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Abstract In this paper, we estimate a conditional density. In contrast to standard
results in the literature in this context we assume that for each observed value of
the covariate we observe a sample of the corresponding conditional distribution of
size larger than one. A density estimate is defined taking into account the data from
all the samples by computing a weighted average using weights depending on the
covariates. The error of the density estimate is measured by the L1-error. Results
concerning consistency and rate of convergence of the estimate are presented, and the
performance of the estimate for finite sample size is illustrated using simulated data.
Furthermore, the estimate is applied to a problem in fatigue analysis.

Keywords Conditional density estimation · L1-error · Consistency · Rate of
convergence

1 Introduction

A well-known problem in the literature is the problem of density estimation. Given
an independent sample Y1, …, Yn of an R

d -valued random variable Y , the goal is to
estimate the density f of the distribution of Y , which is assumed to exist. This can be
done, e.g., by the famous Rosenblatt–Parzen kernel density estimate (cf., Rosenblatt
1956; Parzen 1962), defined by
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fn(x) = 1

n · hdn
·

n∑

k=1

K

(
x − Yk
hn

)
. (1)

Here hn > 0 is the so-called bandwidth and the kernel K : Rd → R, e.g., the naive
kernel K (u) = 1/2d ·1[−1,1]d (u), is a density. This density estimate can be used, e.g.,
to estimate all probabilities of the underlying distribution, and provided we control
the L1-error of the density estimate we can bound via the Lemma of Scheffé (cf., e.g.,
Devroye and Györfi 1985) the total variation error of the corresponding estimate of
the distribution. It is well known that there exist estimates which are L1-consistent for
all densities, e.g., the above kernel density estimate is L1-consistent for all densities
provided

hn → 0 (n → ∞) and n · hdn → ∞ (n → ∞),

see Devroye (1983). Further results on density estimation can be found in the books
(Devroye and Györfi 1985; Devroye 1987; Devroye and Lugosi 2001).

In applications sometimes the sample size is rather small, e.g., in case that a data
point corresponds to a rather time-expensive experiment. A concrete application in
connection with fatigue analysis, where this effect occurs, is described in Sect. 3
below. This motivates to try to combine several data sets from different (but somehow
related) density estimation problems to estimate a general density depending on a
covariate.

We do this in the context of conditional density estimation. Usually it is assumed
that a sample (X1,Y1), . . . , (Xn,Yn) of an R

d × R-valued random vector (X,Y ) is
available. Already Rosenblatt (1969) introduced an estimator of a conditional density.
This estimator andmany others aremotivated by the definition of a conditional density.
Let g(X,Y )(x, y) be the joint density of (X,Y ) and gX (x) the marginal density of X .
Then the conditional density gY |X (y, x) of Y given X is given by

gY |X (x, y) = g(X,Y )(x, y)

gX (x)
.

Replacing the joint andmarginal density by density estimateswe obtain an estimator of
the conditional density. To estimate themarginal density of X we can directly apply the
Rosenblatt–Parzen kernel density estimate (1) with density K and bandwidth Hn > 0.
Using the product kernel estimator (c.f., e.g., Rosenblatt 1969; Scott 1992; Hyndman
et al. 1996) the estimator for the joint density is given by

ĝ(X,Y )(x, y) = 1

n · Hd
n · hn

n∑

i=1

K

(‖x − Xi‖
Hn

)
· K
(
y − Yi
hn

)

where K : R → R+ is a density and hn, Hn > 0 are bandwidths. Hence, we can
estimate the conditional density by
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ĝY |X (y, x) =
∑n

i=1 K
( ‖x−Xi‖

Hn

)
· K
(
y−Yi
hn

)

hn
∑n

j=1 K
( ‖x−X j‖

Hn

) . (2)

This conditional density estimation problem can also be seen as a nonparametric
regression problem. It is well known that

E
{
1

h n
· K
(
y − Y

hn

) ∣∣∣∣X = x

}
→ gY |X (y, x) (n → ∞)

for Lebesgue almost all y and PX -almost all x (c.f., e.g., Fan et al. 1996). Thus, the
estimator (2) can be seen as a kernel regression estimate (cf., e.g., Chapter 5 in Györfi
et al. 2002) applied to

(
X1,

1

h n
· K
(
y − Y1
hn

))
, . . . ,

(
Xn,

1

h n
· K
(
y − Yn
hn

))
,

c.f., e.g., Fan and Yim (2004) and Gooijer and Zerom (2003).
Instead of the above kernel density estimate of the conditional density one can also

define a partitioning estimate of the conditional density. Results concerning universal
consistency and rate of convergence of the L1-error of such a partitioning estimate have
been derived in Györfi and Kohler (2007). Sharp minimax bounds on the L2-errors of
conditional density estimates are presented in Efromovich (2007).

In the sequel we assume that for each covariate Xi (i ∈ {1, . . . , Nn})we have given
not only one observation of the value of Yi , but instead a whole sample

D(i)
n =

{
Y (i)
1 ,Y (i)

2 , . . . ,Y (i)
li,n

}

of size li,n ∈ N. Here we assume that for given Xi the data points in D(i)
n are (con-

ditionally) independent and identically distributed as Yi , and that all data sets D(i)
n

(i = 1, . . . , Nn) are independent. For each of these data samples we can estimate the
conditional density of Yi given Xi by

f̂n(y, Xi ) = 1

li,n · hn ·
li,n∑

k=1

K

(
y − Y (i)

k

hn

)
, (3)

where K is a density. Since the amount of data li,n is decisive for the quality of the
above-defined density estimators f̂n(·, Xi ), we will use a local average of kernel den-
sity estimates with an additional weighting through the amount of data corresponding
to the different densities, and define our estimate via
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fn(y, x) =
∑Nn

i=1 li,n · G
( ‖x−Xi‖

Hn

)
f̂n(y, Xi )

∑Nn
j=1 l j,n · G

( ‖x−X j‖
Hn

)

=
∑Nn

i=1 G
( ‖x−Xi‖

Hn

)∑li,n
k=1 K

(
y−Y (i)

k
hn

)

hn
∑Nn

j=1 l j,n · G
( ‖x−X j‖

Hn

) , (4)

where G = 1[0,1].
The estimate (4) is the estimate which we get from (2) if we use there the data

{
(Xi ,Y

(i)
k ) : i = 1, . . . , Nn, k = 1, . . . , ln,i

}
. (5)

Here the data (5) can in general not be considered as a sample of a random vector
(X,Y ), since ln,i are deterministic numbers and X might have a density with respect
to the Lebesgue–Borel measure.

