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Abstract In many applications, researchers often know a certain set of predictors is
related to the response from some previous investigations and experiences. Based on
the conditional information, we propose a conditional screening feature procedure via
ranking conditional marginal empirical likelihood ratios. Due to the use of central-
ized variable, the proposed screening approach works well when there exist either or
both hidden important variables and unimportant variables that are highly marginal
correlated with the response. Moreover, the new method is demonstrated effective in
scenarios with less restrictive distributional assumptions by inheriting the advantage
of empirical likelihood approach and is computationally simple because it only needs
to evaluate the conditional marginal empirical likelihood ratio at one point, without
parameter estimation and iterative algorithm. The theoretical results reveal that the
proposed procedure has sure screening properties. The merits of the procedure are
illustrated by extensive numerical examples.
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1 Introduction

Ultrahigh-dimensional data are frequently collected in various frontiers of areas, such
as finance, biomedical imaging, and genomics.Many challenges to statistical inference
in ultrahigh-dimensional scenarios can be imposed when the number of covariates p
may be much larger than the sample size n. In such situations, the sparsity principle
is frequently adopted and useful in the analysis of ultrahigh-dimensional data. The
sparsity assumption requires that only a limit number of predictors contribute to the
response. As a result, variable selection has attracted increasing interests.

Over the last 10years, there are a great deal of developments in statistical theory and
computing on variable selection techniques for ultrahigh-dimensional feature space,
see Hastie et al. (2009), Fan et al. (2011b), and Bühlmann and van de Geer (2011) for
overviews. To reduce dimension, Tibshirani (1996), Fan andLi (2001), Candes andTao
(2007), Bickel et al. (2009), Fan and Lv (2011), and Zhang and Zhang (2012) proposed
techniques to select variables and estimate parameters simultaneously by solving a
high-dimensional optimization problem. Efron et al. (2004) and Fan and Lv (2011)
proposed various efficient algorithms. However, there are still huge computational
challenges when the number of variables grows exponentially with sample size. Fan
and Lv (2008), Fan et al. (2009), Hall et al. (2009), Hall and Miller (2009), Fan and
Song (2010), Fan et al. (2011a), Li et al. (2012), and Chang et al. (2013a) suggested
to screen variables by ranking marginal utility such as marginal correlation with the
response. However, due to the correlation among the predictors, the sample marginal
screening can screen out hidden important variableswho have a big impact on response
but are weaklymarginal correlated with the response. It also can recruit those variables
who have strong marginal utility but are conditionally independent with the response
given other variables.

In many applications, based on some previous investigations and experiences,
researchers often know a set of certain predictors XC is related to the response Y in
advance. As shown in Barut et al. (2012), conditional information can help reducing
the correlation among the variables. They proposed a conditional sure independence
screening (CSIS) by the known active predictors whichmakes it possible to recover the
hidden importance variables and reduce the number of false negatives. But the CSIS
in Barut et al. (2012) has a strongly restrictive for distributional model assumptions
and needs to estimate βC repeatedly when individually measuring the strength of the
conditional contribution of the rest variables given XC .

Lots of literature show that the empirical likelihood approach (Owen 1988, 2001)
has a nice performance when there is less restrictive distributional assumption for
statistical inferences, the details can be found in Qin and Lawless (1994), Newey and
Smith (2004), and Chen and Van Keilegom (2009) and so on. Recently, the empirical
likelihood approach has also been extended to deal with high-dimensional data; see
Hjort et al. (2009), Chen et al. (2009), Tang and Leng (2010), Leng and Tang (2012),
Chang et al. (2013a), Chang et al. (2015a), and Chang et al. (2015b). The properties
of marginal empirical likelihood approach, where the available features are assessed
one at a time individually, are systematically studied in Chang et al. (2013a). The
marginal empirical likelihood approach only involves univariate optimizations, which
means such a method provides a convenient device for both theoretical analysis and
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practical implementation. Chang et al. (2013a) found the probabilistic behavior of
the marginal empirical likelihood ratios as functions of the parameters of interest that
can be evaluated at arbitrary value. The theoretical analyses reveal that the marginal
empirical likelihood ratio should not be large when evaluated at the truth and the
marginal empirical likelihood ratio statistic diverges with large probability when there
is deviation of fixed parameter value from the truth. Therefore, Chang et al. (2013a)
proposed a screening procedure based on the marginal empirical likelihood approach
(EL-SIS) by ranking the marginal empirical likelihood ratio at zero l j (0). But the
screening procedure based on the marginal empirical likelihood approach (EL-SIS) is
severely affected by the correlation among the predictors like other marginal screening
procedures.

In this paper, we propose a unified conditional sure screening feature procedure by
conditional marginal empirical likelihood ratio, which can be equally applied in both
linear models and generalized linear models. It is known that high correlation among
variables is a fatal difficulty for marginal feature screenings. In our paper, by cen-
tralizing the covariates, the proposed screening procedure is able to handle the issue
that there exist either or both hidden important variables and unimportant variables
that are highly marginal correlated with the response. Although the iterative version
of marginal screening procedures can alleviate the mentioned fatal issue, the iterative
algorithms are of computational redundance. Due to the conditional information, our
proposed procedure can remedy such problem without iterative algorithm. Hence, our
proposal is of computational simplicity. On the other hand, comparing to the condi-
tional sure independence screening (CSIS), our proposed procedure preforms much
better when heterogeneity exists in the conditional variance. Owing to inherited the
advantage of empirical likelihood, the conditional marginal empirical likelihood ratio
statistic is a self-studentized quantity (Owen 2001) while CSIS relies on the ranking
of features based on magnitudes of conditional maximummarginal likelihood estima-
tors. Therefore, the proposed procedure is able to incorporate the level of uncertainties
associated with the estimators to conduct feature screening. In simulation studies, we
will show the newly proposed procedure performs much better than CSIS in het-
eroscedastic examples. In addition, the proposed screening procedure only needs to
evaluate the conditional marginal empirical likelihood at one point, without estimating
βM
C repeatedly and all candidates βM

j . It must be stressed that the proposed screening
procedure gives better results than both EL-SIS and CSIS when the heteroscedastic
models have hidden important variables or unimportant variables that are highly mar-
ginal correlated with the response. As a result, the newly proposed procedure not only
inherits the advantages of EL-SIS and CSIS, but also has flexibility in practice. Our
theoretical results reveal that the proposed screening procedure is able to identify the
rest features that contribute to the response when the number of rest predictors grows
exponentially with the sample size.

The rest of the paper is organized as follows.We introduce the conditional marginal
empirical likelihood (CMEL) and the corresponding screening procedure in Sect. 2.
Section 3 gives the theoretical properties. Section 4 shows some simulation studies.
We concludewith some discussions in Sect. 5. For the ease of presentation, the detailed
proofs are collected in the Appendix.
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2 Conditional marginal empirical likelihood

In this section, we first introduce our conditional marginal moment condition and the
related conditional marginal empirical likelihood for linear models and generalized
linear models, respectively, and then get a generalized conditional marginal empirical
likelihoodwith a unified conditionalmarginalmoment function for bothmodels. Based
on the properties of the related unified conditional marginal empirical likelihood ratio
(CMELR) when evaluated at the truth value or not, we propose a convenient screening
feature procedure by evaluating CMELR at zero. Finally, we give the sample version
of the CMELR such that the screening feature procedure can be easily applied in
practice.

2.1 Conditional marginal empirical likelihood for linear models

We first consider the following linear regression model:

Y = XTβ + ε, (1)

where X = (X1, . . . , X p)
T is a p-dimensional vector of predictors, Y is the

response variable, ε is the random error with conditional zero mean given X , and
β = (β1, . . . , βp)

T is the vector of unknown parameters. We use β∗ to denote the true
value of the parameters. Hereinafter we assume that the predictors are standardized
such that E(X j ) = 0 and E(X2

j ) = 1 for j = 1, . . . , p. Define two index sets as

A = {k : β∗
k �= 0}, Ā = {k : β∗

k = 0}.

ActuallyA is the active index set that corresponds to the active predictors, and Ā is the
complement set ofA. Themodel sparsity is assumed in the sense of that the cardinality
sA = |A| of A is small, which is satisfied in many practical applications such as in
finance, biology, and clinical studies. Let XA be the corresponding sA-dimensional
vector of the active predictors.

As was mentioned in Introduction, in many practical application, researchers have
already known certain predictors are important for the response Y by some previous
investigations and experiences, which means that a set of active predictors has been
determined in advance.Without loss of generality, suppose that these known active pre-
dictors are the first sC components X1, . . . , XsC of X . Denote XC = (X1, . . . , XsC )T,
XD = (XsC+1, . . . , X p)

T, and partition the parameters β as β = (βT
C , βT

D)T, corre-
spondingly. Our aim is then to identify the set D ∩ A = { j ∈ D : β∗

j �= 0}.
There exist various screening methods for the ranking of features based on mag-

nitudes of some marginal estimators, see Fan and Lv (2008), Fan and Song (2010),
Fan et al. (2011a), Barut et al. (2012), Zhu et al. (2011), and Lin et al. (2013), among
others. Comparing to other methods, Chang et al. (2013a) first employ the idea of
marginal hypothesis testing to handle the feature screening problem while the other
methods all deal such a problem by simple marginal estimations. This motivates us
to use empirical likelihood ratio evaluated at zero as a criterion for feature screening,
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since such statistic can be used to against the null hypothesis that the marginal effect
is negligible. This new methodology can be used for cases of heteroscedasticity and
misspecification, as clearly stated in Chang et al. (2013a, 2015b), because empiri-
cal likelihood approach requires a less restrictive distribution assumption. Moreover,
the marginal empirical likelihood approach only involves univariate optimizations, it
provides a convenient device for both theoretical analysis and practical implementa-
tion. Therefore, we construct marginal empirical likelihood under the situation with a
known set of active predictors in advance.

To apply marginal empirical likelihood with conditional information, for any given
vector or matrix βC , let us consider the following moment condition:

E{[X j − E(X j |XT
CβC)][Y − EL(Y |(XC, X j ))]} = 0, j ∈ D, (2)

where EL(Y |(XC, X j )) is the best linear regression fit of Y by using XC and X j . It
implies

E{[X j − E(X j |XT
CβC)][Y − XT

CβM
C − X jβ

M
j ]} = 0, j ∈ D.

