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Abstract This paper is concerned with a robust estimator of the intensity of a station-
ary spatial point process. The estimator corresponds to the median of a jittered sample
of the number of points, computed from a tessellation of the observation domain. We
show that this median-based estimator satisfies a Bahadur representation from which
we deduce its consistency and asymptotic normality under mild assumptions on the
spatial point process. Through a simulation study, we compare the new estimator, in
particular, with the standard one counting the mean number of points per unit volume.
The empirical study confirms the asymptotic properties established in the theoretical
part and shows that themedian-based estimator is more robust to outliers than standard
procedures.

Keywords Cox processes · Robust statistics · Sample quantiles · Bahadur
representation

1 Introduction

Spatial point patterns are datasets containing the random locations of some event of
interest. These datasets arise in many scientific fields such as biology, epidemiology,
seismology, hydrology. Spatial point processes are the stochastic models generat-
ing such data. We refer to Stoyan et al. (1995), Illian et al. (2008) or Møller and
Waagepetersen (2003) for an overview on spatial point processes. These references
cover practical as well as theoretical aspects. A point process X in R

d is a locally
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finite random subset of R
d meaning that the restriction to any bounded Borel set is

finite. The Poisson point process is the reference process to model random locations
of points without interaction. Many alternative models such as Cox point processes,
determinantal point processes, Gibbs point processes allow us to introduce cluster-
ing effects or to produce regular patterns (see again e.g., Møller and Waagepetersen
2003; Lavancier et al. 2014 for an overview). If the distribution of X is invariant by
translation, we say that X is stationary. We are interested in this paper in first-order
characteristics ofX, which under the assumption of stationarity, reduce to a single real
parameter denoted by λ. This intensity λ measures the average number of points per
unit volume.

Estimating λ is a well-known problem and has been the subject of a large literature.
Based on a single realization of the point processX in a bounded domainW ofR

d , the
natural way of estimating λ is to compute the average number of points observed by
unit volume, i.e., to evaluate N (W )/|W |where N (W ) denotes the number of points of
X falling into the observation domain W with volume |W |. We denote this estimator
by ̂λstd. If the point process is a homogeneous Poisson point process, ̂λstd is also
the maximum likelihood estimator. Asymptotic properties of̂λstd are well established
for a large class of models. In particular, as the observation window expands to R

d ,
it can be shown under mild assumptions on X (mainly mixing conditions) that̂λstd

is consistent and satisfies a central limit theorem with asymptotic variance, which
can be consistently estimated (see Heinrich and Prokešová 2010 and the references
therein for more details). In some applications, it may be too time consuming to
count all points. In such situations, distance-based methods, where mainly nearest
distances between points are used, have been developed (see e.g., Byth 1982; Diggle
2003; Magnussen 2012). Unlike the estimator̂λstd, those methods are quite sensitive
to the model, which explains why the only practically applicable case is the Poisson
process (Illian et al. 2008).Othermoment-basedmethods include the adapted estimator
proposed by Mrkvička and Molchanov (2005) or the recent Stein estimator (in the
Poisson case) proposed by Clausel et al. (2015).

As outlined in particular in the book Illian et al. (2008), an important step in the
statistical analysis of point patterns is the search for unusual points or unusual point
configurations, i.e., the search of outliers. Two kinds of outliers appear when dealing
with point patterns: first points may appear at locations where they are not expected.
This situation could appear for instance when two species of plants or trees cannot
be distinguished at the time of data collection. Second, it is possible that there are
missing points in the pattern, i.e., areas of the observation domain where, according
to the general structure of the pattern, points are expected. Illian et al. (2008) or Bad-
deley et al. (2005) have proposed several diagnostic tools to detect outliers and more
generally to judge the quality of fit of a model. To the best of our knowledge, the works
by Berndt and Stoyan (1997) and Assunção and Guttorp (1999) are the only works
where robustness of estimation procedures is tackled. Assunção and Guttorp (1999)
developed anM-estimator to estimate the intensity of an inhomogeneous Poisson point
process. For an application in materials science, Berndt and Stoyan (1997) proposed
the following methodology to estimate the intensity parameter of a stationary point
process: let C be a typical cell of the Voronoi tessellation built from a stationary point
process. It is known (e.g., Stoyan et al. (1995); Møller (1994)), that E |C| = 1/λ,
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whereby an estimator of λ can be deduced by evaluating the sample mean of cell
areas produced by the Voronoi tessellation of the observed point pattern. Berndt and
Stoyan (1997) proposed to replace the sample mean by a more robust estimator like a
sample median or a trimmedmean. Illian et al. (2008, p. 252) have suggested a slightly
different procedure. Let G = {g1, . . . , g#G} be a grid of #G dummy points and let
a(g,X) be the cell area of the closest point g ∈ G in X. Starting from the fact that
(#G)−1 ∑

g∈G a(g,X)−1 is an unbiased estimator of λ (up to edge effects), then a
robust estimator can be constructed by replacing the sample mean by a trimmed mean
for instance (see Sect. 5 for more details). The two latter procedures described, which
were not supported by theoretical results, are the closest to the present work and we
discuss them in Sect. 5.

As far as we know, nomodel-free robust techniques supported by theoretical results
have been developed. In this paper, we aim at developing a simple median-based
estimator of λ.It is not so straightforward to see what a median means for a spatial
point process but we may remark that if W is decomposed as a union of K non-
overlapping cells Ck , then N (W ) = ∑

k N (Ck), which yields that̂λstd can be actually
rewritten as the empirical mean of the normalized counts variables N (Ck)/|Ck |. We
have the cornerstone to define a more robust estimator by simply replacing the sample
mean by the sample median.

The classical definition of sample quantiles and their asymptotic properties for con-
tinuous distributions are nowadays well known, see e.g., David and Nagaraja (2003).
In particular, sample medians in the i.i.d. setting, computed from an absolutely con-
tinuous distribution, f , positive at the true median, Me, are consistent and satisfy a
central limit theorem with asymptotic variance 1/4 f (Me)2. Such a result obviously
fails for discrete distributions. In this paper, we follow a strategy introduced by Stevens
(1950) and applied to count data by Machado and Santos Silva (2005) which consists
in artificially imposing smoothness in the problem through jittering: i.e., we add to
each count variable N (Ck) a random variable Uk following a uniform distribution
on (0, 1). Now, the random variable N (Ck) + Uk admits a density and asymptotic
results can be expected. To get around the problem of large sample behavior for dis-
crete distributions, another approach could be to consider the median based on the
mid-distribution, see Ma et al. (2011). The authors prove that such sample quantiles
behave more favorably than the classical one and satisfy, in the i.i.d. setting, a central
limit theorem even if the distribution is discrete.We leave to a future work the question
of deriving asymptotic properties for the sample median based on the mid-distribution
in the context of this paper.

The rest of the paper is organized as follows. Section 2 gives a short background on
spatial point processes. General notation as well as the definition of our estimator are
presented in Sect. 3.We also examine in Sect. 3 how far the truemedian of N (Ck)+Uk

is from the intensity λ|Ck |. Section 4 contains our main asymptotic results. General
assumptions are discussed and aparticular focus onCoxpoint processes is investigated.
The main difficulty here is to establish a Bahadur representation for the jittered sample
median, which can be applied to a large class of models. Section 5 presents the results
of a simulation study where we compare our procedure with the standard estimator
̂λstd and the estimator proposed by Berndt and Stoyan (1997). The research contained
in this paper leads to a number of interesting open questions, which are mentioned in
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Sect. 6. Proofs of the results and additional comments are postponed to “Proofs” and
“Additional comments” sections in Appendix.

2 Background on spatial point processes

Let X be a spatial point process defined on R
d , which we see as a random locally

finite subset of R
d . Let W be a bounded Borel set of R

d , then the number of points
in X ∩ W , denoted by N (W ), is finite, and a realization of X ∩ W is of the form
x = {x1, . . . , xm} ⊂ W for some non-negative finite integer m. If m = 0, then
x = ∅ is an empty point pattern in W . For u ∈ R

d , we denote by ‖u‖ its Euclidean
norm. For further background and measure theory on spatial point processes, see
e.g., Daley and Vere-Jones (2003) and Møller and Waagepetersen (2003). We assume
that X is a stationary point process with intensity λ, which, by Campbell’s theorem
(see e.g.,Møller and Waagepetersen 2003), is characterized by the fact that for any
real Borel function h defined on R

d and absolutely integrable (with respect to the
Lebesgue measure on R

d )

E
∑

u∈X
h(u) = λ

∫

h(u)du. (1)

Furthermore, for any integer l ≥ 1, X is said to have an lth-order product density
ρl if ρl is a non-negative Borel function on R

dl such that for all non-negative Borel
functions h defined on R

dl ,

E
∑ �=

u1,...,ul∈X
h(u1, . . . , ul) =

∫

Rd
· · ·

∫

Rd
h(u1, . . . , ul)ρl(u1, . . . , ul) du1 · · · dul ,

(2)

where the sign �= over the summationmeans that u1, . . . , ul are pairwise distinct. Note
that λ = ρ1 and that for the homogeneous Poisson point process ρl(u1, . . . , ul) = λl .
If ρ(2) exists, then by the stationarity of X, ρ(2)(u, v) depends only on u − v. In
that case, we define the pair correlation function g as a function from R

d to R
+ by

g(u − v) = ρ(2)(u, v)/λ2.
In this paper, we sometimes pay attention to Cox point processes. We use here the

definition given by Illian et al. (2008, p. 380) or Møller and Waagepetersen (2003).
Stoyan et al. (1995, p. 154) provided a more general one: Let (ξ(s), s ∈ R

d) be a
non-negative locally integrable random field. Then, X is a Cox point process if the
distribution of X given ξ is an inhomogeneous Poisson point process with intensity
function ξ . If ξ is stationary, so is X and λ = E(ξ(s)) for any s.