We measure the quality of our estimate by the average L1-error

∫ ∫
| fn(y, x) − f (y, x)| dy PX (dx),

which is (via the Lemma of Scheffé) directly linked to the total variation error of
the corresponding distribution estimate. We derive sufficient conditions for the L1-
consistency of our estimates andwe investigate the rate of convergence of the expected
average L1-error in case of smooth densities. Motivated by an application in fatigue
analysis described below we extend all of the above results to the case that the data
points Y (i)

k can be observed only with additional measurement errors, which do not
need to be independent or have expectation zero, but vanish on average asymptotically.
The finite sample size performance of our estimates is illustrated using simulated data.

Throughout the paper the following notation is used: the sets of natural numbers,
integers, real numbers and positive real numbers including zero are denoted byN,Z,R

and R+, resp. B denotes the set of all Borel sets in R and 1B denotes the indicator
function of the set B. ‖x‖ is the Euclidean norm of a vector x ∈ R

d . The support of a
probability measure μ defined on the Borel sets in Rd is abbreviated by

supp(μ) =
{
x ∈ R

d : μ(Sr (x)) > 0 for all r > 0
}

,

where Sr (x) is the ball of radius r around x .
The outline of this paper is as follows: the main results are presented in Sect. 2 and

proven in Sect. 4. Section 3 illustrates the finite sample size behavior of our estimate
by applying it to simulated data and to a problem in fatigue analysis.

123



Nonparametric estimation of a conditional density 193

2 Main results

Let (X,Y ) be an Rd ×R-valued random vector such that the conditional distribution
of Y given X = x has a density f (·, x) : R → R+ (with respect to the Lebesgue
measure). In the sequelwe assume that f is a (measurable) real-valued function defined
on R × R

d . Consequently, since f (·, x) is a density for all x ∈ R
d , we have

∫

Rd

∫

R

f (y, x) dy PX (dx) = 1 < ∞.

Let (X,Y ), (X1,Y1), …(XNn ,YNn ) be independent and identically distributed. We
assume that for each i ∈ {1, . . . , Nn} we observe Xi and a conditionally independent
sample

D(i)
n =

{
Y (i)
1 ,Y (i)

2 , . . . ,Y (i)
li,n

}

of Yi . Furthermore we assume that all data sets D(i)
n are independent. The estimator

of f (y, x) is given by

fn(y, x) =
∑Nn

i=1 G
( ‖x−Xi‖

Hn

)∑li,n
k=1 K

(
y−Y (i)

k
hn

)

hn
∑Nn

j=1 l j,n · G
( ‖x−X j‖

Hn

)

with G = 1[0,1].

Theorem 1 Assume that f : R × R
d → R+ is measurable and satisfies

∫

R

f (y, x)dy = 1 (x ∈ R
d).

Let fn be the above-defined density estimate of f and let the kernel K : R → R+ be
a square integrable density. Then

(A1) hn → 0, Hn → 0, Nn · Hd
n → ∞ (n → ∞),

(A2) Nn · Hd
n · hn · min1≤i≤Nn li,n → ∞ (n → ∞)

and
(A3) lim supn→∞

maxi=1,...,Nn li,n
mini=1,...,Nn li,n

< ∞
imply

E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx) → 0 (n → ∞).

Remark 1 In the case ln,i = 1 for all i the estimate (4) is equal to the standard kernel
density estimate (2) of a conditional density and Theorem 1 implies that this estimate
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is weakly universally L1 consistent in case that K is the naive kernel and that the
bandwidths satisfy

hn → 0 (n → ∞), Hn → 0 (n → ∞) and n · Hd
n · hn → ∞ (n → ∞).

Remark 2 The conditions in (A1) are typical conditions on the bandwidth that are
needed to assure consistency of kernel regression and kernel density estimates. The
condition (A2) is weaker than the condition

hn · min
1≤i≤Nn

li,n → ∞

that is needed (besides hn → 0) to guarantee that all inserted density estimates are
consistent.

Remark 3 In Theorem 1 we require that the kernel K is a square integrable density.
We conjecture that using arguments from the proof of Theorem 9.2 in Devroye and
Lugosi (2001) it should be possible to prove Theorem 1 also for kernels K : R → R

which satisfy only

∫

R

|K (x)| dx < ∞ and
∫

R

K (x) dx = 1.

Corollary 1 In addition to the assumptions of Theorem 1 we assume that the same
amount of data is given for each covariate, i.e., l1,n = l2,n = · · · = lNn ,n =: ln. Then
(A1) and

(A2′) Nn · Hd
n · ln · hn → ∞ (n → ∞)

imply

E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx) → 0 (n → ∞).

Proof Due to the additional assumption we have

min
1≤i≤Nn

li,n = max
1≤i≤Nn

li,n = ln

and hence condition (A2) of Theorem1 simplifies to (A2′) and condition (A3) trivially
holds. �	

Next we analyze the rate of convergence of our estimate.

Theorem 2 Assume that f : R × R
d → R+ satisfies

∫

R

| f (y, x1) − f (y, x2)| dy ≤ c1 · ‖x1 − x2‖α (x1, x2 ∈ R
d) (6)

for some c1 > 0, α ∈ (0, 1]. Let fn be the above-defined density estimate of f with
l1,n = l2,n = · · · = lNn ,n =: ln. Then the conditions
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(A4) The densities f (·, x) (x ∈ R
d) are Hölder-continuous with exponent r ∈ (0, 1],

i.e.,

| f (u, x) − f (v, x)| ≤ c2 · |u − v|r for all u, v ∈ R, x ∈ R
d and some c2 > 0,

(A5) There exists a compact set B ∈ B such that

f (y, x) = 0 for all y /∈ B and PX -almost all x ∈ R
d ,

(A6) C = supp(PX ) is compact

and

(A7) K is a density satisfying

∫

R

K 2(u) du < ∞ and
∫

R

K (u) · |u|r du < ∞

imply that there exist constants c3, c4, c5 and c6 > 0 such that for all n ∈ N we have

E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx)

≤ c3√
Nn · ln · hn · Hd

n

+ c4 · Hα
n + c5 · hrn + c6

Nn · Hd
n

. (7)

Remark 4 Condition (6) and (A4) are, e.g., satisfied, if we set α = r = 1 and choose
X as uniformly distributed on [−0.5, 0.5] and define Y for given X = x as normally
distributed with mean x and variance one. In this case (6) follows from Lemma 1 in
Bott et al. (2013).

