(x)

m∏

j �=k

(

δ j
I(x j<z j )

(
F + ζ k

j snαn
)
(dx j )

(
F + ζ k

j snαn
)
(z j )

+ γ jζz j (dx j )

+(1 − δ j − γ j )
I(z j<x j )

(
F + ζ k

j snαn
)
(dx j )

1 − (
F + ζ k

j snαn
)
(z j )

)

×s−1
n

[(

δk
I(xk<zk )

(
F + snαn

)
(dxk)(

F + snαn
)
(zk)

+γkζzk (dxk) + (1 − δk − γk)
I(zk<xk )

(
F + snαn

)
(dxk)

1 − (
F + snαn

)
(zk)

)

−
(

δk
I(xk<zk ) F(dxk)

F(zk)
+ γkζzk (dxk) + (1 − δk − γk)

I(zk<xk ) F(dxk)

1 − F(zk)

)]
.

The first term in the product above tends to

(
δ j

I(x j<z j ) F(dx j )

F(z j )
+ γ jζz j (dx j ) + (1 − δ j − γ j )

I(z j<x j ) F(dx j )

1 − F(z j )

)
as n → ∞

and the second term tends to
(

δk
I(xk<zk )

(
F(tk)α(dxk) − α(zk)F(dxk)

)

F(zk)2

+ (1 − δk − γk)
I(zk<xk )

[(
1 − F(zk)

)
α(dxk)α(tk)F(dxk)

]

(
1 − F(zk)

)2

)

as n → ∞,

for all j = 1, . . . ,m, as claimed at (11).
For the part (ii) of Theorem 3, we need the following additional condition:

(C1) For all 0 < L < R < ∞, then F(L) > 0 and F(R) < 1; GU (·) and GV (·)
have no common discontinuity points; the operator H∗′

4 given in Corollary 5.5 of
Tsai and Crowley (1985) is invertible; and n1/2(F̂ − F) is asymptotically tight
in �∞(R+).

Proof (Theorem 3) Tsai and Crowley (1985) showed that F̂(t)
a.s.−→ F(t) for all

t ∈ R
+. Since F(t) is continuous, then ‖F̂ − F‖ → 0 (see, e.g., van der Vaart 1998

Problem 1, p. 339). By condition (A2), similarly to the proof of Theorem 1, it follows
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that Û (F̂)−Û (F)
a.s.−→ 0. Since Û (F)

a.s.−→ θ by classical U-statistics theory, it follows
that Û (F̂)

a.s.−→ θ , as claimed at (i).
Since H( y|F) is k times Hadamard differentiable at F , by the Functional Delta

Theorem and condition (C1), we obtain

sup
y

∣∣∣∣
∣∣
nk/2

(
H( y|F̂) − H( y|F)

) −
k∑

j=1

(1/j !)H ( j)( y|F, n1/2(F̂ − F)
)
∣∣∣∣
∣∣
= oP (1).

Hence,

nk/2
(
Û (F̂) − Û (F)

) = (
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, n1/2(F̂ − F)
) + oP (1).

Since the rank of H( y) is k, then E
(
H ( j)(Y |F, S)

) = 0 for all j < k. Hence, for all
sn → s ∈ R,

(
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, sn)
a.s.−→ (1/k!)E(

H (k)(Y |F, s)
)
.

By condition (C1) and (12), it follows that

n1/2(F̂ − F)
d−→ S in �∞(R+), (30)

where S is given by (12). By (30), Slutsky’s theorem, and continuousmapping theorem
in �∞(R+), we have

nk/2
(
Û (F̂) − Û (F)

) d−→ (1/k!)E(
H (k)(Y |F, S)

)
. (31)

Since H( y) is a kernel of order r , then

nr/2
(
Û (F) − θ

) d−→ Jr (H̃r ). (32)

If 1 ≤ r < k, then by (31) we have nr/2(Û (F̂) − Û (F)) = oP (1). Thus, by (31)

and (32), it follows that nr/2
(
Û (F̂) − θ

) d−→ Jr (H̃r ), as claimed at (ii). If 1 ≤ k <

r , then by (32), we have nk/2(Û (F) − θ) = oP (1). Thus, by (31), it follows that

nk/2
(
Û (F̂) − θ

) d−→ (1/k!)E(
H (k)(Y |F, S)

