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APPENDIX

We present the conditions, prepare a preliminary lemma, and give the proofs of the main results.

A.1. Conditions.

The following are the regularity conditions for our asymptotic results.

(CDH
(C2)

(C3)

(C4)

(C5)

(Co)

(C7)

(C8)

g2(z,y) < 0 for z € R and y in the range of the response variable.
The functions 7" (-) and ¢"(-) are continuous.

The random variable U has bounded support /. The elements of the function o (u) are continuous
inu €.

The density functions fi7(u), fi(v) of U, V are Lipschitz continuous and bounded away from
0 and infinite on their supports, respectively. Moreover, the joint density function fyy (u,v) of

(U, V) is continuous on the support U x V.

Elq(Z,Y)N®*|U = ul, E[q;(Z,Y)N®?|V = v] and E[¢;(Z,Y)N®?|U = u,V = v] for
I = 1,2, s = 1,2 are Lipschitz continuous and twice differentiable on v € U and v € V.
Moreover, E{¢3(Z.Y)} < oo, E{q}°(Z,Y)} < oo for some § > 2 and E[ps(Z)N®2|U = u]

is nonsingular for each v € U.

The kernel functions K (-), L(-) are univariate bounded, continuous and symmetric density func-
tions satisfying that [ 2K (t)dt # 0, [t2L(t)dt # 0, and [ [t|/ K (t)dt < oo, [ [t L(t)dt < .
for j = 1,2,3,4. Moreover, the second derivatives of K (-) and L(-) are bounded on R*.

The bandwidths h and b satisfy:
Gb=br, k=1,...,d,b= cyh, for some constant ¢, > 0; h < ¢ph, for some constant c;, > 0.
(ii) ho — 0 as n — oo, nh2/(logh,1)* — oo, nhi — 0.

Forall/\lj,)\gs,j: 1,...,d,S:1,...,T,)\1j—>O, \/ﬁAlj —>OO,)\25—>0, \/ﬁ/\28—>oo,and

lim nlggo lim ui_r>1£+ pl)\lj (w)/A1j > 0, liminf, o liminf, g+ p/>\2s (u)/A2s > 0.
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A.2. Preliminary Lemmas

Lemma A.1. Let (X1,Y1),...,(Xn,Yn) be i.i.d. random vectors, where the Y ’s are scalar random
variables. Assume that E|Y|" < oo and that sup, [ |y|"f(z,y)dy < oo, where f denotes the joint
density of (X,Y). Let K(-) be a bounded positive function with bounded support, satisfying a Lipschitz

condition. Then

—1
ZKh i — )Y — B[Kn(X; — 2)Yi]| = Op[{nh/log(1/h)} ] (A1)
provided that nzeflh — 00 for some € < 1 —r~1,
Proof. Lemma A.1 follows a direct result of Mack and Silverman (1982). O

In the following, for notational simplicity, we absorb o2 into T'(-), i.e., Var(Y|U,&, W, X) =
T{u(U,&, W, X)}. Write Z = 7€+ 0TW + a(U)TX, Zi(u) = BT& + 0TW; + XFa(u) + (U; —
w X' (v), N; = (X, 8, whT, Rt = (NI, h=1(U; —u)Xf)T and further denote that Ly(-) =

diag(Lp, (+), - .., Lo, (")) Denote the local quasi-likelihood estimators from (2.2.2) by & (), B, (w), S,
0, and let

~

§ = Vih {(@.(u) — ()T, (B — BT, (6. = 0)7 h(B.(u) — /()" }.
Denote vg, = [ K%(s)ds and vg, = [ s*K>%(s)ds, ux, = [s?K(s)dt, ux, = [s*K(s)ds. Let
Co(§, W, X) = d1ag(vK0N®2,vK2X®2), S,(&,W, X) = diag(N®2, g, X©?).

Lemma A.2. Under Conditions (C1)-(C7), and the identifiability condition E(Y |U,&(V),
W,X)=EY|UV,W,X), if hob = 0, nhy/log(nh,) — oo, uniformly in u € U, we have

§ = A7 BY + Op (h2y/nhe + {{log hy '} /{nho} }/?), (A2)
where A, = fu(u E{pg (Z)Su(e, W, X ‘U = u}, and By are defined as

\fqu Y;)RYK (Ui — u)
\/>Zf E{p (NT,0)7|U = u,V = Vi}e! B.

Proof. Let r,, = (nh)~Y/2, &; = (B, — ﬁ)T(fl &)+ BT(S &;). From (2.2.2), § maximizes

00 = by [QLg™ (a8 RE + 1+ Zi(w)), Y1} = Qg™ (Zi(w), Y} Kn(Ui = )

i=1

with respective d,.. Taking Taylor expansion of Q(g~'(-),Y;) at Z;(u), we have

(0 = [rah Z {01(Ziw). i) + aa(Zi(w), Yar } K (U — )R,
+o7 [% 5 (Za(w). Yo (R KU - w)] .
i=1
{hZ{ql Yi)@i + 0.5q2(Zs (u), }Kh )}

CE BT 5, + 0T lipady + fins.



Step 1.1. Note that £,,3 is irrelevant to d.. We show that 1,3 = Op(1).