Remark 5 In Theorem 2 we impose the two smoothness assumptions (6) and (A4)
on f . Here (6) is used to derive a rate of convergence result for the kernel regression
estimates applied to the different density estimates, and (A4) is needed to bound
rate of convergence of the individual density estimates which are averaged in our
kernel regression estimate. Both for kernel regression estimation and kernel density
estimation similar smoothness assumptions are known to be necessary to derive non-
trivial rate of convergence results, however, it is an open problem whether the above
smoothness assumptions are really necessary for the above rate of convergence result.

To determine the optimal rate of convergence in Theorem 2 we have to choose the
bandwidths hn and Hn such that the right-hand side of (7) is minimal. We refer to
Sect. 4 for details concerning this minimization. This leads to the following result.

Corollary 2 Assume that the assumptions of Theorem 2 hold.

(i) In case that N−α(r+1)
n ≤ l−r(α+d)

n we set hn = c7 · (Nn · ln)−
α

(2·α+d)r+α and
Hn = c8 · (Nn · ln)−

r
(2·α+d)r+α . For suitable chosen c9 > 0 it holds

E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx) ≤ c9 · (Nn · ln)−
α·r

(2·α+d)r+α .

123
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(ii) In case that N−α(r+1)
n > l−r(α+d)

n we set hn = c10 · N− α
(α+d)(2·r+1)

n · l−
1

2·r+1
n and

Hn = c11 · N− 1
α+d

n . For suitable chosen c12 > 0 it holds

E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx) ≤ c12 · N− α
α+d

n .

Proof The assertion follows directly from Theorem 2 and the definitions of hn and
Hn . �	
Remark 6 Corollary 2 implies the surprising fact that up to some threshold, namely
as long as lr(α+d)

n > Nα(r+1)
n holds, increasing ln from one to some greater value does

not improve the rate of convergence of our estimate, because our upper bound on the
error in (ii) depends only on Nn (i.e., on how many x-values we observe) and not on
ln (i.e., not on the number of y-values we sample for each x-value). However, after
this threshold, i.e., as soon as lr(α+d)

n ≤ Nα(r+1)
n , the upper bound becomes a function

of Nn · ln and is hence directly influenced by the value of ln .

Remark 7 In case of ln = 1, Nn = n and α = r = 1 Corollary 2 states that our esti-

mate achieves a rate of convergence ofO(n− 1
d+3 ). Györfi and Kohler (2007) obtained

the same rate for a partitioning estimate.
We now assume that we observe only data

D̄(i)
n =

{
Ȳ (i)
1 , Ȳ (i)

2 , . . . , Ȳ (i)
li,n

}
(i = 1, . . . , Nn)

with additional measurement errors. An application, where this is indeed the case, is
described in Sect. 3. The data Ȳ (i)

1 , Ȳ (i)
2 , . . . , Ȳ (i)

li,n
(i ∈ {1, . . . , Nn}) do not need to be

conditionally independent or identically distributed. We assume that the measurement
errors are “small” and for this reason we ignore them completely. Consequently we
define our density estimate f̄n of f as

f̄n(y, x) =
∑Nn

i=1 G
( ‖x−Xi‖

Hn

)∑li,n
k=1 K

(
y−Ȳ (i)

k
hn

)

hn ·∑Nn
j=1 l j,n · G

( ‖x−X j‖
Hn

) .

In the following theorem we show that under appropriate assumptions our density
estimate remains L1-consistent.

Theorem 3 Assume that f : R × R
d → R+ is measurable and satisfies

∫

R

f (y, x)dy = 1 (x ∈ R
d).

Let f̄n be the above-defined density estimate of f with a symmetric density K , which
is bounded and monotonically decreasing on R+. Then (A1), (A2), (A3) and
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(A8) E

{∑Nn
i=1 G

( ‖X−Xi ‖
Hn

)∑li,n
k=1

∣∣∣Ȳ (i)
k −Y (i)

k

∣∣∣

hn ·∑Nn
j=1 l j,n ·G

( ‖X−X j ‖
Hn

)

}
→ 0 (n → ∞)

imply

E
∫ ∫

| f̄n(y, x) − f (y, x)| dy PX (dx) → 0 (n → ∞).

Remark 8 The conditions (A1), (A2) and (A3) are also needed for data without addi-
tional measurement errors. Condition (A8) specifies how themeasurement errors need
to behave such that our estimator remains consistent.

Theorem 4 Assume that f : R × R
d → R+ satisfies

∫

R

| f (y, x1) − f (y, x2)| dy ≤ c15 · ‖x1 − x2‖α (x1, x2 ∈ R
d)

for some c15 > 0, α ∈ (0, 1] and let fn be the above-defined density estimate of f
with l1,n = l2,n = · · · = lNn ,n =: ln. Then (A4), (A5), (A6),

(A7′) K is a symmetric density, which is bounded, monotonically decreasing on the
positive real axis and which satisfies

∫

R

K (u) · |u|r du < ∞

and
(A8′)

1

ln

ln∑

k=1

E
{
|Ȳ (i)

k − Y (i)
k | ∣∣ X, Xi

}
≤ c16 · hn

δn

almost surely for all 1 ≤ i ≤ Nn, some c16 > 0 and some δn > 0

imply that there exist constants c17, c18, c19, c20 and c21 > 0 such that for all n ∈ N

we have

E
∫ ∫

| f̄n(y, x) − f (y, x)| dy PX (dx) ≤ c17√
Nn · ln · hn · Hd

n

+ c18 · Hα
n + c19 · hrn

+ c20
Nn · Hd

n
+ c21 · δ−1

n .

