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Abstract We study generalized varying coefficient partially linearmodels when some
linear covariates are error prone, but their ancillary variables are available. We first
calibrate the error-prone covariates, then develop a quasi-likelihood-based estimation
procedure. To select significant variables in the parametric part, we develop a penalized
quasi-likelihood variable selection procedure, and the resulting penalized estimators
are shown to be asymptotically normal and have the oracle property. Moreover, to
select significant variables in the nonparametric component, we investigate asymptotic
behavior of the semiparametric generalized likelihood ratio test. The limiting null
distribution is shown to follow aChi-square distribution, and a newWilks phenomenon
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is unveiled in the context of error-prone semiparametric modeling. Simulation studies
and a real data analysis are conducted to evaluate the performance of the proposed
methods.

Keywords Ancillary variables · Errors-in-variable · Error prone · LASSO ·
Measurement errors ·Quasi-likelihood · Penalized quasi-likelihood · SCAD ·Varying
coefficient models

1 Introduction

Generalized varying coefficient partially linear models (GVCPLM) (Li and Liang
2008) are powerful extensions of generalized partially linear models (GPLM). These
models offer additional flexibility compared to GPLM when modeling data with dis-
crete response variable, because they further relax model assumptions imposed on
GPLM and allow interactions between covariates and certain unknown functions
depending on other covariates, while keep some linear components there. GVCPLM
are also useful generalizations of varying coefficient models (Hastie and Tibshirani
1993), which have been applied to parsimoniously describe data structure and uncover
scientific feature, and have been studied in the context of quasi-likelihood principle. As
well known in the literature, several useful semiparametric models can be classified as
special cases of GVCPLM in one way or another to name a few such as GPLM (Huns-
berger 1994; Hunsberger et al. 2002; Lin and Carroll 2001; Severini and Staniswalis
1994); partially linear models (Härdle et al. 2000; Robinson 1988; Speckman 1988);
semivarying-coefficient models (Fan and Huang 2005; Xia et al. 2004; Zhang et al.
2002) and varying coefficient models (Cai et al. 2000; Hastie and Tibshirani 1993).

Li and Liang (2008) studied variable selection for GVCPLM using the SCAD (Fan
and Li 2001) to identify parametric components and generalized likelihood ratio test
(Fan et al. 2001) to select nonparametric components. Wang and Xia (2009) proposed
a shrinkage method for selecting nonparametric components in varying coefficient
models. Wang et al. (2011) developed an estimation procedure and variable selection
procedure for generalized additive partial linear models (PLM) with an incorporation
of polynomial spline smoothing to estimate nonparametric functions and penalized
SCAD quasi-likelihood-based estimators to select linear covariates. Li et al. (2011)
considered variable selection on varying coefficient partially linear models when both
the number of parametric and nonparametric components diverge at appropriate rates.
Wei et al. (2011) further considered variable selection and estimation in “large p, small
n” setting using the group Lasso idea (Yuan and Lin 2006).

Measurement errors are often encountered in biomedical research. Simply ignor-
ing the errors can cause bias in estimation and lead to a loss of power for accurately
detecting the relationship among variables. Regression calibration and simulation
extrapolation (SIMEX, Cook and Stefanski 1994) are two widely useful methods
for eliminating or reducing bias caused by measurement errors. But the corresponding
estimators are consistent only in special cases such as linear or loglinear regression,
and approximately consistent in general cases. There are possible alternative methods
to remedy consistency concerns by deriving unbiased score functions in the pres-
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ence of measurement error, for example, the conditional score method (Stefanski and
Carroll 1987) and corrected score method (Stefanski 1989), which are essentially
M-estimation methods, and the usual numerical methods and asymptotic theory for
M-estimators are applicable. But just like other methods, these two methods have
their own limitations. In particular, conditional scores can be derived under specific
assumptions on themodel for response given covariates and the errormodel for the sur-
rogates, and some conditional score methods may require integration, while corrected
scores also impose sufficient assumptions on the error model to ensure unbiased esti-
mation of the true-data estimating function. See Carroll et al. (2006) for more detailed
discussions on a variety of estimation and inference methods for nonlinear measure-
ment errors models. Ma and Carroll (2006), Ma and Tsiatis (2006) and Tsiatis and
Ma (2004) investigated estimation efficiency for semiparametric models with mea-
surement errors. Hall and Ma (2007) studied semiparametric estimators of functional
measurement error models. Yi et al. (2012) considered marginal analysis of longitu-
dinal data when errors-in-variables and missing response appear simultaneously.

Efforts have been made to address various scientific questions using semipara-
metric models in the presence of measurement errors. For example, Sinha et al.
(2010) proposed a semiparametric Bayesian method for handling measurement errors
commonly appeared in nutritional epidemiological studies. Carroll and Wang (2008)
studied effects of measurement errors on microarray data analysis, and noticed that a
direct application of the simulation extrapolation method leads to inconsistent estima-
tors. The authors proposed a permutation SIMEX method which leads to consistent
estimators in theory. In environmental research, environmental factors are gener-
ally measured with error. Lobach et al. (2008, 2010) developed a genotype-based
approach for association analysis of case–control studies of gene–environment inter-
actions using pseudo-likelihood principle to reduce bias caused by measurement
errors.

Recently, variable selection in semiparametric regressionswithmeasurement errors
has been considered. Liang andLi (2009) developed two variable selection procedures,
penalized least squares and penalized quantile regression, for PLMwith measurement
errors.Ma and Li (2010) proposed a penalized estimating equationwith SCADpenalty
for a class of parametric measurement error models and semiparametric measurement
error models. As observed in Liang and Li (2009), if measurement errors are ignored,
some variable selection procedures may falsely choose variables and result in a final
biased model.