By = hqu Yo)@iKp(Ui — u) + b Y 0.5¢2(Zi(u), Yi)a} Kn(U; — u)
=1

By using (2.1.3), we obtain that

2 n
Py = %Zq1<z-<u>,mf@)(m%«h(w —u)(1+0p(1))

o Zl 21 ulZ i lé/)l 20 {Lo(V; — Vi)es}! BER(Ui — u)(1 4 0p(1))

£ (1) + ()

Under the identiﬁability condition E(Y|U,&(V), W, X) = E(Y|U,V,W, X), we have E{Y¢@(V)} =
E{§ w(U, &, W, X)}. Thus, a direct calculation of the argument E{ Y7 | q1(Zi(u), ;)@ (V)T
BK(U; — u)} and Lemma A.1 entail that

A = nh s fu(wa’ ()" B{XED (V) Bpa(2)} /4
+0p (nh*b?) + Op (nhb*{log b~ /nh}'/?). (A3)

For the second argument h[ J(2 3(2), we can use the projection of U-statistics and obtain

T T
2y = p? Z ez’ “’2fv(ﬁf)”(“ ) E{Xpa(Z)|U = u,V = V;}(1+ 0p(1)). (A4)

This indicates that h% (2) = Op(V/nhb). This statement with (A.3) indicates that, under Condition (C7),
L = op(1).
Next, we consider the second argument hﬂ

W2 = S g (2w (2 K (U )i ——Zm —u)a?
=1
=) - k@)

Similar to i), we have hL%( 1) = op(1). For the argument h[ (2 3(2), invoking (2.1.3), we have

n3’

hf%(Q) _ ho* :U’L2 Z —u) (5(2)(‘/2')TB)2
=1

+hb pL2 Z M(g(%(Vi)Tﬁ)Kh(Ui —u) {Ly(V; — Vi)e;}' B

n i—lj—l fV(Vi)

— Z )Kh< W) {Ly(V; — Vi)e}T B{Ly(Vs — Vi)es}" B

i=1 j=1 s=1
2]

1(2)2 +hm<>

< @+ (2



Note that h[z]( 2); is a sum of independent and identically distributed random variables. We have
h[21(2)1 = Op (nhb4) = op(1). Furthermore, similar to (A.4), we have K2 ]( 2)g = Op(\/m) =
op(1). For the argument hL:l,( 2)3, we can use the projection of U-statistics with second order (Serfling;
1980, Section 5.5.2) to show that h%(Z)g = Op(1). As aresult, we obtain that hf:]a = hnzz],,( )+h[ ] (2) =
Op(1), yielding h, 5 = h2 + hEZ = Op(1).

Step 1.2. We investigate the argument %,,2. By the definition of pa(-, -), we have
def 1 9 1 — L 5 ,
hur & )R = [ Z{m — g7 (Ziw)} A (Zilw)) (RE)® Kn(U - w)]
[—7Zp2 (Zi(u R“)®2Kh(Ui—u)]

Similar to (A.3), by Lemma A.1 and Condition (C7), we obtain that h% = op(1). For h[ ]

no» Dy Lemma

A.1, we have

hg = _0-5E[ ZM Ru)®2Kh(Ui—U)}+OP({10gh71/nh}1/2)

= —o.5fU(u)E[ 2(Z)S,u(&, W, X)|U = u] + Op (h? + {log h™* /nh}'/?).
Thus, we have
B = B + h2) = —0.5A4, + Op (k2 + {log 1/hy/nh,} 7). (A.5)

Step 1.3. From Step 1.1, we know that d, is irrelevant to /,3 and we had f,,3 = Op(1). Thus, we obtain
that £,,(0x) — hpg = hglé* + 6L B9, As claimed in the proof of Lemma A.2 in Li and Liang (2008),
each element of A,9 is a sum of i.i.d. random variables of kernel form, and Lemma A.1 entails the
uniform convergence property. Thus, with arguments similar to Li and Liang (2008), Convexity Lemma
in Pollard (1991) and Lemma A.1 of Carroll et al. (1997), there exists a consistent estimator 8, such that

sup ‘5* - A;lhnl‘ = op(1). So, the derivative of ¢,,(0,) or {£,(d,) — fi,3} with respect to ¢, further
uel
guarantees a consistent estimator of J,, uniformly in € Y. That is

0

_; =Tah Z @1 (Zi(u) + 10T RY + @i, Vi) RYKL (Ui — u) = 0. (A.6)

Taking Taylor expansion on (A.6) with respect to Z(u) yields

R
fint + 2fn2ds + 2= > g3 (Zi(u) + G Vi ) (67 RY) (RY) K (U; — w) =0, (A7)
i=1
where (; is between 0 and 7,67 R + &;, and g3(z,y) = %Q{gfl(m), y}. Similar to the proof of
Lemma 2 in Li and Liang (2008), we know the last term in (A.7) is of order Op(nr3h) = Op(1/v/nh).
From (A.5) in Step 1.2, we know f,5 = —0.54, + Op (hg + {log 1/h0/nh0}1/2). From (A.7), we
obtain that

8e = —(2hn2) s + Op(1/Vnh) = Ay hyy + Op(h2 + {log1/ho/nho}' ). (A8)
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For the argument /1, similar to h% in Step 1.1, by using (2.1.3), we have