Remark 9 We can draw the following conclusions from Corollary 2 and Theorem 4:
In case that N−α(r+1)

n ≤ l−r(α+d)
n we set hn = c22 · (Nn · ln)−

α
(2·α+d)r+α and Hn =

c23 · (Nn · ln)−
r

(2·α+d)r+α . For suitable chosen c24 > 0 it holds

E
∫ ∫

| f̄n(y, x) − f (y, x)| dy PX (dx) ≤ c24 · max
{
(Nn · ln)−

α·r
(2·α+d)r+α , δ−1

n

}
.
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And in case that N−α(r+1)
n > l−r(α+d)

n we set hn = c25 · N− α
(α+d)(2·r+1)

n · l−
1

2·r+1
n and

Hn = c26 · N− 1
α+d

n . For suitable chosen c27 > 0 it holds

E
∫ ∫

| f̄n(y, x) − f (y, x)| dy PX (dx) ≤ c27 · max

{
N

− α
α+d

n , δ−1
n

}
.

3 Application to simulated data

In this section we consider three different examples of simulated data. In all cases
the covariate is uniformly distributed, whereas the distribution of the data sets varies.
At first we sample N = 80 covariates {X1, X2, . . . , X80}, and afterwards we sample
the corresponding data sets Di = {Y (i)

1 , Y (i)
2 , . . . , Y (i)

25 } where we observe for each
value of the covariate 25 points. Overall we sample n = 2000 data points beside the
covariates. Our estimator uses the corresponding data of those covariates for which
the difference of the covariates to the considered covariate is less than the bandwidth
H . And for each covariate the density estimate with bandwidth h is considered. We
choose both bandwidths θ = (h, H) with h, H > 0 out of a set of parameters � by
adapting the combinatorial method of Devroye and Lugosi (2001) in our setting. Here
we let � = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}2. We define the empirical
measure based on the data set Di by

μ̂i (A) = 1

25

25∑

k=1

1A(Y (i)
k ) (A ⊆ R)

and the proposed estimator without the data set Di is defined by

fi,θ (y, x) =
∑80

l=1,l �=i G
( ‖x−Xl‖

H

)∑25
k=1 K

(
y−Y (l)

k
h

)

h
∑80

j=1, j �=i 25 · G
( ‖x−X j‖

H

) .

We select θ̂ = (ĥ, Ĥ) through minimizing

�θ =
80∑

i=1

sup
Ai∈Ai

∣∣∣∣
∫

Ai

fi,θ (y, Xi ) dy − μ̂i (Ai )

∣∣∣∣ ,

where

Ai =
{{

y ∈ R : f̂i,θ1(y, Xi ) > f̂i,θ2(y, Xi )
}

: θ1, θ2 ∈ �
}
,

i.e., we choose

θ̂ = (ĥ, Ĥ) = argmin
θ∈�

�θ .
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Fig. 1 Typical simulation for
μ = 0.16
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With this bandwidths θ̂ we define our estimator

f
θ̂
(y, x) =

∑80
l=1 G

( ‖x−Xl‖
Ĥ

)∑25
k=1 K

(
y−Y (l)

k

ĥ

)

ĥ
∑80

j=1 25 · G
( ‖x−X j‖

Ĥ

) .

In the implementation of our estimate we approximate all integrals by Riemann sums.
In addition to our proposed estimator we consider two variants of the Rosenblatt–
Parzen density estimator. The first one (RP1) is the Rosenblatt–Parzen estimator
applied to 25 data points which are specially sampled to the considered covariate.
Hence, this estimator uses data that are actually not available and, therefore, it is in
practice not applicable to our setting. The second version (RP2) uses those data points
(25 points) for which the corresponding covariate of our covariate sample comes clos-
est to the considered covariate. For both the bandwidths are chosen by unbiased cross
validation. For all three estimators we use the naive kernel.

In the first simulation model we let the data be independent normally distributed
with variance one. In this case the covariate corresponds to the expected value which
varies with each data set. We let the covariate be uniformly distributed on [−0.5, 0.5].

Figure 1 shows a typical simulation of the three estimators and the real density
for μ = 0.16. While the Rosenblatt–Parzen density estimators used only 25 data
points, the proposed estimator used in this case 475 data points. Since the results
of our simulation depend on randomly occurring data points, we repeat the whole
procedure 100 times and report boxplots in Fig. 2. We compare the estimated average
L1-errors of all these estimators. The mean of the estimated average L1-errors of the
proposed estimate (0.236) is less than the mean of the estimated average L1-errors of
the Rosenblatt–Parzen estimators (0.324, 0.442).

Secondly, we consider exponentially distributed data with parameters λ that are
uniformly distributed on [0.5, 1.5]. In Fig. 3 an illustrative comparison of the proposed
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200 A. K. Bott, M. Kohler

Fig. 2 Boxplots of the
estimated average L1-errors
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Fig. 3 Typical simulation for
λ = 0.89
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estimator (which uses 975 data points) and the Rosenblatt–Parzen density estimators
(based on 25 data points) is pictured in case of λ = 0.89. As before we compare in
Fig. 4 the estimated L1-errors of these estimates. The means of the estimated average
L1-error of the Rosenblatt–Parzen estimators (0.473, 0.550) are nearly twice the mean
of the proposed estimate (0.253).

As a third example we consider log-normally distributed data with variance one.
As in the first simulation model the covariate corresponds to the expected value and is
uniformly distributed on [−0.5, 0.5]. Figure 5 shows a simulation example for μ = 0.
Here the proposed estimator uses 2000 data points. Comparing the estimated average
L1-errors for 100 repetitions we obtain the boxplot in Fig. 6. Also in this example
the proposed estimator outperforms the other estimators. The means of the estimated
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Fig. 4 Boxplots of the
estimated average L1-errors
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μ = 0
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average L1-error of the Rosenblatt–Parzen estimators (0.497, 0.549) are considerably
higher than the mean of the proposed estimate (0.243).

The advantages of our estimator become evident in applications where the sample
size per covariate is very small or where no sample for the considered covariate is
available. If we want to estimate a density in dependence of one particular covariate
where a corresponding sample exists, we can also apply the Rosenblatt–Parzen esti-
mator to this sample. This corresponds to the above-introduced RP1. Because of the
small sample size this estimator performs worse than our estimator. Clearly, this effect
could reverse with a larger data sample per covariate. Simulations showed that in the
first example around 50 data points are enough, while in the other two examples the
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Fig. 6 Boxplots of the
estimated average L1-errors
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Rosenblatt–Parzen estimator needs around 120 data points to achieve results that are
comparable to the ones of our estimator.