Among often used models of stationary Cox point processes, we can cite

• Log-Gaussian Cox processes (e.g., Møller and Waagepetersen 2003): Let Y be a
stationaryGaussian process onR

d withmeanμ and stationary covariance function
c(u) = vr(u), u ∈ R

d , where v > 0 is the variance and r the correlation function.
IfX conditional onY is a Poisson point processwith intensity function ξ = exp(Y ),
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thenX is a (homogeneous) log-Gaussian Cox process. One example of correlation
function is the Matérn correlation function (which includes the exponential cor-
relation function) given by r(u) = (

√
2ν‖u‖/φ)νKν(

√
2ν‖u‖/φ)/(2ν−1Γ (ν))

where Γ is the gamma function, Kν is the modified Bessel function of the second
kind, and φ and ν are non-negative parameters. In particular, the intensity of X
equals λ = eμ+v/2.

• Neyman–Scott processes (e.g., Illian et al. 2008): Let C be a stationary Poisson
point process with intensity κ > 0, and f√v a density function on R

d . If X
conditional on C is a Poisson point process with intensity

α
∑

c∈C
f√v(u − c)/κ, u ∈ R

2, (3)

for some α > 0, then X is a (homogeneous) Neyman–Scott process. When f√v

corresponds to the density of a uniform distribution on B(0, v) (respectively a
Gaussian random variable with mean 0 and variance v), we refer to X as the
(homogeneous) Matérn cluster (respectively, Thomas) point process. In particular,
the intensity of X equals λ = ακ .

3 Median-based estimator of λ

For any real-valued random variable Y , we denote by FY (·) its cdf, by F−1
Y (p) its

quantile of order p ∈ (0, 1), by MeY = F−1
Y (1/2) its theoretical median. Based on a

sample Y = (Y1, . . . ,Yn) of n identically distributed random variables, we denote by
̂F(·;Y) the empirical cdf, by ̂F−1(p;Y) the sample quantile of order p given by

̂F−1(p;Y) = inf{x ∈ R : p ≤ ̂F(x;Y)}. (4)

The sample median is simply denoted by ̂Me(Y) = ̂F−1(1/2;Y).
Wewill study the large sample behavior of estimators of the intensityλ. Specifically,

we consider a region Wn assumed to increase to R
d as n → ∞. We assume that the

domain of observation Wn can be decomposed as Wn = ∪k∈KnCn,k where the cells
Cn,k are non-overlapping and equally sized with volume cn = |Cn,k | and where Kn

is a subset of Z
d with cardinality kn = |Kn|. More details on Wn, cn and kn will be

provided in the appropriate Sect. 4 whenwe present asymptotic results. Finally, for any
random variable Y or any random vector Y, we denote by Y̌ = Y/cn and Y̌ = Y/cn .

The classical estimator of the intensity λ is given bŷλstd = N (Wn)/|Wn|. To define
a more robust estimator, we can note that

̂λstd = 1

kn

∑

k∈Kn

N (Cn,k)

cn
(5)

since |Wn| = kncn , i.e.,̂λstd is nothing else that the samplemean of intensity estimators
computed in cellsCn,k . The strategy adopted in this paper is to replace the samplemean
by the sample median, which is known to be more robust to outliers. As underlined in
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the introduction, quantile estimators based on count data or more generally on discrete
data can cause some troubles in the asymptotic theory. The problems come from the
fact that, in the continuous case, the asymptotic variance of the samplemedian involves
the probability distribution function evaluated at the true median.

To overcome the problemof discontinuity of the count variables N (Cn,k), we follow
a well-known technique (e.g., Machado and Santos Silva 2005) which introduces
smoothness in the problem. Let (Uk, k ∈ Kn) be a collection of independent and
identically distributed random variables, distributed as U ∼ U([0, 1]). Then, for any
k ∈ Kn , we define

Zn,k = N (Cn,k) +Uk and Z = (Zn,k, k ∈ Kn). (6)

SinceX is stationary, the variables Zn,k are identically distributed andwe let Z ∼ Zn,k .
The jittering effect shows up right away: the cdf of Z is given for any t ≥ 0 by

FZ (t) = P(N (Cn,0) ≤ �t� − 1) + P(N (Cn,0) = �t�) (t − �t�),

which is a continuously differentiable function whereby we deduce that Z admits a
density fZ at t given by

fZ (t) = P(N (Cn,0) = �t�). (7)

We define the jittered estimator of the intensity λ by

̂λJ = ̂Me(Ž) = ̂Me(Z)

cn
(8)

where the sample median is defined by (4). Since it is expected that ̂Me(Ž) is close to
Me Ž = MeZ/cn , we need to understand how far Me Ž is from λ. Using the definition
of the median, we can prove the following result.

Proposition 1 Assume that the pair correlation function of the stationary point
process X exists for u, v ∈ R

d and satisfies
∫

Rd |g(w) − 1|dw < ∞, then for any
ε > 0 we have for n sufficiently large

|Me Ž − λ| ≤ 1

cn

(

1

2
+

√

1

12

)

+ (1 + ε)

√

σ

cn
= O

(

c−1/2
n

)

(9)

where σ 2 = λ + λ2
∫

Rd (g(w) − 1)dw.

The assumption
∫ |g(w) − 1|dw < ∞ is quite standard when we deal with

asymptotics for spatial point processes, see e.g., Guan and Loh (2007) or Hein-
rich and Prokešová (2010). It ensures that for any sequence of regular domains Δn ,
|Δn|−1 Var(N (Δn)) → σ 2 as n → ∞. We refer the reader to these papers and to
Sect. 4.1 for a discussion on this assumption.
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Proof By the previous remark, cn−1 Var(N (Cn,k)) → σ 2 as n → ∞. Since for any
continuous randomvariableY withfinite first twomoments, |MeY−E(Y )| ≤ √

Var(Y )

and since E(Z) = λcn + 1/2, then for any ε > 0 we have for n sufficiently large

|MeZ − λcn| ≤ 1

2
+

√

1

12
+ (1 + ε)2σ 2cn .

Dividing both sides of the inequality by cn leads to (9). ��

Let Π be a Poisson random variable with mean ν > 0. Several results are known
for the theoretical median of Π , see e.g., Adell and Jodrá (2005). For instance, when
ν is an integer MeΠ = ν and for non integer ν, − log 2 ≤ MeΠ ≤ 1/3 (see Fig. 1).
Based on this, we can obtain a sharper inequality than (9) for Poisson and Cox point
processes.

Proposition 2 Let X be a stationary Cox point process with latent random field ξ ,
then

λcn − log 2 ≤ MeN (Cn,0) ≤ λcn + 1

3
and |MeZ − λcn| ≤ 4

3
. (10)

A reformulation of (10) is of course Me Ž − λ = O(c−1
n ).

Proof Given ξ , for any k ∈ Kn , N (Cn,k) follows a Poisson distribution with mean
∫

Cn,k
ξ(s)ds. Denote by MeN (Cn,k )|ξ the median of N (Cn,k) given ξ defined by

MeN (Cn,k )|ξ = inf
{

z ∈ R : FN (Cn,k )|ξ (z) ≥ 1/2
}

where FN (Cn,k )|ξ is the cumulative distribution function of N (Cn,k) given ξ . From the
property of the median of a Poisson distribution, we have for any k ∈ Kn

∫

Cn,k

ξ(s)ds − log 2 ≤ MeNn,k |ξ ≤
∫

Cn,k

ξ(s)ds + 1

3
.

Since E
∫

Cn,k
ξ(s)ds = λcn , the first result is deduced by taking the expectation of

each term of the previous inequality. Since N (Cn,0) ≤ Z ≤ N (Cn,0)+1,MeN (Cn,0) ≤
MeZ ≤ MeN (Cn,0) + 1 which leads to the second result. ��

4 Asymptotic results

We state in this section our main results and the general assumptions required to obtain
them. Proofs of the different results presented here, as well as auxiliary results, are
presented in “Proofs” section in Appendix.
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4.1 General assumptions and discussion

We recall the classical definition of mixing coefficients (see e.g., Politis et al. 1998):
for j, k ∈ N ∪ {∞} and m ≥ 1, define

α j,k(m) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ F(Λ1), B ∈ F(Λ2),

Λ1 ∈ B(Rd), Λ2 ∈ B(Rd), |Λ1| ≤ j, |Λ2| ≤ k, d(Λ1,Λ2) ≥ m}
(11)

whereF(Λi ) is the σ -algebra generated byX∩Λi , i = 1, 2, d(Λ1,Λ2) is theminimal
distance between the setsΛ1 andΛ2, and B(Rd) denotes the class of Borel sets in R

d .
We require the following assumptions to prove our asymptotic results.

(i) For any n ≥ 1, we assume that Wn = ∪k∈KnCn,k where Kn is a subset of
Z
d with cardinality kn = |Kn| and where the cells Cn,k are equally sized and

non-overlapping cubes with volume cn , defined by

Cn,k =
{

u = (u1, . . . , ud)
� ∈ R

d :
c1/dn (kl − 1/2) ≤ ul ≤ c1/dn (kl + 1/2), l = 1 . . . , d

}

.

We assume that 0 ∈ Kn and that there exists 0 < η′ < η such that as n → ∞

kn → ∞, cn → ∞,
kn

cη′/2∧(1−2�)
n

→ 0

where � is given by Assumption (ii) and η by Assumption (iv).
(ii)

(ii-1) MeZ − λcn = O(cn�) with 0 ≤ � < 1/2.
(ii-2) ∀tn = λcn+O(

√
cn/kn), P(N (Cn,0) = �tn�)/P(N (Cn,0) = �λcn�) → 1.

(ii-3) There exist κ, κ > 0 such that for n large enough, κ ≤ √
cn fZ (MeZ ) ≤ κ.

(iii) X has a pair correlation function g satisfying
∫

Rd |g(w) − 1|dw < ∞.