In this article, we study estimation and variable selection for GVCPLM when the
covariates are error prone. We consider three problems: first, calibrating the error-
prone covariates using ancillary information and applying nonparametric regression
techniques; second, developing quasi-likelihood profile estimating procedures and
justifying that the corresponding estimators of parameters of interest are asymptot-
ically normal; third, proposing a penalized quasi-likelihood procedure for selecting
significant parameters and a generalized likelihood ratio test for selecting nonzero
nonparametric functions. Zhou and Liang (2009) once studied the case where the link
function is identity one, and gave a variety of examples to illustrate the flexibility of
the model. The authors developed a profile-based estimation procedure to estimate
unknown parameters of interest.
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It is remarkable that extension of the profile estimation procedure of Zhou andLiang
(2009) to GVCPLM is by no means trivial. For the case of identity link function, the
profile least-square technique can be used and a closed form of estimators is available.
Nevertheless, for GVCPLM with measurement errors, only quasi-likelihood-based
objective function is available. Whether the resulting estimators still have nice prop-
erties such as asymptotic normality is theoretically difficult to address. In GVCPLM,
Li and Liang (2008) proposed SCAD-type procedure for parametric component selec-
tion and theoretically showed its oracle properties under certain assumptions.Whether
such a procedure can be developed under a measurement error framework is not clear
and has not been investigated in the literature. Nomeasurement errors, Fan et al. (2001)
proposed a generalized quasi-likelihood ratio test (GLRT) to investigate whether the
coefficient functions in GVCPLM are constant or not. In this paper, we investigate
Wilks phenomenon in the context of error-prone semiparametric setting. We further
propose a bootstrap procedure to estimate null distribution of GLRT. To the best of
our knowledge, this Wilks phenomenon under error prone is new and the findings
contribute to the literature on semiparametric modeling.

The remainder of the paper is organized as follows. In Sect. 2, we propose the quasi-
likelihood procedure for estimation of parametric components, then we develop a
penalized quasi-likelihood for variable selection. Sampling properties of the proposed
procedures are investigated. In Sect. 3, estimation procedure and variable selection
procedure are proposed for the nonparametric component. The null distribution of the
GLRT is also established. Simulation results and a real data analysis are presented in
Sect. 4. Regularity conditions and technical proofs are given in the Appendix.

2 Estimation and variable selection for parametric components

Let X = (X1, . . . , X p)
T ∈ R

p, ξ = (ξ1, . . . , ξd)
T ∈ R

d ,W = (W1, . . . ,Wr )
T ∈ R

r ,
U ∈ R be the covariates and Y be the response variable. The GVCPLM are of form:

g{μ(U, ξ,W, X)} = βT ξ + θT W + α(U )T X, (1)

where g(·) is a known link function, β and θ are vectors of unknown regression
coefficients and α(·) is a vector of unknown smooth nonparametric functions of U .
The response Y is related to covariates (U , ξ , W , X ) through an unknown mean
function μ(U, ξ,W, X) = E(Y |U, ξ,W, X) and the conditional variance determined
by a known positive function T (·), i.e., Var(Y |U, ξ,W, X) = σ 2T {μ(U, ξ,W, X)}.
The components ξ are unobserved directly, but auxiliary variables (η, V ) are available
to remit ξ . η is related to V via

η = ξ(V ) + e, (2)

where e is ameasurement error and independent of (X,W, V,U,Y ), and has a positive
finite covariance matrix �e = E(eeT ). We term (1) and (2) generalized varying
coefficient partially linear measurement error models (GVCPLMeM).

Let
{
(Yi ,Ui , ηi , Vi ,Wi , Xi )

}n
i=1 be an i.i.d. sample from (Y,U, η, V,W, X).

When the covariates ξ are measured with error, we first calibrate ξ using ancillary
observed sample

{
(ηi , Vi )

}n
i=1.

123



Generalized varying coefficient partially linear. . . 101

2.1 Covariate calibration

We introduce the calibration estimation procedure for ξ in this section. For notational
simplicity, we assume V is univariate throughout this paper. Let ηik be the kth entry of
vector ηi for i = 1, . . . , n. To estimate ξk(v), the kth component of ξ(v), we employ
the local linear smoothing technique (Fan and Gijbels 1996). That is, to minimize

n∑

i=1

{
ηik − c0k − c1k(Vi − v)

}2
Lbk (Vi − v) (3)

with respect to c0k, c1k , where Lb(·) = L(·/b)/b with L(·) be a kernel function,
b = bk (k = 1, . . . , p) is a bandwidth. Let ĉ0k, ĉ1k be the minimizers of (3). Write

ξ̂k(v) = ĉ0k = D20,k(v)D01,k(v) − D10,k(v)D11,k(v)

D00,k(v)D20,k(v) − D2
10,k(v)

, (4)

where Ds1s2,k(v) = ∑n
i=1 Lbk (Vi − v)(Vi − v)s1η

s2
ik for s1 = 0, 1, 2, s2 = 0, 1,

k = 1, . . . , d.
We now list the assumptions needed in the following proposition and theorems.

The following are the regularity conditions for our asymptotic results.

(C1) q2(x, y) < 0 for x ∈ R and y in the range of the response variable.
(C2) The functions T ′′(·) and g′′′(·) are continuous.
(C3) The random variable U has bounded support U . The elements of the function

α′′(u) are continuous in u ∈ U .
(C4) The density functions fU (u), fV (v) of U , V are Lipschitz continuous and

bounded away from 0 and infinite on their supports, respectively. Moreover,
the joint density function fU,V (u, v) of (U, V ) is continuous on the support
U × V .

(C5) Let Z = βT ξ + θT W + α(U )T X . Then, sE
[
qsl (Z ,Y )N⊗2

∣
∣U = u

]
,

E
[
qsl (Z ,Y )N⊗2

∣
∣V = v

]
and E

[
qsl (Z ,Y )N⊗2

∣
∣U = u, V = v

]
for l = 1, 2,

s = 1, 2 are Lipschitz continuous and twice differentiable on u ∈ U and v ∈ V .
Moreover, E{q22 (Z ,Y )} < ∞, E{q2+δ

1 (Z ,Y )} < ∞ for some δ > 2 and
E

[
ρ2(Z)N⊗2

∣
∣U = u

]
is nonsingular for each u ∈ U .

(C6) The kernel functions K (·), L(·) are univariate bounded, continuous and sym-
metric density functions satisfying that

∫
t2K (t)dt �= 0,

∫
t2L(t)dt �= 0, and∫ |t | j K (t)dt < ∞,

∫ |t | j L(t)dt < ∞. for j = 1, 2, 3, 4. Moreover, the second
derivatives of K (·) and L(·) are bounded on R.

(C7) The bandwidths h and b satisfy:
(i) b = bk , k = 1, . . . , d, bk � cbho for some constant cb > 0; h � chho for

some constant ch > 0.
(ii) ho → 0 as n → ∞, nh2o/(log h

−1
o )4 → ∞, nh4o → 0.