Finally we apply our estimator to examine the fatigue behavior of steel under
cyclic loading. The data are obtained by relatively time-consuming experiments where
for each material m and several adjusted total strain amplitudes ε the corresponding
numbers of cycles N till failure are determined. We are interested in the random
behavior of N . In our model we assume that the behavior of the numbers of cycles N
till failure can be described by

N (m, ε) = μ(m, ε) + σ(m, ε) · δ(m), (8)

where μ(m, ε) is the expected value of N (m, ε) and σ(m, ε) is its standard variation.
δ(m) is an error term with expected value zero. Hence, we expect the numbers of
cycles till failure to vary around the expected value by a random error term. While the
numbers of cycles till failure and accordingly its expected value and variance depend
on the material m and the total strain amplitudes ε, we assume that the error δ(m) only
depends on the material m and has a density. Our goal is to estimate the density of
δ(m) using given data sets

{
(ε

(m)
1 , N (m)

1 ), . . . , (ε
(m)
lm

, N (m)
lm

)
}

for each material m. Since these experiments are very time consuming, the number of
observations per material is low. Here we consider 26 materials with 305 observations
in total. Hence, the sample size per covariate is very low (at most 21 observations,
on average 12). We will apply our estimator to estimate the density of δ(m̄), m̄ ∈
{1 . . . , 26}. But at first we need to construct data of δ(m) for each material m. Because
of (8) we have samples of δ(m) given by
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δ
(m)
i = N (m)

i − μ(m, ε
(m)
i )

σ (m, ε
(m)
i )

(i = 1, . . . , lm)

for each material m = 1, . . . , 26. Since μ and σ are unknown, we plug in estimates
μ̂(m, ε) of μ(m, ε) and σ̂ (m, ε) of σ(m, ε). Due to this estimates we obtain only data
with measurement errors. We apply the parametric estimator of Williams et al. (2002)
to estimate μ(m, ε). Therefore, we need to assume that the mean behavior of N is
given by the cyclic stress–strain curve (cf.,Manson 1965) and consequently we need to
estimate only the parameters that determine this curve. The estimation of the variance
is more complicated, because we need to apply a nonparametric estimator that usually
needs more data. This is the reason, why we generate artificial data points like in Furer
and Kohler (2013) and apply the referred smoothing spline estimator to the original
data points and artificial data. Thus, for all considered materials we construct a data
sample

δ̂
(m)
1 , . . . , δ̂

(m)
lm

via

δ̂
(m)
i = N (m)

i − μ̂(m, ε
(m)
i )

σ̂ (m, ε
(m)
i )

,

where μ̂(m, ε) and σ̂ (m, ε) are the above-mentioned estimators. Thereby we can
apply our estimator and get a density estimate of the error variable in dependence of
the material. We determine the bandwidth of our estimator as in the case of simulated
data.

If we consider one particular material, we obtain density estimates of the numbers
of cycles till failure in dependence of the total strain amplitudes ε, because for each
materialm and total strain amplitude ε,μ(m, ε) andσ(m, ε) and, respectively, μ̂(m, ε)

and σ̂ (m, ε) are fix. Let f̂ (m) be the density estimate of δ(m), then (8) implies that

ĝ(m)(·) =
f̂ (m)

( · −μ̂(m,ε)

σ̂ (m,ε)

)

σ̂ (m, ε)

is a density estimate of N (m, ε). While f̂ (m) is fix for all strain amplitudes ε, μ̂(m, ε)

and σ̂ (m, ε) vary with each strain amplitude and thus, ĝ(m) alters for each ε. In the
following Fig. 7 you can see our estimator ĝ(m) in dependence of ε for one specified
material. The maxima to each curve describe the cyclic stress–strain curve with the
estimated parameters as before. The figure shows, how the numbers of cycles N till
failure vary around its expected value.
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Fig. 7 Estimated densities of N in dependence of ε

4 Proofs

4.1 Proof of Theorem 1

Let B ⊂ R be compact. According to the Lemma of Scheffé it holds

∫ ∫
| fn(y, x) − f (y, x)| dy PX (dx)

= 2 ·
∫ ∫

( f (y, x) − fn(y, x))+ dy PX (dx)

≤ 2 ·
∫ ∫

B
| fn(y, x) − f (y, x)| dy PX (dx) + 2 ·

∫ ∫

Bc
f (y, x) dy PX (dx)

whenever fn(·, x) �= 0. Trivially this also holds in case fn(·, x) = 0. For suitable
chosen B the second summand is arbitrary small and thus it suffices to show

E
∫ ∫

B
| fn(y, x) − f (y, x)| dy PX (dx) → 0 (n → ∞). (9)

With C ⊂ R it holds

E
∫ ∫

B
| fn(y, x) − f (y, x)| dy PX (dx)

≤ E
∫

C

∫

B
| fn(y, x) − f (y, x)| dy PX (dx) + 2 · PX (Cc).

We can choose C ⊂ R
d compact such that the second summand is arbitrarily small,

thus, we consider only the first summand. By Fubini’s Theorem and the triangle
inequality we get
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E
∫

C

∫

B
| fn(y, x) − f (y, x)| dy PX (dx)

=
∫

C

∫

B
E {| fn(y, x) − f (y, x)|} dy PX (dx)

≤
∫

C

∫

B
E
{| fn(y, x) − E{ fn(y, x) | X1, . . . , XNn }|

}
dy PX (dx)

+ C
∫

B
E
{|E{ fn(y, x) | X1, . . . , XNn } − f (y, x)|} dy PX (dx)

=: A1,n + A2,n .

At first we consider A1,n . With the Cauchy–Schwarz inequality, the fact that B ⊂ R

is compact and Fubini’s Theorem we conclude that

∫

C

∫

B
E
{| fn(y, x) − E{ fn(y, x) | X1, . . . , XNn }|

}
dy PX (dx)

≤
∫

C

∫

B

√
E
{| fn(y, x) − E{ fn(y, x) | X1, . . . , XNn }|2

}
dy PX (dx)

=
∫

C

∫

B

√
E
{
E
{
| fn(y, x) − E{ fn(y, x) | X1, . . . , XNn }|2

∣∣∣ X1, . . . , XNn

}}
dy PX (dx)

≤ c28 ·
√∫

C
E
{∫

B
E
{
| fn(y, x)−E{ fn(y, x) | X1, . . . , XNn }|2

∣∣∣ X1, . . . , XNn

}
dy

}
PX (dx).