Fin1 \/72611 V)R Ky (Ui — u) + 4/ 4Z(J2Z YR (Vi) BRE KR (Ui — w)
\TZZ” quéf)z ) 1,V — Viyes )T BREKH(U: — )

=1 j=1

R S

Recall E(Y\U §(V),W,X)=EY|U,V,W,X). Similar to the analysis for (A.3), we have E{ >""" | ¢o
(Zi(u),Y;)€E? ( DT BRYK(U; —u)} = O(nh?)+O(n). Lemma A.1 entails that hﬂ = Op(Vnhb*+
{log h_l/nh} ) Appealing to (A.8), thus,

A

5. = —AHRM + BB + 0p (02 + /nb + {log by ' ko } ). (A.9)

A direct calculation yields

BE(hy) = 05Vahiugsa” (w) fu(u)B{ps(Z)(NT,0)TX|U = u} + Op(VnhT),
Var(hlll) = fu(w)E{p2(Z Cv(§WX|U_u}+Op (R%).

For the argument K

1> similar to (A.4), we use the projection of U-statistics and obtain that

O P B on(2)NT 0 |U =, = V)T + Op (Vi (H? + ).
>

Together with (A.9) and the asymptotic expression of hg, invoking Condition (C7), we obtain the

asymptotic expression for B and complete the proof. 0

Lemma A.3. Under the conditions of Theorem 2, with probability approaching to 1, for any given || 37 —
Bill = Op(n=1/3%),

()00} e et () ()
0 0 118511 <Con=1/2,]|63 | <Con—1/2 B3 03

Proof. This result follows an argument similar to that of Lemma A.3 in Li and Liang (2008). We omit

— 01| = Op(n_l/Q) and any constant Cy, we have

the details. 0

A.3. Proof of Theorem 1

Write 6 = \/77(3 — B0 — 9), Qi = ( ;‘F,WiT)T, Z; = BT + 0TW; + & (U)T Xy, Z; = BTE +
OTW; + a(U)TX;i=1,...,n. If (3T, éT)T maximizes (2.2.3), then & maximizes

Sulo) = 3 [Qg™ (V20T Qs + @i+ 20), Vi) - Qg™ (Z0), Vi)

i=1



with respect to .. Taylor expansion entails that

n n
_ = = T 1 =
Sn(ox) = [n 1/2 z; {01(Z:,Y)Qi + 42(Z;, Y;) Qs } }0'* +oT [% z; q2(Z;, Yi)Q?Q]U*
1= 1=
n ~ ~
+[Z {Ch(Zz', Y;)@; + 0.5q2(Z;, Yz)wzz}]
i=1
def T T

= 0,104+ 0, Un20s + Up3.

The proof of this theorem is similar to that of Lemma A.2. Note that 1J,,3 is irrelevant to o,. As such, we
consider only 9,1 and ¥;2.

Step 2.1. For the argument 1,2, we have

def J[1 2 1 1,5 > 1 =

Uny O] =08 = | D (V- g 2D 2R - |5 D pa(Z0)Q87]

s "o
We now consider 19% Taylor expansion entails that
1 1 n 3 1 n 3 B
Dy = 52 (Yi— g ZNAZIQF + 5= D (Yi— 97 (20) 1 (20)(Zi - 2)Q
i=1 i=1

1 ¢ dg_l(t) / > ®2 1 ¢ dg_l(t) 1 5 2 @2

- Z)(Zi — Z)QP* + — | Z)(Z: — Z:)*QP*.
D | AN Z = 2)QF 4 5 YT (22— 2

1=

Note that E(Y; — g~ *(Z;)|U;, &, Wi, X;) = 0. Then the first term above is op(1) by the law of large
numbers. Furthermore, as Z; — Z; = (6 (U;) —a(U;))T X;, by using Lemma A.2 and Condition (C7), we
know that max; |&.; (Us) — o (Us)| = Op((nho)~V/?) = op(n _1/4) for j = 1,...,p. This convergence
together with Lemma A.1 in Li and Liang (2008) indicate that 5~ %", (¥; — g 1(ZZ))p’l’(ZZ)(ZZ -

)Q®2 = op(n~Y2) = 0p(1). Using Lemma A.2 again, we know that each elements of - Z? 1
g5 i ‘t Z P(Z)(Zi — Z) Q%% is Op((nhy)~Y/2) = op(1). Similarly, we have 5= S | % f ‘t 2,
pl(Z )(Zi — Z:)?Q%? = op(1). As a consequence, we obtain that 19% = op(1). For the argument
ﬁL% Taylor expansion entails that 19[2] = 3 A Z)QF + = S0 ph(Z)QY*(Zs — Z) =

E [p2(Z)Q%?] + op(1). Thus, we obtain that

Inz = E {p2(2)Q%} + 0p(1) € S 4 0p(1). (A.10)
Step 2.2. We analyze the asymptotic expansion of ¥J,,;.
0 _ g2 [ - =t . 1SN -
U1 — U1 = [% ; (Y — g7 1(Z:){p1(Zi) + p'( i)wi}Qi] - [ﬁ ;02(21)622'00@}-

Step 2.2.1. Note that

19 def

W _ LN o (v oty da D) -,
ﬁnl = \/ﬁ;QzX<Yz_g 1(Zz>_ dt ‘Z:Zi(ZZ_Zz>>

x(p1(Zs) + PQ(Z')(Z' — Zi) + P (Zi)ai + P (Zi)aoi(Zi — Zi))

