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Abstract In this paper, we tackle the ANOVA problem for directional data. We apply
the invariance principle to construct locally and asymptotically most stringent rank-
based tests. Our semi-parametric tests improve on the optimal parametric tests by
being valid under the whole class of rotationally symmetric distributions. Moreover,
they keep the optimality property of the latter under a given m-tuple of rotationally
symmetric distributions. Asymptotic relative efficiencies are calculated and the finite-
sample behavior of the proposed tests is investigated by means of a Monte Carlo
simulation. We conclude by applying our findings to a real-data example involving
geological data.

Keywords Directional statistics · Local asymptotic normality · Pseudo-FvML tests ·
Rank-based inference · ANOVA

1 Introduction

Spherical or directional data naturally arise in a broad range of earth sciences such as
geology, astrophysics, meteorology, oceanography, in studies of animal behavior or
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even in neuroscience (seeMardia and Jupp 2000 and the references therein). Although
primitive statistical analysis of directional data can already be traced back to early nine-
teenth century works by the likes of C. F. Gauss and D. Bernoulli, the methodical and
systematic study of such non-linear data by means of tools tailored for their speci-
ficities only began in the 1950s under the impetus of Sir Ronald Fisher’s pioneering
work (see Fisher 1953). We refer the reader to the monographs (Fisher et al. 1987;
Mardia and Jupp 2000) for a thorough introduction and a comprehensive overview of
this discipline.

Spherical or directional data aremodeled as realizations of random vectorsX taking
values on the surface of the unit hypersphere Sk−1 := {v ∈ R

k : v′v = 1}, the
distribution of X depending only on its angular distance from a fixed point θ ∈ Sk−1

which is to be viewed as a “north pole” for the problem under study. A natural, flexible
and realistic family of probability distributions for these data is the class of rotationally
symmetric distributions introduced by Saw (1978) (in the circular case k = 2, one
rather speaks of reflective symmetry, see Jones and Pewsey 2005). Roughly speaking
rotationally symmetric distributions allow tomodel all spherical data that are spreadout
uniformly around a central parameter θ with the concentration of the datawaning as the
angular distance from the north pole increases. This class of distributions contains, for
instance, the most used and best studied directional distribution: the Fisher-vonMises-
Langevin (FvML) distribution; we refer the interested reader to Breitenberger (1963),
Bingham and Mardia (1975) or Duerinckx and Ley (2012) for details and references
on the FvML distribution. Precise definitions and notations will be provided in Sect. 2.

Within this setup, an important question goes as follows: “do two or more sets of
spherical data spring from the same source?”. Such questions are important, e.g., in
the study of magnetism and palaeomagnetic data, as recognized in the seminal paper
(Graham 1949) where the classical fold test for palaeomagnetic data was developed
(see alsoMcFadden and Jones 1981 for the two-sample andMcFadden andLowes 1981
for the multi-sample problem). In mathematical terms, the fold test can be described
as follows. Suppose that there are m different data sets spread around i sources of
magnetism θ i ∈ Sk−1, i = 1, . . . ,m. The question then becomes that of testing for
the problem H0 : θ1 = · · · = θm against H1 : ∃ 1 ≤ i �= j ≤ m such that θ i �= θ j ,
that is, an ANOVA problem for directional data.

This ANOVA problem is of course of interest for all disciplines dealing with direc-
tional observations and thus has been studied considerably in the statistical literature.
The technical difficulty of the task, however, entails that most available methods are
either of parametric nature (assuming, as in McFadden and Jones 1981; McFadden
and Lowes 1981, that the data follow an FvML distribution; see also Sections 10.5 and
10.6 ofMardia and Jupp (2000),where several FvML-based procedures are discussed),
suffer from computational difficulties/slowness (such as Wellner’s 1979 permutation
test or Fisher and Hall’s 1990; Beran and Fisher’s 1998 bootstrap test), lack desirable
geometric properties or are restricted to the circular (k = 2) setting (e.g., Eplett 1979
or Eplett 1982) or are confined to the two-sample case (e.g., Jupp 1987 or Tsai 2009).
To the best of the authors’ knowledge, the only computationally simple, rotationally
equivariant test for the general multi-sample null hypothesisH0 above is the score test
ϕ

(n)
W given in Watson (1983).
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In this paper, we use a spherical adaptation of Le Cam’s methodology and propose
two families of tests for the spherical ANOVA problem. First we take advantage
of the aforementioned analogy between the Gaussian and the FvML to introduce
pseudo-FvML tests ϕ(n) (see Sect. 3). These tests have very good properties (they
are locally and asymptotically most stringent in the FvML case), but turn out to be
asymptotically equivalent to Watson’s ϕ

(n)
W although they perform better in a small

sample setting, as shown in Sect. 5. The asymptotic optimality property ofϕ(n)
W andϕ(n)

is, by construction, restricted to the case where the underlyingm-tuple of distributions
is FvML. To compensate for this limitation, we also use the invariance principle to
introduce a family of rank-based tests based on estimated versions of the spherical
signs and ranks (see Sect. 4) which

(i) remain valid (in the sense that they meet the nominal level constraint) under any
m-tuple (Q1, . . . , Qm) of rotationally symmetric densities satisfying the general
null hypothesis H0;

(ii) are asymptotically optimal under a given m-tuple of distributions
(P1, . . . , Pm) which need not be of FvML type;

(iii) do not assume that the Pi s are all equal (thus allowing for distinct concentrations
of the data).

In particular, these tests are asymptotically distribution-freewithin the semi-parametric
class of rotationally symmetric distributions.

The more detailed outline of the paper is as follows. In Sect. 2, we define the class
of rotationally symmetric distributions, we collect the main assumptions required in
the sequel and discuss the ULAN property of rotationally symmetric distributions and
its consequences. We construct pseudo-FvML tests in Sect. 3 and rank-based tests in
Sect. 4. A comparison between the two procedures on basis of asymptotic relative
efficiencies as well as via a Monte Carlo simulation study is provided in Sect. 5. We
apply our findings to a real-data application in Sect. 6. Finally an appendix collects
the precise ULAN statements as well as the main technical proofs and details.

2 Rotational symmetry, main assumptions and notations

Throughout, the m(≥2) independent samples of data points Xi1, . . . ,Xini , i =
1, . . . ,m, are assumed to belong to the unit sphere Sk−1 of Rk , k ≥ 2, and to satisfy

Assumption A (Rotational symmetry) For all i = 1, . . . ,m, Xi1, . . . ,Xini are i.i.d.
with common distribution Pθ i ; fi characterized by a density (with respect to the usual
surface area measure on spheres)

x �→ ck, fi fi (x′θ i ), x ∈ Sk−1, (1)

where θ i ∈ Sk−1 is a location parameter, fi : [−1, 1] → R
+
0 is absolutely continuous

and strictly monotone increasing and ck, fi is a normalizing constant. If X has density
(1), then the density of X′θ i is
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t �→ f̃i (t) := ωk ck, fi
B

( 1
2 ,

1
2 (k − 1)

) fi (t)(1 − t2)(k−3)/2, −1 ≤ t ≤ 1,

where ωk = 2πk/2/Γ (k/2) is the surface area of Sk−1 and B(·, ·) is the beta function.
The corresponding cumulative distribution function (cdf) is denoted by F̃i (t), i =
1, . . . ,m.