Since the centralized variable X j − E(X j |XT
CβC) is completely uncorrelated with

XT
CβM

C for any βC by the property of conditional expectation, the above moment
condition is equivalent to

E{[X j − E(X j |XT
CβC)][Y − X jβ

M
j ]} = 0, j ∈ D. (3)

We use (3) as our conditional marginal moment condition (CMMC).
Note that βM

j in CMMC (3) measures the strength of the conditional contribution

of X j given XC , called as the conditional marginal signal. We can see that βM
j = 0

is equivalent to that the response Y and the centralized variable X j − E(X j |XT
CβC)

aremarginally uncorrelated.Moreover, conditional marginal signal βM
j has significant

advantages in screening feature thanmarginal signal βMUC
j , where βMUC

j is the covari-
ance between X j and Y without conditional information. We can use the following
two similar examples mentioned in the introduction of Barut et al. (2012) to explain
the point of view.

Example 1 The case when there exist the hidden important variable in models. Con-
sider model (1) with the true β∗ = (1, 2, 3, 4, 5,−13.5, 0, . . . , 0)T, and all variables
follow the standard normal distribution with equal correlation 0.9, and ε follows the
standard normal distribution. By this setting, βMUC

6 = 0, that means X6 is a hidden
important variable. Hence X6 cannot be selected by ranking marginal correlation with
the response. Now, we assume that XC = {X1, X2, X3, X4, X5} is known in advance.
For simplicity, we consider the following linearity condition among the predictors:

(LC) E(X |XTβ) = cov(X, XT)β{cov(XTβ)}−1βTX for any β. (4)

Condition LC is a regular condition and it always holds when X follows normal, or
more generally, elliptical distribution. According to CMMC (3) and Condition LC,
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choosing βC = I5, a 5 × 5 identity matrix, we can evaluate that βM
6 = −13.4958. It

is clear that the conditional marginal signal βM
6 is very closed to the true β∗

6 .

Example 2 The case when there are unimportant variables that are highly marginal
correlated with the response. Consider model (1) with the true β∗ = (5, 1, 0, . . . , 0)T,
equi-correlation 0.9 among all covariates except X2, which is independent of the rest
of the covariates. Hence, marginal correlation for all unimportant variables (βMUC

j =
4.5, j = 3, . . . , p) are higher than that for important variable X2 (βMUC

2 = 1).
Marginal screening can fail to recruit X2. Similarly, assume that XC = {X1}, using
CMMC (3) and Condition LC, choosing βC = 1, we have the conditional marginal
signals βM

2 = 1 = β∗
2 and βM

j = 0 = β∗
j for any j �= 1, 2.

The above two examples illustrate a screening procedure based on CMMC(3) can
reduce the impact of a strong correlation among the predictors due to centralized
variables. Although sometimes there is remarkable difference between βM

j and the
true value of the parameter β∗

j in models (1), Theorem 1 given below shows that

βM
j = β∗

j under some regularity conditions. Moreover, Remarks below illustrate that
the condition used here isweaker than ones used for the casewhen the setC is unknown.
Theorem 1 If the centralized variables, X j − E(X j |XT

CβC) and Xk − E(Xk |XT
CβC),

are uncorrelated, where j �= k, j ∈ D and k ∈ D ∩ A, i.e.,

E{[X j − E(X j |XT
CβC)][Xk − E(Xk |XT

CβC)]} = 0, j �= k, j ∈ D, k ∈ D ∩ A,

(5)

then

βM
j = β∗

j for any j ∈ D.

With regard to Theorem 1, we have the following remarks:

Remark 1 Notice that E{[X j − E(X j |XT
CβC)]E(Xk |XT

CβC)} = 0 for any vector βC
or matrix βC . Condition (5) is equivalent to E{[X j − E(X j |XT

CβC)]Xk} = 0 for any
j �= k, j ∈ D and k ∈ D∩A, implying the centralized variable X j −E(X j |XT

CβC) is
completely uncorrelated with Xk for any j �= k, j ∈ D and k ∈ D ∩ A. Even so, this
condition does not mean X j and Xk ( j �= k, j ∈ D, and k ∈ D∩A) are uncorrelated.
For example, the variables are generated as X j ∼ N (0, 1) ( j = 1, . . . , p) with
E(X j Xt ) = ρ (ρ > 0), and E(X j X p) = ρ1/2 for all t = 1, . . . , p − 1 and j �= t .
The active set is A = {1, 2, 3, 4, 5}. Choose the conditional set XC = {X p} under
linearity condition (4); it can be easily verified that the condition (5) holds. Moreover,
this condition has no requirement on the relationship among conditional set XC .

Remark 2 If without the information about the index set C, we need to use themarginal
moment condition

E{X j [Y − X jβ
MUC
j ]} = 0, j = 1, . . . , p
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to construct marginal empirical likelihood. In this case, βMUC
j = E(X jY ) is the

correlation coefficient between X j and Y . However, βMUC
j is not equal to β∗

j unless
X j and Xk are uncorrelated for all j �= k ( j, k = 1, . . . , p) (Chang et al. 2013a).
Notice that condition (5) holds clearly in this scenario.

Remark 3 With respect to the number of required conditional equations, if without
the conditional set, it is (p − 1)sA. However, the number of equations in condition
(5) is (sD − 1)(sA − sCA), where sD and sCA are the cardinalities of D and C ∩ A,
respectively. It is clear that even the conditional set only include inactive variables, the
number of required conditional equations reduces by sC × sA. Moreover, increasing
an active variable in the conditional set can reduce (sD − 1) required conditions.

According to the above remarks, Theorem 1 gives a weaker condition to make
sure βM

j = β∗
j . On the other hand, it must be pointed out that conditional set XC

does not necessarily have to contain active variables, which is clearly shown in our
proof of Theorem 1 given in the Appendix. Moreover, according to the example in
remark 1, we know that condition (5) is weaker than the condition that X j and Xk are
uncorrelated for all j �= k ( j, k = 1, . . . , p), even the conditional set XC only includes
inactive predictors. In addition, it is clear that condition (5) has no requirement on the
relationship among conditional set.

Therefore, our conditional marginal moment condition (CMMC) in (3) can be con-
veniently used to deal with the case when there exist strong correlations between X j

and Xk ( j, k = 1, . . . , p, j �= k). The condition set XC can contain some active pre-
dictors known in advance and some inactive predictors which are strongly correlated
with other predictors. Or, the conditional set XC can only contain those inactive predic-
tors. Furthermore, we will see in the simulation studies that our method has excellent
performance even if some of the conditional variables are inactive, and compared to
other original screening procedures, it performs well even all conditional variables are
randomly selected inactive variables. These show that our method is convenient and
flexible.

Nextwewill construct a conditionalmarginal empirical likelihood for linearmodels
as follows. Let (Xi , Yi ) be collected independent data,

g(cl)
i j (β) = [Xi j − E(X j |XT

iCβC)][Yi − Xi jβ] ( j ∈ D),

where Xi j and XiC are the i th observations of X j and XC , respectively. By the CMMC
(3), we define the following conditional marginal empirical likelihood (CMEL) as

EL j (β) = sup

{
n∏

i=1

wi : wi ≥ 0,
n∑

i=1

wi = 1,
n∑

i=1

wi g
(cl)
i j (β) = 0

}
,

for j ∈ D, and further define the conditional marginal empirical likelihood ratio
(CMELR) as

l j (β) = 2
n∑

i=1

log{1 + λg(cl)
i j (β)}, (6)
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where λ is the lagrange multiplier satisfying

0 =
n∑

i=1

g(cl)
i j (β)

1 + λg(cl)
i j (β)

.

2.2 Conditional marginal empirical likelihood for generalized linear models

In this part, we will show that the above conditional marginal empirical likelihood
approach can be applied in generalized linear models. Assume that the conditional
probability density of the random variable Y belongs to an exponential family:

f (y|x, θ) = exp(yθ(x) − b(θ(x)) + c(x; y)),

where b(·) and c(·) are specific known functions in the canonical parameter θ(x)
(McCullagh and Nelder 1989). In this case, the mean function μ = E(Y |X) =
b′(θ(X)). Suppose that the second derivative of b(·) is continuous and posi-
tive/negative, the canonical parameter is modeled by a linear function θ(X) = XTβ∗.
Particularly, for linear models, μ = b′(θ(X)) = θ(X) = XTβ∗. Let E(X j ) = 0
and E(X2

j = 1) ( j = 1, . . . , p), without loss of generality. Consider sparse models,
i.e., the active set A = {k : β∗

k �= 0} is small. Furthermore, assume that a set XC of
variables is known to be related to the response Y . Denote by XD the set of the rest
of variables.

Under generalized linear models, based on the definition of the conditional linear
expectation in Barut et al. (2012), the moment condition (2) is equivalent to

E{[X j − E(X j |XT
CβC)][Y − b′(XT

CβM
C + X jβ

M
j )]} = 0. (7)

In the above notation, we assume that the intercept is incorporated in the vector XC .
The following Lemma 1 reveals that the conditional marginal signal βM

j is in fact a

measurement of the correlation between the centralized variable X j − E(X j |XT
CβC)

and the response as in linear models.

Lemma 1 For any j ∈ D, the conditional marginal signal βM
j = 0 if and only if

E{[X j − E(X j |XT
CβC)]Y } = 0.

Note that the conditional marginal signal βM
j is not equal to the true parameter

β∗
j usually. In order to guarantee that the conditional marginal signals provide useful

probes for the true parameters, we need to ensure that the conditional marginal signal
|βM

j | exceeds a related threshold when the corresponding truth |β∗
j | exceeds a certain

threshold. This will be shown in the following theorem and condition:
Condition 1 For j ∈ D ∩ A, there exists c1 > 0 and κ ∈ [0, 1

2 ) such that

|E{[X j − E(X j |XT
CβC)]Y }| ≥ c1n

−κ .
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For screening feature, the above is an identification condition for j ∈ D ∩ A and
can be viewed as a requirement for the minimal signal strengthen. It is the same as the
first part of condition 1 in Barut et al. (2012).

Theorem 2 If Condition 1 holds, then there exits c2 > 0 such that

min
j∈D∩A

|βM
j | ≥ c2n

−κ ,

provided that b′′(·) is bounded.
Theorem 2 implies that there exists a threshold γ > 0 such that the set { j ∈

D : |βM
j | > γ } must contain the target set D ∩ A. Hence, we can select non-zero

conditional marginal signal βM
j instead of directly selecting β∗

j �= 0.
To apply the conditional marginal empirical likelihood approach for generalized

linear models, similar to g(cl)
i j (β) given in the previous subsection, we now define new

estimating functions as

g(cg)
i j (β, β̃C) = [Xi j − E(X j |XT

iCβC)][Yi − b′(XT
iC β̃C + Xi jβ)], j ∈ D.