(C8) For all λ1 j , λ2s , j = 1, . . . , d, s = 1, . . . , r , λ1 j → 0,
√
nλ1 j →

∞, λ2s → 0,
√
nλ2s → ∞, and lim inf

n→∞ lim inf
u→0+ p′

λ1 j
(u)/λ1 j > 0,

lim infn→∞ lim infu→0+ p′
λ2s

(u)/λ2s > 0.
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Condition (C1) is imposed to ensure the local likelihood concave and guarantees the
solution unique. Conditions (C2) and (C3) are usual smooth conditions (Li and Liang
2008). Condition (C4) is a technique condition commonly imposed for conventional
nonparametric regression analysis. Condition (C5) is needed for Taylor expansion
and ensures asymptotic variance finite. Condition (C6) is commonly imposed for
nonparametric kernel smoothing. Condition (C7) is generally required for bandwidths
h and bk in semiparametric setting. Condition (C8) is a technique condition involved
in the SCAD variable selection procedure (Fan and Li 2001; Liang and Li 2009).

Proposition 1 Under the conditions (C4), (C6) and (C7), we have

ξ̂k(v) − ξk(v)

= μL2

2
b2kξ

(2)
k (v) + 1

n fV(v)

n∑

i=1

Lbk (Vi − v)eki + o
(
b2k + log b−1

k /
√
nbk

)

(5)

holds uniformly on v ∈ V , whereμL j = ∫
u j L(u)du, ξ (2)

k (v) is the second derivatives
of ξk(v), eki is the kth component of ei , i = 1, . . . , n.

The proof of (5) can be completed in a way similar to Zhou and Liang (2009).

2.2 Quasi-likelihood-based estimation

After we calibrate ξ , we model the “synthesis” data {Yi ,Ui , ξ̂i ,Wi , Xi ; 1 ≤ i ≤ n}
using the local likelihood principle (Fan and Gijbels 1996) to estimate β, θ, α(·) based
on the model:

g
{
μ

(
U, ξ̂ ,W, X

)} = βT ξ̂ + θT W + α(U )T X. (6)

Specifically, let h be the bandwidth, K (·) be the kernel function satisfying the condition
(C6), and Kh(·) = h−1K (·/h). For each u in a neighborhood of U , we approximate
α j (U ) by α0 j (u)+α′

0 j (u)(U −u), j = 1, . . . , p. Let α(u) = (α01(u), . . . , α0p(u))T ,

b(u) = (α′
01(u), . . . , α′

0p(u))T . The estimators of β, θ , α j (u)’s and α′
j (u)’s are

obtained by maximizing the following local quasi-likelihood function with respect
to α(u), b(u), β, θ ,

Lloc
(
a(u), b(u), β, θ

)

=
n∑

i=1

Q
[
g−1(βT ξ̂i + θT Wi + α(u)T Xi + b(u)T Xi (Ui − u)

)
,Yi

]
Kh(Ui − u),

(7)

whereQ(x, y) is the quasi-likelihood function and is defined asQ(x, y) = ∫ x
y

y−u
T (u)

du.

Denote the local quasi-likelihood estimators from (7) by α̂∗(u), b̂∗(u), β̂∗, θ̂∗. As
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demonstrated in Lemma A.2 in Appendix that these estimators are all
√
nh-consistent

(or
√
nho-consistent, under Condition (C7)).

We now update estimates of β and θ using all data, through by considering a global
quasi-likelihood procedure for improving efficiency. Define

Lgol
(
β, θ

) =
n∑

i=1

Q
[
g−1(βT ξ̂i + θT Wi + α̂∗(Ui )

T Xi
)
,Yi

]
, (8)

where α̂∗(u) is obtained from (7). As a result, we have global quasi-likelihood esti-
mators β̂ and θ̂ by maximizing Lgol(β, θ). The corresponding estimators have the
same merit as one-step backfitting algorithm estimates. One may also consider a full
iterative backfitting algorithm or a profile likelihood approach to obtain estimators of
β, θ .

In the following, we introduce some notations for presenting the properties of
the estimators. Denote A⊗2 = AAT for any matrix or vector A. Let q�(x, y) =
∂�

∂x�Q{g−1(x), y} for � = 1, 2. Then q1(x, y) = {y − g−1(x)}ρ1(x), q2(x, y) = {y −
g−1(x)}ρ′

1(x) − ρ2(x) with ρ�(x) =
{
dg−1(x)

dx

}� /[
σ 2T {g−1(x)}]. Let Z = βT ξ +

θT W + α(U )T X , Q = (ξ T ,WT )T , N = (ξ T ,WT , XT )T , � = E
[
ρ2(Z)Q⊗2

]
.

Denote by κk(u) the kth element of E
[
ρ2(Z)N⊗2

∣
∣U = u

]−1
N , ιk(u, v) is the kth

element of E
[
ρ2(Z)N⊗2

∣
∣U = u

]−1
E

[
ρ2(Z)N

∣
∣U = u, V = v

]
. Moreover,

Γ (u) =
{

Q −
p∑

k=1

κk(u)E
[
ρ2(Z)QXk

∣
∣U = u

]
}

q1(Z ,Y ),

�k(v) = E

[
QXkρ2(Z)ιk(U, v)

fU,V (U, v)

fU (U ) fV (v)

]
,

Λ(v) =
{ p∑

k=1

�k(v) − E
[
ρ2(Z)Q

∣
∣V = v

]
}

eTβ.

We have the following asymptotic results.

Theorem 1 Under Conditions (C1)–(C7) given in the Appendix, we have

√
n
((

β̂ − β
)T

,
(
θ̂ − θ

)T )T

L−→ Nq

(
0, �−1E

[
Γ (U )⊗2

]
�−1 + �−1E

[
Λ(V )⊗2

]
�−1

)
.