The functions fi are called angular functions (because the distribution of each Xi j

depends only on the angle between it and the location θ i ∈ Sk−1). Throughout the
rest of this paper, we denote by Fm the collection of m-tuples of angular functions
f := ( f1, f2, . . . , fm). The assumption of rotational symmetry entails appealing
stochastic properties. Indeed, as shown in Watson (1983), for a random vector X
distributed according to some Pθ i ; fi as in Assumption A, not only is the multivariate
sign vector

Sθ i (X) = X − (X′θ i )θ i
||X − (X′θ i )θ i ||

uniformly distributed on Sθ⊥
i := {v ∈ R

k | ‖v‖ = 1, v′θ i = 0} but also the angular
distance X′θ i and the sign vector Sθ i (X) are stochastically independent.

The class of rotationally symmetric distributions contains a wide variety of useful
spherical distributions including the FvML, the spherical linear, the spherical log-
arithmic, the spherical logistic and the Purkayastha distributions (see Purkayastha
1991). Often used reflectively symmetric distributions (in the circular setting) are the
cardioid, the wrapped Cauchy and the wrapped normal; see Jammalamadaka and Sen-
Gupta (2001), Jones and Pewsey (2005) or Abe et al. (2010). The most popular and
most used rotationally symmetric distribution is the aforementioned FvML distribu-
tion (named, according to Watson 1983, after von Mises 1918; Fisher 1953; Langevin
1905) with density

φκ(x) := fFvML(κ)(x; θ) = ck(κ) exp(κx′θ), x ∈ Sk−1,

where κ > 0 is a concentration or dispersion parameter, θ ∈ Sk−1 is a location
parameter and ck(κ) is the corresponding normalizing constant.

Throughout the paper, our asymptotic results require a certain amount of control
on the respective sample sizes ni , i = 1, . . . ,m. This we achieve via the following

Assumption B Letting n = ∑m
i=1 ni , for all i = 1, . . . ,m the ratio r (n)

i := ni/n
converges to a finite constant ri as n → ∞.

In particular Assumption B entails that the specific sizes ni are, up to a point,
irrelevant; hence, in what precedes and in what follows, we simply use the super-
script (n) for the different quantities at play and do not specify whether they are
associated with a given ni . In the sequel we let diag(A1, . . . ,Am) stand for the
m × m block-diagonal matrix with blocks A1, . . . ,Am , and use the notations ν(n) :=
diag((r (n)

1 )−1/2Ik, . . . , (r
(n)
m )−1/2Ik), M(A) for the linear subspace spanned by the
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columns of the matrix A, 1m := (1, . . . , 1)′ ∈ R
m and A ⊗ B for the Kronecker

product between A and B.
Letting ϑ := (θ ′

1, . . . , θ
′
m)′ and putting P(n)

ϑ; f for the joint distribution of the

Xi j s under Assumption A, we show in Appendix A that the parametric model{
P(n)

ϑ; f | ϑ ∈ (Sk−1)m
}
is ULAN under the following usual assumption.

Assumption C The Fisher information associated with the spherical location para-
meter is finite; this finiteness is ensured if, for i = 1, . . . ,m,

Jk( fi ) :=
∫ 1

−1
ψ2

fi (t)(1 − t2) f̃i (t)dt < +∞

withψ fi := ḟi/ fi ( ḟi is the a.e. derivative of the function u → fi (u) (from [−1, 1] →
R

+
0 )).

The central sequence (a score-like quantity in the Le Cam methodology) associated

with the model
{
P(n)

ϑ; f | ϑ ∈ (Sk−1)m
}
is the sequence

Δ
(n)
ϑ; f :=

((
Δ

(n)
θ1; f1

)′
, . . . ,

(
Δ

(n)
θm ; fm

)′)′
,

where

Δ
(n)
θ i ; fi := n−1/2

i

ni∑

j=1

ψ fi (X
′
i jθ i )(1 − (X′

i jθ i )
2)1/2Sθ i (Xi j ), i = 1, . . . ,m,

and the Fisher information matrix is given by

Γ ϑ; f := diag(Γ θ1; f1 , . . . ,Γ θm ; fm ),

with

Γ θ i ; fi := Jk( fi )

k − 1
(Ik − θ iθ

′
i ), i = 1, . . . ,m.

For the sake of readability, the technical details related with this ULAN property
(along with an explicit statement of said property, see Proposition 4) are delayed to
the same Appendix A. The central sequence Δ

(n)
ϑ; f will play an important role in the

construction of our tests.

3 FvML score tests

For a given m-tuple of FvML densities (φκ1 , . . . , φκm ) with respective concentration
parameters κ1, . . . , κm > 0 (where we do not assume κ1 = · · · = κm), the score func-
tions ψφκi

reduce to the constants κi , i = 1, . . . ,m, and hence the central sequences
for each sample take the simplified form
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Δ
(n)
θ i ;φκi

:= κi n
−1/2
i

ni∑

j=1

(1 − (X′
i jθ i )

2)1/2Sθ i (Xi j )

= κi (Ik − θ iθ
′
i )n

1/2
i (X̄i − θ i ), i = 1, . . . ,m.

Asymptotic tests for the null hypothesis H0 : θ1 = · · · = θm can be obtained by
studying the asymptotic distribution of

Δ
(n)
ϑ;φ =

((
Δ

(n)
θ1;φκ1

)′
, . . . ,

(
Δ

(n)
θm ;φκm

)′)′

under the null (and any m-tuple of rotationally symmetric distributions). The asymp-
totic distribution of Δ

(n)
ϑ;φ (for known common location θ ) easily follows from the

multivariate central limit theorem and leads to consideration of the following con-
struction for the θ -unspecified setting we are interested in.

Let θ̂ be a root-n consistent estimator of θ underH0 and define, for i = 1, . . . ,m,
the quantities

B̂i := 1 − n−1
i

ni∑

j=1

(X′
i j θ̂)2 and Êi := n−1

i

ni∑

j=1

(X′
i j θ̂)

as well as
D̂i := Êi

B̂i
and Ĥ :=

m∑

i=1

r (n)
i D̂2

i B̂i .

Following the rationale behind Hallin and Paindaveine (2008) and Hallin et al. (2013),
one sees that a pseudo-FvML test for H0 : θ1 = · · · = θm against H1 : ∃ 1 ≤ i �=
j ≤ m such that θ i �= θ j rejects the null when the statistic

Q(n) = (k − 1)

(
m∑

i=1

ni D̂i

Êi
X̄′
i (Ik − θ̂ θ̂

′
)X̄i

−
m∑

i, j

ni n j

n

D̂i D̂ j

Ĥ
X̄′
i (Ik − θ̂ θ̂

′
)X̄ j

⎞

⎠ (2)

exceeds theα-upper quantile of the Chi-square distributionwith (m−1)(k−1) degrees
of freedom.

The following proposition yields the asymptotic properties of Q(n) under the entire
class of rotationally symmetric distributions. Before proceeding we need some more
notation. Given g = (g1, . . . , gm) ∈ Fm , define for i = 1, . . . ,m

Bgi := 1 − Egi [(X′
i jθ)2], Egi := Egi [X′

i jθ ]

and
Cgi := Egi [(1 − (X′

i jθ)2)ψgi (X
′
i jθ)]
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(Egi denotes an expectation taken under gi , i.i.d.ness ensures that these quantities do
not depend on j) as well as

Dgi := Egi /Bgi and Hφ,g :=
m∑

i=1

r (n)
i D2

gi Bgi .

Also let

lt;φ,g := 1

(k − 1)

⎛

⎝
m∑

i=1

C2
gi

Bgi
t′i ti −

(
m∑

i=1

ri E2
gi

Bgi

)−1

×
m∑

i, j=1

√
ri

√
r jCgi Egi Cg j Eg j

Bgi Bg j

t′i t j

⎞

⎠ (3)

for t := (t′1, . . . , t′m)′. Finally, putting ϑ0 := 1m ⊗ θ (θ is the common value of

θ1, . . . , θm under the null) we assume the existence of an estimator θ̂ of θ such that
the following assumption holds.