N T [Z Qiq1(Zi, ;) + Z Zi)) Qip1(Zi)wi Z(Zi - Zi)QiP2(Zi)} + Ry
=1




Similar to 19% in Step 2.1, as nh2 — oo, Lemma A.2 entails that max; |é.;(U;) — o (U;)| = op(n=1/4)
for j = 1,...,p. Using Lemma A.1 in Li and Liang (2008), we can show that >, (Y; — ¢~ 1(Z;))
{0 (Z:)(Zi—Z)+p"(Z:)(Zi— Z:)@0: } Qs = op(n/?) and 37, Q; dg;;(t) ‘Z:Zi(Zi_Zi){pll(Zi)(Zz’—
Zi) + p(Zi)ai + p(Zi)oi(Z; — Zi)} = op(n'/?). Asaresult, R,, = op(1).

Next, we consider the second term in 797[11{ By using (2.1.3), we have

n 2 n
\/17; (Y; — 971(2)) Qip\(Zi)oi = [bzf;%? > (Yi—g7(Z) Qiph (Z)EP (V)T
=1 =1
+[1§:§:W(Y‘— THZ)) ALo(V; = Vet 8] & T+ T (A11)
Vs e 2 gy vy VT W R G P S e .

Under the identifiability condition E(Y'|U,£(V), W, X) = E(Y|U,V,W, X), wehave E{(Y —g~(Z))
5(2)(‘/)} = 0,as b — 0. Thatis Tp,; = op(1). For the argument T,5, we can use the projection
of U-statistics with second order (Serfling; 1980, Section 5.5.2) and show that \/nY,2 converges in
distribution to a weighted sum of independent 7 random variables, i.e., Tpo = Op(n~/2) = op(1).

Now, we consider the third term in 791[1111 Let 7 = (1,,0,0,0) )- We have (nh)~1/276, =
& (u) — a(u). By using Lemma A.2, we have

px(2p+d

1 . 1 «
—= > Qi x(Zi— Zi)pa(Zi) = —= Y _ QX[ (au(Us) — a(Ui))pa(Z:) (A.12)
Vi = 2 "

L T a1 [P
= oV 2 Qe Z)X e [t + 1] +0p (1),

Write @(U;) = E{p2(Z)S, (&, W, X)|U = Us} and let 5;(U;) be the k-th element of E{p2(Z)
N©®?2 ‘ U= Ui}_lNi. Using the asymptotic expression of hﬂ obtained in Step 1.3 and the projection of
U -statistics (Serfling; 1980, Section 5.5.1), as nh* — 0, we have

1 n
— po(Z)X T AL Y A.13
n\/E;Q PQ( ) 7 u; '‘nl ( )

- \/173 Z Z QX fU?U,)w(Ui)_lR?i%(Zj(Ui)a Yj)p2(Z:) Kin(U; — U;)
i—1 j—1 i

= \/15 D E[RQXTpoZ)|U = Uilmw(Us) (N, 07) q1(Z:,Y3) + op (1)
=1

= \/175 ZZE[QX}C/)Q(Z)}U = Ui]lik(Ui)ql(Zi,Yi) +op(1).

i=1 k=1

Furthermore, let @(u,v) = E{p2(Z)(NT,00"|U = u,V = v}, tx(u,v) be the k-th element of

w(u)"tw(u,v), and s (v) = E [Qkag(Z)Lk(U, v)%%] . Using Lemma A.2 and the projection



of U-statistics (Serfling; 1980, Section 5.5.1), we have

1 n
— o(Z) X AR A.14
TL\/E;Q p2( ) 7 u; ''nl ( )

= Y Q2 () S (ULV)e B + or ()

i=1 j=1
=—— n(Vi)e; B+ op(1).
v i=1 k=1
As a consequence, together with R,, = op(1), the expressions (A.12), (A.13), (A.14) and that T,; =
Op(l), TnQ = Op(l) yield

n p
195% = —\}ﬁ ZZ (E{Qka(Z)W = Ui} ri(Ui) 1 (Z:,Y;) — %k(Vi)efﬁ)

i=1 k=1

1 n
+ = ;Qiqmzi,yi) +op(1). (A.15)

Step 2.2.2. In this step, we analyze the argument 195{ As nb* — 0, the expression (2.1.3) and the
projection of U-statistics (Serfling; 1980, Section 5.5.1) entail that

B _ L NN (Z)Qi T
M= e ey U el s ety
_ 1y LT
- \/ﬁ;E{pg(Z)Q‘V = Vz}ei B+ op(1). (A.16)

Thus, together with (A.15) and (A.16), we have

1 & P
ta = 22> {Q- Y E{QXmD|U = U s (2, V)
i k=1
1 (e
+ TZ{Z»%(V;) — E{p2(2)Q|V = w}}e?ﬁ+op(1>- (A.17)
i =
Recalling the definition of &, (o), together with (A.10) and (A.17), Convexity Lemma of Pollard (1991)
and Lemma A.1 of Carroll et al. (1997) indicate that the maximizer & of J,,(0.) with respect to o, has

the asymptotic expression & = X~ ',,1 4+ op(1), where X is defined in (A.10). We complete the proof.
U