)
, as claimed at (ii). This completes the

proof of the theorem. ��
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Proof of Theorem 4

We first derive the expression of the Hadamard derivative for the convolution model.
As before, for all sequences sn → 0 and ‖αn − α‖ → 0,

H( y|F + snαn) − H( y|F)

sn
=

m∑

k=1

∫
h(x)

⎛

⎝
∏

j �=k

g(y j − x j )(F + ζ k
j snαn)(dx j )

∫
g(y j − u)(F + ζ k

j snαn)(du)

⎞

⎠

× s−1
n

(
g(yk − xk)(F + snαn)(dxk)∫
g(yk − u)(F + snαn)(du)

− g(yk − xk)F(dxk)∫
g(yk − u)F(du)

)
.

The first term of the product above tends to

∏

j �=k

g(y j − x j )F(dx j )∫
g(y j − u)F(du)

as n → ∞

and the second term tends to

g(yk − xk)

∫
g(yk − u)F(du)α(dxk) − ∫

g(yk − u)α(du)F(dxk)
(∫

g(yk − u)F(du)
)2 as n → ∞,

for all k = 1, . . . ,m, as claimed at (14).
For part (ii) of Theorem 4, we consider the following additional condition:

(D1) Assume that q is a right-continuous and decreasing density function on [0,∞)

having only a finite number of discontinuity points at a0 = 0 < a1 < · · · < ak <

∞; that the derivative q ′(x) of q(x) exists for all x �= a1, . . . , ak and satisfies∫ ∞
0 q ′(x)2/q(x) dx < ∞; that q ′(x) is bounded and continuous on (ai−1, ai )

for i = 1, . . . , k + 1, where ak+1 = ∞; and that n1/2(F̂ − F) is asymptotically
tight in �∞(R+).

Proof (Theorem 4) Groeneboom andWellner (1992) showed that F̂(x)
a.s.−→ F(x) for

all x ≥ 0. As in the proof of Theorem 3, this result continues to hold in the uniform
norm, that is ‖F̂−F‖ a.s.−→ 0. By condition (A2), similarly to the proof of Theorem 1, it
follows that Û (F̂) − Û (F)

a.s.−→ 0. Since Û (F)
a.s.−→ θ by classical U-statistics theory,

it follows that Û (F̂)
a.s.−→ θ , as claimed at (i).

Since H( y|F) is k times Hadamard differentiable at F , by the Functional Delta
Theorem and condition (D1), it follows that

sup
y

∣∣∣∣∣∣
nk/3

(
H( y|F̂) − H( y|F)

) −
k∑

j=1

(1/j !)H ( j)( y
∣∣F, n1/3(F̂ − F)

)
∣∣∣∣∣∣
= oP (1).
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Hence

nk/3
(
Û (F̂) − Û (F)

) = (
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, n1/3(F̂ − F)
) + oP (1).

Since the rank of H( y) is k, then E
(
H ( j)(Y |F, A)

) = 0 for all j < k. Hence, for all
zn → z ∈ R,

(
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, Azn)
a.s.−→ (1/k!)E(

H (k)(Y |F, A)
)
zk .

By condition (D1) and (15), it follows that

n1/3(F̂ − F)
d−→ AZ in �∞(R+), (33)

where A ∈ �∞(R+) is given by (16) and Z has a Chernoff distribution. By (33),
Slutsky’s theorem, and continuous mapping theorem in �∞(R+), we obtain

nk/3
(
Û (F̂) − Û (F)

) d−→ (1/k!)E(
H (k)(Y |F, A)

)
Zk . (34)

Since H( y) is a kernel of order r , by classical U-statistics theory,

nr/2
(
Û (F) − θ

) d−→ Jr (H̃r ). (35)