Assumption D The estimator ϑ̂ = 1m⊗θ̂ , with θ̂ ∈ Sk−1, is n1/2
(
ν(n)

)−1-consistent:

for all ϑ0 = 1m ⊗ θ ∈ H0, n1/2
(
ν(n)

)−1
(ϑ̂ − ϑ0) = OP (1), as n → ∞ under P(n)

ϑ0;g
for any g ∈ Fm .

Typical examples of estimators satisfying Assumption D belong to the class of M-
estimators (see Chang 2004) or R-estimators (see Ley et al. 2013).

Proposition 1 Let Assumptions A, B and C hold and let ϑ̂ be an estimator of ϑ0 such
that Assumption D holds. Then

(i) Q(n) is asymptotically Chi-square with (m − 1)(k − 1) degrees of freedom under⋃
ϑ0∈H0

⋃
g∈Fm P(n)

ϑ0;g;
(ii) Q(n) is asymptotically non-central Chi-square with k−1 degrees of freedom and

non-centrality parameter lt;φ,g (defined in 3) under P(n)

ϑ0+n−1/2ν(n)t(n);g, where t
(n)

is as in (10) and t := limn→∞ t(n);
(iii) the test ϕ(n) which rejects the null hypothesis as soon as Q(n) exceeds the α-upper

quantile of the Chi-square distribution with (m − 1)(k − 1) degrees of freedom
has asymptotic level α under

⋃
ϑ0∈H0

⋃
g∈Fm {P(n)

ϑ0;g};
(iv) ϕ(n) is locally and asymptotically most stringent, at asymptotic level α,

for
⋃

ϑ0∈H0

⋃
g∈Fm {P(n)

ϑ0;g} against alternatives of the form
⋃

ϑ /∈H0
{P(n)

ϑ;φ}.

The proof follows along the same lines as that of the forthcoming Proposition 3 and
is, therefore, omitted. Moreover, this proof is not enlightening because it is easy to
see that our construction is, asymptotically, equivalent to that proposed for the same
problem inWatson (1983). More precisely, usingWatson’s Watson (1983) arguments,
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one easily shows that the difference between our Q(n) and Watson’s test statistic is an
oP (1) quantity under the null (and, therefore, also under contiguous alternatives). See
Watson (1983, p. 145) for details. However, our construction is worth noting because
of its very good behavior in fixed sample situations: the simulation results presented
in Sect. 5.2 clearly show that our test ϕ(n) outperforms the Watson test when small
samples are considered.

As mentioned in the Introduction, the asymptotic optimality property of ϕ
(n)
W and

ϕ(n) is, by construction, restricted to the case where the underlying m-tuple of distri-
butions is FvML. This is why we propose rank-based tests in the next section.

4 Rank-based tests

Our aim in the present section is to provide tests which are asymptotically optimal
under any fixed (possibly non-FvML)m-tuple of rotationally symmetric distributions.
Starting from any given m-tuple f ∈ Fm , our objective is to provide tests which
are asymptotically valid under any m-tuple of (non-necessarily equal) rotationally
symmetric distributions and which remain optimal under f . To obtain such a test,
we have recourse here to the invariance principle. This principle advocates that if the
sub-model identified by the null hypothesis is invariant under the action of a group
of transformations GT , one should exclusively use procedures whose outcome does
not change along the orbits of that group GT . This is the case if and only if these
procedures are measurable with respect to the maximal invariant associated with GT .
The invariance principle is accompanied by an appealing corollary for our purposes
here: provided that the group GT is a generating group forH0, the invariant procedures
are distribution-free under the null.

Invariance with respect to “common rotations” is crucial in this context. More
precisely, letting O ∈ SOk := {A ∈ R

k×k,A′A = Ik, det(A) = 1}, the null
hypothesis is unquestionably invariant with respect to a transformation of the form

gO : X11, . . . ,Xmnm �→ OX11, . . . ,OXmnm .

However, this group is not a generating group for H0 as it does not take into account
the underlying angular functions f , which are an infinite-dimensional nuisance under

H0. This group is actually rather generating for
⋃

ϑ0∈H0
P(n)

ϑ0; f with fixed f . Now,

denote as in the previous section the common value of θ1, . . . , θm under the null as
θ . Note also that, by definition,

Xi j = (X′
i jθ)θ +

√
1 − (X′

i jθ)2Sθ (Xi j )

for all j = 1, . . . , ni and i = 1, . . . ,m. Let Gh (h := (h1, . . . , hm)) be the group of
transformations of the form

ghi : Xi j �→ ghi (Xi j ) = hi (X′
i jθ)θ +

√
1 − (hi (X′

i jθ))2Sθ (Xi j ),
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for i = 1, . . . ,m, where the hi : [−1, 1] → [−1, 1] are monotone continuous
nondecreasing functions such that hi (1) = 1 and hi (−1) = −1. For any m-tuple
of (possibly different) transformations (gh1, . . . , ghm ) ∈ Gh , it is easy to verify
that ‖ghi (Xi j )‖ = 1; thus, ghi is a monotone transformation from Sk−1 to Sk−1,
i = 1, . . . ,m. Note furthermore that ghi does not modify the signs Sθ (Xi j ). Hence,

the group of transformations Gh is a generating group for
⋃

f ∈Fm P(n)
ϑ0; f and the

null is invariant under the action of Gh . Letting Ri j denote the rank of X′
i jθ among

X′
i1θ, . . . ,X′

ini
θ , i = 1, . . . ,m, it is easy to show that themaximal invariant associated

with Gh is the vector of signs Sθ (X11), . . . ,Sθ (X1n1), . . . ,Sθ (Xm1), . . . ,Sθ (Xmnm )

and ranks R11, . . . , R1n1, . . . , Rm1, . . . , Rmnm . As a consequence, we choose to base
our tests in this section on a rank-based version of the central sequenceΔ

(n)
ϑ0; f , namely

on

Δ
˜

(n)
ϑ0;K :=

((
Δ
˜

(n)
θ;K1

)′
, . . . ,

(
Δ
˜

(n)
θ;Km

)′)′

with

Δ
˜

(n)
θ;Ki

= n−1/2
i

ni∑

j=1

Ki

(
Ri j

ni + 1

)
Sθ (Xi j ), i = 1, . . . ,m,

where K := (K1, . . . , Km) is a m-tuple of score (generating) functions satisfying the
following assumption.

Assumption E The score functions Ki , i = 1, . . . ,m, are continuous functions from
[0, 1] to R.
The following result, which is a direct corollary (using again the inner sample inde-
pendence and the mutual independence between the m samples) of Proposition 3.1 in
Ley et al. (2013), characterizes the asymptotic behavior of Δ

˜
(n)
ϑ0;K under any m-tuple

of densities with respective angular functions g1, . . . , gm .

Proposition 2 Let Assumptions A, B, C and E hold and fix g = (g1, . . . , gm) ∈ Fm.