By the same argument used above, for generalized linear model, the conditional mar-
ginal empirical likelihood ratio is defined as

l j (β, β̃C) = 2
n∑

i=1

log{1 + λg(cg)
i j (β, β̃C)}, j ∈ D, (8)

where λ is the lagrange multiplier satisfying

0 =
n∑

i=1

g(cg)
i j (β, β̃C)

1 + λg(cg)
i j (β, β̃C)

.

2.3 CSIS by CMELR

The marginal empirical likelihood ratios (6) and (8) can be viewed as functions of the
parameters of interest. Moreover, the theoretical analyses in Chang et al. (2013a) show
that the marginal empirical likelihood ratio should not be large when evaluated at the
truth value, and themarginal empirical likelihood ratio statistics has high probability to
take large value when evaluated at the false values. Hence, in our cases, the conditional
marginal empirical likelihood ratios l j (0) and l j (0, β̂M

C ) in (6), and (8) should not be
large if βM

j = 0 and they diverge with large probability if βM
j �= 0, where β̂M

C can be
the maximum marginal likelihood estimator in generalized linear model. That means
we can use l j (0) and l j (0, β̂M

C ) as devices for feature screening for linear models and
generalized linear models, respectively.

However, for generalized linear models, we need to estimate marginal signals βM
C

if directly using the conditional marginal empirical likelihood ratio in (8). In order
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to reduce redundant computation and construct a unified feature screening method
for both linear models and generalized linear models, we use a unified conditional
marginal moment condition (UMMC) as

E{[X j − E(X j |XT
CβC)]Y } − α j = 0, (9)

where α j is denoted as the correlation coefficient between the centralized variable
X j − E(X j |XT

CβC) and the response Y .
As the discussion in the previous subsection, to guarantee that α j can be used as

a tool for recruiting the corresponding index j , we need to ensure that |α j | exceeds a
related threshold when the corresponding truth |β∗

j | exceeds a certain threshold. Note
that it holds directly in generalized linear models due to Condition 1. The following
lemma shows that it also holds for linear models without Condition 1.

Lemma 2 Suppose that condition in Theorem 1 holds, for any j ∈ D, the true β∗
j �= 0

if and only if E{[X j − E(X j |XT
CβC)]Y } �= 0, i.e., α j �= 0.

Hencewe can conclude that a unified conditionalmarginal empirical likelihoodwith
the same estimating functions g(c)

i j (α) = [Xi j − E(X j |XT
iCβC)]Yi − α can be equally

applied for both linear models and generalized linear models, and the corresponding
conditional marginal empirical likelihood ratio (CMELR) can be defined as

l j (α) = 2
n∑

i=1

log{1 + λg(c)
i j (α)}, j ∈ D, (10)

where λ is the lagrange multiplier satisfying

0 =
n∑

i=1

g(c)
i j (α)

1 + λg(c)
i j (α)

.

Moreover,we can use l j (0) defined in (10) as a convenient device for feature screening
in both linear models and generalized linear models. More specifically, the feature
screening is to keep the variables X j with indices in

D ∩ Aγn = { j ∈ D : l j (0) ≥ γn}, (11)

for a given thresholding parameter γn .
In this way, we just need to evaluate the conditional marginal empirical likelihood

ratio at one point and avoid estimating the marginal signal βM
j or βM

C . Moreover, the
feature screening method based on empirical likelihood approach requires less strict
distribution assumptions. In next section, we will give theoretical results to show the
sure screening properties of the proposed screening procedure.

Notice that in practice, we cannot directly use the likelihood ratio l j (0) in (11) for
screening feature because it contains unknown E(X j |XT

CβC) in estimating function

g(c)
i j (0). To get an estimator l̂ j (0) of l j (0), we first need to estimate E(X j |XT

CβC).
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Assume 1
n

∑n
i=1 Xi j = 0 and 1

n

∑n
i=1 X

2
i j = 1 for any j ∈ {1, . . . , p}, where Xi j is

the i-th observation of X j . For simplicity, we here need Condition LC (4). Without it,
we can use nonparametric method to construct estimator. We consider the following
two cases:

Case 1 E(XCXT
C) is a positive definite matrix. Since our theoretical results hold for

any vector or matrix βC , we then use the following most simple choice:

βC = IsC ,

a sC ×sC identity matrix. Then, we estimate cov(X j , XT
C) andE(XCXT

C), respectively,
by

ĉov(X j , X
T
C) = 1

n

n∑
k=1

Xkj X
T
kC, Ê(XCXT

C) = 1

n

n∑
k=1

XkCXT
kC,

where XkC is the k-th observation of XC . Hence we can obtain the estimator as

Ê(X j |XT
iC) = 1

n

n∑
k=1

Xkj X
T
kC

{
1

n

n∑
k=1

XkCXT
kC

}−1

XiC .

Particularly, if E(XCXT
C) = IsC , then the above estimator can be rewritten as

Ê(X j |XT
iC) = 1

n

n∑
k=1

Xkj X
T
kCXiC .

Case 2 E(XCXT
C) is singular or approximately singular. Let B = 1

n

∑n
k=1 XkCXT

kC
and λ1 ≥ . . . ≥ λt > 0 denote the nonzero eigenvalues of B, where t ≤ sC . We
can easily find a matrix 
 such that 
TB
 = �, where � denotes a diagonal matrix
with the diagonal elements (λ1, . . . , λt ). Note the matrix 
 can consist of the first t
columns of 
1, where 
1 satisfies 
T

1 B
1 = �1,�1 denotes a diagonal matrix whose
diagonal elements consist of all eigenvalues of B. Under this situation, we choose

βC = 
,

and then get the following estimator:

Ê(X j |XT
iC
) = 1

n

n∑
k=1

Xkj X
T
kC
�−1
TXiC .

For both the cases above, denote ĝ(c)
i j (0) = [Xi j − Ê(X j |XT

iCβC)]Yi , the estimator

of g(c)
i j (0). We then obtain the estimated conditional marginal empirical likelihood

ratio at zero as
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l̂ j (0) = 2
n∑

i=1

log{1 + λ̂ĝ(c)
i j (0)},

where λ̂ is the lagrange multiplier satisfying

0 =
n∑

i=1

ĝ(c)
i j (0)

1 + λ̂ĝ(c)
i j (0)

.

Finally, we select the index set of active variables as

D̂ ∩ Aγn = { j ∈ D : l̂ j (0) ≥ γn},

where γn is a predefined threshold value. This methodwill be referred to as conditional
sure independence screening based on conditional marginal empirical likelihood ratio
or CMELR-CSIS for short.

It is important to note that the threshold level γn in practice is generally difficult
to identify explicitly, because it involves unknown constants. Thus, we choose hard
thresholding rule (Fan and Lv 2008) in practice such that D̂ ∩ Aγn recruits fixed
number d = 
n/ log n� or d = n of candidate variables, where 
m� denotes the
largest integer that is less than or equal to m.

3 Sure screening properties

A useful screening approach is expected to retain all important variables while remov-
ing the others, which means the procedure possesses sure screening properties. In this
section, we derive the sure screening properties of the proposed screening procedure
with respect to the population aspect and sample aspect, simultaneously. Moveover,
we give a bound on the size of the selected set of variables. The following lemmas
and theorems state the details.

To get the sure screening properties, we assume that the response Y has bounded
variance and the following regular condition holds.

Condition 2 There are positive constants K1, K2, γ1 and γ2 such that

P{|X j − E(X j |XT
CβC)| > u} ≤ K1 exp{−K2u

γ1},

for any j ∈ D and any u > 0, and

P{|Y | > u} ≤ K1 exp{−K2u
γ2},

for any u > 0.
Condition 2 is required to ensure the large deviation results that are used to get

the exponential convergence rate, because we impose no distributional assumptions.
This is a regular condition appearing in lots of literature. For instance, the first part of
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Condition 2 is similar to the first part of conditionD in Fan and Song (2010), Condition
(C3) in Zhu et al. (2011), the first part of Condition 2(ii) in Barut et al. (2012), and
the first part of A.2 in Chang et al. (2013a); the second part of Condition 2 is same as
the second part of A.2 in Chang et al. (2013a). According to the argument in Chang
et al. (2013a), the second part of Condition 2 is actually weaker than the second part
of Condition D in Fan and Song (2010) and the second part of Condition 2(ii) in Barut
et al. (2012).

The following lemma shows that the goal set D ∩ A can be clearly distinguished
by the conditional marginal empirical likelihood ratio (CMELR) valued at zero.

Lemma 3 Under Conditions 1 and 2, there exists a positive constant C1 such that,
for any τ ∈ (0, 1

2 − κ),

max
j∈D∩A

P{l j (0) < c21n
2τ }

≤
⎧⎨
⎩
exp

{
−C1n(1−2κ)∧ (1−2κ−2τ )γ

2

}
, if (1 − 2κ)(1 + 2δ) < 1,

exp
{
−C1n

1−κ
1+δ

∧ (1−2κ−2τ )γ
2

}
, if (1 − 2κ)(1 + 2δ) ≥ 1,

where C1 depends only on K1, K2, γ1 and γ2 given in Condition 2, γ = γ1γ2
γ1+γ2

and

δ = max{ 2
γ

− 1, 0}.

According to Lemma 3, we can get the sure screening property of our method
on population aspect directly. When l j (0) is replaced by its estimator l̂ j (0), the next
lemma shows that the estimator has the same properties as shown in Lemma 3.

Lemma 4 Under condition 1 and 2, if max
i

|XikYi | = Op(nω) where ω < 1/2 − κ ,

k ∈ C, there exists a positive constant C2 such that, for any τ ∈ (0, 1
2 − κ),

max
j∈D∩A

P{l̂ j (0) < c21n
2τ }

≤
⎧⎨
⎩
exp

{
−C2n(1−2κ)∧ (1−2κ−2τ )γ

2

}
, if (1 − 2κ)(1 + 2δ) < 1,

exp
{
−C2n

1−κ
1+δ

∧ (1−2κ−2τ )γ
2

}
, if (1 − 2κ)(1 + 2δ) ≥ 1,

where C2 depends only on K1, K2, γ1 and γ2 defined in Condition 2, γ = γ1γ2
γ1+γ2

and

δ = max{ 2
γ

− 1, 0}.