(iv) There exists η > 0 such that

α(m) = sup
p≥1

αp,p(m)

p
= O

(

m−d(1+η)
)

and α2,∞(m) = O
(

m−d(1+η)
)

where α j,k(m) for j, k ∈ N ∪ {∞} is defined by (11).
Now, we discuss the different assumptions. The last statement of Assumption (i) is

required to control the dependency between the variables Zn,k through the control of
the mixing coefficients and to ensure that asymptotically |Wn|1/2(̂λJ − λ) behaves as
|Wn|1/2(̂λJ −Me Ž ). We note that ifX is a stationary Cox point process, Proposition 2
yields that (ii-1) is satisfied for � = 0. So if η > 2, Assumption (i) can be rewritten as
cn → ∞, kn → ∞ and kn/cn → 0 as n → ∞.

Regarding Assumption (ii), Proposition 3 stated below shows it can be simplified
for a large class of Cox point processes. We underline that Assumptions (i), (ii-1)–(ii-
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2) imply the existence of κ < ∞ such that
√
cn fZ (MeZ ) ≤ κ , so (ii-3) could actually

be simplified.
Assumption (iii) is classical when dealing with asymptotics of intensity estimates,

see e.g., Heinrich and Prokešová (2010). For isotropic pair correlation functions, i.e.,
g(w) = g(‖w‖) for g : R

+ → R, Assumption (iii) is fulfilled when g(r) − 1 = 0
for r ≥ R or when g(r) − 1 = O(r−d−γ ) for some γ > 0. This includes the Matérn
cluster and Thomas processes and the log-Gaussian Cox process with Matérn-Whittle
covariance functions.

Assumption (iv) is also quite standard and has been discussed a lot in the literature:
Guan and Loh (2007), Guan et al. (2007), Prokešová and Jensen (2013) discussed the
first part of (iv), while the second one was commented in Waagepetersen and Guan
(2009), Coeurjolly andMøller (2014). Both of them are satisfied for theMatérnCluster
and Thomas processes and for log-Gaussian Cox processes with correlation function
decaying fast enough to zero.

We point out that it is not so common to use both the mixing coefficients α(m)

and α2,∞(m). As detailed in the proof of Theorem 4, the first one is used to control
the dependence between the random variables Zn,k for k ∈ Kn and derive a central
limit theorem using the blocking technique developed by Ibragimov and Linnik (1971)
which is pertinent and appropriate here since the cells Cn,k are increasing. The second
mixing coefficient is necessary to apply a multivariate central limit theorem inside the
cell Cn,0. We prove in particular that P(N (Cn,0) ≤ λcn, N (C−

n,0) ≤ λcn) → 1/2 as

n → ∞ where C−
n,0 is a “small” erosion of Cn,0 (see the proof of Step 1 of Theorem 4

for more details).
The next result shows the simplifications we can obtain for Cox point processes.

Proposition 3 Let X be a stationary Cox point process with latent random field
(ξ(s), s ∈ R

d) satisfying the Assumptions (iii)–(iv). Assume there exists δ > 2/η,
where η is given by Assumption (iv), such that E(|ξ(0)|2+δ) < ∞. Let tn = λcn +
O(

√
cn/kn) and Tn = �tn�−1

∫

Cn,0
ξ(s)ds. We also assume that the sequence of ran-

dom variables (Bn)n defined by log(Bn) = �tn�
(

log(Tn) − (Tn − 1) + (Tn − 1)2/2
)

is uniformly integrable. Then, Assumption (ii) holds (with � = 0) and as n → ∞
√
cnP(N (Cn,0) = �λcn�) →

(

2πσ 2
)−1/2

(12)

where σ 2 = λ + λ2
∫

Rd (g(w) − 1)dw.

4.2 Results

In this section, we present asymptotic results for ̂F(·;Z), the empirical cumulative
distribution function based on Z and for the median-based estimator̂λJ .

Theorem 4 Under the Assumptions (i)–(iv), we have the following two statements.

(a) Let (an)n≥1 be a sequence of real numbers satisfying λcn = an + o(
√
cn), then

as n → ∞
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√

kn
(

̂F(λcn + an;Z) − FZ (λcn + an)
) → N (0, 1/4)

in distribution.
(b) As n → ∞

√

kn
(

̂F(MeZ ;Z) − 1/2
) → N (0, 1/4)

in distribution.

If Z corresponds to a sample of n i.i.d. random variables,
√
n(̂F(p;Z) − p) tends

to a Gaussian random variable with mean zero and variance p(1 − p). Hence, we
recover the same result as in our dependency setting.

The next result establishes a Bahadur representation for the sample median, leading
to its asymptotic normality. The notation Xn = oP(v−1

n ) for a sequence of random
variables Xn and a sequence of positive real numbers vn means that vn Xn tends to 0
in probability as n → ∞.

Theorem 5 Under the assumptions (i)–(iv), we have the following two statements.

(a) As n → ∞

̂Me(Z) − MeZ = 1/2 − ̂F(MeZ ;Z)

fZ (MeZ )
+ oP

(√

cn
kn

)

. (13)

(b) Let sn = √
cnP(N (Cn,0) = �λcn�), then as n → ∞

|Wn|1/2sn
(

̂λJ − λ
)

→ N (0, 1/4) (14)

in distribution.

We deduce the following Corollary given without proof for Cox point processes.

Corollary 6 Under the Assumption (i) and the Assumptions of Proposition 3, we have
as n → ∞

|Wn|1/2
(

̂λJ − λ
)

→ N
(

0, πσ 2/2
)

in distribution, where σ 2 = λ + λ2
∫

Rd (g(w) − 1)dw.

As detailed after Proposition 1, σ 2 corresponds to the asymptotic variance of
|Wn|−1N (Wn). Actually, if we denote by ̂λstd the standard estimator of λ given by
̂λstd = |Wn|−1N (Wn) then with quite similar assumptions, it has been proved, see
e.g., Heinrich and Prokešová (2010), that |Wn|1/2(̂λstd − λ) → N (0, σ 2). It is worth
noting that the two estimatorŝλstd and̂λJ only differ from their asymptotic variance
and that the ratio of the asymptotic variances is equal to π/2. When we estimate the
location of a Gaussian sample using the sample mean or the sample median, it is
remarkable that the ratio of the asymptotic variances is also π/2.
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Finally, let us add that on the basis of Corollary 6, an asymptotic confidence interval
of λ can be constructed using a consistent estimator of σ 2. By the previous remark,
we can use the kernel-based estimator proposed by Heinrich and Prokešová (2010)
(or any other estimator presented in the mentioned paper), which precisely estimates
the asymptotic variance of̂λstd, i.e., σ 2.

5 Simulation study

Wepresent in this section a simulation studywhere, in particular, we intend to compare
the median-based estimator defined by (8) with the standard moment-based estimator
̂λstd = N (W )/|W |. In the end of this section, we also investigate the robust estimator
proposed by Berndt and Stoyan (1997).

We focus on the planar case d = 2. Three models of spatial point processes are
considered:

• Poisson point processes (referred to as poisson) with intensity λ.
• Log-Gaussian Cox Processes (referred to as lgcp) with exponential covariance
function. We fixed the variance to 0.5 and φ to 0.02. The parameter μ is fixed by
the relation μ = log λ − v/2 (see Sect. 2 for details).

• Poisson hard core (referred to as phc) with parameter β and hard core R. The
resulting process consists in a conditional Poisson point process with intensity β

wherewe have conditioned on the hard core conditionwhich consists in prohibiting
points from being closer than distance R apart. We fixed β to 200 and R to 0.05.

The poissonmodel is used as a benchmark. The lgcpmodel enters into the class of
Cox point processes for which we focused a lot in our asymptotic results.We have also
considered the Thomas model in a separate simulation study and have obtained quite
similar results to the lgcp case. The phc model is used as an example of repulsive
point process model. Note that for fixed β, R the intensity parameter λ of the process
is not explicit. In our simulation study, we fixed λ = 100 for the poisson and lgcp
models. With the parameters β = 200 and R = 0.05, we estimated the intensity of
a phc to λ � 86 using 10,000 Monte Carlo replications. The simulations have been
performed using the R package spatstat (Baddeley and Turner 2005).

To illustrate the performances of (8), we generated the point processes on the
domain of observation Wn = [−n, n]2 for different values of n and considered the
three following settings: let y be a realization from one of the three models described
above, generated on Wn and with m points. The observed point pattern is denoted by
x and is obtained as follows.

(A) Pure case: no modification is considered, x = y.
(B) A few points are added: in a subsquare Δn with side-length n/5 included in Wn

and randomly chosen, we generated a point process yadd of nadd = ρ m uniform
points in Δn . We chose ρ = 0.05 or 0.1. Then, we defined x = y ∪ yadd.

(C) A few points are deleted: let Δn = ∪4
q=1Δ

q
n where the Δ

q
n ’s are the four equally

sized squares included in Wn , located in each corner of Wn . The volume of Δn

is chosen such that E(N (Δn)) = ρ E(N (Wn)) = ρλ|Wn| and we chose either
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Table 1 Empirical means and standard deviations between brackets of estimates of the intensity λ for
different models of spatial point processes (poisson, lgcp, phc)

Empirical mean (Standard Deviation)

̂λstd ̂λJ

kn = 9 16 25 36 49

poisson

n = 1 99.6 (4.9) 100.5 (5.9) 101 (5.7) 101.8 (6) 102.8 (6.1) 104 (6)

n = 2 99.9 (2.5) 100.2 (3) 100.3 (3) 100.5 (3.1) 100.5 (3.1) 101 (3)

lgcp

n = 1 100.3 (5.5) 101.2 (6.6) 101.8 (6.4) 102.3 (6.6) 103 (6.8) 104.2 (6.8)

n = 2 100.1 (2.7) 100.5 (3.2) 100.4 (3.2) 100.6 (3.3) 100.7 (3.3) 101 (3.3)

phc

n = 1 86 (3) 87.3 (4) 87.7 (3.9) 88.9 (4.1) 90.1 (4.1) 91.7 (4.2)

n = 2 86 (1.6) 86.3 (2) 86.4 (2) 86.7 (2) 87 (2) 87.4 (2.1)

The empirical results are based on 1000 replications simulated on [−n, n]2 for n = 1, 2. The second
and third columns correspond to the standard estimator ̂λstd = N (Wn)/|Wn |, while the following ones
correspond to the median-based estimator (8) for different number of cells kn . The intensity λ equals 100
for the models poisson,lgcp and (approximately) 86 for the model phc

ρ = 0.05 or 0.1. Then,we define x = y\(y∩Δn), i.e., x is the initial configuration
thinned by 5 or 10% of its points.