Then the rank-based central sequence Δ
˜

(n)
ϑ0;K

(i) is such that Δ
˜

(n)
ϑ0;K − Δ

(n)
ϑ0;K ;g = oP (1) under P(n)

ϑ0;g as n → ∞, where (G̃i

standing for the common cdf of the X′
i jθs under P

(n)
ϑ0;g, i = 1, . . . ,m)

Δ
(n)
ϑ0;K ;g =

((
Δ

(n)
θ;K1;g1

)′
, . . . ,

(
Δ

(n)
θ;Km ;gm

)′)′

with

Δ
(n)
θ;Ki ;gi := n−1/2

i

ni∑

j=1

Ki (G̃i (X′
i jθ))Sθ (Xi j ), i = 1, . . . ,m.
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In particular, for K = K f := (K f1, . . . , K fm ) with K fi (u) := ψ fi (F̃
−1
i (u))(1−

(F̃−1
i (u))2)1/2, Δ

˜
(n)
ϑ0;K f

is asymptotically equivalent to the efficient central

sequence Δ
(n)
ϑ0; f under P

(n)
ϑ0; f .

(ii) is asymptotically normal under P(n)
ϑ0;g with mean zero and covariance matrix

Γ ϑ0;K := diag

(Jk(K1)

k − 1
(Ik − θθ ′), . . . , Jk(Km)

k − 1
(Ik − θθ ′)

)
,

where Jk(Ki ) := ∫ 1
0 K 2

i (u)du.

(iii) is asymptotically normal under P(n)

ϑ0+n−1/2ν(n)t(n);g (t(n) as in (10)) with mean

Γ ϑ0;K ,gt (t := limn→∞ t(n)) and covariance matrix

Γ ϑ0;K ,g := diag

(Jk(K1, g1)

k − 1
(Ik − θθ ′), . . . , Jk(Km, gm)

k − 1
(Ik − θθ ′)

)
,

where

Jk(Ki , gi ) :=
∫ 1

0
Ki (u)Kgi (u)du

for i = 1, . . . ,m.
(iv) satisfies, under P(n)

ϑ0;g as n → ∞, the asymptotic linearity property

Δ
˜

(n)

ϑ0+n−1/2ν(n)t(n);K − Δ
˜

(n)
ϑ0;K = −Γ ϑ0;K ,gt(n) + oP (1),

for t(n) = (t(n)′
1 , . . . , t(n)′

m )′ as in (10).

Now the common value θ of θ1, . . . , θm under H0 will have to be estimated to
provide our tests. To this end we will assume the existence of an estimator ϑ̂ satisfying
the following strengthened version of Assumption D:

Assumption D′ Besides n1/2(ν(n))−1-consistency under P(n)
ϑ0;g for any g ∈ Fm , the

estimator ϑ̂ ∈ (Sk−1)m is further locally and asymptotically discrete, meaning that
it only takes a bounded number of distinct values in ϑ0-centered balls of the form
{t ∈ R

mk : n1/2‖(ν(n)
)−1

(t − ϑ0)‖ ≤ c}.
Estimators satisfying the above assumption are easy to construct. Indeed the consis-

tency is not a problem and the discretization condition is a purely technical requirement
(needed to deal with these rank-based test statistics, see pages 125 and 188 of Le Cam
and Yang 2000 for a discussion) with little practical implications (in fixed-n practice,
such discretizations are irrelevant as the radius can be taken arbitrarily large). We
will, therefore, tacitly assume that θ̂ ∈ Sk−1 (and, therefore, ϑ̂ = 1m ⊗ θ̂ ) is locally
and asymptotically discrete throughout this section. Following Lemma 4.4 in Kreiss
(1987), the local discreteness allows to replace in Part (iv) of Proposition 2 non-random
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perturbations of the form ϑ + n−1/2ν(n)t(n) with t(n) such that ϑ + n−1/2ν(n)t(n) still
belongs to H0 by a n1/2(ν(n))−1-consistent estimator ϑ̂ := 1m ⊗ θ̂ . Based on the
asymptotic result of Proposition 2, the tests we propose below require the consistent
estimation of the cross-information quantities

Jk(K f1 , g1), . . . ,Jk(K fm , gm). (4)

To this end define, for any ρ ≥ 0,

θ̃ i (ρ) := θ̂ + n−1/2
i ρ (k − 1)(Ik − θ̂ θ̂

′
)Δ
˜

(n)

θ̂;Ki
, i = 1, . . . ,m.

Then, letting θ̂ i (ρ) := θ̃ i (ρ)/‖θ̃ i (ρ)‖, we consider the piecewise continuous quadratic
form

ρ �→ h(n)
i (ρ) := k − 1

J (Ki )

(
Δ
˜

(n)

θ̂;Ki

)′
Δ
˜

(n)

θ̂ i (ρ);Ki
.

Consistent estimators of the quantities J −1
k (K1, g1), . . . ,J −1

k (Km, gm) (and, there-
fore, readily of (4)) can be obtained by taking

ρ̂i := inf{ρ > 0 : h(n)
i (ρ) < 0}

for i = 1, . . . ,m (see Ley et al. 2013; Hallin et al. 2013 or Hallin et al. 2014. Denoting
by Ĵk(Ki , gi ), for i = 1, . . . ,m, the resulting estimators, setting

ĤK ,g :=
m∑

i=1

r (n)
i Ĵ 2

k (Ki , gi )/Jk(Ki )

and letting

Ūi = n−1
i

ni∑

j=1

Ki (R̂i j/(ni + 1))S
θ̂
(Xi j )

(R̂i j naturally stands for the rank of X′
i j θ̂ among X′

i1θ̂ , . . . ,X′
ini

θ̂), the proposed rank

test ϕ
˜

(n)
K rejects the null hypothesis of homogeneity of the locations when

Q
˜

(n)

K
:= (k − 1)

(
m∑

i=1

ni
Jk(Ki )

Ū′
i Ūi

−Ĥ−1
K ,g

m∑

i, j=1

nin j

n

Ĵk(Ki , gi )

Jk(Ki )

Ĵk(K j , g j )

Jk(K j )
Ū′
i Ū j

⎞

⎠ (5)
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exceeds the α-upper quantile of the Chi-square distribution with (m − 1)(k − 1)
degrees of freedom. This asymptotic behavior under the null as well as the asymptotic
distribution of Q

˜
(n)
K under a sequence of contiguous alternatives are summarized in

the following proposition. Defining

lt;K ,g := 1

(k − 1)

⎛

⎝
m∑

i=1

J 2
k (Ki , gi )

Jk(Ki )
t′i ti −

(
m∑

i=1

riJ 2
k (Ki , gi )

Jk(Ki )

)−1

×
m∑

i, j=1

√
ri

√
r jJ 2

k (Ki , gi )J 2
k (K j , g j )

Jk(Ki )Jk(K j )
t′i t j

⎞

⎠ , (6)

we have the following result.

Proposition 3 Let Assumptions A, B, C and E hold and let ϑ̂ be an estimator such
that Assumption D’ holds. Then

(i) Q
˜

(n)

K
is asymptotically Chi-square with (m − 1)(k − 1) degrees of freedom under

⋃
ϑ0∈H0

⋃
g∈Fm {P(n)

ϑ0;g};
(ii) Q

˜
(n)

K
is asymptotically non-central Chi-square, still with (m − 1)(k − 1) degrees

of freedom, but with non-centrality parameter lt;K ,g defined in (6) under

P(n)

ϑ0+n−1/2ν(n)t(n);g, where t
(n) is as in (10) and t := limn→∞ t(n);

(iii) the test ϕ
˜

(n)
K which rejects the null hypothesis as soon asQ

˜
(n)
K exceeds the α-upper

quantile of the Chi-square distribution with (m − 1)(k − 1) degrees of freedom
has asymptotic level α under

⋃
ϑ0∈H0

⋃
g∈Fm {P(n)

ϑ0;g};
(iv) in particular, for K = K f := (K f1 , . . . , K fm ) with K fi (u) := ϕ fi (F̃

−1
i (u))(1−

(F̃−1
i (u))2)1/2, ϕ

˜
(n)
K f

is locally and asymptotically most stringent, at asymp-

totic level α, for
⋃

ϑ0∈H0

⋃
g∈Fm {P(n)

ϑ0;g} against alternatives of the form
⋃

ϑ /∈H0
{P(n)

ϑ; f }.