Due to Lemma4,we can easily establish the sure screening property of the proposed
procedure in sample version. That is shown in the following theorem:

Theorem 3 Under the conditions in Lemma 4, there exists a positive constant C2 such
that, for any τ ∈ (0, 1

2 − κ) and γn = c21n
2τ ,
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P{D ∩ A ⊂ D̂ ∩ Aγn }

≥
⎧⎨
⎩
1 − sDA exp

{
−C2n(1−2κ)∧ (1−2κ−2τ )γ

2

}
, if 1 − 2κ)(1 + 2δ) < 1,

1 − sDA exp
{
−C2n

1−κ
1+δ

∧ (1−2κ−2τ )γ
2

}
, if 1 − 2κ)(1 + 2δ) ≥ 1,

where C2 depends only on K1, K2, γ1 and γ2 given in Condition 2, γ = γ1γ2
γ1+γ2

,

δ = max{ 2
γ

− 1, 0}, and sDA = |D ∩ A|, the size of the set of non-sparse elements.
Based on Theorem 3, we know that our proposed screening procedure can handle

the dimensionality of order

log q =
⎧⎨
⎩
o

(
n(1−2κ)∧ (1−2κ−2τ )γ

2

)
, if (1 − 2κ)(1 + 2δ) < 1,

o
(
n

1−κ
1+δ

∧ (1−2κ−2τ )γ
2

)
, if (1 − 2κ)(1 + 2δ) ≥ 1,

where q = sD is the size of XD. It is very similar to that in Chang et al. (2013a)
with the number p of all predictors being replaced by the number q of unknown
predictors in the set XD. However, as the result in Chang et al. (2013a), our result is
also weaker than that in Fan and Lv (2008) as a price paid for allowing more general
error distribution and is a stronger result than those in Fan and Song (2010) and Barut
et al. (2012) in a certain setting, see the details in Chang et al. (2013a).

We have already stated the sure screening properties of our proposed procedure
(CMELR-CSIS) in population and sample level. However, a good screening procedure
does not only possess sure screening, but also retains a small set of variables after
thresholding. For population level, according to the argument in Chang et al. (2013a),
we can directly obtain thatwith large probability, the size ofD∩Aγn in (11) is not larger
than the number of the true contributing explanatory variables. Now we investigate
how large the set D̂ ∩ Aγn is. We can notice that

|D̂ ∩ Aγn | =
∑

j∈D∩A
I {l̂ j (0) ≥ c21n

2τ } +
∑

j /∈D∩A
I {l̂ j (0) ≥ c21n

2τ }

≤ sDA +
∑

j /∈D∩A
I {l̂ j (0) ≥ c21n

2τ },

where sDA = |D ∩ A|, the size of the set of non-sparse elements. Then

P{|D̂ ∩ Aγn | > sDA} ≤
∑

j /∈D∩A
P{l̂ j (0) ≥ c21n

2τ }.

Hence, we need to know the magnitudes of l̂ j (0) for j /∈ D ∩ A.

Lemma 5 Under condition 1 and 2, if max
j /∈D∩A

|E{[X j − E(X j |XT
CβC)]Y }| = O(n−η)

whereη > κ and min
j /∈D∩A

E{[X j−E(X j |XT
CβC)]2Y 2} ≥ c3 for some c3 > 0, there exists

a positive constant C3 such that, for any j /∈ D∩A and any τ ∈ (( 12 −η)∨ω, 1
2 −κ),
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P{l̂ j (0) ≥ c21n
2τ }

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(−C3n2τ ) + exp(−C3n
γ
6 ), if γ < 2 and (η ∧ 1−2ω

2 ) > 1
4 ;

exp(−C3nγ (η∧ 1−2ω
2 )) + exp(−C3n

γ
6 ), if γ < 2 and (η ∧ 1−2ω

2 ) ≤ 1
4 ;

exp(−C3nγ (η∧ 1−2ω
2 )) + exp(−C3n

γ
6 ), if γ ≥ 2 and (η ∧ 1−2ω

2 ) ≤ 1
γ+2 ;

exp(−C3n
γ

γ+2 ) + exp(−C3n2τ ), if γ ≥ 4 and (η ∧ 1−2ω
2 ) > 1

γ+2 ;
exp(−C3n

γ
6 ) + exp(−C3n2τ ), if 2 ≤ γ < 4 and (η ∧ 1−2ω

2 )> 1
γ+2 ,

where ω satisfies max
i

|XikYi | = Op(nω) and ω ∈ [0, 1
2 ), k ∈ C, C3 depends only on

K1, K2, γ1, and γ2 given in Condition 2, γ = γ1γ2
γ1+γ2

.

Then following by the argument between Theorem 3 and Lemma 5, we can obtain
the following theorem:

Theorem 4 Under the conditions in Lemma 5, there exists a positive constant C3 such
that, for any τ ∈ (( 12 − η) ∨ ω, 1

2 − κ) and γn = c21n
2τ ,

P{|D̂ ∩ Aγn | > sDA}

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q exp(−C3n2τ ) + q exp(−C3n
γ
6 ), if γ < 2 and (η ∧ 1−2ω

2 ) > 1
4 ;

q exp(−C3nγ (η∧ 1−2ω
2 )) + q exp(−C3n

γ
6 ), if γ < 2 and (η ∧ 1−2ω

2 ) ≤ 1
4 ;

q exp(−C3nγ (η∧ 1−2ω
2 )) + q exp(−C3n

γ
6 ), if γ ≥ 2 and (η ∧ 1−2ω

2 ) ≤ 1
γ+2 ;

q exp(−C3n
γ

γ+2 ) + q exp(−C3n2τ ), if γ ≥ 4 and (η ∧ 1−2ω
2 ) > 1

γ+2 ;
q exp(−C3n

γ
6 )+q exp(−C3n2τ ), if 2≤γ <4 and (η ∧ 1−2ω

2 )> 1
γ+2 ,

where q is the size of XD, ω satisfies max
i

|XikYi | = Op(nω) and ω ∈ [0, 1
2 ), k ∈ C,

C3 depends only on K1, K2, γ1 and γ2 given in Condition 2, γ = γ1γ2
γ1+γ2

.

Theorem 4 shows that our proposed procedure in sample level also has a very good
control of the size of the selected set of variables. As shown later in our simulation
results, our proposed procedure (CMELR-CSIS) performs very well.

4 Simulation studies

In this part, we use several simulation examples to demonstrate the performances of our
proposed screening procedure (CMELR-CSIS).We compare itwith some competitors,
such as empirical likelihood-based screening procedure (EL-SIS) proposed in Chang
et al. (2013a), conditional sure independence screening (CSIS) proposed byBarut et al.
(2012) and sure independence screening (SIS) in Fan and Lv (2008) for linear models
or the GLM-SIS in Fan and Song (2010) for generalized linear models.Meanwhile, we
compare our method with the corresponding iterative version of the above competitors
(denote by EL-ISIS, ISIS, and GLM-ISIS, respectively).
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To evaluate the performance of the CMELR-CSIS, when comparing our proposed
procedure to the original version of the competitors, we focus on the accuracy of
ranking the predictors without thresholding. Our reports include the median minimum
model size (MMMS)of the selectedmodels aswell as itsRSD(inparentheses) over 200
repetitions, where the RSD is defined as the associated interquartile range of minimum
model size divided by 1.34 across 200 simulations. The minimum model size (MMS)
of the selected models are required for each method to have a sure screening, that
is, to contain the true model. The MMMS is used as a measure of the effectiveness
of a screening method and avoids choosing the threshold parameter. On the other
hand, we compare the conditional screening procedures to the iterative algorithms
on the complexity of the procedures and the accuracy of feature screening when
applying a proposed thresholding rule, where the proposed threshoding is used to
control the model size of the selected models in conditional screenings and the first
step of iterative algorithms. Since feature screening procedure generally serves as a
preliminary massive reduction step, and is often followed by a conventional variable
selection for further refinement, feature screening is more concerned with recruiting
all the truly important predictors. Furthermore, the conditional screening approaches
are non-iterative algorithms which have much less computational cost. Therefore, we
record the proportion that all active variables are correctly recruited in 200 repetitions
and the mean computing time (minute) for one repetition (in parentheses) when the
hard thresholding is d = 
n/2�, where 
m� denotes the largest integer that is less than
or equal to m, n is the sample size.

In the simulation studies, we vary the sample size from 200 to 400 for different
scenarios and the number of predictors range from 2000 to 10,000. Example 1 and
2 show that for linear models, the conditional screening procedures have excellent
performance whether there exist hidden important variables or the unimportant vari-
ables are highlymarginal correlated with the response. The CMELR-CSIS gives better
results in heteroscedastic models which are shown in Example 3. Example 4 shows
that the CMELR-CSIS performs better than EL-SIS and CSIS simultaneously when
the heteroscedastic models exist hidden important variables or unimportant variables
that are highly marginal correlated with the response. The results of the mentioned
screening procedure for generalizedmodels are reported in Example 5. The robustness
of the CMELR-CSIS to the conditional set is demonstrated in Example 6. The last
example shows that the more active variables the conditional set includes, the better
performance the CMELR-CSIS has. When there is no information on conditional set,
an effective method for constructing CMELR-CSIS is provided in Example 7.

Example 1 The goal of this example is to demonstrate that conditional screening pro-
cedures (CMELR-CSIS andCSIS) canmake it possible to recover the hidden important
explanatory variables. Similar to the first example for linear models mentioned in
the introduction of Barut et al. (2012), we consider that variables are generated as
X j ∼ N (0, 1) and cov(Xi , X j ) = 0.9 for all i, j = 1, . . . , p and i �= j , the response
is generated as

Y = X1 + 2X2 + 3X3 + 4X4 + 5X5 − 13.5X6 + ε,
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Table 1 Simulation results for Example 1

(n, p) SIS EL-SIS CSIS CMELR-CSIS

(400, 5000) 1256.5 (1192.9) 1294.5 (1233.6) 1 (0) 1 (0)

(400, 10,000) 2538 (2626.5) 2558.5 (2804.9) 1 (0) 1 (0)

(200,5000) 2280 (1356.3) 2274.5 (1366.8) 1 (0) 1 (0)

ISIS EL-ISIS CSIS CMELR-CSIS

(400,5000) 1 (0.82) 1 (303.5) 1 (0.019) 1 (0.015)

with ε ∼ N (0, 1) being independent of explanatory variables. Here X6 is a hidden
important variable because it is marginally uncorrelated with the response Y . For the
conditional screening, the conditional set is chosen as XC = {X1, X2, X3, X4, X5}.
Simulation results over 200 repetitionswith the number of variables p = 5000, 10,000
and the size of random samples n = 200, 400 are reported in Table 1. It shows that
the SIS and the EL-SIS perform poorly when there exist such a hidden important
explanatory variable in model; however, as the iterative procedures of the SIS and EL-
SIS (namely ISIS and EL-ISIS, respectively), our CMELR-CSIS and CSIS (proposed
in Barut et al. 2012) have excellent performances, and moreover, have less much
computational cost.