We conducted a Monte Carlo simulation and generated 1000 replications of the
models poisson, lgcp, phc and for the three different settings (A)–(C). The obser-
vation windows for which we report the empirical results hereafter are n = 1, 2.
Regarding the setting (C), we placed the squares in which points are thinned at the
corners of Wn . By stationarity, the empirical results are the same if we decide to
choose them randomly. For each replication, we evaluated ̂λstd and ̂λJ for differ-
ent number of non-overlapping and equally sized cells kn . More precisely, we chose
kn = 9, 16, 25, 36, 49.

Empirical means and standard deviations related to the case (A) are reported in
Table 1. We can observe that the standard estimator is of course unbiased and that the
standard deviation decreases by a factor close to 2, which is equal to

√|W2|/|W1|.
The median-based estimator is not theoretically unbiased but the bias is clearly not
important and tends to decrease when the observation window grows up. Similarly, the
rate of convergence of the empirical standard deviation is not too far from the expected
value 2. We also computed separately ̂Var(̂λstd)/̂Var(̂λJ ) for each value of kn and n
and found interesting that these ratios are not too far from π/2. Finally, we underline
that the choice of the number of cells kn has little influence on the performances.When
n = 1, a too large value of kn seems to increase the bias, especially for the lgcp and
phc model. The differences are however reduced when n = 2. We also note that the
empirical variance is almost the same whatever the value of kn .

Tables 2 and 3 are, respectively, related to the settings (B) and (C) (described above).
Both these contaminations (B) or (C) can affect significantly the bias of the estimator.

123



Medians for spatial point processes 315

Table 2 Bias and empirical gains in percent between brackets, see (15), for the standard andmedian- based
estimators for different values of kn

Bias (gain of MSE %)

Std kn = 9 16 25 36 49

ρ = 0.05

poisson, n = 1 5.4 (0) 4.2 (−14) 4.5 (−9) 4.8 (−19) 6.3 (−53) 7.1 (−75)

n = 2 5 (0) 1.9 (50) 1.8 (51) 2.2 (47) 2.3 (47) 2.7 (43)

lgcp, n = 1 5 (0) 3.2 (−9) 3.6 (−6) 4.6 (−26) 5.3 (−35) 6.4 (−64)

n = 2 5.2 (0) 2.2 (44) 2.2 (49) 2.2 (46) 2.5 (47) 2.8 (39)

phc, n = 1 5 (0) 3.3 (14) 3.8 (5) 4.9 (−19) 6 (−53) 7.6 (−110)

n = 2 5 (0) 1.4 (70) 1.6 (72) 1.8 (70) 2.1 (66) 2.5 (57)

ρ = 0.1

poisson, n = 1 10.1 (0) 4.7 (44) 5 (45) 5.7 (35) 6.9 (29) 7.8 (17)

n = 2 10.1 (0) 2.6 (79) 2.2 (84) 2.5 (83) 2.7 (83) 2.8 (83)

lgcp, n = 1 9.8 (0) 4.4 (38) 5 (41) 5.7 (30) 6.3 (28) 7.2 (21)

n = 2 9.8 (0) 2.2 (81) 2.3 (79) 2.2 (82) 2.2 (81) 2.5 (81)

phc, n = 1 10 (0) 3.9 (64) 4.1 (66) 5.3 (57) 6.5 (44) 8 (24)

n = 2 10 (0) 1.8 (89) 1.7 (92) 1.9 (91) 2.1 (91) 2.5 (89)

The empirical results are based on 1000 replications generated on [−n, n]2 for n = 1, 2 for the models
poisson, lgcp, phc where 5 or 10% of points are added to each configuration. This corresponds to the
case (B) described in detail above

In both tables, we report the bias of the different estimators and the gain (in percent) in
terms ofmean squared error of themedian-based estimator with respect to the standard
one, i.e., for each model and each value of ρ, n, kn , we computed

Ĝain =
(

M̂SE(̂λstd) − M̂SE(̂λJ )

M̂SE(̂λstd)

)

× 100% (15)

where M̂SE is the empiricalmean squared error based on the 1000 replications. Thus, a
positive (respectively, negative) empirical gain means that the median-based estimator
is more efficient (respectively, less efficient) than the standard procedure.

The standard estimator, based only on the global number of points, is of course not
robust to perturbations. It is clearly seen that ̂λstd has a positive bias when we add
points (setting (B)) and a negative one when we delete points (setting (C)). This bias is
obviously all the more important as ρ (the ratio of points added or deleted) increases.
Unlike this, the median-based estimator shows its advantages. When points are added
(setting (B)), the estimator̂λJ remains much more stable and is more efficient in terms
of MSE except when ρ = 0.05 and n = 1 for the three models where the empirical
results do not lead to clear conclusions. When n and/or ρ increases, the gains in
percent are quite important and it is worth noticing that results do not fluctuate that
much with the choice of the number of cells kn . We also mention that, in a separate
simulation study not shown here, we tried to add a clustered point process or repulsive
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Table 3 Bias and empirical gains in percent between brackets, see (15), for the standard andmedian- based
estimators for different values of kn

Bias (gain of MSE %)

Std kn = 9 16 25 36 49

ρ = 0.05

poisson, n = 1 −5 (0) −3.9 (−13) −2.8 (2) −2 (8) −0.7 (13) 0.6 (11)

n = 2 −4.9 (0) −4.2 (6) −3 (34) −2 (46) −1 (59) −0.4 (62)

lgcp, n = 1 −5 (0) −3.9 (0) −3.1 (−2) −2.1 (2) −1.1 (17) 0.1 (18)

n = 2 −5 (0) −4.3 (3) −3.2 (27) −2 (46) −1.2 (60) −0.6 (62)

phc, n = 1 −4.2 (0) −2.7 (11) −1.6 (26) 0 (25) 1.6 (27) 3.4 (−5)

n = 2 −4.3 (0) −3.3 (22) −1.8 (59) −0.8 (72) 0 (78) 0.7 (75)

ρ = 0.1

poisson, n = 1 −10 (0) −8.6 (1) −6 (32) −3.3 (53) −1.1 (63) −1.4 (65)

n = 2 −10 (0) −7.2 (34) −3.1 (81) −1.9 (88) −1 (88) −2.4 (86)

lgcp, n = 1 −10.4 (0) −9.3 (2) −6.4 (35) −4 (50) −2.4 (59) −2.7 (58)

n = 2 −10 (0) −7.6 (23) −3.7 (73) −2.3 (82) −1.4 (86) −2.7 (81)

phc, n = 1 −8.5 (0) −6.7 (19) −3.1 (62) −0.7 (74) 1.8 (72) 1.9 (74)

n = 2 −8.6 (0) −4.8 (55) −1.8 (88) −0.7 (92) 0 (94) −1 (91)

The empirical results are based on 1000 replications generated on [−n, n]2 for n = 1, 2 for the models
poisson, lgcp, phc where 5 or 10% of points are deleted to each configuration. This corresponds to the
case (C) described in detail above

point process, instead of adding uniform points. The empirical results remained almost
unchanged.

Comments regarding Table 3 (setting (C)) are very similar. The results vary a lot
when n = 1 and ρ = 0.05 but as soon as one of this parameter increases, the bias
of the median-based estimators is clearly reduced, which implies they outperform
significantly the standard estimator.

Finally, we compared our estimator with the one proposed by Berndt and Stoyan
(1997). In particular, we used the version presented by Illian et al. (2008, p. 252). LetG
be a grid of #G dummy points, and for any g ∈ G, let a(g,X) be the Voronoi cell area
of the cell corresponding to the closest point of g in X, then (#G)−1 ∑

g a(g,X)−1

is (up to edge effects) an unbiased estimator of λ. Illian et al. (2008), proposed to
replace the previous sample mean by a sample median or sample trimmed mean. We
investigated the latter estimator, referred to as the Voronoi estimator in the following,
in a shorter simulation study. We considered only the poisson model (similar results
were observed for the lgcp and phc models), fixed the grid G to a regular grid of
#G = 2002 dummy points (the results were very stable to that parameter) and used a
symmetrically trimmed mean with a fraction of f = 0.025, 0.05 or 0.1 observations
trimmed from each end. The spatstat R package was used to compute the Voronoi
tessellation and cell areas. As suggested by the authors, to correct border effects, we
removed all border cells from the analysis. Empirical means and standard deviations
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Table 4 Empirical means and standard deviations between brackets of estimates of the intensity λ = 100
based on 1000 replications of the poisson on [−n, n]2 for n = 1, 2 and in the settings (A), (B) and (C)
described in the text

(A) (B) (C)

ρ = 0.05 ρ = 0.1 ρ = 0.05 ρ = 0.1

f = 0.025

n = 1 98.4 (5.8) 104.7 (5.7) 109.7 (5.9) 96 (5.4) 94.9 (5.7)

n = 2 98 (2.6) 104.6 (2.6) 107.3 (2.8) 95.4 (3) 91.1 (3.1)

f = 0.05

n = 1 99.3 (5.5) 103.4 (5.5) 104.9 (5.7) 94.4 (4.9) 92 (5.4)

n = 2 98.8 (2.7) 101.8 (2.5) 103.8 (2.7) 94 (2.5) 91.9 (3)

f = 0.1

n = 1 94.1 (5.1) 97.1 (5) 98.5 (5.1) 91.5 (5.1) 88.9 (5.5)

n = 2 94.5 (2.3) 97.4 (2.4) 97.1 (2.7) 88.9 (2.3) 87.9 (2.7)

The estimator considered in this table is the Voronoi cell estimator proposed by Illian et al. (2008, p.252)

for the Voronoi estimator in the settings (A)–(C), described above, are reported in
Table 4.