Remark 1 To ensure Theorem 1 holds, undersmoothing is necessary. This strat-
egy concurs with that adapted in modeling GPLM (Severini and Staniswalis 1994).
In the asymptotic variance, the first term �−1E

[
Γ (U )⊗2

]
�−1 is similar to that

obtained by Li and Liang (2008) for partially linear models, while the second term
�−1E

[
Λ(V )⊗2

]
�−1 is owing to the impact of measurement error and a bias correc-

tion in virtue of the ancillary variable V .
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Bandwidth selection The proposed procedure involves the bandwidth bk and h, to
be selected. As indicated in Zhou and Liang (2009), the undersmoothing is nec-
essary when we estimate ξ . So, the optimal bandwidth for bk has to be violated.
The consequence of undersmoothing ξ is to keep the bias small and preclude
the optimal bandwidth for bk . As suggested by Carroll et al. (1997), an ad hoc
but reasonable choice is O(n−1/5) × n−2/15 = O(n−1/3). The suitable band-
width bk is bk = C1n−1/3, where C1 is a positive constant. One can use a
plug-in rule to estimate the constant C1, i.e., bk = σ̂V n−1/3. Another selec-
tion for bk can be chosen as bk = n−2/15b̂k∗, where b̂k∗ = argminb∗ CVk(b∗),
CVk(b∗) = n−1 ∑n

i=1

{
ηik − ξ̂

(−i)
k,b∗ (Vi )

}2
, where ξ̂

(−i)
k,b∗ (Vi ) is computed analo-

gous to (3) from the data with the i th observation ηi , Vi deleted and band-
width b∗. To select h, we first define the “leave-one-sample out” method h1 =
argminh∗

∑n
i=1Q

[
g−1

(
β̂T−i ξ̂i + θ̂T−iWi + α̂−i,h∗(u)T Xi

)
,Yi

]
, where β̂−i , θ̂−i are

obtained from (8), and α̂−i,h∗(Ui ) is obtained from (7) with the fixed bandwidth h∗
and the leave-one-out sample {Y j , ξ̂ j ,Wj , X j ,Uj }1≤ j �=i≤n .

2.3 Penalized quasi-likelihood-based variable selection

In this section, we consider the variable selection problem. We define the penalized
quasi-likelihood as

LP
(
β, θ

) = Lgol
(
β, θ

) − n
d∑

j=1

pλ1 j (|β j |) − n
r∑

s=1

pλ2s (|θs |), (9)

where pλ1 j (·), pλ2s (·) are penalty functions, and λ1 j and λ2s are tuning parameters.
We distinctively choose tuning parameters λ1’s, λ2’s for identifying nonzero elements
of β and θ . If we are only interested in selecting W -variable, then we set pλ1 j (·) = 0,
j = 1, . . . , p. Similarly, we can commit only on ξ -variable.
We first briefly discuss the choice of penalty functions. There have been many

penalty functions in the variables selection literature. For example, L0-penalty,
pλ1 j (|β j |) = 0.5λ21 j I {|β j | �= 0}, where I {·} is an indicator function. Specially, if

we further let λ1 j = σ
√
2/n, σ

√
log(n)/n and σ

√
log(d)/n, those penalty functions

correspond to the popular variable selection criteria such as AIC (Akaike 1973), BIC
(Schwarz 1978) and RIC (Foster and George 1994). We adopt SCAD penalty (Fan
and Li 2001), whose first derivative is

p′
λ(γ ) = λ

{
I (γ ≤ λ) + (aλ − γ )+

(a − 1)λ
I (γ > λ)

}
,

where (s)+ = s I (s > 0) is the hinge loss function and a = 3.7.
We next study the asymptotic properties of the resulting penalized quasi-likelihood

estimates.Without loss of generality, assume the first d1 components ofβ are nonzeros,
the first r1 components of θ are nonzeros. I.e., βs �= 0, s = 1, . . . , d1, θl �= 0,
l = 1, . . . , r1 and βk ≡ 0, k = d1 + 1, . . . , d, θt ≡ 0, t = r1 + 1, . . . , r .
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For notational simplicity, denote Rn,λ1,λ2 = (RT
n,λ1

,RT
n,λ2

)T with

Rn,λ1 = {p′
λ11

(|β1|)sign(β1), . . . , p
′
λ1d1

(|βd1 |)sign(βd1)}T ,

Rn,λ2 = {p′
λ21

(|θ1|)sign(θ1), . . . , p′
λ2r1

(|θr2 |)sign(θr2)}T ,

and we further define

a∗
n = max

1≤ j≤d
{p′

λ1 j
(|β j |), β j �= 0}, b∗

n = max
1≤s≤r

{p′
λ2s

(|θs |), θs �= 0},
a∗∗
n = max

1≤ j≤d
{p′′

λ1 j
(|β j |), β j �= 0}, b∗∗

n = max
1≤s≤r

{p′′
λ2s

(|θs |), θs �= 0},
�n,λ1,λ2 = diag{p′′

λ11
(|β1|), . . . , p′′

λ1d1
(|βd1 |), p′′

λ21
(|θ1|), . . . , p′′

λ2r1
(|θr1 |)}.

Denote the resulting penalized estimators from (9) by β̂λ1 , θ̂λ2 . We have the following
asymptotic results.

Theorem 2 Under Conditions (C1)–(C8) given in the Appendix, moreover, suppose
a∗
n = O(n−1/2), b∗

n = O(n−1/2), a∗∗
n → 0, b∗∗

n → 0, then there exist localmaximizers
β̂λ1 , θ̂λ2 of (9) such that their rates of convergence are β̂λ1 = β + OP (n−1/2) and
θ̂λ2 = θ + OP (n−1/2).

We further introduce notations for presenting the oracle properties of the resulting
penalized likelihood estimates. Without loss of generality, denote β = (βT

(1), β
T
(2))

T ,

θ = (θT(1), θ
T
(2))

T , where β(1) and θ(1) are d1 and r1 nonzero components of β and
θ , respectively, and β(2) and θ(2) are two (d − d1)- and (r − r1) × 1-zero vec-
tors. Accordingly, ξ(1) and W(1) are the first d1 covariates of ξ , and the first r1
covariates of W . Let Z(1) = βT

(1)ξ(1) + θT(1)W(1) + α(U )T X , Q(1) = (ξ T(1),W
T
(1))

T ,

N(1) = (ξ T(1),W
T
(1), X

T )T , and e(1) be the first d1 covariates of the error e. More-
over, the definitions of �(1), Γ(1)(u) and Λ(1)(v) and the terms involved in these
definitions are accordingly to �,Γ (u),Λ(v) by substituting β, Z , Q, N , e with
β(1), Z(1), Q(1), N(1), e(1), respectively.