Example 2 The goal of this example is to illustrate that the conditional screening
procedures (CMELR-CSIS and CSIS) have much better performance than the uncon-
ditional screening (SIS and EL-SIS) when there are inactive variables that are highly
marginal correlated with the response. To see this, we consider the second setting in
Barut et al. (2012), where the variables are generated as X j ∼ N (0, 1) ( j = 1, . . . , p)
with equal correlation 0.9 among all covariates except X2, which is independent of
the rest of the covariates. The response is generated as

Y = 5X1 + X2 + ε,

where ε ∼ N (0, 1). In this setting, the marginal correlation between all the unimpor-
tant variables and the response is 4.5, which is higher than 1, the marginal correlation
between the important variable X2 and the response. We consider p = 5000, 10,000
and vary the random sample size from n = 200 to 400. Results over 200 repetitions
are listed in Table 2. It reveals that the SIS and the EL-SIS almost break down in this
scenario but the iterative algorithms (ISIS and EL-ISIS) and the conditional screening
procedures (CMELR-CSIS and CSIS) still work well. In this case, the iterative algo-
rithms also consume more time than conditional screening. It is worth noting that in
this situation the CMELR-CSIS is more robust to the sample size than CSIS based on
the simulation results.

Example 3 The previous two examples show that our proposed procedure CMELR-
CSIS performs as well as the CSIS. Since the empirical likelihood approach requires
a less restrictive distributional assumption, as pointed by Chang et al. (2013a), we
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Table 2 Simulation results for Example 2

(n, p) SIS EL-SIS CSIS CMELR-CSIS

(400, 5000) 3765.5 (3350) 4998 (11.9) 1 (1) 1 (0)

(400, 10,000) 7544 (7294) 9998 (13.4) 295 (65.3) 1 (0)

(200, 5000) 4317.5 (3576.5) 4999 (44.8) 202 (305.2) 1 (0)

ISIS EL-ISIS CSIS CMELR-CSIS

(400, 5000) 1 (0.67) 1 (44.38) 1 (0.013) 1 (0.017)

Table 3 Simulation results for Example 3

n c SIS EL-SIS CSIS CMELR-CSIS

300 1.5 1252 (517.16) 329 (471.26) 1160 (571.27) 208.5 (417.16)

2.5 527.5 (522.01) 19.5 (66.04) 420 (428.73) 11 (32.84)

3.5 265 (518.65 ) 3 (9.33) 198 (472.76) 2 (4.10)

200 5 791 (584.32) 85 (175.74) 652.5 (622.76) 50 (117.91)

7 311.5 (480.22) 12 (34.33) 233.5 (373.88) 6 (24.25)

9 122.5 (301.49) 3 (6.71) 81.5 (217.16) 2 (2.23)

use a heteroscedastic example to demonstrate the advantage of the newly procedure.
Consider the case when variables are generated as X j ∼ N (0, 1) with cov(Xi , X j ) =
0 for i �= j and the response is generated as

Y = c(X1 − X2 + X3) + ε/(X2
1 + X2

2 + X2
3),

with independent ε ∼ N (0, 1), where c > 0 controls the signal level. We consider the
first predictor known in advance for conditional screening. Results over 200 repetitions
with p = 2000 and n = 200, 300 are reported in Table 3 for three different values of
c. Based on the results in Table 3, we find that all the screening feature methods are
affected by the heteroscedasticity, especially when the signal level is low. However,
the CMELR-CSIS and the EL-SIS need smaller model size to have all the relevant
variables in each setting.

Example 4 This example is to show that comparing to EL-SIS andCSIS, our screening
feature approach has an obvious advantage when the heteroscedastic models have
hidden important variables or unimportant variables that are highlymarginal correlated
with the response. First, consider the following heteroscedastic model,

Y = c(X1 + 2X2 − 2.7X3) + ε/(X2
1 + X2

2 + X2
3),

where variables are generated as X j ∼ N (0, 1) and cov(Xi , X j ) = 0.9 for all i, j =
1, . . . , p and i �= j , and ε ∼ N (0, 1). It entails X3 is the hidden important variable.
The conditional set consists of the first two predictors for conditional screening. The
second model is chosen as
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Table 4 Simulation results for Example 4

Heteroscedastic model exist hidden important variable

n c SIS EL-SIS CSIS CMELR-CSIS

200 2.5 1518.5 (566.4) 1133 (825.8) 185.5 (397.8) 21.5 (70.5)

3 1333 (644.4) 892.5 (784.3) 118 (341.1) 3(12 (51.12))

3.5 1097.5 (624.6) 506 (664.2) 77 (226.1) 3 (30.22)

ISIS EL-ISIS CSIS CMELR-CSIS

200 3.5 0.66 (0.045) 0.79 (62.66) 0.925 (0.0049) 0.975 (0.0044)

Heteroscedastic model exist unimportant variables that are highly marginal correlated with the response

n c SIS EL-SIS CSIS CMELR-CSIS

200 0.5 1345.5 (870.5) 676 (938.8) 1699 (252.2) 208 (622.8)

0.8 1300 (1046.6) 612 (1035.1) 1389 (39.7) 16 (124.3)

1 1203 (1079.5) 594.5 (861.6) 1338.5 (470.1) 4 (33.6)

ISIS EL-ISIS CSIS CMELR-CSIS

200 1 0.015 (0.073) 0.58 (62.14) 0.405 (0.0046) 0.975 (0.0045)

Y = c(5X1 + X2) + ε/(X2
1 + X2

2),

where variables and model error ε are generated just like in Example 2. The first
predictor is known in advance for conditional screening method. Table 4 records the
results over 200 repetitions with p = 2000 and n = 200. Since there exist high
correlated between predictors in the above two models, we also consider the results
given by the iterative algorithms. Following the results in Table 4, it is clear that our
screening approach CMELR-CSIS gets better results than EL-SIS and CSIS simul-
taneously. Notice that EL-ISIS performs better than another iterative algorithm ISIS
in this example and CSIS in second model, but the proposed screening procedure
CMELR-CSIS has better behavior on computational cost and quality of screen-
ing result. These ensure that the proposed screening procedure CMELR-CSIS is
flexible.

Example 5 In this example, we consider the performances of the mentioned methods
in the caseswith a binary response via logistic regressions. The conditional distribution
of the response Y given X = x is binomial distribution with probability of success
P(x) = exp(xβ∗)(1 + exp(xβ∗))−1. We generate covariates just like Example 1 and
Example 2. In this case, we get the results over 200 repetitions with n = 200, 400
and p = 2000. The details reported in Table 5 show CMELR-CSIS puts up a good
show as in the linear models. Notice that due to the model complexity and the small
coefficient of hidden important variable, under the covariate conditions of Example 2,
the conditional and iterative screenings perform poorer than linear models and another
generalized linear model, excepting the newly proposed approach CMELR-CSIS.
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Table 5 Simulation results for Example 5

Example 1 for logistic model

n GLM-SIS EL-SIS CSIS CMELR-CSIS

400 963 (744.02) 962 (822.38) 1 (0) 1 (0)

200 1253.5 (698.88) 1333.5 (684.32) 1 (0) 1 (0)

GLM-ISIS EL-ISIS CSIS CMELR-CSIS

400 1 (0.99) 1 (97.33) 1 (0.31) 1 (0.0064)

Example 2 for logistic model

n GLM-SIS EL-SIS CSIS CMELR-CSIS

400 1999 (0) 1999 (0) 19 (41.79) 1 (0.75)

200 1999 (0) 1999 (0) 300 (362.68) 10.5 (75)

GLM-ISIS EL-ISIS CSIS CMELR-CSIS

400 0.49 (0.21) 0.5 (13.46) 0.67 (0.44) 0.985 (0.0064)

Example 6 We evaluate the performance of the CEMLR-CSIS under three different
types of conditional sets to check its robustness to the choice of the conditional set
in this example. The first type conditional set consists of only active predictors, the
second type includes both active and inactive predictors, and the last one randomly
chooses inactive predictors. For a comprehensive comparison, we consider different
correlation structures within a large number of correlated covariates. Similar to Barut
et al. (2012) and Fan and Song (2010), the variables are generated as

X j = ε j + a jε√
1 + a2j

,

where ε and {ε j }[
2p
3 ]

j=1 are i.i.d standard normal random variables, {ε j }p
j=[ 2p3 ]+1

are

i.i.d standard laplace random variables. The constants a1 = · · · = a[ 2p3 ] are cho-

sen such that the correlation ρ = corr(Xi , X j ) = 0, 0.4, 0.8 among the first
[ 2p3 ] variables and the rest constants equal zero. We fix true regression coefficients
β∗ = {1, 2, 1, 2, 0, . . . , 0, 1, 2}T which have six non-zero parameters.