In the setting (A), the Voronoi estimator has a bias comparable to the one of the
median-based estimator (see Table 1) when f = 0.025 and f = 0.05. The bias is
surprisingly very large when f = 0.1. When extra points are observed (setting (B))
or omitted (setting (C)), the results are less ambiguous: the Voronoi estimator remains
strongly biased, even more than with the standard estimator̂λstd in a few cases when
f = 0.025 or f = 0.1. The choice f = 0.05 seems to offer a better compromise. We
computed the gains for the Voronoi estimator as we did for themedian-based estimator
in Tables 2 and 3 using (15). The results, not reported, show that the median-based
estimator is more efficient in the settings (A), (B) and (C) when f = 0.025 and
f = 0.1 and slightly more efficient when f = 0.05.
From a computational point of view, the Voronoi estimator is more expensive to

evaluate. For instance, it takes 6 s in average to evaluate the Voronoi estimator when
n = 2, while it takes approximately 0.03 s to evaluate the median-based estimator
(for all the values of kn = 9, 16, 25, 36, 49). This precludes from using the Voronoi
estimator (at least in that form) for very large point pattern. Asymptotic properties
were not the focus of the paper by Berndt and Stoyan (1997) or the book by Illian
et al. (2008). But another argument in support of our approach is that we believe
that deriving asymptotic results for the Voronoi estimator (consistency, asymptotic
variance, central limit theorem) looks more awkward.

6 Conclusion

In this paper, we propose a median-based estimator of the intensity parameter of a
stationary spatial point process. We prove asymptotic properties of this estimator as
the observation window expands to R

d . In particular, for a large class of models, we
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show that the estimator̂λJ satisfies a central limit theory, which allows us to derive
asymptotic confidence intervals.

As a general conclusion of the simulation study, it turns out that the estimator̂λJ

confirms expected asymptotic properties and improves the robustness property of the
standard procedure. Even if the choice of the tuning parameter kn has a moderate
influence on the empirical results when the observation window is large or when the
point pattern is strongly contaminated, it is an open question to propose a data-driven
procedure to select the number of cells kn .

In this paper, we did not aim at detecting outliers or detecting areas where problems
are suspected (abundance or lack of points). If the assumption of stationarity seems
valid, a large difference between the median-based estimator and a classical estimator
of the intensity parameter might allow the user to reconsider the observation window
in a second step.

The research contained in this paper leads to interesting open issues: (i) It could be
worth continuing the comparison between the Voronoi estimator and our approach.
This would require to propose a data-driven procedure to fix the tuning parameter of
the fraction of deleted observations, to investigate a more evolved border correction
and to derive asymptotic properties. (ii) In the setting (B), we considered outliers as
extra points added in a small subsquare. Extra points could be uniformly distributed
on the observation domain. Such a situation would be closer to the application in
image analysis investigated by Berndt and Stoyan (1997). A similar problem was
also considered by Redenbach et al. (2015). (iii) A quantile-based estimator is the
most natural way of defining a robust estimator. A more advanced technique would
consist in extending our theory to M-estimators. (iv) Another step could be to tackle
the problem of robust estimators for second-order characteristics like the K , F or
G functions. (v) Finally, extending the methodology and results to the estimation of
the intensity of inhomogeneous spatial point processes constitutes also an interesting
perspective.

Appendix: Proofs

In all the proofs, κ denotes a generic constant which may vary from line to line. For
k = (k1, . . . , kd)� ∈ Z

d , we denote |k| = max(|k1|, . . . , |kd |).

Auxiliary results

We present in this section an auxiliary lemma providing a control of the covariance of
counting variables and a general central limit theorem adapted to our context.

Lemma 7 Let Cτ be the cube centered at 0 with volume τ dcn, i.e.,

Cτ =
{

u = (u1, . . . , ud)
� ∈ R

d : |ul | ≤ τc1/dn /2, l = 1, . . . , d
}

.

Under Assumption (iii), we have the following three statements.
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(a) For any τ ∈ (0, 1]

Var(N (Cτ )) ∼ |Cτ |
(

λ + λ2
∫

Rd
(g(w) − 1)dw

)

as n → ∞.
(b) Let ε ∈ (0, 1) then

Cov(N (C1−ε), N (C1)) ∼ λ|C1−ε| + λ2|C1−ε/2|
∫

Rd
(g(w) − 1)dw

as n → ∞.
(c) Let (εn)n≥1 be a sequence of real numbers such that εn → 0 and c1/dn εn → ∞

as n → ∞, then

Var(N (C1−εn )) ∼ Var(N (C1)) ∼ Cov(N (C1−εn ), N (C1))

∼ cn

(

λ + λ2
∫

Rd
(g(w) − 1)dw

)

as n → ∞.

Proof (a) is a classical result, see e.g., Heinrich and Prokešová (2010). As we need
to refer to specific equations, we report the proof here. By Campbell’s Theorem
and since X admits a pair correlation function

Var(N (Cτ ))

= λ|Cτ | +
∫

Rd

∫

Rd
1(u ∈ Cτ )1(v ∈ Cτ )(g(u − v) − 1)dudv

= λ|Cτ | + λ2
∫

Rd
|Cτ ∩ (Cτ )−w|(g(w) − 1)dw

= λ|Cτ | + λ2
∫

C2τ
|Cτ ∩ (Cτ )−w|(g(w) − 1)dw (16)

= λ|Cτ | + λ2
∫

C2τ

d
∏

l=1

(τc1/dn − |wl |)(g((w1, . . . , wd)
�) − 1)dw1 . . . dwd

(17)

∼ |Cτ |
(

λ + λ2
∫

Rd
(g(w) − 1)dw

)

by Assumption (iii).
(b) For brevity, let Kε denote the covariance to evaluate. Following (a), we have

Kε = λ|C1−ε ∩ C1| +
∫

Rd

∫

Rd
1(u ∈ C1−ε)1(v ∈ C1)(g(u − v) − 1)dudv

= λ|C1−ε| + λ2
∫

Rd
|C1−ε ∩ (C1)−w|(g(w) − 1)dw.
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Let w = (w1, . . . , wd)
�. We can check that

|C1−ε ∩ (C1)−w| =
{

0 if w ∈ R
d\C2−ε

∏d
l=1

(

(

1 − ε
2

)

c1/dn − |wl |
)

if w ∈ C2−ε

whereby we deduce using (16)–(17) and Assumption (iii) that

Kε = λ|C1−ε| + λ2
∫

C2−ε

d
∏

l=1

(

(1 − ε/2)c1/dn − |wl |
)

×
(

g((w1, . . . , wd)
�) − 1

)

dw1 . . . dwd

= λ|C1−ε| + λ2
∫

C2−ε

|C1−ε/2 ∩ (C1−ε/2)−w|(g(w) − 1)dw

∼ λ|C1−ε| + λ2|C1−ε/2|
∫

Rd
(g(w) − 1)dw

as n → ∞.
(c) The assumptions on the sequence (εn) allow us to apply (a)–(b) which leads to

the result since |C1| ∼ |C1−εn | ∼ |C1−εn/2| ∼ cn as n → ∞. ��
Now,wepresent a central limit theorem for stationary randomfieldswith asymptotic

covariance matrix not necessarily positive definite. It is very close to Guyon (1991,
Theorem 3.3.1) and to Karáczony (2006,Theorem 1) but we were not able to find it in
the following form in the literature.

For two square matrices A, B, A ≥ B (respectively, A > B) means that A− B is a
positive (respectively, positive definite) matrix. Finally, ‖A‖ stands for the Frobenius
norm of A given by ‖A‖ = Tr(A�A)1/2.

Theorem 8 Let (Xk, k ∈ Z
d) be a stationary random field in a measurable space S.

LetKn ⊂ Z
d with kn = |Kn| → ∞ as n → ∞. For any n ≥ 1 and k ∈ Kn, we define

Yn,k = fn,k(Xk) where fn,k : S → R
p for some p ≥ 1 is a measurable function. We

denote by Sn = ∑

k∈Kn
Yn,k and by �n = Var(Sn) and assume that for any n ≥ 1,

k ∈ Kn, E Yn,k = 0. We also assume that

(I) supn≥1 supk∈Kn
‖Yn,k‖∞ < ∞.

(II) There exists η > 0 such that α2,∞(m) = O(m−d(1+η)).
(III) There exists � ≥ 0 a (p, p) matrix with rank 1 ≤ r ≤ p such that k−1

n �n → �

as n → ∞. Then, k−1/2
n Sn → N (0, �) in distribution as n → ∞.

We present Theorem 8 for bounded random vectors and with only one mixing
coefficient, namely α2,∞. It can obviously be generalized along similar lines as in
Guyon (1991, Theorem 3.3.1).