See the appendix for the proof. The asymptotic distributions under local alternatives
of the pseudo-FvML tests and the signed-rank-based tests obtained in Propositions 1
and 3, respectively, allow to compare them using asymptotic relative efficiencies.

5 Comparison of the proposed test procedures

In what follows, we will compare the optimal pseudo-FvML test (hence, the Watson
test) ϕ(n) to optimal rank-based tests ϕ

˜
(n)
K f

for several choices of f ∈ Fm , both at

asymptotic level via the calculation of Pitman’s asymptotic relative efficiencies (AREs,
Sect. 5.1) and at finite-sample level via a Monte Carlo simulation study (Sect. 5.2).
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5.1 Asymptotic relative efficiencies

The Pitman asymptotic relative efficiency AREϑ0;g(ϕ
(n)
1 , ϕ

(n)
2 ) under

P(n)

ϑ0+n−1/2ν(n)t(n);g of ϕ
(n)
1 with respect to ϕ

(n)
2 is defined as the limit, when it exists,

as n → ∞, of the ratio N (n)/n of the number N (n) of observations it takes for the
test ϕ(n)

2 , under P(n)

ϑ0+n−1/2ν(n)t(n);g , to match the local performance of ϕ
(n)
1 based on n

observations. Since our procedures converge to non-centered Chi-square limit distri-
butions under our local alternatives, this comparison will be obtained as the ratio of
the respective non-central quantities, see Hallin (2012) for details.

Let AREϑ0;g(ϕ
(n)
1 , ϕ

(n)
2 ) denote the ARE of a test ϕ(n)

1 with respect to another test

ϕ
(n)
2 under P(n)

ϑ0+n−1/2ν(n)t(n);g . Thanks to Propositions 1 and 3, we find that

AREϑ0;g(ϕ
˜

(n)
K f

, ϕ(n)) = lt;K f ,g/ lt;φ,g. (7)

In the homogeneous case g = (g1, . . . , g1) (the angular density is the same for the m
samples) and if the same score function—namely, K f1—is used for the m rankings

(the test is, therefore, denoted by ϕ
˜

(n)
K f1

), the ratio in (7) simplifies into

AREϑ0;g(ϕ
˜

(n)
K f1

, ϕ(n)) = J 2
k (K f1, g1)Bg1

Jk(K f1)C
2
g1

. (8)

Numerical values of the AREs in (8) are reported in Table 1 for the three-dimensional
setup under various angular densities and various choices of the score function K f1 .
More precisely, besides the FvMLwe consider the spherical linear, logarithmic, logis-
tic and squared distributions (see Ley et al. 2013) with respective angular functions

flin(a)(t) : = t + a, flog(a)(t) := log(t + a)

flogis(a,b)(t) : = a exp(−b arccos(t))

(1 + a exp(−b arccos(t)))2
and fSq(a)(t) = √

t + a.

The constants a and b are chosen so that all the above functions are true angular func-
tions satisfying Assumption A. The score functions associated with all these angular
functions are denoted by Klin(a) for flin(a), Klog(a) for flog(a), Klogis(a,b) for flogis(a,b)
and KSq(a) for fSq(a). For the FvML distribution with concentration κ , the score func-
tion will be denoted by Kφκ .

Inspection of Table 1 confirms the theoretical results. As expected, the pseudo-
FvML test ϕ(n) dominates the rank-based tests under FvML densities, whereas rank-
based tests mostly outperform the pseudo-FvML test under other densities, especially
so when they are based on the score function associated with the underlying density
(in which case the rank-based tests are optimal).
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Table 1 Asymptotic relative efficiencies of (homogeneous) rank-based tests ϕ
˜

(n)
K f1

with respect to the

pseudo-FvML test ϕ(n) under various three-dimensional rotationally symmetric densities

Underlying density ARE(ϕ
˜

(n)
K f1

, ϕ(n))

ϕ
˜

(n)
Kφ2

ϕ
˜

(n)
Kφ6

ϕ
˜

(n)
Klin(2)

ϕ
˜

(n)
Klin(4)

ϕ
˜

(n)
Klog(2.5)

ϕ
˜

(n)
Klogis(1,1)

ϕ
˜

(n)
KSq(2)

FvML(1) 0.9744 0.8787 0.9813 0.9979 0.9027 0.9321 0.9992

FvML(2) 1 0.9556 0.9978 0.9586 0.9749 0.9823 0.9919

FvML(6) 0.9555 1 0.9381 0.8517 0.9768 0.9911 0.9154

Lin(2) 1.0539 0.9909 1.0562 1.0215 1.0212 1.0247 1.0531

Lin(4) 0.9709 0.8627 0.9795 1.0128 0.8856 0.9231 0.9957

Log(2.5) 1.1610 1.1633 1.1514 1.0413 1.1908 1.1625 1.1252

Log(4) 1.0182 0.9216 1.0261 1.0347 0.9503 0.9741 1.0359

Logis(1,1) 1.0768 1.0865 1.0635 0.9991 1.0701 1.0962 1.0485

Logis(2,1) 1.3182 1.4426 1.2946 1.0893 1.4294 1.3865 1.2411

Sq(1.1) 1.2303 1.3460 1.1964 1.0264 1.3158 1.3004 1.1478

Sq(2) 1.0502 0.9692 1.0556 1.0408 1.0003 1.0127 1.0587

5.2 Monte Carlo simulation results

To study the finite-sample behavior of the Watson test ϕ
(n)
W , the pseudo-FvML test

ϕ(n) and various rank-based tests ϕ
˜

(n)
K f

, we have conducted a Monte Carlo simulation

study on R for moderate and small sample sizes for the two-sample spherical location
problem, that is, for an ANOVA with m = 2. We generated M = 2,500 replications
of four pairs of mutually independent samples of (k =)3-dimensional rotationally
symmetric random vectors

ε�;i ji , � = 1, 2, 3, 4, ji = 1, . . . , ni , i = 1, 2,

with FvML densities and linear densities: the ε1;1 j1s have an FvML(5) distribution
and the ε1;2 j2s have a FvML(2) distribution; the ε2;1 j1s have a Lin(5) distribution and
the ε2;2 j2s have an Lin(2) distribution; the ε3;1 j1s have an FvML(5) distribution and
the ε3;2 j2s have a Lin(2) distribution and finally the ε4;1 j1s have a Lin(5) distribution
and the ε4;2 j2s have an FvML(2) distribution.