If 1 ≤ r < 2k/3, then by (34) we have nr/2(Û (F̂) − Û (F)) = oP (1). Thus, by (34)

and (35), it follows that nr/2
(
Û (F̂) − θ

) d−→ Jr (H̃r ), as claimed at (ii). If 1 ≤ k <

3r/2, then by (35), we have nk/3(Û (F) − θ) = oP (1). Thus, by (34), it follows that

nk/3
(
Û (F̂) − θ

) d−→ (1/k!)E[
H (k)(Y |F, A)

]
Zk , as claimed at (ii). This completes

the proof of the theorem. ��

Proof of Theorem 5

We first derive the expression of the Hadamard derivative for the multiplicative cen-
soring model. As before, for all sequences sn → 0 and ‖αn − α‖ → 0,

H( y|F + snαn) − H( y|F)

sn
=

m∑

k=1

∫
h(x)

∏

j �=k
(

δ jζt j (dx j ) + (1 − δ j )
I(t j<x j )x

−1
j (F + ζ k

j snαn)(dx j )
∫ ∞
t j

u−1(F + ζ k
j snαn)(du)

)
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× s−1
n

(

δkζtk (dxk) + (1 − δk)
I(tk<xk )x

−1
k (F + snαn)(dxk)∫ ∞

tk
u−1(F + snαn)(du)

− δkζtk (dxk)

−(1 − δk)
I(tk<xk )x

−1
k F(dxk)∫ ∞

tk
u−1F(du)

)

.

The first term of the product above tends to

∏

j �=k

(

δ jζt j (dx j ) + (1 − δ j )
I(t j<x j )x

−1
j F(dx j )

∫ ∞
t j

u−1F(du)

)

as n → ∞,

and the second term tends to

(1 − δk)
I(tk<xk )x

−1
k

(
α(dxk)

∫ ∞
tk

u−1F(du) − F(dxk)
∫ ∞
tk

u−1α(du)
)

(∫ ∞
tk

u−1F(du)
)2 as n → ∞,

for all k = 1, . . . ,m, as claimed at (18).

Proof (Theorem 5) Tsai and Crowley (1985) showed that ‖F̂ − F‖ a.s.−→ 0. By condi-
tion (A2), similarly to the proof of Theorem 1, it follows that Û (F̂) − Û (F)

a.s.−→ 0.
Since Û (F)

a.s.−→ θ by classical U-statistics theory, it follows that Û (F̂)
a.s.−→ θ , as

claimed at (i).
Since H( y|F) is k times Hadamard differentiable at F , by the Functional Delta

Theorem, it follows that

sup
y

∣
∣∣∣∣∣
nk/2

(
H( y|F̂) − H( y|F)

) −
k∑

j=1

(1/j !)H ( j)( y|F, n1/2(F̂ − F)
)
∣
∣∣∣∣∣
= oP (1).

Thus,

nk/2
(
Û (F̂) − Û (F)

) = (
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, n1/2(F̂ − F)
) + oP (1).

Since the rank of H( y) is k, then E
(
H ( j)(Y |F, S)

) = 0 for all j < k. Hence, for all
sn → s ∈ R,

(
Cm
n

)−1 ∑

i∈Dn,m

k∑

j=1

(1/j !)H ( j)(Yi |F, sn)
a.s.−→ (1/k!)E(

H (k)(Y |F, s)
)
.

By (19), Slutsky’s theorem, and continuous mapping theorem in �∞(R+), it follows
that

nk/2
(
Û (F̂) − Û (F)

) d−→ (1/k!)E(
H (k)(Y |F, S)

)
. (36)
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Since H( y) is a kernel of order r , by classical U-statistics theory, we have

nr/2
(
Û (F) − θ

) d−→ Jr (H̃r ). (37)

If 1 ≤ r < k, then by (36) we have nr/2(Û (F̂) − Û (F)) = oP (1). Thus, by (36)

and (37), it follows that nr/2
(
Û (F̂) − θ

) d−→ Jr (H̃r ), as claimed at (ii). If 1 ≤ k <

r , then by (37), we have nk/2(Û (F) − θ) = oP (1). Thus, by (36), it follows that

nk/2
(
Û (F̂) − θ

) d−→ (1/k!)E(
H (k)(Y |F, S)

)
, as claimed at (ii). This completes the

proof of the theorem. ��
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