Proof Assume � > 0, then for n large enough k−1
n �n ≥ �/2 > 0, which combined

withAssumptions (I)–(II) allows us to applyKaráczony (2006, Theorem1) to conclude
the result.
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The end of the proof follows the same arguments as the proof of a central limit
theorem for triangular arrays of conditionally centered random fields obtained by
Coeurjolly and Lavancier (2013, Theorem 2). If � is not positive definite, we can
find an orthonormal basis (h1, . . . , h p) of R

p where the fi ’s are eigenvectors of �.
We let ( f1, . . . , fr ) be the basis of the image of � and ( fr+1, . . . , f p) be the basis
of its kernel. Let also HIm (respectively, HKer ) be the matrix formed by the column
vectors of ( f1, . . . , fr ) (respectively, ( fr+1, . . . , f p)). Similarly, for v ∈ R

p, we
denote by v j its j th coordinate in the basis of ( f1, . . . , f p), vIm = (v1, . . . , vr ) and
vKer = (vr+1, . . . , vp). Using the Cramer–Wold device, we need to prove that for any

v ∈ R
p, v�k−1/2

n Sn converges towards a Gaussian random variable. We have

v�k−1/2
n Sn = v�

Im H
�
Imk

−1/2
n Sn + v�

Ker H
�
Ker k

−1/2
n Sn .

Let S′
n = ∑

k Y
′
n,k where Y

′
n,k = H�

ImYn,k . The random variables Y ′
n,k are bounded

variables for any n ≥ 1 and k ∈ Kn . By assumption (III), k−1
n Var(S′

n) → H�
Im�HIm

which is a positive definite matrix since r ≥ 1. Therefore, from the first part of
the proof, v�

Im H
�
Imk

−1/2
n Sn tends to a Gaussian random variable in distribution as

n → ∞. By Slutsky’s Lemma (see e.g., Van der Vaart 2000), the proof will be done
if v�

Ker H
�
Ker k

−1/2
n Sn tends to 0 in probability as n → ∞. Since, H�

Ker�HKer = 0,
the expected convergence follows from

Var(v�
Ker H

�
Ker k

−1/2
n Sn) = v�

Ker H
�
Ker k

−1
n �nHKervKer

= v�
Ker H

�
Ker (k

−1
n �n − �)HKervKer

≤ ‖vKer‖ ‖HKer‖ ‖k−1
n �n − �‖

which tends to 0 by Assumption (III). ��

Proof of Proposition 3

Proof Assumption (ii-1) corresponds to Proposition 2.
Assumptions (ii-2) and (ii-3). By definition of X,

√

2πλcnP(N (Cn,0) = �tn� | ξ) =
(

∫

Cn,0
ξ(s)ds

)�tn�
e
− ∫

Cn,0
ξ(s)ds

�tn��tn�e−�tn� vn

where

vn =
√

λcn
�tn�

√
2π�tn��tn�+1/2e−�tn�

�tn�! .

Since tn/(λcn) → 1 as n → ∞, then using Stirling’s Formula we obviously have
vn → 1 as n → ∞. Now, using the notation Tn = �tn�−1

∫

Cn,0
ξ(s)ds, we rewrite the

first equation as follows
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(vn)
−1

√

2πλcnP(N (Cn,0) = �tn� | ξ) = T �tn�
n e�tn�(1−Tn) = AnBn

where An and Bn are defined by

An = e−�tn�(Tn−1)2/2 and Bn = e�tn�
(

log Tn−(Tn−1)+(Tn−1)2/2
)

.

Let η be given by Assumption (iv). Since E |ξ(0)|2+δ < ∞ for some δ > 2/η,
we are ensured that α2,∞ = O(m−ν) for some ν > d(2 + δ)/δ. Therefore, we
can apply Guyon (1991, Theorem 3.3.1) and show that there exists τ > 0 such
that

√
λcn(In − 1) → N (0, τ 2) in distribution where In = (λcn)−1

∫

Cn,0
ξ(s)ds.

To compute τ 2, we observe that using the definition of a Cox point process

Var(N (Cn,0)) = E
(

Var(N (Cn,0) | ξ)
) + Var

(

E
(

N (Cn,0)
) | ξ

)

= λcn + Var
∫

Cn,0

ξ(s)ds.

We use Assumption (iii) and Lemma 7 (a) to deduce that as n → ∞

Var
∫

Cn,0

ξ(s)ds ∼ λ2cn

∫

Rd
(g(w) − 1)dw

which leads to Var(
√

λcn In) → τ 2 = λ
∫

Rd (g(w) − 1)dw as n → ∞. From the
definition of tn and Slutsky’s Lemma, it can be shown that

√�tn�(Tn − In) → 0 in
probability which leads to Tn → 1 in probability and

√�tn�(Tn − 1) → N (0, τ 2) in
distribution.We deduce that An → A = e−τ 2L2/2 in distribution, where L ∼ N (0, 1),
which, by the uniform integrability of the sequence (An)n , leads to An → A in L1.
Now, a Taylor expansion shows that there exists ˜Tn ∈ (0 ∧ (Tn − 1), 0 ∨ (Tn − 1))
such that

| log(Bn)| = �tn�|Tn − 1| ˜T 2
n

1 + ˜Tn
≤ �tn�(Tn − 1)2

|Tn − 1|
˜Tn + 1

.

It is clear that ˜Tn tends to 0 in probability as n → ∞, which yields that log(Bn) → 0
and Bn → 1 in probability by Slutsky’s Lemma. Again, the uniform integrability
assumption of the sequence (Bn)n implies that Bn → 1 in L1. Since

|AnBn − A| ≤ An|Bn − 1| + |An − A| ≤ |Bn − 1| + |An − A|

we conclude that AnBn → A in L1 as n → ∞. In other words as n → ∞
√

2πλcnP(N (Cn,0) = �tn�) ∼ v−1
n E

(
√

2πλcnP(N (Cn,0) = �tn� | ξ)
)

→ E(A).

Using the definition of the moment generating function of a χ2
1 distribution, we

have E(A) = (1 + τ 2)−1/2 whereby we deduce that
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√
cnP(N (Cn,0) = �tn�) →

(

2πλ(1 + τ 2)
)−1/2 =

(

2πσ 2
)−1/2

with σ 2 = λ + λ2
∫

Rd (g(w) − 1)dw. ��

Proof of Theorem 4

Proof We focus only on (a) as (b) follows from (a), Slutsky’s Lemma and Assumption
(ii-2). Let tn = λcn + an . By definition

̂F(tn;Z) − FZ (tn) = 1

kn

∑

k∈Kn

(

1(Zn,k ≤ tn) − P(Zn,k ≤ tn)
)

. (18)

Let (εn)n≥1 be a sequence of real numbers such that εn → 0 and εnc
1/d
n → ∞ as

n → ∞.We denote by Z−
n,k = N (C−

n,k) + Uk where C−
n,k is the erosion of the cell

Cn,k by a closed ball with radius εnc
1/d
n . Two cells C−

n,k and C−
n,k′ for k, k′ ∈ Kn

(k �= k′) are, therefore, at distance greater than 2εnc
1/d
n . To prove Theorem 4 (a), we

use the blocking technique introduced by Ibragimov and Linnik (1971) and applied to
spatial point processes by Guan and Loh (2007), Guan et al. (2007) and Prokešová and
Jensen (2013). To this end, we need additional notation. For any n ≥ 1 and k ∈ Kn ,
let t−n = λ|C−

n,k |+1/2 = λ(1−εn)
dcn +1/2 and let (˜Z−

n,k, k ∈ Kn) be a collection of

independent random variables such that ˜Z−
n,k

d= Z−
n,k . We decompose the sum in (18)

as follows

∑

k∈Kn

(

1(Zn,k ≤ tn) − P(Zn,k ≤ tn)
) = Dn + S−

n − ˜S−
n + ˜S−

n (19)

where

Dn =
∑

k∈Kn

Dn,k =
∑

k∈Kn

{

1(Zn,k ≤ tn)−P(Zn,k ≤ tn)−1(Z−
n,k ≤ t−n )+P(Z−

n,k ≤ t−n )
}

S−
n =

∑

k∈Kn

1(Z−
n,k ≤ t−n ) − P(Z−

n,k ≤ t−n )

˜S−
n =

∑

k∈Kn

1(˜Z−
n,k ≤ t−n ) − P(˜Z−

n,k ≤ t−n ).

We split the proof into three steps. As n → ∞, we prove that

Step 1. Dn/
√
kn → 0 in probability.

Step 2. for any u ∈ R, φ−
n (u) − ˜φ−

n (u) → 0 as n → ∞ where i = √−1, φ−
n (u) =

E(eiuS
−
n /

√
kn ) and˜φ−

n (u) = E(eiu˜S
−
n /

√
kn ), whichwill imply that (S−

n −˜S−
n )/

√
kn → 0.

Step 3. ˜S−
n /

√
kn → N (0, 1/4) in distribution.
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The conclusionwill followdirectly fromSteps 1–3, (18)–(19) andSlutsky’sLemma.

Step 1. To achieve this step, we will prove that k−1
n E(D2

n) = k−1
n Var(Dn) → 0 as

n → ∞. We have

1

kn
Var(Dn) = 1

kn

∑

k,k′∈Kn
|k−k′|≤1

Cov(Dn,k, Dn,k′) + 1

kn

∑

k,k′∈Kn
|k−k′|>1

Cov(Dn,k, Dn,k′).

Let k, k′ ∈ Kn with k �= k′, Assumption (i) asserts that d(Cn,k,Cn,k′) = |k − k′ −
1|c1/dn . Since Dn,k ∈ F(Cn,k) and Dn,k′ ∈ F(Cn,k′), we have from Zhengyan and
Chuanrong (1996, Lemma 2.1)

Cov(Dn,k, Dn,k′) ≤ 4αcn ,cn (|k − k′ − 1|c1/dn )

≤ 4cnα(|k − k′ − 1|c1/dn ) = O(|k − k′ − 1|−d(1+η)c−η
n ).