The rotationally symmetric vectors ε�;i ji s have all been generated with a common
spherical location θ0 = (1, 0, 0)′. Then, each replication of the ε�;i ji s was transformed
into

{
X�;1 j1 = ε�;1 j1, � = 1, 2, 3, 4 j1 = 1, . . . , n1
X�;2 j2;ξ = Oξε�;2 j2 , � = 1, 2, 3, 4 j2 = 1, . . . , n2, ξ = 0, 1, 2, 3,
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Table 2 Rejection frequencies (out of M = 2, 500 replications), under the null and under increasingly

distant alternatives, of the Watson test ϕ
(n)
W , the pseudo-FvML test ϕ(n) and various rank-based tests

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
(based on FvML(2) and FvML(5) scores), ϕ

˜

(n)
(KLin(2),KLin(5))

(based on Lin(2) and Lin(5)

scores), ϕ
˜

(n)
(KLin(2),Kφ5 )

(based on Lin(2) and FvML(5) scores), ϕ
˜

(n)
(Kφ5 ,KLin(2))

(based on FvML(5) and

Lin(2) scores) and ϕ
˜

(n)
S (the sign test based on constant scores)

Test True densities ξ

0 1 2 3

ϕ
(n)
W 0.0320 0.0384 0.0532 0.0824

ϕ(n) 0.0444 0.0528 0.0668 0.1008

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0524 0.0592 0.0872 0.1264

ϕ
˜

(n)
(KLin(2),KLin(5))

(φ2, φ5) 0.0468 0.0552 0.0720 0.1120

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0460 0.0536 0.0808 0.1148

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0544 0.0588 0.0800 0.1212

ϕ
˜

(n)
S 0.0392 0.0464 0.0612 0.0880

ϕ
(n)
W 0.0184 0.0168 0.0196 0.0152

ϕ(n) 0.0360 0.0352 0.0428 0.0432

ϕ
˜

(n)
(Kφ2 ,Kφ5 )

0.0424 0.0452 0.0496 0.0504

ϕ
˜

(n)
(KLin(2),KLin(5))

(Lin(2),Lin(5)) 0.0388 0.0432 0.0436 0.0468

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0360 0.0396 0.0432 0.0428

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0444 0.0516 0.0496 0.0492

ϕ
˜

(n)
S 0.0364 0.0360 0.0400 0.0420

ϕ
(n)
W 0.0252 0.0332 0.0308 0.0412

ϕ(n) 0.0456 0.0528 0.0528 0.0744

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0544 0.0720 0.0728 0.0948

ϕ
˜

(n)
(KLin(2),KLin(5))

(φ2,Lin(5)) 0.0472 0.0572 0.0592 0.0816

ϕ
˜

(n)
(KLin(2),Kφ5 )

0.0476 0.0592 0.0656 0.0848

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0540 0.0680 0.0688 0.0928

ϕ
˜

(n)
S 0.0428 0.0516 0.0512 0.0648

ϕ
(n)
W 0.0328 0.0276 0.0312 0.0380

ϕ(n) 0.0480 0.0488 0.0560 0.0640

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0612 0.0676 0.0768 0.0940

ϕ
˜

(n)
(KLin(2),KLin(5))

(Lin(2), φ5) 0.0532 0.0552 0.0652 0.0756

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0524 0.0548 0.0664 0.0828
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Table 2 continued

ξ

Test True densities 0 1 2 3

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0632 0.0640 0.0776 0.0852

ϕ
˜

(n)
S 0.0508 0.0520 0.0632 0.0696

Sample sizes are n1 = 30 and n2 = 30

where

Oξ =
⎛

⎝
cos(πξ/25) − sin(πξ/25) 0
sin(πξ/25) cos(πξ/25) 0

0 0 1

⎞

⎠ .

Clearly, the spherical locations of the X�;1 j1s and the X�;2 j2;0s coincide while the
spherical location of the X�;2 j2;ξ s, ξ = 1, 2, 3, is different from the spherical location
of the X�;1 j1s, characterizing alternatives to the null hypothesis of common spherical
locations. Rejection frequencies based on the asymptotic Chi-square critical values at
nominal level 5% are reported in Table 2 for n1 = n2 = 30, in Table 3 for n1 = 100
and n2 = 500 and in Table 4 for n1 = n2 = 500 below. The pseudo-FvML test and
the various rank-based tests have been performed using

θ̂ :=
∑2

i=1
∑ni

j=1Xi j
∥∥
∥
∑2

i=1
∑ni

j=1Xi j

∥∥
∥

(9)

as a root-n consistent estimator of the common value θ of θ1 and θ2 under the null.
Inspection of the various tables reveals the following results:

(i) The pseudo-FvML test and all the rank-based tests are valid under heterogeneous
densities. They reach the 5% nominal level constraint under any considered pair
of densities. The Watson test clearly requires large sample sizes to be valid.

(ii) The comparison of the empirical powers reveals that when based on scores asso-
ciated with the underlying distributions, the rank-based tests are quite powerful.

(iii) The proposed procedures (even the rank-based tests) perform better than the
Watson test under small sample sizes.

6 Real-data example

In this section, we apply our new tests to a real-data example. The data consist of
measurements of remanent magnetization in red slits and claystones made at two
different locations in Eastern New South Wales, Australia, the first location yielding
n1 = 39, the second n2 = 36 observations; see Embleton and Mc Donnell (1980) for
details. As can be seen from Fig. 1, the rotational symmetry assumption in the two
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Table 3 Rejection frequencies (out of M = 2, 500 replications), under the null and under increasingly

distant alternatives, of the Watson test ϕ
(n)
W , the pseudo-FvML test ϕ(n) and various rank-based tests

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
(based on FvML(2) and FvML(5) scores), ϕ

˜

(n)
(KLin(2),KLin(5))

(based on Lin(2) and Lin(5)

scores), ϕ
˜

(n)
(KLin(2),Kφ5 )

(based on Lin(2) and FvML(5) scores), ϕ
˜

(n)
(Kφ5 ,KLin(2))

(based on FvML(5) and

Lin(2) scores) and ϕ
˜

(n)
S (the sign test based on constant scores)

Test True densities ξ

0 1 2 3

ϕ
(n)
W 0.0424 0.0748 0.1788 0.3636

ϕ(n) 0.0476 0.0808 0.1916 0.3816

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0644 0.1020 0.2476 0.4748

ϕ
˜

(n)
(KLin(2),KLin(5))

(φ2, φ5) 0.0508 0.0820 0.2008 0.4024

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0508 0.0876 0.2220 0.4300

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0588 0.0952 0.2300 0.4480

ϕ
˜

(n)
S 0.0448 0.0772 0.1792 0.3544

ϕ
(n)
W 0.0304 0.0404 0.0564 0.0872

ϕ(n) 0.0492 0.0596 0.0868 0.1212

ϕ
˜

(n)
(Kφ2 ,Kφ5 )

0.0620 0.0692 0.0940 0.1348

ϕ
˜

(n)
(KLin(2),KLin(5))

(Lin(2),Lin(5)) 0.0500 0.0600 0.0868 0.1216

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0528 0.0596 0.0780 0.1192

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0600 0.0716 0.0956 0.1380

ϕ
˜

(n)
S 0.0456 0.0552 0.0808 0.1092

ϕ
(n)
W 0.0376 0.0356 0.0584 0.0928

ϕ(n) 0.0504 0.0572 0.0836 0.1432

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0584 0.0684 0.1100 0.1644

ϕ
˜

(n)
(KLin(2),KLin(5))

(φ2,Lin(5)) 0.0480 0.0524 0.0900 0.1396

ϕ
˜

(n)
(KLin(2),Kφ5 )

0.0480 0.0564 0.0916 0.1444

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0584 0.0644 0.1020 0.1592

ϕ
˜

(n)
S 0.0504 0.0552 0.0784 0.1344

ϕ
(n)
W 0.0372 0.0340 0.0668 0.0920

ϕ(n) 0.0528 0.0588 0.0992 0.1364

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0716 0.0752 0.1200 0.1648

ϕ
˜

(n)
(KLin(2),KLin(5))

(Lin(2), φ5) 0.0612 0.0604 0.1044 0.1412

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0588 0.0608 0.1096 0.1428
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Table 3 continued