A.4. Proof of Theorem 2

Step 3.1. First, we establish asymptotic orders of the estimators B Ao é,\2. Let g, = n Y2 + ay + b},
Sy = (s11,---,51a)7, S2 = (s21,...,52-)T and ||S1|| = ||S2|| = C for some constant C. Furthermore,
define S(n) = B+ ¢.51, 0(n) = 0 + ¢, S, and o(n) = (BT (n), 0T (n)T, o = (BT,67)T. Let
S = {(51,52) : ||S1|| = C,||S2|| = C}. It suffices to show that, for any given ¢ > 0, there exists a

large constant C' such that

P{ sup Lp(o(n)) < ﬁp(a)} >1- . (A.18)
S

8



B = [0y (U)X + 7 B(n) + W 6(n)), i}

=1
—Q{g M (6 (U)X + & B+ W/0),Yi}],
dy T1
Fro = =1 Apay (185 + ansiil) = pag; (1850} = 1> A{pag (161 + ansarl) — pas (161},
j=1 =1

where dj, 7 are the numbers of elements of /31, 01, respectively. Recall p)(0) = 0 and p,(|t|) > 0 for
all t. Thus, Lp(o(n)) — Lp(o) < F,1 + Fu2. We now consider Fy,1, Fyo. Let Z; = G (U)TX; +
élT B+ WT'0. Taylor expansion entails that

qu (26.73) an x (€1 + W] S:) + ZCD (Zi+&.Yi) a2 x (6781 + WTSy)?

def Fm 72

nl>

where || is between in 0 and | Z; — Z;|. For the argument F},1, we have

FlV = 0. a(Z Y (EFS1 + WESs) +an S a2(Zi, Vi) (Zi — Z3) (€1 Sy + WSs)
=1 =1

n
_|_q?n ZQB(Zi + Cz**vyz)(ZAZ — Zi)Q(giTSl + WZ‘TS2)

EEUNCNPNC N

nl>

where |C*| is between in 0 and | Z; — Z;|. Under the condition that a* = O(n~/2), b, = O(n"1/?), we
have g, = O(n~'/2). Recall ||S;|| = ||S2|| = C. Using (2.1.3) and similar to the analysis for (A.11),
we can obtain that ALH =gn > r 1 1(Zi,Y)QI (ST, ST)T + 0p(1)C. Using (2.1.3) again, similar to
(A.12) and (A.16), we can show that AE{ = qn Y 2, T(ST, STYT + op(1)C, where Z;’s are i.i.d
random variables with mean zero and finite variance. For the argument AH using the results of Lemma
A.2 and (2.1.3), we know that (Z; — Z;)?> = Op(1/nh+b* +logb~' /nb). Thus, under Condition (C7),
we have AE{ =op(1)C.
2]

Next, we consider Fr[L1 . Taylor expansion entails that

2 N
F = BN Wi g 20)(Z) (€ S+ W Se)” - Zp D(ETS + Wsy)?
=1
2 n d —1
+q§"2{ gdt(t)\t:zpi%)+<1€—g‘1(Zi>)p’1’(Z) oo (Z )}(T51+WT52)
i=1 g

x[(Zi — Z;) + §]
del Q[li B Q[ ] |+ 9[3}
Note that ¢2 = O(n™'). Using (2.1.3) and E [(Y — g~ 1(2))p'(Z)|U, &, W, X] = 0, we can obtain
that ;) = 4 Y0, (i — g7 (Z))Ah(Z) (€] 81+ W'S2)” + 0p(1)C? = 0p(1)C2 Moreover,
|{#| is between in 0 and |Z; — Z;|. Then (2.1.3) and Lemma A.2 guarantee || = Op(1/vVnh +



b2 + logb=1/nb ) Hence, we have QE{ = op(1)C2. For the argument Qg, we have Qg =
q2" v p2(Zi) (€S + WTSQ) +0p(1)C? = (S1,99)%(ST, ST + 0p(1)C?. As a result, these
arguments for FT[ll] and F7[11] mean

Fu=an Y _{a(Z,Y)QT +ET }(ST,85)" = 0.5(S1,82)%(ST, 53)" + 0op(1)C?. (A.19)
i=1

Using Taylor expansion and Cauchy-Schwartz inequality, we conclude that F},5 is bounded by nv/d1gna ||
Sill + ng2as | Sl + ny/Fanbil|Sall + ng2bi S |2 = O(Vdi + /ID)C + O(ag"C? + b C?). As
ar* — 0 and b}* — 0, we obtain that |Fy,2| = Op(1)C. From (A.19), we know that its first term is
Op(1)C by the central limit theorem. Provided C is sufficiently large, (S, S2)X (ST, S7)T dominates
the first term of (A.19) and Fj,». As a consequence, (A.18) holds for sufficiently large C'. We then

achieve B, = B+ Op(n1/2),0,, = 0+ Op(n™1/2). O

A.5. Proof of Theorem 3

From Lemma A.3, we know that B)q@) = 0(4—d,)x1,> and 9A2(2) = 0¢—r)x1- We next investigate
asymptotic normality of 8y, (1), Ox,(1)- Define o) = f((,BAl(l)—ﬁ ))T (9>\2( n—0a ))T)T Qi) =
(&) Wfl))TA, Ziy = Bly&iy + 0y Wiq) + & (U Xi, Ziay = Boyy&iqry + 0y Wi + (U)X,
Wiy = Bly &) — &) + By« — By Gy — &iy)- Then G \(1) maximizes