Since the series
∑

k∈Zd\{0} |k|−d(1+η) converges, it is clear that

1

kn

∑

k,k′∈Kn
|k−k′|>1

Cov(Dn,k, Dn,k′) = O(c−η
n ), (20)

which tends to 0 as n → ∞. Since the variables Dn,k are identically distributed, we
get from the Cauchy–Schwarz inequality

∣

∣

∣

1

kn

∑

k,k′∈Kn
|k−k′|≤1

Cov(Dn,k, Dn,k′)
∣

∣

∣ ≤ 1

kn

∑

k,k′∈Kn
|k−k′|≤1

√

Var(Dn,k)Var(Dn,k′)

≤ Var(Dn,0)
1

kn

∑

k,k′∈Kn
|k−k′|≤1

1

≤ 3d Var(Dn,0).

Thus, Step 1 is achieved once we prove that Var(Dn,0) → 0 as n → ∞. A
straightforward calculation yields that

Var(Dn,0) = P(Zn,0 ≤ tn)(1 − P(Zn,0 ≤ tn)) + P(Z−
n,0 ≤ t−n )(1 − P(Z−

n,0 ≤ t−n ))

+ 2P(Zn,0 ≤ tn)P(Z−
n,0 ≤ t−n ) − 2P

(

Zn,0 ≤ tn, Z
−
n,0 ≤ t−n

)

.

LetΔ j be the unit cube centered at j ∈ Z
d and letJn = { j ∈ Z

d : Δ j ∩Cn,0 �= ∅}.
We denote by Yn, j the random vector

Yn, j =
(

U0

jn
+ 1(u ∈ Cn,0 ∩ Δ j ),

U0

jn
+ 1(u ∈ C−

n,0 ∩ Δ j )

)�
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where jn = |Jn| satisfies jn ∼ cn as n → ∞. We have (Zn,0, Z
−
n,0)

� = ∑

j∈Jn
Yn, j

and we note that supn≥1 sup j∈Jn
‖Yn, j‖∞ < ∞. Since εn → 0 and c1/dn εn → ∞ as

n → ∞, we can apply Lemma 7 (c) to derive

Var(Zn,0) ∼ Var(Z−
n,0) ∼ Cov(Zn,0, Z

−
n,0) ∼ 1

12
+ σ 2cn

where σ 2 = λ + λ2
∫

Rd (g(w) − 1)dw. In other words,

j−1
n Var((Zn,0, Z

−
n,0)

�) → � = σ 2
(

1 1
1 1

)

, (21)

which is a matrix with rank 1. By combining this with Assumption (iv), we can apply
Theorem 8 to get as n → ∞

c−1/2
n

(

Zn,0 − E(Zn,0), Z
−
n,0 − E(Z−

n,0)
)� → N (0, �)

in distribution. Since t−n = E(Z−
n,0) and E(Zn,0) − tn = 1/2 − an = o(c1/2n ) by

definition of tn , an application of Slutsky’s Lemma yields that

c−1/2
n

(

Zn,0 − tn, Z
−
n,0 − t−n )

)� → N (0, �)

in distribution as n → ∞ whereby we deduce that

P(Zn,0 ≤ tn) → 1/2 and P(Z−
n,0 ≤ t−n ) → 1/2. (22)

Rose and Smith (1996) proved that if U = (U1,U2)
� follows a bivariate normal

distribution with mean 0, variance 1 and correlation ρ, P(U1 ≤ 0,U2 ≤ 0) = 1/4 +
sin−1(ρ)/2π which equals to 1/2 when ρ = 1. From (21), this shows that P(Zn,0 ≤
tn, Z

−
n,0 ≤ t−n ) → 1/2 asn → ∞. As a consequence,Var(Dn,0) → 0which combined

with (20) leads to k−1
n Var(Dn) → 0 as n → ∞.

Step 2.This step is the core of the blocking technique. Let h denote a bijection fromKn

to {1, . . . , kn}. Let j ∈ {1, . . . , kn} and Vj = eiu(1(Zn,h−1( j)≤t−n )−P(Zn,h−1( j)≤t−n ))/
√
kn .

Then

φ−
n (u) = E

kn
∏

j=1

Vj and ˜φ−
n (u) =

kn
∏

j=1

E(Vj ).

and

|φ−
n (u) − ˜φ−

n (u)| ≤
kn−1
∑

j=1

∣

∣E
(

j+1
∏

s=1

Vs
) − E

(

j
∏

s=1

Vs
)

E(Vj+1)
∣

∣.
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Let j ∈ {1, . . . , kn − 1} and A j = ∏ j
s=1 Vs . Clearly, A j ∈ F(∪ j

s=1C
−
n,h−1(s)

) and

Vj+1 ∈ F(C−
n,h−1( j+1)

), |∪ j
s=1C

−
n,h−1(s)

| = j (1−εn)
dcn , |C−

n,h−1( j+1)
| = (1−εn)

dcn

andd(∪ j
s=1C

−
n,h−1(s)

,C−
n,h−1( j+1)

) ≥ 2εnc
1/d
n . Since A j andVj+1 are bounded random

variables, we have the following upper bound on their covariance by means of the
strong mixing coefficient, see Zhengyan and Chuanrong (1996, Lemma 2.1)

Cov(A j , Vj+1) ≤ 4α j (1−εn)dcn ,(1−εn)dcn (2εnc
1/d
n )

≤ 4 jcn sup
p

αp,p(2εnc
1/d
n )

p

≤ 4cnknO(ε−d(1+η)
n c−(1+η)

n ) = O(knε
−d(1+η)
n c−η

n )

whereby we deduce that |φ−
n (u) − ˜φ−

n (u)| = O(k2nc
−η
n ε

−d(1+η)
n ). Now, we can fix

the sequence (εn)n≥1. Specifically, we set εn = c(η′−η)/d(1+η)
n for some 0 < η′ < η.

This choice ensures that εn → 0, c1/dn εn = c(1+η′)/d(1+η)
n → ∞ and yields that

|φ−
n (u) − ˜φ−

n (u)| = O(k2n/c
η′
n ) which tends to 0 as n → ∞ by Assumption (i).

Step 3. Since ˜Z−
n,k

d= Z−
n,k and since P(Z−

n,k ≤ t−n ) → 1/2 as n → ∞ from Step 2,
we deduce that

Var(˜S−
n ) =

∑

k∈Kn

P(˜Z−
n,k ≤ t−n )(1 − P(˜Z−

n,k ≤ t−n ))

= knP(˜Z−
n,0 ≤ t−n )(1 − P(˜Z−

n,0 ≤ t−n )) ∼ kn/4

as n → ∞. Since (1(˜Z−
n,k ≤ t−n ), k ∈ Kn) is a collection of bounded and independent

random variables, Step 3 follows from an application of Lyapounov Theorem. ��

Proof of Theorem 5

Proof (a) Let us define for any t ≥ 0

An =
√

kn
cn

(

̂Me(Z) − MeZ
)

and Bn(t) =
√

kn
cn

(

FZ (t) − ̂F(t;Z)

fZ (MeZ )

)

.

We have to prove that An − Bn(MeZ ) converges in probability to 0 as n → ∞.
The proof is based on the application of Ghosh (1971, Lemma 1) which consists
in satisfying the two following conditions:
(I) for all δ > 0, there exists ε = ε(δ) such that P(|Bn(MeZ )| > ε) < δ.
(II) for all y ∈ R and ε > 0

lim
n→∞P(An ≤ y, Bn(MeZ ) ≥ y+ε)= lim

n→∞ P(An ≥ y+ε, Bn(MeZ )≤ y)=0.
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In particular, (I) is fulfilled if we prove that Var Bn(MeZ ) = O(1). The
proof of Theorem 4 shows that Var ̂F(MeZ ;Z) = O(k−1

n ) as n → ∞. By
Assumption (ii-3), we obtain

Var Bn(MeZ ) = 1

cn fZ (MeZ )2
Var(

√

kn ̂F(MeZ ;Z)) = O(1).

(II) Let y ∈ R (and without loss of generality, assume y ≥ 0). By definition of
the sample median, we have

{An ≤ y} =
{

̂Me(Z) ≤ MeZ + y
√

cn/kn
}

=
{

1

2
≤ ̂F

(

MeZ + y
√

cn/kn
)

}

=
{

Bn

(

MeZ + y
√

cn/kn
)

≤ yn
}

where

yn = √

kn/cn
1

fZ (MeZ )

(

FZ

(

MeZ + y
√

cn/kn
)

− FZ (MeZ )
)

.

Now, we intend to prove that as n → ∞, yn → y and ˜Bn = Bn(MeZ +
y
√
cn/kn) − Bn(MeZ ) → 0 in probability. First, since Z admits a den-

sity everywhere, there exists τn ∈ (MeZ ,MeZ + y
√
cn/kn) such that yn =

y fZ (τn)/ fZ (MeZ ). From (7)

fZ (τn)

fZ (MeZ )
= P(N (Cn,0) = �τn�)

P(N (Cn,0) = �MeZ�) ,

which tends to 1 by Assumptions (ii-1)–(ii-2) and implies the convergence of yn
towards y. Second, we show that Var(˜Bn) → 0 as n → ∞ by decomposing the
variance as follows. Let ˜Bn,k = 1(MeZ ≤ Zn,k ≤ MeZ + y

√
cn/kn)−P(MeZ ≤

Zn,k ≤ MeZ + y
√
cn/kn)

Var(˜Bn) = 1

cn fZ (MeZ )2

1

kn

∑

k,k′∈Kn

Cov(˜Bn,k, ˜Bn,k′)

≤ κ

kn

∑

k,k′∈Kn
|k−k′|≤1

|Cov(˜Bn,k, ˜Bn,k′)| + κ

kn

∑

k,k′∈Kn
|k−k′|>1

|Cov(˜Bn,k, ˜Bn,k′)|.

(23)

We follow the proof of Step 1 of Theorem 4. For any k, k′ ∈ Kn k �= k′,
Cov(˜Bn,k, ˜Bn,k′) = O(|k − k′ − 1|−d(1+η)c−η

n ). So
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1

kn

∑

k,k′∈Kn
|k−k′|>1

|Cov(˜Bn,k, ˜Bn,k′)| = O(c−η
n )

which tends to 0 as n → ∞. The first double sum in (23) is upper bounded by
3dκ Var(˜Bn,0) and

Var(˜Bn,0) = P(MeZ ≤ Zn,0 ≤ MeZ + y
√

cn/kn)

×(

1 − P(MeZ ≤ Zn,0 ≤ MeZ + y
√

cn/kn)
)

.