Test True densities ξ

0 1 2 3

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0716 0.0728 0.1224 0.1616

ϕ
˜

(n)
S 0.0560 0.0564 0.0948 0.1348

Sample sizes are n1 = 100 and n2 = 500

Table 4 Rejection frequencies (out of M = 2, 500 replications), under the null and under increasingly

distant alternatives, of the Watson test ϕ
(n)
W , the pseudo-FvML test ϕ(n) and various rank-based tests

ϕ
˜

(n)
(Kφ2 ,Kφ5 )

(based on FvML(2) and FvML(5) scores), ϕ
˜

(n)
(KLin(2),KLin(5))

(based on Lin(2) and Lin(5)

scores), ϕ
˜

(n)
(KLin(2),Kφ5

)
(based on Lin(2) and FvML(5) scores), ϕ

˜

(n)
(Kφ5

,KLin(2))
(based on FvML(5) and

Lin(2) scores) and ϕ
˜

(n)
S (the sign test based on constant scores)

Test True densities ξ

0 1 2 3

ϕ
(n)
W 0.0444 0.1648 0.5136 0.8748

ϕ(n) 0.0456 0.1664 0.5148 0.8772

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0512 0.2024 0.6212 0.9364

ϕ
˜

(n)
(KLin(2),KLin(5))

(φ2, φ5) 0.0456 0.1544 0.5004 0.8616

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0444 0.1856 0.5924 0.9232

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0500 0.1656 0.5228 0.8736

ϕ
˜

(n)
S 0.0416 0.1588 0.4940 0.8444

ϕ
(n)
W 0.0440 0.0752 0.1560 0.2940

ϕ(n) 0.0452 0.0796 0.1616 0.3016

ϕ
˜

(n)
(Kφ2 ,Kφ5 )

0.0500 0.0752 0.1680 0.3172

ϕ
˜

(n)
(KLin(2),KLin(5))

(Lin(2),Lin(5)) 0.0464 0.0776 0.1612 0.3072

ϕ
˜

(n)
(KLin(2),Kφ5 )

0.0456 0.0712 0.1560 0.3016

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0528 0.0848 0.1704 0.3228

ϕ
˜

(n)
S 0.0460 0.0712 0.1468 0.2668

ϕ
(n)
W 0.0588 0.0884 0.2244 0.4488

ϕ(n) 0.0608 0.0904 0.2300 0.4568

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0712 0.1108 0.2836 0.5184

ϕ
˜

(n)
(KLin(2),KLin(5))

(φ2,Lin(5)) 0.0580 0.0916 0.2372 0.4580

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0616 0.0968 0.2596 0.4928
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Table 4 continued

Test True densities ξ

0 1 2 3

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0648 0.1048 0.2616 0.4856

ϕ
˜

(n)
S 0.0636 0.0940 0.2200 0.4172

ϕ
(n)
W 0.0564 0.0888 0.2220 0.4480

ϕ(n) 0.0576 0.0916 0.2280 0.4568

ϕ
˜

(n)
(Kφ2 ,Kφ5

)
0.0628 0.1104 0.2740 0.5240

ϕ
˜

(n)
(KLin(2),KLin(5))

(Lin(2), φ5) 0.0556 0.0900 0.2224 0.4668

ϕ
˜

(n)
(KLin(2),Kφ5

)
0.0532 0.0944 0.2456 0.4960

ϕ
˜

(n)
(Kφ2 ,KLin(5))

0.0624 0.1016 0.2468 0.4932

ϕ
˜

(n)
S 0.0544 0.0896 0.2160 0.4272

Sample sizes are n1 = 500 and n2 = 500

Fig. 1 Measurements of remanent magnetization in red slits and claystones made at two different locations
in Australia

samples seems to be appropriate since data are clearly concentrated. However, the
specification of the angular functions is not reasonable, whence our semi-parametric
procedures are quite useful in this setting.
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As explained in the Introduction, the main task for the practitioner consists in
solving the fold problem, that is, to test whether the remanent magnetization obtained
in those samples comes from a single source of magnetism or not. Therefore, we test
here the null hypothesisH0 : θ1 = θ2 againstH1 : θ1 �= θ2. For this purpose, we used
the Watson test φ(n)

W , the pseudo-FVML test ϕ(n) and rank-based tests ϕ
˜

(n)
(KLin(1.1),Kφ10 )

and ϕ
˜

(n)
(KLin(1.1),Kφ100 ) based, respectively, on the couples of linear and FvML scores

(Lin(1.1),FvML(10)) and (Lin(1.1),FvML(100)).All the testswere performedusing
(9). The corresponding test statistics are given by QW = 5.946859 (QW is theWatson
1983 test statistic; see p. 144 of Watson 1983), Q(n) = 5.96652,Q

˜
(n)

(KLin(1.1),Kφ10 )
=

5.477525 andQ
˜

(n)

(KLin(1.1),Kφ100 )
= 5.525854. At the asymptotic nominal level 5%, the

tests ϕ
(n)
W , ϕ(n), ϕ

˜
(n)
(KLin(1.1),Kφ10)

and ϕ
˜

(n)
(KLin(1.1),Kφ100 ) do not reject the null hypothesis

of equality of the modal directions since the 5% upper quantile of the Chi-square
distribution with 2 degrees of freedom is equal to 5.991465.

Appendix A: ULAN property and optimal parametric tests

In this appendix, we give the technical details leading to the ULAN property used
to derive the different testing procedures in the paper. Informally, a sequence of
rotationally symmetric models {P(n)

ϑ; f | ϑ ∈ (Sk−1)m} is ULAN if, uniformly in

ϑ (n) = (θ
(n)′
1 , . . . , θ (n)′

m )′ ∈ (Sk−1)m such that ϑ (n) − ϑ = O(n−1/2), the log-
likelihood ratio

log

(
P(n)

ϑ (n)+n−1/2ν(n)t(n); f

/
P(n)

ϑ (n); f

)

allows a specific form of (probabilistic) Taylor expansion (see Eq. (11) below) as a
function of t(n) := (t(n)′

1 , . . . , t(n)′
m )′ ∈ R

mk . Of course the local perturbations t(n) must
be chosen so that ϑ (n) + n−1/2ν(n)t(n) remains on (Sk−1)m and thus, in particular, the
t(n)
i need to satisfy

0 = (θ
(n)
i + n−1/2

i t(n)
i )′(θ (n)

i + n−1/2
i t(n)

i ) − 1

= 2n−1/2
i (θ

(n)
i )′t(n)

i + n−1
i (t(n)

i )′t(n)
i (10)

for all i = 1, . . . ,m. Consequently, t(n)
i must be such that 2n−1/2

i (θ
(n)
i )′t(n)

i +
o(n−1/2

i ) = 0 and thus, for θ
(n)
i + n−1/2

i t(n)
i to remain in Sk−1, the perturbation

t(n)
i must belong, up to a o(n−1/2

i ) quantity, to the tangent space to the sphere Sk−1 at

θ
(n)
i .
The domain of the parameter being the non-linear manifold

(Sk−1
)m

it is all but
easy to establish the ULAN property of a sequence of rotationally symmetric models.
A natural way to handle this difficulty consists, as in Ley et al. (2013), in resorting
to a re-parameterization of the problem in terms of spherical coordinates η, say, for
which it is possible to prove ULAN. After obtaining the ULAN property for the η-
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parameterization, one can use a lemma fromHallin et al. (2010) to transpose theULAN
property in the spherical η-coordinates back in terms of the original θ -coordinates.
Finally the inner sample independence and the mutual independence between the m
samples entail thatwe candeduce the requiredULANpropertywhich is relevant for our
purposes (this we state without proof because it follows directly from Proposition 2.2
of Ley et al. 2013).