[Q{gil (Zi(l) + Wiy +n” 1)Qz(1)>} Q{g™! - ”ZPMJ (185+])
=1
T1
def
_nzpkgs(‘as*‘) = 0'*1 _nzpku |B]* _nzp)\zs |‘95* (A.20)
s=1

with respect to o(1).
By using Taylor expansion, px,, (8:]) = pa,, (18;)+9), (18i])sign(8;) (85« —B:) +55,., (18:) (Bj—
;)2. Similar to the analysis for Sy, (o) in the proof of Theorem 1, together with Taylor expansions of

Py, (Bj+]) and px, ([0

), we can re-write (A.20) as

d1 1
1) =1 o, (1Bi]) =1 g, (18s4])
j=1 s=1

- " = T
= [n V2N {a1(Ziy, V) Qi) + ©(Zir), Vo) Qi@ b + \/E’R’,i/\l,)\g]a*(l)
i=1
1 &~ - 1
1) [%;qz(zim,m 2+ 55 Al,xz}a*(l) +Co, (A21)
where C,, is irrelevant to 0, (). Define ¥y = F { p2(Z1) Q )} Similar to the proof of Theorem 1,
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maximizing (A.21) with respect to o, (1), we have

Vn(Sa) + Al,Ag){((BA1 — Bay)", (Ory1) — 0 ))T)T + (Za) + En,Al,/\z)_lnn,)\l,Ag}

1 n
_n;
1 &KL

7 {2 (V) = Bloa(Za)Qu|V = Vi el By + (D).

i=1 k=1

{Qz ZE{Q Y Xip2(Z1)|U = Ui }ran(Us }Q1(Z( 1), Yi)

We complete the proof.

A.6. Proof of Theorem 4

Write X = (X7, h 1 X (U; — )7 i) = (nh) 2 ((6(w) — (), h(B(w) —a(w)™)", Zi(u) =
a(u)T X; 4+ o (u) X;(U; —u) + BT + 0;W;. We know that 7)(u) is the maximizer of (A.22) with respect
to 77*7

Z [9{971 (o'l Xy + (& = &) B+ Zi(w), Y;} (A.22)
—~0{g™!(Zi(w)), Yi} | Kn(Us — ).

Similar to handling ¢,,(6*) in Lemma A.2, we express (A.22) as

ou(m) = [rnhz{qlz“ Vi) + ax(Zi(w), Yo) (& — &)} KU = w) X! |,

T[Tah < > ®2
0l [ 55D aa(Zilw), Y (X1) KU = ).
=1
[0S (B, VG — )75 + Sl (). V) (& - 607 5)} (U — )
i=1

f
= ﬁgﬂl* + W*Tﬁnﬂ?* + g
Furthermore, it follows from the arguments similar to the proof of Lemma A.2 that
1 .
fing = —§fU(U)E{P2(Z)dlag(X®27 1, X¥?)|U = u} + op(1).

We now consider #£,,1, which equals to

rnh Z 01 (Zi(w), Y Ep(Ui = ) X+ rah Y qa(Ziu), Vi) (& — &) BER(Us — u) X}
i =1

def plt] | hm

11



Step 4.1. Note that Z;(u) — Z;(u) = (3 — 8)T& + (0 — )T W;. Thus, using Taylor expansion yields
that

hn

n 1 . ) )
+\/§; dgdt(t) ‘ 0 (Zi(u) KR (U; — u)X{“‘{ff(ﬁ - B)+ Wl - 9)}2
(1) + A 2) + B (3) + i (a).

By Theorem 1, we know that 5 — 8 = Op(n~'/2), § — 0 = Op(n~'/2). Furthermore, (nh)l/Q{%
S [p2(Zi(w) Kn(U; — u) X2T — E [pZ(Zi(u))Kh(U,- - mx;&g}] }] converges to N(0, A(u)) in
distribution for some positive definite matrix A(u). Thus, from Lemma A.1 and B—B= Op(n~1/?),
we have \/2 S p(Z(u) K (U — ) XPET (5 — B) = Op(h'/?) + Op(1)(B ~ §) = op(1), and
then ﬁﬁ@) = op(1). Similarly, we can show that ﬁ[nli(S) = op(1), ﬁﬂ (4) = op(1). For ﬁ[nli(l), we
have

() 1/2[ S {an(Zi(w). ¥R (U: — w)XE — E [ (Zilw), YO KU — ) X2] 1]

=1

N(0, X1 (u)), (A.23)

3\*—‘

where ¥.1(u) = fu(u)E{p2(Z)diag(vi, X “?, v, X®?)|U = u}.