By Assumption (i)–(ii), MeZ = λcn + o(
√
cn) and MeZ + y

√
cn/kn = λcn +

o(
√
cn) for every y ∈ R. So we can apply (22) which leads to P(Zn,0 ≥ MeZ ) →

1/2, P(Zn,0 ≤ MeZ + y
√
cn/kn) → 1/2 and finally to Var(˜Bn,0) → 0 and

˜Bn → 0 in probability as n → ∞.
Now,we can conclude. For all ε > 0, there exists n0(ε) such that for all n ≥ n0(ε),
yn ≤ y + ε/2. Therefore, for n ≥ n0(ε)

P(An ≤ y, Bn(MeZ ) ≥ y + ε)

= P(Bn(MeZ + y
√

cn/kn) ≤ yn, Bn(MeZ ) ≥ y + ε)

≤ P(Bn(MeZ + y
√

cn/kn) ≤ y + ε/2, Bn(MeZ ) ≥ y + ε)

≤ P
(∣

∣

∣Bn(MeZ + y
√

cn/kn) − Bn(MeZ )

∣

∣

∣ ≥ ε/2
)

≤ P(|˜Bn| ≥ ε/2)

which tends to 0 as n → ∞ and (II) is proved.
(b) It is sufficient to combine Theorem 4 (b) and Theorem 5 (a). From Slutsky’s

Lemma and by Assumptions (ii-2)–(ii-3), the following convergence in distribu-
tion holds as n → ∞

√

kn/cnsn
(

̂Me(Z) − MeZ
) → N (0, 1/4)

where sn = √
cnP(N (Cn,0) = �λcn�). Since ̂Me(Z) = cn ̂Me(Ž),MeZ = cnMe Ž

and |Wn| = kncn , this can be rewritten as

|Wn|1/2sn
(

̂Me(Ž) − Me Ž

)

→ N (0, 1/4).

From (24) and byAssumptions (i)–(ii),Me Ž = λ+O(c�−1
n ) and

√
kncnc�−1

n → 0
as n → ∞. Hence, a last application of Slutsky’s Lemma concludes the proof.

��
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Additional comments

The way of jittering a sample of counts

We could think of slightly generalizing (6) and introduce the jittering effect as

Zn,k = N (Cn,k) + ϕ−1(Uk)

for any k ∈ Kn , where ϕ : [0, 1] → [0, 1] is a continuously differentiable increasing
function. The cumulative distribution function of Z would be in that case

FZ (t) = P(N (Cn,0) ≤ �t� − 1) + P(N (Cn,0) = �t�) ϕ(t − �t�)

and for any t /∈ N, Z would admit a density fZ at t given by

fZ (t) = P(N (Cn,0) = �t�) ϕ′(t − �t�).

When t ∈ N, since (FZ (t + h) − FZ (t))/h tends to P(N (Cn,0) = �t�)ϕ′(0) when
h → 0+ and to P(N (Cn,0) = �t�)ϕ′(1) when h → 0−, Z would also admit a
density at t if we add the condition ϕ′(0) = ϕ′(1). However, our Theorem 5 requires
another assumption. Namely, we need to assume that for any tn = λcn +O(

√
cn/kn),

fZ (tn)/ fZ (λcn) tends to 1. To this end, we would have to combine Assumption (ii-2),
with an assumption like inf t ϕ′(t) = supt ϕ

′(t). This explains why we focused on the
case ϕ(t) = t in Sect. 3 and in the presentation of our asymptotic results in Sect. 4.

Rule of thumb under the Poisson case

In this section, we want to examine the value of the true median of Z under the Poisson
case. Even if this is uselesswe also had a look at different functionsϕ. Figure 1 presents
the true median of Π and Z = Π + ϕ−1(U ) where Π follows a Poisson distribution
with mean ν and where U is a uniform random variable on [0, 1]. We considered the
cases ϕ(t) = √

t, t, t2 and examined the true median minus ν in terms of ν. First, we
recover a result obtained by Adell and Jodrá (2005): when ν is an integer, the median
of Π equals ν and for other values of ν, it lies in the interval [ν − log(2), ν + 1/3]. It
is worth observing that the choice ϕ(t) = t leads us to conjecture that when ν is large
MeZ is very close to ν + 1/3.

So, we could use the rule of thumb derived under the Poisson case and modify the
jittered estimator (8) as follows

̂λJ,2 =̂λJ − 1

3cn
= MeŽ − 1

3cn
. (24)

Since |Wn|1/2/cn = √
kn/cn → 0 by Assumption (i), this produces no differences

asymptotically:̂λJ,2 has the same behavior aŝλJ and satisfies the central limit theorem
given by (14) or Corollary 6. We compared ̂λJ and ̂λJ,2 in the framework of the
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MeZ − ν; ϕ(t) = t2
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Fig. 1 Sample medians based on 106 replications of Π or Π + ϕ−1(U ) random variables where Π

(respectively, U ) follows a Poisson distribution with mean ν (respectively, uniform distribution on [0,1])
and where ϕ = (t) = t, t2,

√
(t)

simulation study presented in Sect. 5. The evidence of better empirical results was
unclearwhich explainswhywedidnot present̂λJ,2 before andkept̂λJ in the simulation
study.

Acknowledgements The authorwould like to thank sincerelyMichaela Prokešová for discussing the initial
idea of this paper, Frédéric Lavancier for discussions on an earlier version of the manuscript and Jérôme
Lelong for a careful reading. The author is very grateful to the associate editor and the referee in particular
for pointing out interesting references, which enriched the simulation study. The research of the author is
partially funded by Persyval-lab EA Oculo-Nimbus.

References

Adell, J., Jodrá, P. (2005). The median of the Poisson distribution.Metrika, 61(3), 337–346.
Assunção, R., Guttorp, P. (1999). Robustness for inhomogeneous Poisson point processes. Annals of the

Institute of Statistical Mathematics, 51, 657–678.
Baddeley, A., Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. Journal of

Statistical Software, 12, 1–42.
Baddeley, A., Turner, R., Møller, J., Hazelton, M. (2005). Residual analysis for spatial point processes

(with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(5),
617–666.

Berndt, S., Stoyan, D. (1997). Automatic determination of dendritic arm spacing in directionally solidified
matters. International Journal of Materials Research (formerly Zeitschrift für Metallkunde), 88, 758–
763.

Byth, K. (1982). On robust distance-based intensity estimators. Biometrics, 38(1), 127–135.

123



Medians for spatial point processes 331

Clausel, M., Coeurjolly, J.-F., Lelong, J. (2015). Stein estimation of the intensity of a spatial homogeneous
Poisson point process. Annals of Applied Probability (to appear).

Coeurjolly, J.-F., Lavancier, F. (2013). Residuals and goodness-of-fit tests for stationary marked Gibbs point
processes. Journal of the Royal Statistical Society: Series B (StatisticalMethodology), 75(2), 247–276.

Coeurjolly, J.-F., Møller, J. (2014). Variational approach to estimate the intensity of spatial point processes.
Bernoulli, 20(3), 1097–1125.

Daley, D. J., Vere-Jones, D. (2003). An introduction to the theory of point processes. Volume I: Elementary
theory and methods (2nd ed.). New York: Springer.

David, H., Nagaraja, H. (2003). Order statistics (3rd ed.). Wiley, NJ: Hoboken.
Diggle, P. J. (2003). Statistical analysis of spatial point patterns (2nd ed.). London: Arnold.
Ghosh, J. (1971). A new proof of the Bahadur representation of quantiles and an application. Annals of

Mathematical Statistics, 42(6), 1957–1961.
Guan, Y., Loh, J. M. (2007). A thinned block bootstrap procedure for modeling inhomogeneous spatial

point patterns. Journal of the American Statistical Association, 102, 1377–1386.
Guan, Y., Sherman, M., Calvin, J. A. (2007). On asymptotic properties of the mark variogram estimator of

a marked point process. Journal of Statistical Planning and Inference, 137(1), 148–161.
Guyon, X. (1991). Random fields on a network. New York: Springer.
Heinrich, L., Prokešová, M. (2010). On estimating the asymptotic variance of stationary point processes.

Methodology and Computing in Applied Probability, 12(3), 451–471.
Ibragimov, I. A., Linnik, Y. V. (1971). Independent and stationary sequences of random variables. Gronin-

gen: Wolters-Noordhoff.
Illian, J., Penttinen, A., Stoyan, H., Stoyan, D. (2008). Statistical analysis and modelling of spatial point

patterns. Statistics in practice. Chichester: Wiley.
Karáczony, Z. (2006). A central limit theorem for mixing random fields. Miskolc Mathematical Notes, 7,

147–160.
Lavancier, F., Møller, J., Rubak, E. (2014). Determinantal point process models and statistical inference.

Journal of the Royal Statistical Society: Series B. doi:10.1111/rssb.12096.
Ma, Y., Genton, M., Parzen, E. (2011). Asymptotic properties of sample quantiles of discrete distributions.

Annals of the Institute of Statistical Mathematics, 63(2), 227–243.
Machado, J., Santos Silva, J. (2005). Quantiles for counts. Journal of the American Statistical Association,

100(472), 1226–1237.
Magnussen, S. (2012). Fixed-count density estimation with virtual plots. Spatial Statistics, 2, 33–46.
Møller, J. (1994). Lectures on random Voronoi tessellations. New York: Springer.
Møller, J., Waagepetersen, R. P. (2003). Statistical inference and simulation for spatial point processes.

Boca Raton: Chapman and Hall/CRC.
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