Theorem 3 Under Conditions (C1)–(C8), the penalized estimators β̂λ1 =
(
β̂T

λ1(1)
, β̂T

λ1(2)

)T
and θ̂λ2 = (

θ̂Tλ2(1)
, θ̂Tλ2(2)

)T
satisfy: (a) with probability tending to

one, β̂λ1(2) = 0, θ̂λ2(2) = 0; and (b) β̂λ1(1) and θ̂λ2(1) are asymptotically normal, i.e.,

√
n
(
�(1) + �n,λ1,λ2

){((
β̂λ1(1) − β(1)

)T
,
(
θ̂λ2(1) − θ(1)

)T )T

+(
�(1) + �n,λ1,λ2

)−1Rn,λ1,λ2

}

L−→ Nd1+r1

(
0, �−1

(1) E
[
Γ(1)(U )⊗2

]
�−1

(1) + �−1
(1) E

[
Λ(1)(V )⊗2

]
�−1

(1)

)
.

Remark 2 Theorem 3 indicates that the proposed variable selection procedure
processes the oracle property with proper choices of tuning parameters λ1 j ’s, λ2s’s. If
we further demand that

√
nRn,λ1,λ2 → 0, and �n,λ1,λ2 → 0, the asymptotic variance

simplifies to summand of �−1
(1) E

[
Γ(1)(U )⊗2

]
�−1

(1) and �−1
(1) E

[
Λ(1)(V )⊗2

]
�−1

(1) .

123



106 J. Zhang et al.

Choice of λ j ’s. We adopt a data-driven GCV procedure proposed by Li and Liang
(2008) to select the tuning parameters λ1’s, λ2’s in a d + r -dimensional space. Let
λ1 j = λ ∗ Se(β̂ j ), λ2i = λ ∗ Se(θ̂i ), where Se(β̂ j ) and Se(θ̂i ) are the estimated
standard error of β̂ j , θ̂i . Thus, the minimization over λ1’s, λ2’s is simplified to an
one-dimensional minimization through λ. We first introduce the estimation procedure
for the standard errors, which can be obtained from the estimated covariance matrix
Ĉov(γ̂ ), where γ̂ = (β̂T , θ̂T )T is obtained from (8). Write �′(γ ) = Lgol (β,θ)

∂γ
�′′(γ ) =

Lgol (β,θ)

∂γ ∂γ T , γ = (βT , θT )T and

�∗
n,λ1,λ2

= diag

(
p′
λ11

(|β1|)
|β1| , . . . ,

p′
λ1d

(|βd |)
|βd | ,

p′
λ21

(|θ1|)
|θ1| , . . . ,

p′
λ2r

(|θr |)
|θr |

)

. (10)

A sandwich formula for the covariance matrix of the estimates γ̂ =
(
β̂T , θ̂T

)T
is

given by

Ĉov(γ̂ ) = {
�′′(γ̂ ) − n�∗

n,λ1,λ2

}−1 Ĉov(�′(γ̂ ))
{
�′′(γ̂ ) − n�∗

n,λ1,λ2

}−1
.

Write e(λ) = tr

{{
�′′(γ̂ ) − n�∗

n,λ,λ

}−1
�′′(γ̂ )

}
,where�∗

n,λ1,λ2
is obtained from (10)

by substituting λ1 j , λ2i with λ ∗ Se(β̂ j ), λ ∗ Se(θ̂i ) respectively. The GCV statistic is
defined by

GCV(λ) =
∑n

i=1D
{
Yi , g−1(α̂T (Ui )Xi + ξ̂ Ti β̂(λ) + WT

i θ̂ (λ))
}

n{1 − e(λ)/n}2 ,

where D{Y, μ} denotes the deviance of Y corresponding to the model fitting with λ.
The minimizer of GCV(λ) with respect to λ can be obtained by a grid search.

3 Statistical inference for nonparametric components

In this section, we consider a refined estimator of α(u) and propose a generalized
likelihood ratio test to select significant components of X .

3.1 Refined estimator of nonparametric component

After we obtain the final estimators of β and θ from Sect. 2.2, the estimator of α(u)

can be refined by maximizing the following local likelihood function:

L∗
loc

(
a(u), b(u)

)

=
n∑

i=1

Q
[
g−1(β̂T ξ̂i + θ̂T Wi + α(u)T Xi + b(u)T Xi (Ui − u)

)
,Yi

]
Kh(Ui − u)

(11)
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with respect toα(u) andb(u). Let α̂(u)be themaximizer of (11).Wehave the following
asymptotic result.

Theorem 4 Under Conditions (C1)–(C7), we have

√
nh

(
α̂(u) − α(u) − h2μK2

2
α′′(u)

+b2μL2

2
�X (u)−1E

[
ρ2(Z)ξ (2)(V )TβX

∣
∣
∣U = u

] )

L−→ N

(
0,

vK0

fU (u)
�X (u)−1

)
,

where �X (u) = E
[
ρ2(Z)X⊗2

∣
∣
∣U = u

]
, and μK2 = ∫

t2K (t)dt , μL2 = ∫
t2L(t)dt ,

vK0 = ∫
K 2(t)dt .

Remark 3 The second term in the asymptotic bias of α̂(u) is owing to calibrating the
error-prone covariates. In fact, we can eliminate two bias terms O(h2) and O(b2) if
we adapt the undersmoothing strategy in order for β̂, θ̂ being root-n consistent. As
such, the bias of α̂(u) tends to zero and the rates of α̂(u) are (nho)1/2.

3.2 Variable selection for nonparametric component

It is of interest to select nonzero component of α(u) to increase model prediction. In
this section, we adopt the GLRT proposed by Fan et al. (2001) to detect significant
components of X , achieved by using the backward elimination procedure. In each
step, we test H0 : α j1(u) = · · · = α jk (u) = 0 versus H1 : not all α jl (u) �= 0. For
ease of presentation, we consider the following hypothesis:

H0 : α1(u) = · · · = αp(u) = 0 versus H1 : not all α j (u) �= 0. (12)

Let α̂(u), β̂, θ̂ be the estimators obtained from (8) and (11) under the alternative
hypothesis, and β̄ and θ̄ be the estimators of β, θ under the null hypothesis. Write

H1 =
n∑

i=1

Q
{
g−1

(
α̂(Ui )

T Xi + θ̂T ξ̂i + θ̂T Wi

)
,Yi

}

and

H0 =
n∑

i=1

Q
{
g−1

(
β̄T ξ̂i + θ̄T Wi

)
,Yi

}
.