Step 4.2. We deal with ﬁ[ | In fact, we only need to consider \/g S @e(Zi(u), Yr) (&—&) T BKy(U;—
u)X'. By the definition of q2(+,-) and (2.1.3), the central limit theorem entails that

m[ S (o Ziu)EP (VKA (Us — 0 XE — Bl Zi(u) X (V) K(Us — X))

i=1
£y N(0, A*(w)) (A.24)

for some matrix A*(u). From (A.24), we achieve that 0.5/@2()2\/%2?:1 p2(Zi(w)) Kp (Ui—u)E@ (Vi) T
BXY = Op(Vnhb?) + Op(b?) = op(1). Moreover, similar to the analysis for (A.14), we have
nh)1/2 U u

S Sy 2B (1, (v~ Viey]T BEGL(U; — )X} = Op(hY/?) + Op(hM2(B + h2)) =

n2
op(1) by using the projection of U-statistics (Serfling (1980), Section 5.3.1)). As such, hﬂ =op(1).
As a consequence, ﬁH = op(1), together with Condition (C7), i.e., nh* — 0, nb* — 0, and (A.23),
mean that fi,; —— N (0,%41(u)). Similar to the proof of Lemma A.2, the maximizer 7 of @, (7,) is
asymptotically equivalent to ) = —2%;21 hn1 + op(1). Invoking the asymptotic result of f,2 above, we
complete the proof. 0O
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A.7. Proof of Theorem 5

Decompose H1 — Ho = Zn1 + Zno + Zns + Zpa, where

T =Y [ (@U)TXi + 576 + 0TWi)} — Q{g~ (@(U)TXi + B7¢ + 0T W) }],
i=1

InQ = Z [Q{g_l(& )TX + BT& + QT )} Q{g_l(d )TX + BT& + HTW)}]
i=1

T3 = Z [Q{g~ " (a(U)"Xi+ 576+ 0"Wi) } — Q{g~" (B7¢ + 0" W) }],
L= (040 (e + 0" W)} — @ {g~ (M + W)},

=1

By similar arguments used in the proof of Theorem 3 in Li and Liang (2008), we can show that 27,5 LY
X;Q; and 27,4 £> X;Q;- Next, we analyze Z,,1 and Z,,3.
Step 5.1. Taylor expansion entails that

Tu < 1+ Zq U)X+ A€ + 0TW, Vi) (€ - 78 (A25)
+= ZC& DT X+ BT + éTWuYi)((éz‘—f)TB)Q-

Step 5.1.1. Under Hy, by Theorem 4, we know that &(u) = Op((nh)~/?), and Z; = B7¢& + 67 W;.
Define AZ; = &(U;)"X; + (3 — 8)7€ + (6 — )T W;. Thus, Taylor expansion entails that

7l = qu (Z:,Y:) ( T/B+Z (Z)) §(Z0) + pal(Z0)] (& — &7 BAZ,

+;[(g

<l +zle) + 2l 3).

| )@@ -omazy

@

Similar to the arguments for (A.11), as nh* — 0, we have Ir[Lll}(l) = Op(1) = op(h~'/?). For
the argument I[l]( 3), using Lemma A.1, Theorems 2 and 4, we know that 17[111](3) = Op(n(b* +
(roet 1)1/ 2) /nh). Under Condition (C7), we can have that Ir[zll} (3) = op(h~1/?). For the argument
Im( 2), invoking (2.1.3), Theorems 1 and 4, similar to the arguments for (A.11) and (A.12), we have

nl
0?30 [(Yi — 97 H(2) p/(Zi) + p2(20)] €(Vi)T B x (6(U)' X + (B — B)T& + (0 — 0)TW;) =
Op(n'/?b?) + Op(b?) = op(1). Furthermore, using the projection of U-statistics (Serfling; 1980, Sec-

tion 5.3.1), we have

%ZZ [(Yi = g7 1(Z0) P/ (Zi) + pa(Zi)] [Lb(VZfV(“/;z’)) i 8 X

i=1 j=1

(G(U)TX; + (B = B)T& + (6 — 0)"W;) = Op(1) = op(h™1/2).

Thus, we obtain that IT[L11](2) = op(hfl/Q), and 17[111] — 0p(h*1/2).
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Step 5.1.2. By the definition of g2(-, -), we have

2 €zl —1Pe) = 052 “UZi+ AZ)) ' (Zi + AZ) (€ — €)T )

s A2
—0.5 Zm(zi +AZ) (& -9TB)".
i=1
Taylor expansion of g~ (Z; + AZ;) and p/(Z; + AZ;) with respect to Z; yields that

n

1201) = 053 (Yi—g71(2) (0 (Z) + AZ) ((E - ©)B)

=1
n
d —1
105 [ g
=1

Together with (2.1.3) and Lemma A.1, we know that {(fZ - f)TB}Q = Op(b* + logb~1/(nb)). Thus,
we have \/7%{(& = f)Tﬁ}2 = op(n~/%) since nhS — 0 and nh?/(log h;1)* — co. So Lemma A.1
in Li and Liang (2008) entails that —= 377, (Yi — ¢~ (Z:)) (¢/(Z) + AZi){Vnh((& — TP =
op(h~'/?). By Theorems 1 and 4, we know that, under Hy, AZ; = Op(1/v/nh). Again together with
the result {(fl - £)T5}2 = Op(b* +logb~1/(nb)), we have

| Jw@)+az)(&-o7p)az

n —1
%Z B0 162) + Az {(E - 7 B) Az

= n0p(1/Vnh)Op(b* +logb™1/(nb)) = op(h~/?), (A.26)

since nhS — 0 and nh2/(log hy 12 — oo. Thus, we have Z1)(1) = op(h™1/2),
For the argument 17[121] (2), Taylor expansion p2(Z; + AZ;) = pa(Z;) + ph(Z;)AZ; and the fact that
~ 2 _ .
Y1 Pa(Z )((fz TB)"AZ; = op(h™/?) yield