Proposition 4 Let Assumptions A, B and C hold. Then the model
{P(n)

ϑ; f | ϑ ∈ (Sk−1)m} is ULAN with central sequence

Δ
(n)
ϑ; f :=

((
Δ

(n)
θ1; f1

)′
, . . . ,

(
Δ

(n)
θm ; fm

)′)′
,

where

Δ
(n)
θ i ; fi := n−1/2

i

ni∑

j=1

ψ fi (X
′
i jθ i )(1 − (X′

i jθ i )
2)1/2Sθ i (Xi j ), i = 1, . . . ,m,

and Fisher information matrix Γ ϑ; f := diag(Γ θ1; f1 , . . . ,Γ θm ; fm ) where

Γ θ i ; fi := Jk( fi )

k − 1
(Ik − θ iθ

′
i ), i = 1, . . . ,m.

More precisely, for any ϑ (n) ∈ (Sk−1)m such that ϑ (n) − ϑ = O(n−1/2) and any
bounded sequences t(n) = (t(n)′

1 , . . . , t(n)′
m )′ satisfying (10), we have

log

⎛

⎜
⎝

P(n)

ϑ (n)+n−1/2ν(n)t(n); f
P(n)

ϑ (n); f

⎞

⎟
⎠ = (t(n))′Δ(n)

ϑ (n); f − 1

2
(t(n))′Γ ϑ; f t(n) + oP(1), (11)

where Δ
(n)

ϑ (n); f
L→ Nmk(0,Γ ϑ; f ), both under P(n)

ϑ; f , as n → ∞.

Proposition 4 provides us with all the necessary tools for building optimal f -
parametric procedures (i.e., under any m-tuple of densities with respective specified
angular functions f1, . . . , fm) for testingH0 : θ1 = · · · = θm againstH1 : ∃ 1 ≤ i �=
j ≤ m such that θ i �= θ j .
The null hypothesisH0 consists in the intersection between (Sk−1)m and the linear

subspace (of Rmk)

C := {v = (v′
1, . . . , v

′
m)′ | v1, . . . , vm ∈ R

k and v1 = · · · = vm} =: M(1m ⊗ Ik).

Such a restriction, namely an intersection between a linear subspace and a non-linear
manifold, has already been considered in Hallin et al. (2010) in the context of Principal
Component Analysis (in that paper, the authors obtained very general results related
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to hypothesis testing in ULAN families with curved experiments). In particular from
their results we can deduce that to obtain a locally and asymptotically most stringent
test in the present context, one has to consider the locally and asymptotically most
stringent test for the (linear) null hypothesis defined by the intersection between C and
the tangent to (Sk−1)m . Let θ denote the common value of θ1, . . . , θm under the null.
In the vicinity of 1m ⊗ θ , the intersection between C and the tangent to (Sk−1)m is
given by

{
(θ ′ + n−1/2(r (n)

1 )−1/2t(n)′
1 , . . . , θ ′ + n−1/2(r (n)

m )−1/2t(n)′
m )′, (12)

θ ′t(n)
1 = · · · = θ ′t(n)

m = 0, (r (n)
1 )−1/2t(n)

1 = · · · = (r (n)
m )−1/2t(n)

m

}
.

Solving the system (12) yields

ν(n)t(n) =
(
(r (n)

1 )−1/2t(n)′
1 , . . . , (r (n)

m )−1/2t(n)′
m

)′ ∈ M(1m ⊗ (Ik − θθ ′)). (13)

Loosely speaking we have “transcripted” the initial null hypothesis H0 into a linear
restriction of the form (13) in terms of local perturbations t(n), for which Le Cam’s
asymptotic theory then provides a locally and asymptotically optimal parametric test
under fixed f . Using Proposition 4, an asymptotically most stringent test φ f is then
obtained by rejectingH0 as soon as (A− stands for theMoore–Penrose pseudo-inverse
of A)

Q(n)
f := Δ′

ϑ; f
(

Γ −
ϑ; f − ϒ

(n)
ϑ;ν

(
(ϒ

(n)
ϑ;ν)

′Γ ϑ; f ϒ(n)
ϑ;ν

)−
(ϒ

(n)
ϑ;ν)

′
)

Δϑ; f (14)

exceeds the α-upper quantile of a Chi-square distribution with (m−1)(k−1) degrees
of freedom, where ϒ

(n)
ϑ;ν := (ν(n))−11m ⊗ (Ik − θθ ′). Hence, the optimal parametric

tests are now known.

Appendix B: Proof of Proposition 3

Using the definition of Q
˜

(n)

K
, the consistency of the cross-information quantities

Ĵk(K1, g1), . . . , Ĵk(Km, gm) together with Proposition 2, it is easy to show that the
n1/2(ν(n))−1-consistency and the local discreteness of ϑ̂ entail that

Q
˜

(n)

K
=

(
Δ
˜

(n)
ϑ0;K

)′
Γ ⊥

ϑ0;K ,g Δ
˜

(n)
ϑ0;K + oP (1)

where

Γ ⊥
ϑ0;K ,g : = Γ −

ϑ0;K − Γ −
ϑ0;KΓ ϑ0;K ,gϒ

(n)
ϑ0;ν[(ϒ

(n)
ϑ0;ν)

′Γ ϑ0;K ,gΓ
−
ϑ0;KΓ ϑ0;K ,gϒ

(n)
ϑ0;ν]−

(ϒ
(n)
ϑ0;ν)

′Γ ϑ0;K ,gΓ
−
ϑ0;K . (15)
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Then Proposition 2 entails that since Γ ϑ0;KΓ ⊥
ϑ0;φ,g is idempotent with trace

(m−1)(k−1),Q
˜

(n)

K
is asymptotically Chi-square with (m−1)(k−1) degrees of free-

dom under P(n)
ϑ0;g , and asymptotically non-central Chi-square, still with (m−1)(k−1)

degrees of freedom, and with non-centrality parameter t′Γ ϑ0;K ,gΓ
⊥
ϑ0;K ,gΓ ϑ0;K ,gt

under P(n)

ϑ0+n−1/2ν(n)t(n);g . Parts (i) and (ii) follow. Point (iii) is a direct consequence

of point (i). Finally, point (iv) directly follows from the fact that for K = K f :=
(K f1, . . . , K fm ) with K fi (u) := ψ fi (F̃

−1
i (u))(1 − (F̃−1

i (u))2)1/2,Q
˜

(n)

K
is asymptot-

ically equivalent to Q(n)
f in (14). ��
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Saw, J. G. (1978). A family of distributions on the m-sphere and some hypothesis tests. Biometrika, 65,

69–73.
Tsai, M. T. (2009). Asymptotically efficient two-sample rank tests for modal directions on spheres. Journal

of Multivariate Analysis, 100, 445–458.
von Mises, R. (1918). Über die Ganzzahligkeit der Atomgewichte und verwandte Fragen. Physikalische

Zeitschrift, 19, 490–500.
Watson, G. S. (1983). Statistics on spheres. New York: Wiley.
Wellner, J. A. (1979). Permutation tests for directional data. Annals of Statistics, 7, 929–943.

123


	Efficient ANOVA for directional data
	Abstract
	1 Introduction
	2 Rotational symmetry, main assumptions and notations
	3 FvML score tests
	4 Rank-based tests
	5 Comparison of the proposed test procedures
	5.1 Asymptotic relative efficiencies
	5.2 Monte Carlo simulation results

	6 Real-data example
	Appendix A: ULAN property and optimal parametric tests
	Appendix B: Proof of Proposition 3
	Acknowledgements
	References