Following Fan et al. (2001) and Li and Liang (2008), we define the GLRT statistic

TGLR = H1 − H0.
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Define vL0 = ∫
L2(t)dt , vK0 = ∫

K 2(t)dt ,σ 2
K = 2p

{∫ [2K (t) − K ∗ K (t)]2dt}2
|U | with |U | being the length of the support of U . σ 2

L = 2
{∫ [L ∗ L(t)]2dt}2

E
{ {E[ρ2(Z)|V ]}2

fV (V )

}
(βT�eβ)2. K ∗ K (t), L ∗ L(t) are the convolutions of K (t), L(t),

respectively. cb and ch are two positive constants satisfying Condition (C7). We have
the following theorem.

Theorem 5 Under Conditions (C1)–(C7), rLK (TGLR − χ2
d fn

)
L−→ 0 under the null

hypothesis H0, here

rLK =
8c−1

b vL0β
T�eβE

{
E[ρ2(Z)|V ]

fV (V )

}
+ 8c−1

h p|U | [K (0) − 0.5vK0

]

c−1
b σ 2

L + c−1
h σ 2

K

, and

d fn = vL0β
T�eβ

b
E

[
E[ρ2(Z)|V ]

fV (V )

]
+ p|U |

h

[
K (0) − 0.5vK0

]
.

Remark 4 Theorem 5 claims that the Wilks type of phenomenon holds for GVC-
PLMeM. The first part of d fn gains insight into the effect of measurement error and
ancillary variable.As indicated inLi andLiang (2008), this generalized likelihood ratio
theory can be justified using empirical procedure, such as Monte Carlo simulation or
a bootstrap procedure, since the degrees of freedom d fn tend to infinity as sample
size n increases. It is worth mentioning that the main order of the degree of freedom
rLK d fn cannot be obtained similarly to those in Fan et al. (2001), because �e, β and

E
[
E[ρ2(Z)|V ]

fV (V )

]
are usually unknown in practice and needed to be estimated from the

data, and their estimators may not perform well when sample sizes are small or mod-
erate. Moreover, those constants cb, ch involved in Condition (C7) for the bandwidth
h, b are also unknown. If the covariate ξ can be observed without measurement errors,
i.e., �e = 0, the cb, ch are vanished in rLK and d fn , and the method of calibration
formulas for degree of freedoms proposed by Zhang (2004) can be directly applied.
For these reasons and for practical purposes, one can follow the conditional bootstrap
procedure suggested by Zhou and Liang (2009) and Cai et al. (2000) to estimate null
distribution of TGLR.

Remark 5 Under the Conditions (C1)–(C7), we can have the following asymptotic

√
n
((

β̄ − β
)T

,
(
θ̄ − θ

)T )T L−→ Nq
(
0, �̄−1Γ̄ �̄−1 + �̄−1E

[
Λ̄(V )⊗2

]
�̄−1). (13)

where �̄ = E
[
ρ2(Z∗)Q⊗2

]
, Γ̄ = E

[
q21 (Z∗,Y )Q⊗2

]
, Λ̄(v) = E [ρ2(Z∗)Q|V = v]

eTβ and Z∗ = βT ξ + θT W . The asymptotic relative efficiency (ARE) of β̄, θ̄ with
respect to β̂, θ̂ obtained in (8) is

ARE
(
(β̄, θ̄ ), (β̂, θ̂ )

)
= ‖�‖2/qD

‖�̄‖2/qD

‖Γ̄ + E
[
Λ̄(V )⊗2

] ‖1/qD

‖E [
Γ (U )⊗2

] + E
[
Λ(V )⊗2

] ‖1/qD

,

where ‖ · ‖D denotes the determinants of the covariance matrices.

123



Generalized varying coefficient partially linear. . . 109

4 Numerical studies

In this section,we conduct simulation studies to assess the performance of the proposed
method. We then apply our method to analyze a real data set from a diabetes study. We
used the Epanechnikov kernel function L(t) = K (t) = 0.75(1− t2)+ in all numerical
studies below. Note Condition (C7) means that the optimal bandwidth cannot be used
because undersmoothing is necessary. As such, we used the rule of thumb (Silverman
1986). The smoothing parameter b was chosen as σ̂V n−1/3, where σ̂V is the sample
deviation of V . This choice of b naturally meets Condition (C7). As pointed out
in Remark 1 of Sect. 3.2, undersmoothing for h is an usual requirement for fitting
generalized semiparametric models.

In our simulation studies, we generated 500 data sets consisting of n = 500 and
n = 1000 observations from the semiparametric coefficient logistic regressionmodel:

logit{p(U, ξ,W, X)} = ξ Tβ + θT W + α(U )T X (14)

with covariates, nonparametric functions and parameters being explicitly specified
below.

4.1 Simulation studies

Example 1 β = 2, θ = (3, 1.5, 2) or β = 0.2, θ = (0.3, 0.15, 0.2). X = (1, X)T and
X ∼ N (0, 1), α(u) = (α1(u), α2(u))T , α1(u) = exp(2u − 1), α2(u) = 2 sin2(2πu).
ξ is unobserved and remitted by (η, V ) through η = ξ(V ) + e with ξ(V ) = 3V −
cos(V ), V ∼ N (0, 0.52) and is independent of (U,W, X), e follows N (0, 0.52) and
is independent of (U, V,W, X). We consider three cases: (i) W is independent of
U , W ∼ N (0, �W ), �W = (σw,i j ) with σw,i j = 0.25|i− j |, U ∼ Unif[0, 1]. (ii)
(W,U ) follows Unif[−1, 1], and Var((WT ,U )T ) = (σi j ) with σi j = 0.5|i− j |. (iii)
The first component ofW is 0 with probability 0.5 and 1 with probability 0.5, the rest
components ofW are normally distributed with mean 0, and Var(W ) = (σw,i ′ j ′) with
σw,i ′ j ′ = 0.5|i ′− j ′|, U ∼ Unif[0, 1] and is independent of W . In this example, we use
the bandwidth h = 3 × n−1/3.

The simulation results for the benchmark estimator (i.e., all covariates aremeasured
exactly), the proposed estimator and the naive estimator (usingη directly) are presented
in Tables 1 and 2, which reports the mean and associated standard errors of (β̂, θ̂ ). We
can see that the estimated values based on the proposed procedure and the benchmark
procedure are close to the true value in all three cases. This indicates our proposed
method is promising.However, the naive estimator has severe bias and performsworse,
especially when the sample size n = 500.