4 M n
18(2) = T3 m(Z) e (V) 8) + Zm N 2 1V = Vel 8}
i=1 j=1
n n T B
[ b\Vi — Vj)€; (9] 1 . .
Z V) B Lo(Vi = Vies} B+ op(h™1/?) (A.27)
i=1 j= l

Asnb* — 0, b2 S0 | pa(Z:){€P( )T/J’}2 = op(1). By using the projection of U-statistics (Serfling;
1980, Section 5.3.1), the third term of (A.27) is Op(n'/?b?) = op(1), provided nb* — 0. Next, we

analyze the second term of (A.27) in detail. We re-write it as

n 2
= [Lo(V; — Vi)e;]" B
Z p(Z {nfv (V3) ; k }

P2(ZZ)
9,2 2
" on = v (V)

an ZZ y f,z) {[Lb(Vs - Vi)es]TB} {[Lb(vj - Vi)ej]Tﬁ} . (A28)

i=1 s=1 j= 1,]#5

_ 1 P2(Zi)L { TB}

2
= 5 2 12 {1V} = Vi)e;]" 8}
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By the law of large numbers, we know that the first term of (A.28) is Op(1/(nb?)) = op(1), provided
nb? — oo. For the second term of (A.28), the convergence of U-statistics entails that

n
2n2 Z

1=1 j=1,j#1 fv ‘/Z)
= b Vo, TS BE{E(pa(Z:) Vi) fy (Vi) } + Op (1/Vab?2) + Op(b).  (A29)

2 vy~ Vet )

For the third term of (A.28), we have

2n2 Z Z 2((?/—1) {[Lb(Vs - Vé)es]Tﬁ} {[Lb(VJ _ Vz‘)ej]Tﬂ}

i=1 s=1 j=1,j#s

n n

—Tw 2 S e el s)

i=1 j=15#i *V )

1 p2(Zi) IV — VelT L Ve T 0
+2n2 1<i7éj,j§,i7és<n f‘Q/(Vl) {[ b(Vs i)es] 6}{[ b( fi 1)6’]] B} (A.30)

S

Using the second order of the projection of U-statistics (Serfling; 1980, Section 5.3.2), we know that the

first term of (A.30) satisfies n2b Zl 12 I,J#f?(Z) Tﬁ{[Lb(V Vi)ej) ,8} = Op(1/nb). We

directly adopt the arguments used in (Fan et al.; 2001, Pages 182-186) and know that the second term of
(A.30)equals

b2 E(p2(Z0) Vi )
2 {nb Z{ ’}QV 11/1’ )} elgel 8L+ L((V; —Vi)/b)] }+Op(b 1/2)
def b~ 1/2Wb( )+0P(b71/2)' A

Using Proposition 3.2 in de Jong (1987) or Fan et al. (2001, page 186), it can be shown that W} (n) i)
N(0,02) with

o2 =2 {/[L « L(s)]2d5}2 E { {E(pjfv((z&)v)}Q} x (BT%.8)%

A combination of (A.27)-(A.31), together with that T = op(ho /%), T2 (1) = op(ho “/?), indicates
that

T, =— Wiy (n) + op(hy/?). (A.32)

vroB S { E(p2(Z)|Vi) } ¢ *ha "
cpho fv(Vi) 2

Step 5.2. Taylor expansion entails that Z,,3 = >, q1(Z;, Y3)&(U) T Xi+>" | 2(Zi, Yi){a(U) T X}
Recalling the proof of Theorem 4, we have, under Hy, vnhé(u) = —2h, . L] —2hn21 ﬁg{ By the results

n2'"nl
obtained in Step 4.2, we know that —thzlhﬂ = Op(Vnhb* 4+ h'/?) = 0p(1), as nh: — 0. As such,
]

we only need to consider the main term —27, . hLll.
et al. (2001) that

It follows from a direct use of Theorem 10 of Fan

12172

[K(0) — 0.5vk0] — %

plU|
cnho

Tng = — Wi (n) + op(hy'/?), (A.33)
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where vk, = [ K%(u)du and Wj(n) £4 N(0,02) with 0% = 2p {[[2K(s) — K * K(s)Fds}2 U]
Note that ﬁﬂ only involves the argument {Y;, U;, &;, W;, X;}, so does Wj,(n). Furthermore, e is inde-
pendent of (Y, V, W, X). So we have EW;(n)Wj(n) = 0. Recall that 2Z,2 = x% = op(h, /) and
2T,1 5 X2 = op(hy /*). Thus, together with (A.32) and (A.33), we have that

o vBTEeB L [ E(pa(Z0)|Vi) | pld| _

My —Hy = o E{ T } o [K(0) — 0.5vg) (A34)
ho /2 ~1/2q; ~1/2 j-1/2
—2—{ & W) + 6, P Wan) } + op (h712).

Note that cb_l/ZWb(n) + c}:l/QWh(n) £, N(0,¢; o2 + ¢, 'o?). By (A.34), we know that 77, {Ho —
Hi— X?lfn} —£5 0. The proof is complete.
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