Using the independence of the data sets D(i)
n and of the data within each data set we

obtain

∫

B
E
{
| fn(y, x) − E{ fn(y, x) | X1, . . . , XNn }|2

∣∣∣ X1, . . . , XNn

}
dy

=
∫

B
E

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎝

∑Nn
i=1 G

( ‖x−Xi ‖
Hn

)∑li,n
k=1

(
K

(
y−Y (i)

k
hn

)
− E

{
K

(
y−Y (i)

k
hn

) ∣∣∣ X1, . . . , Xn

})

hn
∑Nn

j=1 l j,n · G
( ‖x−X j ‖

Hn

)

⎞

⎟⎟⎠

2

∣∣∣∣ X1, . . . , XNn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
dy

=
∫

B

∑Nn
i=1 G

( ‖x−Xi ‖
Hn

)∑li,n
k=1 E

{(
K

(
y−Y (i)

k
hn

)
− E

{
K

(
y−Y (i)

k
hn

) ∣∣∣ X1, . . . , Xn

})2 ∣∣∣∣ X1, . . . , XNn

}

(
hn
∑Nn

j=1 l j,n · G
( ‖x−X j ‖

Hn

))2 dy

=

∑Nn
i=1

li,n
h2n

G
( ‖x−Xi ‖

Hn

) ∫
B E

{(
K

(
y−Y (i)

k
hn

)
− E

{
K

(
y−Y (i)

k
hn

) ∣∣∣ Xi

})2 ∣∣∣∣ Xi

}
dy

(∑Nn
j=1 l j,n · G

( ‖x−X j ‖
Hn

))2 .
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Due to the square-integrability of K we know that there exists a constant c29 > 0 such
that

∫

R

K 2(y) dy ≤ c29.

With

∫

B
E

⎧
⎨

⎩

(
K

(
y − Y (i)

k

hn

)
− E

{
K

(
y − Y (i)

k

hn

) ∣∣∣∣ Xi

})2 ∣∣∣∣ Xi

⎫
⎬

⎭ dy

≤
∫

B
E

{
K 2

(
y − Y (i)

k

hn

) ∣∣∣∣ Xi

}
dy

=
∫

B

∫
K 2
(
y − u

hn

)
f (u, Xi ) du dy

≤
∫

R

∫
K 2
(
y − u

hn

)
f (u, Xi ) du dy

= hn

∫ ∫

R

K 2(z) dz f (u, Xi ) du

≤ hn · c29

we obtain

A1,n ≤ c28 ·

√√√√√√
∫

C
E

⎧
⎪⎨

⎪⎩

c29
hn

∑Nn
i=1 li,n · G

( ‖x−Xi‖
Hn

)

(∑Nn
i=1 li,n · G

( ‖x−Xi‖
Hn

))2

⎫
⎪⎬

⎪⎭
PX (dx)

= c28 ·

√√√√√
∫

C
E

⎧
⎨

⎩
c29

hn ·∑Nn
i=1 li,n · G

( ‖X−Xi‖
Hn

) · 1{∑Nn
j=1 li,n ·G

( ‖x−X j ‖
Hn

)
>0
}

⎫
⎬

⎭ PX (dx).

Applying Lemma 4.1 of Györfi et al. (2002) we get

∫

C
E

⎧
⎨

⎩
c29

hn ·∑Nn
i=1 li,n · G

( ‖x−Xi‖
Hn

) · 1{∑Nn
j=1 li,n ·G

( ‖x−X j ‖
Hn

)
>0
}

⎫
⎬

⎭ PX (dx)

≤ c29
min

1≤i≤Nn
li,n · hn ·

∫

C
E

⎧
⎨

⎩
1

∑Nn
i=1 G

( ‖x−Xi‖
Hn

) · 1{∑Nn
j=1 G

( ‖x−X j ‖
Hn

)
>0
}

⎫
⎬

⎭ PX (dx)

≤ c29
min

1≤i≤Nn
li,n · hn ·

∫

C

2

(Nn + 1) · P{‖x − X1‖ ≤ Hn} PX (dx).
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Due to compactness of C we can apply Equation (5.1) of the proof of Theorem 5.1 in
Györfi et al. (2002) and conclude that

∫

C

1

P{‖x − X1‖ ≤ Hn} PX (dx) ≤ c30
Hd
n

.

Hence,

A1,n ≤ c31√
Nn · Hd

n · hn · min
1≤i≤Nn

li,n
.

Due to assumption (A2) A1,n converges to zero. It remains to show that

A2,n =
∫

C
E
∫

B
|E{ fn(y, x) | X1, . . . , XNn } − f (y, x)| dy PX (dx) → 0 (n → ∞).

Using l j,n > 0 for all j ∈ {1, . . . , Nn} and n ∈ N we obtain

∫

C
E
∫

B
|E{ fn(y, x) | X1, . . . , XNn } − f (y, x)| dy PX (dx)

=
∫

C
E
∫

B

∣∣∣∣∣∣∣∣
f (y, x) −

∑Nn
i=1 li,nG

( ‖x−Xi ‖
Hn

)
E
{
K

(
y−Y (i)

1
hn

) ∣∣∣∣ X1, . . . , XNn

}

hn
∑Nn

j=1 l j,n · G
( ‖x−X j ‖

Hn

)

∣∣∣∣∣∣∣∣
dy PX (dx)

=
∫

C
E
∫

B

∣∣∣∣∣∣
f (y, x) −

∑Nn
i=1 li,nG

( ‖x−Xi ‖
Hn

)
1
hn

∫
K
(
y−u
hn

)
f (u, Xi ) du

∑Nn
j=1 l j,n · G

( ‖x−X j ‖
Hn

)

∣∣∣∣∣∣
dy PX (dx)

≤
∫

C
E
∫

B
f (y, x) · 1{∑Nn

j=1 G
( ‖x−X j ‖

Hn

)
=0
} dy PX (dx)

+
∫

C
E
∫

B

∣∣∣∣∣∣

∑Nn
i=1 li,nG

( ‖x−Xi ‖
Hn

)
·
(
f (y, x) − 1

hn

∫
K
(
y−u
hn

)
· f (u, Xi ) du

)

∑Nn
j=1 l j,n · G

( ‖x−X j ‖
Hn

)

∣∣∣∣∣∣
dy PX (dx)

≤
∫

C
P

⎧
⎨

⎩

Nn∑

j=1

G

(‖x − X j‖
Hn

)
= 0

⎫
⎬

⎭ dy PX (dx)

+
∫

C
E
∫

B

∑Nn
i=1 li,nG

( ‖x−Xi ‖
Hn

)
·
∣∣∣ f (y, x) − ∫ 1

hn
K
(
y−u
hn

)
· f (u, Xi ) du

∣∣∣
∑Nn

j=1 l j,n · G
( ‖x−X j ‖

Hn

) dy PX (dx)

=: B1,n + B2,n .