We consider the following conditional sets: C1 = {1, 2, 3, p}, C2 = {1, 2, 5, [ 2p3 ]+
1} and C3 consists of 3 randomly selected variables for the first [ 2p3 ] predictors which
are correlated and one randomly selected inactive predictors from the rest. We can
notice that X1, X2, X3, and X p are active variables, X5 and X[ 2p3 ]+1 are inactive

variables. In this example, we consider the number of predictors p = 10,000/5000
for linearmodel and p = 2000 for logisticmodel, respectively. Thenwe get simulation
results over 200 repetitions with n = 400 for linear models in Table 6 and for logistic
models in Table 7.
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Table 6 Simulation results for Example 6 for linear model

p ρ 0.00 0.40 0.80

10,000 SIS 6 (1.49) 6668 (1.49) 6671 (11.38)

EL-SIS 6 (2.43) 6668 (2.24) 6673 (25.93)

CSIS C1 2 (0) 2 (0) 2 (3.17)

C2 4 (0) 18.5 (83.58) 551.5 (743.09)

C3 6 (2.43) 3904 (2451.31) 6231 (572.20)

CMELR-CSIS C1 2 (0) 2 (0) 2 (0)

C2 4 (0) 6 (15.30) 10.5 (43.28)

C3 6 (3.17) 1811.5 (2972.2) 703 (1416.42)

5000 SIS 6 (0.15) 3335 (1.49) 3336 (9.89)

EL-SIS 6 (1.49) 3335 (1.68) 3338.5 (9.70)

CSIS C1 2 (0) 2 (0) 2.5 (3.17)

C2 4 (0) 15 (52.05) 362.5 (480.60)

C3 6 (0.75) 2206 (1211.57) 3135 (263.25)

CMELR-CSIS C1 2 (0) 2 (0) 2 (0)

C2 4 (0) 5 (7.46) 7 (13.25)

C3 6 (1.49) 1118 (1426.12) 260 (497.95)

5000 ISIS 1 (0.070) 1 (0.22) 1 (0.17)

EL-ISIS 1 (198.4) 1 (245.6) 1 (194.8)

CSIS C1 1 (0.014) 1 (0.013) 1 (0.066)

C2 1 (0.017) 0.85 (0.016) 0.405 (0.022)

C3 1 (0.016) 0.12 (0.016) 0.02 (0.016)

CMELR-CSIS C1 1 (0.015) 1 (0.014) 1 (0.042)

C2 1 (0.016) 0.985 (0.015) 0.98 (0.020)

C3 1 (0.016) 0.38 (0.015) 0.365 (0.015)

The simulation results in the two tables show that, compared with the original
version of the competitors, CMELR-CSIS has excellent performance even when
the conditional set XC only includes inactive variables. In the case of high corre-
lation among variables, unconditional screening procedures are close to collapse, but
CMELR-CSIS still works well when the conditional set contains active variables.
For the worst cases, CMELR-CSIS reduces the minimum model size approxima-
tively by two-thirds, which means CMELR-CSIS performs well even all conditional
variables are randomly selected inactive variables. It might be because in the case
of high correlation among variables, CMELR-CSIS can reduce the impact of a
strong correlation among the predictors due to the use of centralized variables,
even when the conditional set includes only inactive variables. Under the assump-
tion E(X j ) = 0 and E(X2

j ) = 1, the concern of the unconditional screening
feature procedures is cov(X j , Xk), while according to Theorem 1, the concern
of CMELR-CSIS becomes cov(X j − E(X j |XT

C βC), Xk − E(Xk |XT
C βC)), for any

j, k ∈ {1, . . . , p} and j �= k. In this example, when cov(X j , Xk) = 0.4, 0.8, it is clear
that cov(X j − E(X j |XT

C βC), Xk − E(Xk |XT
C βC)) = 0.1333, 0.0615, respectively.

123



84 Q. Hu, L. Lin

Table 7 Simulation results for Example 6 for logistic model

ρ 0.00 0.40 0.80

GLM-SIS 7 (3.92) 1335 (2.99) 1336.5 (6.53)

EL-SIS 7.5 (4.48) 1335 (3.73) 1337 (9.33)

CSIS

C1 2 (0) 5 (8.2) 44 (112.5)

C2 4 (0.75) 43.5 (95.15) 309.5 (382.65)

C3 7 (3.73) 772.5 (350.18) 1083.5 (289.74)

CMELR-CSIS

C1 2 (0) 2 (1.49) 3 (5.41)

C2 4 (0.75) 17 (42.53) 120 (214.18)

C3 7 (4.48) 490 (391.04) 382 (385.26)

GLM-ISIS 0.97 (0.21) 0.79 (0.37) 0.30 (0.26)

EL-ISIS 0.97 (370.8) 0.80 (407.7) 0.31 (406.9)

CSIS

C1 1 (0.35) 0.98 (0.41) 0.88 (0.36)

C2 1 (0.36) 0.80 (0.42) 0.46 (0.38)

C3 0.98 (0.34) 0.13 (0.36) 0.01 (0.33)

CMELR-CSIS

C1 1 (0.0074) 0.97 (0.0067) 0.96 (0.0069)

C2 1 (0.0073) 0.87 (0.0069) 0.84 (0.0068)

C3 0.98 (0.0072) 0.30 (0.0067) 0.39 (0.0065)

The covariance among the centralized variables is clearly weaker than the covariance
among the variables. Comparing to the iterative procedures, if some of the conditional
variables are active, theCMELR-CSIS has similar nice screening results in linearmod-
els, and it performs better when generalized linear model has a large number of high
correlated covariates. Moreover, the CMELR-CSIS has less much computational cost.

Example 7 This simulation example consists of two parts. The first part is to con-
firm that the more active variables the conditional set has, the better performance the
proposed approach (CMELR-CSIS) gives. The second part is to give a solution, a
two-stage method, to construct our proposed conditional screening (CMELR-CSIS)
when there is no information on conditional set.

First, we consider the models as in Example 6 with n = 400 and p = 5000. We use
C0−C4 to denote that there are 0–4 true active predictors, respectively, in conditional
set. The simulation results inTable 8 demonstrate thatwhen the conditional set includes
active variables, the proposed approach (CMELR-CSIS) performs better, even it only
has one active variable.

As shown in the previous sections, usually one can use prior knowledge and experi-
ence to choose a suitable conditional set. However, even if there is no information about
the set of active variables in advance, the following two-stage procedure can be used
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Table 8 Simulation results for the first part of Example 7

Linear models

ρ 0.20 0.40 0.80

SIS 2524 (1049.07) 3335 (1.49) 3337 (8.58)

EL-SIS 2591 (1094.59) 3335 (1.68) 3336.5 (10.45)

CMELR-CSIS

C0 272 (790.11) 845 (1185.82) 234.5 (392.54)

C1 45.5 (165.86) 216.5 (560.82) 46.5 (182.46)

C2 4 (1.49) 4 (8.77) 10 (21.08)

C3 3 (0) 3 (0) 5 (10.63)

C4 2 (0) 2 (0) 2 (0)

Generalized linear models

ρ 0.20 0.40 0.80

GLM-SIS 1056.5 (398.32) 1336 (3.17) 1338 (13.43)

EL-SIS 1060 (376.31) 1336 (3.17) 1339 (16.79)

CMELR-CSIS

C0 174.5 (256.53) 494.5 (462.5) 400.5 (449.44)

C1 94 (185.82) 174.5 (336.19) ) 202 (255.60)

C2 13 (26.31) 34.5 (108.58) 107 (238.43)

C3 3 (0.75) 3 (2.99) 5 (14.37)

C4 2 (0) 2 (0) 3 (8.58)

for searching conditional set and then constructing CMELR-CSIS. In the first stage,
an unconditional screening is employed to determine some active variable. By the use
of these selected variable as condition, our method can be used in the second stage to
construct CMELR-CSIS. Since the two screenings have less computational cost, the
resulting two-stage method has less computational cost as well. Table 9 reports the
results of unconditional screening procedures (SIS, GLM-SIS, EL-SIS, ISIS, GLM-
ISIS, and EL-ISIS) and CMELR-CSIS in which the conditional set consists of the first
d = 4 largest ranked variables in SIS/GLM-SIS or EL-SIS. We find the two-stage
method works well and this method can be viewed as a good way to choose a nice
conditional set when we do not have any information.

5 Discussion

In this paper, we propose a new screening procedure, the CMELR-CSIS, for ultrahigh-
dimensionalmodels. TheCMELR-CSIS is a unified feature screeningmethod; it can be
equally applied in both linearmodels andgeneralized linearmodels.Weuse centralized
variables to reduce the impact of the correlation among the predictors. On the other
hand, the proposed approach can get nice results with less restrictive distribution
assumptions, which inherits the merits of empirical likelihood approach. Moreover,
the new screening procedure has a high computational efficiently, because it only
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Table 9 Simulation results for the second part of Example 7

Linear models

ρ 0.20 0.40 0.80

SIS 2761 (855.78) 3335 (1.49) 3336.5 (8.40)

EL-SIS 2780 (716.98) 3335 (2.99) 3337.5 (12.13)

SIS+CMELR-CSIS 2 (0) 3 (0.75) 16.5 (56.72)

EL-SIS+CMELR-CSIS 3 (0.75) 4 (0.75) 32 (54.10)

ISIS 1 (0.21) 1 (0.22) 1 (0.17)

EL-ISIS 1 (204.6) 1 (240.5) 1 (196.7)

SIS+CMELR-CSIS 1 (0.11) 1 (0.12) 0.905 (0.11)

EL-SIS+CMELR-CSIS 1 (0.36) 1 (0.42) 0.86 (0.54)

Generalized linear models

ρ 0.20 0.40 0.80

GLM-SIS 1106.5 (405.78) 1336 (7.65) 1336.5 (6.53)

EL-SIS 1120 (341.04) 1336 (8.96) 1337 (9.33)

GLM-SIS+CMELR-CSIS 2 (1.49) 9.5 (26.68) 593 (786.94)

EL-SIS+CMELR-CSIS 3 (2.24) 7.5 (18.28) 245 (396.45)

GLM-ISIS 1 (0.24) 0.77 (0.35) 0.30 (0.26)

EL-ISIS 1 (401.5) 0.76 (406.4) 0.31 (405.8)

SIS+CMELR-CSIS 1 (0.25) 0.96 (0.24) 0.30 (0.24)

EL-SIS+CMELR-CSIS 1 (0.15) 0.96 (0.18) 0.45 (0.23)

needs to evaluate the conditional marginal empirical likelihood ratio at zero, without
iterative algorithm or estimating marginal signals. Our theoretical results show that
the CMELR-CSIS has sure screening properties, and simulation studies demonstrate
that it gets satisfactory results under all simulation cases. Extending CMELR-CSIS
method to semiparametric models or general models is beyond the scope of the current
paper and is an interesting topic for future research.

6 Proofs

Proof of Theorem 1 First, we can notice that Eq. (5) is equivalent to

E{X j Xk} = E{XkE(Xk |XT
C βC)},

for any j �= k, j ∈ D and k ∈ D ∩ A, because

E{[X j − E(X j |XT
C βC)]E(Xk |XT

C βC)} = 0.