Example 2 In this example, we examined the performance of the proposed variable
selection procedure by comparing it with the traditional subset selection criteria such
as AIC, BIC and RIC from model (14). Let β = (−0.5, 0.5)T . X and α(u) are
the same as in Example 1. ξ(V ) = (ξ1(V ), ξ2(V ))T , ξ1(V ) = 2 cos(V ), ξ2(V ) =
0.1 exp(V )+3 sin(V ), and the ancillary variable η = (η1, η2)

T with η1 = ξ1(V )+e1,
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Table 1 The simulation results
for Example 1

MEAN simulation mean, SD
standard deviation, B benchmark
estimator, P proposed estimator,
and N naive estimator

β1 = 3 β2 = 1.5 β3 = 2 θ1 = 2

Case 1, n = 500

B MEAN 2.9217 1.4416 1.9215 1.9498

SD 0.3147 0.2421 0.2458 0.1876

P MEAN 2.9211 1.4713 1.9329 1.9531

SD 0.2987 0.2342 0.2433 0.1901

N MEAN 2.4321 1.2186 1.6298 1.4623

SD 0.2567 0.2218 0.2169 0.1631

Case 1, n = 1000

B MEAN 2.9350 1.4643 1.9410 1.9653

SD 0.2699 0.2040 0.2112 0.1710

P MEAN 2.9370 1.4651 1.9426 1.9662

SD 0.2710 0.2048 0.2119 0.1708

N MEAN 2.6123 1.3067 1.7252 1.5802

SD 0.2354 0.1916 0.1828 0.1370

Case 2, n = 500

B MEAN 2.9417 1.4289 1.9921 1.9431

SD 0.3929 0.3621 0.4371 0.1756

P MEAN 2.9518 1.4311 2.0233 1.9530

SD 0.3876 0.3817 0.4231 0.1821

N MEAN 2.4219 1.1190 1.7098 1.4812

SD 0.3623 0.3176 0.3435 0.1451

Case 2, n = 1000

B MEAN 2.9601 1.4464 2.0143 1.9683

SD 0.3802 0.3576 0.4162 0.1678

P MEAN 2.9660 1.4484 2.0106 1.9666

SD 0.3813 0.3580 0.4165 0.1669

N MEAN 2.6011 1.2820 1.7766 1.5700

SD 0.3373 0.3223 0.3756 0.1258

Case 3, n = 500

B MEAN 2.9287 1.4632 1.9389 1.9590

SD 0.3715 0.3321 0.3219 0.2741

P MEAN 2.9290 1.4731 1.9466 1.9631

SD 0.3801 0.3424 0.3310 0.2565

N MEAN 2.5438 1.2109 1.6654 1.4219

SD 0.4009 0.3817 0.3426 0.2851

Case 3, n = 1000

B MEAN 2.9355 1.4749 1.9574 1.9669

SD 0.3610 0.3103 0.3132 0.2359

P MEAN 2.9388 1.4764 1.9596 1.9737

SD 0.3605 0.3104 0.3136 0.2366

N MEAN 2.6017 1.3049 1.7302 1.5598

SD 0.4153 0.3028 0.3140 0.2248
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Table 2 The simulation results
for Example 1

MEAN simulation mean, SD
standard deviation, B benchmark
estimator, P proposed estimator,
and N naive estimator

β1 = 0.3 β2 = 0.15 β3 = 0.2 θ1 = 0.2

Case 1, n = 500

B MEAN 0.2791 0.1423 0.1899 0.1956

SD 0.0709 0.0771 0.0765 0.0623

P MEAN 0.2799 0.1456 0.1921 0.1943

SD 0.0689 0.0689 0.0712 0.0601

N MEAN 0.2813 0.1421 0.1876 0.1753

SD 0.0697 0.0680 0.0699 0.0521

Case 1, n = 1000

B MEAN 0.2880 0.1478 0.1950 0.2036

SD 0.0626 0.0638 0.0627 0.0513

P MEAN 0.2880 0.1477 0.1950 0.2039

SD 0.0628 0.0638 0.0627 0.0515

N MEAN 0.2877 0.1476 0.1947 0.1827

SD 0.0627 0.0637 0.0628 0.0498

Case 2, n = 500

B MEAN 0.2913 0.1474 0.1921 0.1921

SD 0.0790 0.0753 0.0756 0.0523

P MEAN 0.2901 0.1466 0.1914 0.1910

SD 0.0821 0.0760 0.0766 0.0548

N MEAN 0.2914 0.1481 0.1923 0.1611

SD 0.0807 0.0780 0.0791 0.0541

Case 2, n = 1000

B MEAN 0.2974 0.1501 0.1984 0.1968

SD 0.0733 0.0672 0.0740 0.0447

P MEAN 0.2975 0.1500 0.1984 0.1969

SD 0.0733 0.0672 0.0742 0.0446

N MEAN 0.2971 0.1511 0.1964 0.1772

SD 0.0730 0.0688 0.0768 0.0433

Case 3, n = 500

B MEAN 0.2899 0.1411 0.1919 0.1921

SD 0.0613 0.0579 0.0568 0.0505

P MEAN 0.2910 0.1451 0.1927 0.1919

SD 0.0641 0.0556 0.0578 0.0512

N MEAN 0.2914 0.1427 0.1923 0.1699

SD 0.0693 0.0580 0.0590 0.0473

Case 3, n = 1000

B MEAN 0.2936 0.1429 0.1939 0.1968

SD 0.0580 0.0540 0.0534 0.0456

P MEAN 0.2939 0.1428 0.1939 0.1969

SD 0.0580 0.0540 0.0534 0.0457

N MEAN 0.2925 0.1430 0.1937 0.1785

SD 0.0593 0.0543 0.0535 0.0437
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Table 3 The simulation results for Example 2