With B1,n we proceed analogously to the proof of Theorem 5.1, Equation (5.1) in
Györfi et al. (2002). We choose S ⊂ R compact such that PX (Sc) is arbitrary small.
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Then it holds

B1,n = P

⎧
⎨

⎩

Nn∑

j=1

G

(‖X − X j‖
Hn

)
= 0

⎫
⎬

⎭ ≤ c32
Nn · Hd

n
+ PX (Sc),

which implies B1,n → 0 for (n → ∞).
In the sequel we bound B2,n from above. Our proof is based on Devroye (2015).

We have

B2,n ≤
∫

C
E
∫

B

∑Nn
i=1 li,nG

( ‖x−Xi ‖
Hn

)
·
∣∣∣ f (y, x) − ∫ 1

hn
K
(
y−u
hn

)
· f (u, x) du

∣∣∣
∑Nn

j=1 l j,n · G
( ‖x−X j ‖

Hn

) dy PX (dx)

+
∫

C
E
∫

B

∑Nn
i=1 li,nG

( ‖x−Xi ‖
Hn

)
· ∫ 1

hn
K
(
y−u
hn

)
· | f (u, Xi ) − f (u, x)| du

∑Nn
j=1 l j,n · G

( ‖x−X j ‖
Hn

) dy PX (dx)

≤
∫

C

∫

B

∣∣∣∣ f (y, x) −
∫

1

hn
K

(
y − u

hn

)
· f (u, x) du

∣∣∣∣ dy PX (dx)

+
∫

C
E
∫

B

∑Nn
i=1 li,nG

( ‖x−Xi ‖
Hn

)
· ∫ 1

hn
K
(
y−u
hn

)
· | f (u, Xi ) − f (u, x)| du

∑Nn
j=1 l j,n · G

( ‖x−X j ‖
Hn

) dy PX (dx)

= C1,n + C2,n .

For x ∈ R
d we know that f (·, x) is a density, hence Theorem 1, Chapter 2 in Devroye

and Györfi (1985) implies

∫

B

∣∣∣∣ f (y, x) −
∫

1

hn
K

(
y − u

hn

)
· f (u, x) du

∣∣∣∣ dy → 0 (n → ∞).

Because of

∫

B

∣∣∣∣ f (y, x) −
∫

1

hn
K

(
y − u

hn

)
· f (u, x) du

∣∣∣∣ dy

≤
∫

R

f (y, x) dy +
∫ ∫

1

hn
K

(
y − u

hn

)
dy · f (u, x) du = 2

this together with the dominated convergence theorem implies

Cn,1 → 0 (n → ∞).
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Furthermore

C2,n ≤ maxi=1,...,Nn li,n
mini=1,...,Nn li,n

×
∫

C
E
∫

B

∑Nn
i=1 G

( ‖x−Xi ‖
Hn

)
· ∫ 1

hn
K
(
y−u
hn

)
· | f (u, Xi ) − f (u, x)| du

∑Nn
j=1 G

( ‖x−X j ‖
Hn

) dy PX (dx)

≤ maxi=1,...,Nn li,n
mini=1,...,Nn li,n

×
∫

C
E

∑Nn
i=1 G

( ‖x−Xi ‖
Hn

)
· ∫ ∫B 1

hn
K
(
y−u
hn

)
dy · | f (u, Xi ) − f (u, x)| du

∑Nn
j=1 G

( ‖x−X j ‖
Hn

) PX (dx)

≤ maxi=1,...,Nn li,n
mini=1,...,Nn li,n

×
∫

C
E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖x−Xi ‖
Hn

)
· ∫ | f (u, Xi ) − f (u, x)| du

∑Nn
j=1 G

( ‖x−X j ‖
Hn

)

⎫
⎬

⎭ PX (dx)

≤ maxi=1,...,Nn li,n
mini=1,...,Nn li,n

·
∫

E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi ‖
Hn

)
· | f (u, Xi ) − f (u, X)|

∑Nn
j=1 G

( ‖X−X j ‖
Hn

)

⎫
⎬

⎭ du.

By the proof of Theorem 5.1 in Györfi et al. (2002) (compare there pages 74–75)
we get for any u ∈ R

E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)
· | f (u, Xi ) − f (u, X)|

∑Nn
j=1 G

( ‖X−X j‖
Hn

)

⎫
⎬

⎭

≤ E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)
· f (u, Xi )

∑Nn
j=1 G

( ‖X−X j‖
Hn

)

⎫
⎬

⎭+
∫

f (u, x)PX (dx)

≤ const ·
∫

f (u, x)PX (dx) +
∫

f (u, x)PX (dx),

where
∫ ∫

f (u, x)PX (dx) du = 1 < ∞.

Hence, by dominated convergence and assumption (A3) it suffices to show

E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)
· | f (u, Xi ) − f (u, X)|

∑Nn
j=1 G

( ‖X−X j‖
Hn

)

⎫
⎬

⎭→ 0 (10)

for Lebesgue almost all u ∈ R.
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The weights of the kernel regression estimates satisfies conditions (1)–(3) in The-
orem 1 in Stone (1977) (cf., e.g., proof of Theorem 5.1 in Györfi et al. 2002). Hence,
if for some u ∈ R

E| f (u, X)| < ∞

holds, then Proposition 1 in Stone (1977) implies that (10) holds. Since

∫

R

E| f (u, X)| du =
∫

Rd

∫

R

f (y, x) dyPX (dx) = 1,

this implies the assertion. �	

4.2 Proof of Theorem 2

Due to (A4) and (A5) we can choose B ⊂ R and C ⊂ R
d compact such that

E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx) ≤ 2 · E
∫

C

∫

B
| fn(y, x) − f (y, x)| dy PX (dx).