Since βM
j satisfies the conditional marginal moment condition (CMMC)

E{[X j − E(X j |XT
C βC)][Y − X jβ

M
j ]} = 0,
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for any j ∈ D, that implies

E{[X j − E(X j |XT
C βC)]X j }βM

j

= E{[X j − E(X j |XT
C βC)]Y }

= E{[X j − E(X j |XT
C βC)][XT

C∩Aβ∗
C∩A + XT

D∩Aβ∗
D∩A]}

= E{[X j − E(X j |XT
C βC)]XT

D∩Aβ∗
D∩A},

the last equation holds because

E{[X j − E(X j |XT
CβC)]XT

C∩Aβ∗
C∩A}

= E{[X j X
T
C∩Aβ∗

C∩A − E(X j X
T
C∩Aβ∗

C∩A|XT
CβC)]} = 0.

Note that

0 < E{[X j − E(X j |XT
CβC)]2|XT

CβC}
= E{[X j − E(X j |XT

CβC)]X j |XT
CβC}.

The above equation holds because E{[X j − E(X j |XT
CβC)]E(X j |XT

CβC)|XT
CβC} = 0.

Therefore, we can get

E{[X j − E(X j |XT
CβC)]X j } > 0

for any j ∈ D.
If j ∈ Ā ∩ D, then we can get E{[X j − E(X j |XT

C βC)]XT
D∩Aβ∗

D∩A} = 0, which
means βM

j = 0 = β∗
j .

If j ∈ A ∩ D, i.e., β∗
j �= 0, then

E{[X j − E(X j |XT
C βC)]X j }βM

j = E{[X j − E(X j |XT
C βC)]XT

D∩A\ jβ
∗
D∩A\ j }

+ E{[X j − E(X j |XT
C βC)]X j }β∗

j

= E{[X j − E(X j |XT
C βC)]X j }β∗

j .

Hence β∗
j = βM

j . Therefore, we can prove our result by the above discussion. ��

Proof of Lemma 1 By the definition of βM
j , we have

E{[X j − E(X j |XT
CβC)][Y − b′(XT

CβM
C + X jβ

M
j )]} = 0.

If βM
j = 0, then the above equation is equivalent to

E{[X j − E(X j |XT
CβC)][Y − b′(XT

CβM
C )]} = 0.
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According to the property of conditional expectation, E{[X j − E(X j |XT
CβC)]

b′(XT
CβM

C )} = 0, so the above two equations are equivalent to

E{[X j − E(X j |XT
CβC)]Y } = 0.

Next we show that E{[X j − E(X j |XT
CβC)]Y } = 0; then βM

j must be zero.

First we note that E{[X j − E(X j |XT
CβC)]Y } = 0 means that

E{[X j − E(X j |XT
CβC)]b′(XT

CβM
C + X jβ

M
j )} = 0.

Since function b(θ) is strictly convex or strictly concave in θ , it implies b =
infθ |b′′(θ)| > 0. Then if βM

j �= 0, denote X̃ j = X j − E(X j |XT
CβC) and w =

XT
CβM

C + X jβ
M
j

|E{[X j − E(X j |XT
CβC)]b′(XT

CβM
C + X jβ

M
j )}|

= |E{X̃ j b
′(w)}|

= |E{E{X̃ j |w}b′(w)}|
= |E(X̃ jw){cov(w)}−1

E[wb′(w)]|;

the last equation holds by linearity condition. It is clear that there exists 0 < w̃ < w,

|E[wb′(w)]| = |E[w2b′′(w̃)]|
≥ |E[b′′(w̃)w2 I (w2 ≤ 1)]|
≥ inf

0≤θ≤1
|b′′(θ)|E[w2 I (w2 ≤ 1)]

> 0.

In addition,

E[X̃ jw] = E[(X j − E(X j |XT
CβC))(XT

CβM
C + X jβ

M
j )]

= E[(X j − E(X j |XT
CβC))X jβ

M
j ].

Therefore,

|E{[X j − E(X j |XT
CβC)]b′(XT

CβM
C + X jβ

M
j )}| = r |βM

j | > 0,

where r = |E[(X j − E(X j |XT
CβC))X j ]{cov(w)}−1

E[wb′(w)]| > 0.
It leads to a contradiction, which means βM

j must be zero. Therefore, we get our
result. ��
Proof of Theorem 2 Since βM

j satisfied the equation

E{[X j − E(X j |XT
CβC)][Y − b′(XT

CβM
C + X jβ

M
j )]} = 0,
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which means

E{[X j − E(X j |XT
CβC)]Y } = E{[X j − E(X j |XT

CβC)]b′(XT
CβM

C + X jβ
M
j )}.

Then we can get

|E{[X j − E(X j |XT
CβC)]b′(XT

CβM
C + X jβ

M
j )}|

= |E{[X j − E(X j |XT
CβC)][b′(XT

CβM
C + X jβ

M
j ) − b′(XT

CβM
C )]}|

≤ BE{[X j − E(X j |XT
CβC)]X j }|βM

j |,

where B = supθ b
′′(θ). The first equation holds because E{[X j − E(X j |XT

CβC)]
b′(XT

CβM
C )} = 0.

Since E{[X j − E(X j |XT
CβC)]X j } > 0, we have

|βM
j | ≥ {BE{[X j −E(X j |XT

CβC)]X j }}−1|E{[X j −E(X j |XT
CβC)]b′(XT

CβM
C +X jβ

M
j )}|

≥ {BE{[X j − E(X j |XT
CβC)]X j }}−1|E{[X j − E(X j |XT

CβC)]Y }|.

Therefore, if condition C1 holds, we can get |βM
j | ≥ c2n−κ for any j ∈ D ∩ A. It

means that min j∈D∩A|βM
j | ≥ c2n−κ . ��

Proof of Lemma 2 First, together with CMMC (3) in linear models and the definition
of α j in (9), we can get

α j = E{[X j − E(X j |XT
CβC)]X j }βM

j .

It implies thatα �= 0 is equivalent toβM
j �= 0 becauseE{[X j−E(X j |XT

CβC)]X j } > 0.
On the other hand, based on Theorem 1, we can get the conditional marginal signal
βM
j = β∗

j for any j ∈ D.
Therefore, we can get our result directly. ��

Proof of Lemma 3 Note that l j (0) = 2
∑n

i=1 log{1 + λg(c)
i j (0)}, where λ satisfies

0 = ∑n
i=1

g(c)
i j (0)

1+λg(c)
i j (0)

and g(c)
i j (0) = [Xi j − E(X j |XT

iCβC)]Yi .
According to Condition 1 and the definition of g(c)

i j (0), we directly obtain

min
j∈D∩A

|E{g(c)
j (0)}| ≥ c1n

−κ . (12)

On the other hand, following Lemma 2 in Chang et al. (2013b) and Condition 2, we
can get the following inequality;
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P{|[Xi j − E(X j |XT
iCβC)]Yi | > u} ≤ 2K1 exp{−K2u

γ },

It means that

P{|g(c)
i j (0)| > u} ≤ 2K1 exp{−K2u

γ }. (13)

Together with (12) and(13) and following the same argument as the proof of Theo-
rem 1, Proposition 2 and Corollary 1 in Chang et al. (2013b), we can prove our result.

��
Proof of Lemma 4 Following Owen (2001), we can get

l̂ j (0) = 2max
λ̂∈�n

n∑
i=1

log(1 + λ̂ĝci j (0)),

where �n = {λ̂ : 1 + λ̂ĝci j (0) ≥ n−1, for all i = 1, . . . , n}. To simplify the notation,

we use ĝi j for ĝci j (0). Pick λ̂ = (nεmax
l

|ĝl j |)−1 for some ε > 0; then λ̂ ∈ �n for

sufficiently large n. Pick t > 0; we have

P{l̂ j (0) < 2t} ≤ P

⎧⎨
⎩

n∑
i=1

log[1 + ĝi j
nεmax

l
|ĝl j | ] < t

⎫⎬
⎭ .

Note that

log

⎡
⎣1 + ĝi j

nεmax
l

|ĝl j |

⎤
⎦ = ĝi j

nεmax
l

|ĝl j | − 1

2(1 + ci )2
ĝi j 2

n2εmax
l

|ĝl j |2 ,

where |ci | ≤ n−ε ; then we have

n∑
i=1

log

⎡
⎣1 + ĝi j

nεmax
l

|ĝl j |

⎤
⎦ =

n∑
i=1

ĝi j
nεmax

l
|ĝl j | + Rn,

where |Rn| ≤ n1−2ε . Notice that max
l

|ĝl j | = max
l

|gl j + ĝl j − gl j | ≤ max
l

|gl j | +
max
l

|ĝl j − gl j |; then we can get

P{l̂ j (0) < 2t}

≤ P

⎧⎨
⎩

n∑
i=1

ĝi j
nεmax

l
|ĝl j | < t + n1−2ε

⎫⎬
⎭

= P

{
n∑

i=1

ĝi j < (tnε + n1−ε)max
l

|ĝl j |
}
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= P

{
n∑

i=1

gi j +
n∑

i=1

(ĝi j − gi j ) < (tnε + n1−ε)max
l

|ĝl j |
}

= P

{
n∑

i=1

gi j < (tnε + n1−ε)max
l

|ĝl j | −
n∑

i=1

(ĝi j − gi j )

}

≤ P

{
n∑

i=1

gi j < (tnε + n1−ε)max
l

|ĝl j | +
n∑

i=1

|ĝi j − gi j |
}

≤ P

{
n∑

i=1

gi j < (tnε + n1−ε)max
l

|ĝl j | + nmax
i

|ĝi j − gi j |
}

≤ P

{
n∑

i=1

gi j < (tnε + n1−ε)max
l

|gl j | + (tnε + n1−ε + n)max
i

|ĝi j − gi j |
}

≤ P

⎧⎪⎨
⎪⎩

1√
nσ

n∑
i=1

(gi j − μ j ) <

(tnε− 1
2 + n

1
2−ε)max

l
|gl j | − √

nμ j

σ

+
((tnε− 1

2 + n
1
2−ε) + √

n)max
i

|ĝi j − gi j |
σ

⎫⎪⎬
⎪⎭

≤ P

{
1√
nσ

n∑
i=1

(gi j − μ j ) <
(tnε− 1

2 + n
1
2−ε)M − √

nμ j

σ

+
((tnε− 1

2 + n
1
2−ε) + √

n)max
i

|ĝi j − gi j |
σ

} + P{max
l

|gl j | > M

⎫⎪⎬
⎪⎭ ,

where gi j = g(c)
i j (0), μ j = Egi j and σ 2 = E{(gi j − μ j )

2}.
Under the linearity condition, denote a = cov(X, XT

C )βC{cov(XT
C βC)}−1,

E(X j |XT
C βC) = aβT

C XC . By ĝi j = [Xi j − Ê(X j |XT
iCβC)]Yi = [Xi j − Êi ]Yi , where

Êi = Ê(X j |XT
iCβC) is the estimator of Ei = E(X j |XT

iCβC) = aβT
C XiC , we have

|Ei − Êi | = |(â − a)βT
C XiC | and |â − a| = Op(n−1/2), where â is the estimator in

Sect. 2, and max
i

|XikYi | = Op(nω), where ω ∈ (0, 1/2), k ∈ C. Then we can get

max
i

|ĝi j − gi j | = Op(nω−1/2).