According to the proof of Theorem 1 and assumptions (6) and (A4) we have

E
∫

C

∫

B
| fn(y, x) − f (y, x)| dy PX (dx) ≤ A1,n + B1,n + C1,n + C2,n

≤ c33√
Nn · Hd

n · hn · ln
+ c34

Nn · Hd
n

+
∫

C

∫

B

∫
1

hn
· K
(
y − u

hn

)
· | f (y, x) − f (u, x)| du dy PX (dx)

+E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)
· ∫ | f (u, Xi ) − f (u, X)| du

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)

⎫
⎬

⎭

≤ c33√
Nn · Hd

n · hn · ln
+ c34

Nn · Hd
n

+
∫

C

∫

B

∫
1

hn
· K
(
y − u

hn

)
· c2 · |y − u|r du dy PX (dx)

+E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)
· c1 ‖Xi − X‖α

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)

⎫
⎬

⎭

≤ c33√
Nn · Hd

n · hn · ln
+ c34

Nn · Hd
n

+ c35 · hrn + c36 · Hα
n .

The proof is complete. �	
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4.3 Remarks on the minimization of the right-hand side of (7).

In this subsection, we show how we can choose the bandwidths hn and Hn such that
the right-hand side of (7) is minimal.

Minimizing the right-hand side of (7) with respect to hn leads to

hn = c37 · (Nn · ln)− 1
2r+1 · H− d

2r+1
n ,

and using this bandwidth we get from (7)

E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx) ≤ c38 · (Nn · ln)− r
2r+1 · H− d·r

2r+1
n + c4 · Hα

n + c6
Nn · Hd

n
.

(11)

The optimal bandwidth Hn which minimizes the right-hand side of (11) satisfies

c39 · (Nn · ln)− r
2r+1 · d · r

2r + 1
· H− d·r

2r+1−1
n + c40

Nn
· d · H−d−1

n = c41 · α · Hα−1
n .

For the optimal bandwidth either the first term on the left-hand side above is greater
than or equal to the second term or vice versa. From this we can conclude that the
optimal Hn lies either between the two solutions of

c39 · (Nn · ln)− r
2r+1 · d · r

2r + 1
· H− d·r

2r+1−1
n = c40 · α · Hα−1

n

and

2 · c39 · (Nn · ln)− r
2r+1 · d · r

2r + 1
· H− d·r

2r+1−1
n = c40 · α · Hα−1

n

or between the two solutions of

c40
Nn

· d · H−d−1
n = c41 · α · Hα−1

n and 2 · c40
Nn

· d · H−d−1
n = c41 · α · Hα−1

n .

Hence, up to some constant the optimal Hn satisfies in case (Nn · ln)− r
2r+1 · H− d·r

2r+1
n ≥

1
Nn

· H−d
n the equation

(Nn · ln)− r
2r+1 · H− d·r

2r+1
n = Hα

n

and in case (Nn · ln)− r
2r+1 · H− d·r

2r+1
n < 1

Nn
· H−d

n the equation

1

Nn
· H−d

n = Hα
n .
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4.4 Proof of Theorem 3

Let fn be the estimator of f that uses real dataY (i)
k instead of Ȳ (i)

k (i = 1, . . . , Nn; k =
1 . . . , li,n). It holds

E
∫ ∫

| f̄n(y, x) − f (y, x)| dy PX (dx)

≤ E
∫ ∫

| f̄n(y, x) − fn(y, x)| dy PX (dx) + E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx).

By Theorem 1 we already know, that with the assumptions (A1) and (A2)

E
∫ ∫

| fn(y, x) − f (y, x)| dy PX (dx) → 0 (n → ∞).

Thus, it remains to show that

E
∫ ∫

| f̄n(y, x) − fn(y, x)| dy PX (dx) → 0 (n → ∞).

Due to our assumptions on the kernel K we can apply Lemma 1 of Bott et al. (2013)
which yields

∫ ∣∣∣∣K
(
y − y1
hn

)
− K

(
y − y2
hn

)∣∣∣∣ dy ≤ 2 · K (0) · |y1 − y2| for all y1, y2 ∈ R.

Hence,

E
∫ ∫

| f̄n(y, x) − fn(y, x)| dy PX (dx)

= E
∫

| f̄n(y, X) − fn(y, X)| dy

≤ E

⎧
⎪⎪⎨

⎪⎪⎩

1
hn

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)∑li,n
k=1

∫ ∣∣∣∣K
(

y−Ȳ (i)
k

hn

)
− K

(
y−Y (i)

k
hn

)∣∣∣∣ dy
∑Nn

j=1 l j,n · G
( ‖X−X j‖

Hn

)

⎫
⎪⎪⎬

⎪⎪⎭

≤ 2 · K (0) · E
⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)∑li,n
k=1

∣∣∣Ȳ (i)
k − Y (i)

k

∣∣∣

hn ·∑Nn
j=1 l j,n · G

( ‖X−X j‖
Hn

)

⎫
⎬

⎭ .

The assertion follows by assumption (A8). �	

123



Nonparametric estimation of a conditional density 213

4.5 Proof of Theorem 4

We know from Theorem 2 and the proof of Theorem 3 that

E
∫ ∫

| f̄n(y, x) − f (y, x)| dy PX (dx)

≤ c42√
Nn · ln · hn · Hd

n

+ c43 · Hα
n + c44 · hrn + c45

Nn · Hd
n

+ c46 · E
⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)∑ln
k=1

∣∣∣Ȳ (i)
k − Y (i)

k

∣∣∣

hn ·∑Nn
j=1 ln · G

( ‖X−X j‖
Hn

)

⎫
⎬

⎭ .

Due to condition (A8′) it holds

E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)∑ln
k=1

∣∣∣Ȳ (i)
k − Y (i)

k

∣∣∣

hn ·∑Nn
j=1 ln · G

( ‖X−X j‖
Hn

)

⎫
⎬

⎭

= E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)∑ln
k=1 E

{
|Ȳ (i)

k − Y (i)
k |∣∣X, Xi

}

hn ·∑Nn
j=1 ln · G

( ‖X−X j‖
Hn

)

⎫
⎬

⎭

≤ E

⎧
⎨

⎩

∑Nn
i=1 G

( ‖X−Xi‖
Hn

)
· c15 · ln · hn

δn

hn ·∑Nn
j=1 ln · G

( ‖X−X j‖
Hn

)

⎫
⎬

⎭

≤ c15 · δ−1
n .

The proof is complete. �	
Acknowledgements The authors would like to thank the German Research Foundation (DFG) for funding
this project within the Collaborative Research Center 666, and two anonymous referees and an associate
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