For L → ∞, pick ε such that nε = L
μ j

. Choose η ∈ (0, 2
3 ) and let M = ηL and

2t = nμ2
j

L2 , then
tnεM
nμ j

= η
2 and tn1−εM

nμ j
= η.

((tnε− 1
2 + n

1
2−ε) + √

n)max
i

|ĝi j − gi j |
σ

= Op(
√
nmax

i
|ĝi j − gi j |) = Op(n

ω),
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and

(tnε− 1
2 + n

1
2−ε)M − √

nμ j

σ
= Op(n

1
2 |μ j |).

Moreover, under condition 1, we can get n
1
2 |μ j | ≥ c1n

1
2−κ for any j ∈ D∩A; hence

nω = op(n
1
2 |μ j |) following our assumption κ ≤ 1

2 −ω. It implies that we can neglect

((tnε− 1
2 + n

1
2−ε) + √

n)max
i

|ĝi j − gi j |
σ

or replace it by Op(n
1
2 |μ j |). Hence, we have

P{l̂ j (0) < 2t} ≤ P

{
1√
nσ

n∑
i=1

(gi j − μ j ) <
(tnε− 1

2 + n
1
2−ε)M − √

nμ j

σ

}

+ P{max
l

|gl j | > M},

which means

P{l̂ j (0) <
nμ2

j

L2 } ≤ P

{
1√
nσ

n∑
i=1

(gi j − μ j ) <
( 32η − 1)

√
nμ j

σ

}

+ K1 exp{−K2M
γ + log n}. (14)

Since |μ j | can be bounded by a uniform constant. And from Condition 1, nμ2
j ≥

c21n
1−2κ for any j ∈ D ∩ A,

P

{
l̂ j (0) <

c21n
1−2κ

L2

}
≤ P

{
l̂ j (0) <

nμ2
j

L2

}
.

Then following (14) and Lemma 1 in Chang et al. (2013b), we can get

P

{
l̂ j (0) <

c21n
1−2κ

L2

}

≤
⎧⎨
⎩
exp(−C2n1−2κ) + exp(−C2Lγ ), if (1 − 2κ)(1 + 2δ) < 1;
exp(−C2n

1−κ
1+δ ) + exp(−C2Lγ ), if (1 − 2κ)(1 + 2δ) ≥ 1.

Finally, choosing L = n
1
2−κ−τ for some τ ∈ (0, 1

2 − κ), we can get our result. ��
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Proof of Theorem 3 Notice that

P{D ∩ A � D̂ ∩ Aγn } = P{There exists j ∈ D ∩ A such that l̂ j (0) < c21n
2τ }

≤ sre max
j∈D∩A

P{l̂ j (0) < c21n
2τ };

then we can get our result directly by Lemma 4. ��

Proof of Lemma 5 Keep the notation in proof of Lemma 4, and first note that
l j (0) = 2

∑n
i=1 log{1 + λĝi j }, where λ satisfies 0 = ∑n

i=1
gi j

1+λgi j
and gi j =

[Xi j − E(X j |XT
iCβC)]Yi . By Taylor expansion, we have

l j (0) = n

(
1

n

n∑
i=1

g2i j

)−1 (
1

n

n∑
i=1

gi j

)2

−n

(
1

n

n∑
i=1

g2i j

)−1 {
1

n

n∑
i=1

λ2g3i j
(1+ci2λgi j )3

}2

+ 2

3

n∑
i=1

λ3g3i j
1 + ci1λgi j )3

=: I1 + I2 + I3.

Define

M =
{

|λ| <
4|n−1 ∑n

i=1 gi j |
3n−1

∑n
i=1 g

2
i j

and

∣∣∣∣∣1n
n∑

i=1

gi j

∣∣∣∣∣max
l

|gl j | <
1

4n

n∑
i=1

g2i j

}
.

Hence,

P{l j (0) ≥ c21n
2τ }

≤ P

{
I1 ≥ c21n

2τ

2

}
+ P

{
I3 ≥ c21n

2τ

2
,M holds

}
+ P

{Mc}

≤ P

⎧⎨
⎩

(
1

n

n∑
i=1

gi j

)2

≥ c21E(gi j − μ j )
2

4n1−2τ

⎫⎬
⎭ + P

{
1

n

n∑
i=1

g2i j <
E(gi j − μ j )

2

2

}

+ P

⎧⎨
⎩C

(
n∑

i=1

|gi j |3
) ∣∣∣∣∣1n

n∑
i=1

gi j

∣∣∣∣∣
3 (

1

n

n∑
i=1

g2i j

)−3

≥ c21n
2τ

2

⎫⎬
⎭

+ P

{
|λ| >

4|n−1 ∑n
i=1 gi j |

3n−1
∑n

i=1 g
2
i j

}

=: R1 + R2 + R3 + R4. (15)
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According to the proof of Proposition 4 in Chang et al. (2013b), we can obtain that

P{l j (0) ≥ c21n
2τ }

≤ R1 + R2 + R3 + R4

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(−C3n2τ ) + exp(−C3n
γ
6 ), if γ < 2 and η > 1

4 ;
exp(−C3nγ η) + exp(−C3n

γ
6 ), if γ < 2 and η ≤ 1

4 ;
exp(−C3nγ η) + exp(−C3n

γ
6 ), if γ ≥ 2 and η ≤ 1

γ+2 ;
exp(−C3n

γ
γ+2 ) + exp(−C3n2τ ), if γ ≥ 4 and η > 1

γ+2 ;
exp(−C3n

γ
6 ) + exp(−C3n2τ ), if 2 ≤ γ < 4 and η > 1

γ+2 .

On the other hand , we have l̂ j (0) = 2
∑n

i=1 log{1 + λ̂ĝi j }, where λ̂ satisfies

0 = ∑n
i=1

ĝi j
1+λ̂ĝi j

and ĝi j = [Xi j − Ê(X j |XT
iCβC)]Yi . Due to the same technique, we

can get the sample version in (15) as following:

P{l̂ j (0) ≥ c21n
2τ }

≤ P

{
Î1 ≥ c21n

2τ

2

}
+ P

{
Î3 ≥ c21n

2τ

2
,M̂ holds

}
+ P{M̂c}

≤ P

⎧⎨
⎩

(
1

n

n∑
i=1

ĝi j

)2

≥ c21E(gi j − μ j )
2

4n1−2τ

⎫⎬
⎭ + P

{
1

n

n∑
i=1

ĝi j
2 <

E(gi j − μ j )
2

2

}

+ P

⎧⎨
⎩C

(
n∑

i=1

|ĝi j |3
) ∣∣∣∣∣1n

n∑
i=1

ĝi j

∣∣∣∣∣
3 (

1

n

n∑
i=1

ĝi j
2

)−3

≥ c21n
2τ

2

⎫⎬
⎭

+ P

{
|λ̂| >

4|n−1 ∑n
i=1 ĝi j |

3n−1
∑n

i=1 ĝi j
2

}

=: R̂1 + R̂2 + R̂3 + R̂4,

where Î1, Î3, and M̂ are the sample version of I1, I3 and M, respectively.
In fact, P

{
l̂ j (0) ≥ c21n

2τ
}
also is bounded by R1 + R2 + R3 + R4. Firstly, note

that

P

{∣∣∣∣∣1n
n∑

i=1

ĝi j

∣∣∣∣∣ ≥ C̃n−ε

}
≤ P

{∣∣∣∣∣1n
n∑

i=1

gi j

∣∣∣∣∣ ≥ C̃n−ε

}
(16)

P

{
1

n

n∑
i=

ĝi j
2 < C

}
≤ P

{
1

n

n∑
i=1

g2i j ≤ C ′
}

, (17)
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where ε, C , C ′ and C̃ are some positive constants. Because

∣∣∣∣∣1n
n∑

i=1

ĝi j

∣∣∣∣∣ ≤
∣∣∣∣∣1n

n∑
i=1

gi j

∣∣∣∣∣ + max
i

|gi j − ĝi j |

and max
i

|ĝi j − gi j | = Op(nω− 1
2 ), following the same argument in proof of Lemma 4,

we can neglect max
i

|ĝi j − gi j | when ε ≤ 1
2 − ω, and get (16). And

1

n

n∑
i=1

ĝi j
2 = 1

n

n∑
i=1

g2i j + 2
1

n

n∑
i=1

gi j (ĝi j − gi j ) + 1

n

n∑
i=1

(ĝi j − gi j )
2 ≥ 1

2n

n∑
i=1

g2i j ;

then

P

{
1

n

n∑
i=1

ĝi j
2 < C

}
≤ P

{
1

2n

n∑
i=1

g2i j < C

}
,

which implies (17) holds.
Therefore, choosing ε = 1

2 − τ , we can easily get R̂1 + R̂2 ≤ R1 + R2. Due to
the same technique, we have R̂3 ≤ R3. For the last part, since max

i
|ĝi j | ≤ max

i
|gi j |+

max
i

|ĝi j − gi j | and max
i

|ĝi j − gi j | = Op(nω− 1
2 ), we have P{max

i
|ĝi j | > Cnε} ≤

P{max
i

|gi j | > Cnε}. And choose ε ∈ (0, η ∧ ( 12 − ω)] in (16). Then we can get

R̂4 ≤ R4 by (16) and (17) and the same argument in the proof of Lemma 6 in Chang
et al. (2013b).

Finally, following by the proof of Proposition 4 in Chang et al. (2013b), we can get
our result. ��
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