Penalty B P N

MedSE C I MedSE C I MedSE C I

Case 1, n = 500

SCAD 0.0768 2.9921 0.1100 0.0691 2.9923 0.1123 0.4437 2.9876 1.2313

AIC 0.1123 2.3521 0.0231 0.0997 2.3931 0.0210 0.4081 2.1098 0.6697

BIC 0.0789 2.8504 0.0450 0.0707 2.8602 0.0421 0.4137 2.7098 0.9980

RIC 0.0921 2.5541 0.0390 0.0887 2.5432 0.0387 0.3989 2.5431 0.7213

Oracle 0.0697 3 0 0.0704 3 0 0.3521 3 0

Case 1, n = 1000

SCAD 0.0698 2.9980 0.0900 0.0583 2.9980 0.0980 0.3266 2.9960 0.9540

AIC 0.0995 2.4340 0.0080 0.0854 2.4430 0.0060 0.3142 2.3440 0.4480

BIC 0.0733 2.9300 0.0220 0.0619 2.9360 0.0180 0.3226 2.8640 0.7520

RIC 0.0836 2.7720 0.0160 0.0721 2.7680 0.0160 0.3183 2.6880 0.6300

Oracle 0.0578 3 0 0.0573 3 0 0.2688 3 0

Case 2, n = 500

SCAD 0.0756 5.8867 0.1417 0.0776 5.8976 0.1534 0.4351 5.4109 1.2413

AIC 0.1320 4.6700 0.0221 0.1215 4.5600 0.0141 0.4213 4.4109 0.7890

BIC 0.0734 5.7876 0.0342 0.0765 5.6789 0.0401 0.4670 5.2341 0.9879

RIC 0.0756 5.6678 0.0176 0.0876 5.4567 0.0234 0.4567 5.0989 0.7790

Oracle 0.0709 6 0 0.0717 6 0 0.4098 6 0

Case 2, n = 1000

SCAD 0.0684 6.0000 0.1100 0.0578 6.0000 0.1340 0.3215 6.0000 0.9880

AIC 0.1120 4.9200 0.0100 0.1000 4.9100 0.0060 0.3192 4.8060 0.4160

BIC 0.0709 5.9120 0.0200 0.0582 5.9080 0.0200 0.3102 5.8340 0.6980

RIC 0.0783 5.7260 0.0080 0.0682 5.7320 0.0140 0.3102 5.6180 0.5960

Oracle 0.0541 6 0 0.0541 6 0 0.2469 6 0

η1 = ξ2(V )+e2. V is independent of (e1, e2)T and follows N (0, 1). (e1, e2)T follows
N2((0, 0)T , �e)with�e = (σe,i j )1≤i, j≤2, σe,i j = (−0.5)|i− j |.U followsUni f [0, 1].
Moreover, Var((ξ T ,W )T ) = (σo,i j )1≤i, j≤q with σo,i j = 0.5|i− j |. We considered two
cases: θ = (1, 0, 0, 1, 0)T ∈ R

5 and θ = (1, 0, 0, 1, 0, 0, 0, 0)T ∈ R
8.

We examined the following quantities: the median of the squares errors (MedSE) of
‖γ̂ −γ ‖22, the average number (labeled “C”) of the three or eight true zero coefficients
correctly set to zero, and the average number (labeled “I”) of the four true nonze-
ros incorrectly set to zero. Similar to Example 1, we considered three estimators: the
benchmark estimator, the proposed estimator and the naive estimator. The GCV pro-
cedure introduced in Sect. 2.3 was used for selecting λ j ’s. 30 grid points were set to be
evenly distributed over the range of λ. The simulation results are reported in Table 3.

We can see that both benchmark estimator and our proposed estimator perform
better as the sample size increase to 1000. The values of “C” and “I” are close to the
true values 3 in case 1 or 6 in case 2, and 0, respectively. The performance of the SCAD
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procedure is similar to that of the oracle procedure and better than the penalized best
subset variable selection procedure using AIC and RIC.Moreover, the performance of
the SCAD is similar to that of BIC, which costs much more computational time, how-
ever. The MedSE of the SCAD and BIC procedures for both benchmark estimator and
the proposed estimator are also close to those obtained from the oracle procedure. As
anticipated, the naive procedure has a much higher rate of incorrectly setting nonzero
coefficients to zero. Especially, the number of SCAD incorrectly setting nonzero coef-
ficients closes to 1 instead of 0 in the two cases. When sample size n = 1000, the
number of best subset variable selection incorrectly setting nonzero coefficients is at
least 0.4 instead of 0. At the same time, the MedSE of the naive estimator is about
0.37 when n = 500 and 0.26 when n = 1000 even for the oracle setting. This means
that ignoring measurement error e increases the chance of identifying more signifi-
cant components, and causes that one may falsely choose variables and result in an
inappropriate model. ξ̂ (v) performs well for variable selection.

Example 3 In this example, we examined the performance of the estimation pro-
cedure for nonparametric components introduced in Sect. 3.1. β = (1, 1, 1)T ,
θ = (−1, 0.5)T , X = (1, X)T , where X follows N (0, 1). α(u) = (α1(u), α2(u))T ,
α1(u) = 2 exp(−2u), α2(u) = 2 sin2(πu). U , ξ(V ), V and e are the same as in
Example 2. Moreover, Var{(ξ T ,W )T } = (σo,i j )1≤i, j≤q with σo,i j = 0.5|i− j |. In this
example, we set h = 0.2. The performance of the estimator α̂(u) = (α̂1(u), α̂2(u))T

was assessed by the square root of average square errors (RASE)

RASE1 =
{
n−1
0

n0∑

i=1

‖α̂1(ui ) − α1(ui )‖
}1/2

,

RASE2 =
{
n−1
0

n0∑

i=1

‖α̂2(ui ) − α2(ui )‖
}1/2

,

where {u1, . . . , un0} are the given grid points, and n0 = 200 is the number of grid
points.

Weevaluated the estimation procedure (11) for two scenarios: (i) using the estimated
γ̂ = (β̂T , θ̂T )T , (ii) using the true value γ = (βT , θT )T . We report the simulation
mean and standard derivation of RASE1 and RASE2, and the simulation mean and
associated stand derivation of ‖γ̂ − γ ‖2 in Table 4. These results indicate that the
performance of both the benchmark estimator and the proposed estimator works well
regardless γ̂ or γ being used. This is not surprising because γ̂ is root-n consistent with
higher convergence rates than nonparametric estimates. As a result, the benchmark
estimator and the proposed estimator work satisfactorily under the two scenarios in
term of RASE. On the other hand, the naive procedure results in no-ignorable biases
in estimation of γ and the biased estimators γ̂ deteriorate the estimation procedure
for α(·) and eventually make α̂(u) larger biases. It is worthy mention that the naive
estimator through by using true γ works well since no biases are caused (see the third
row under the “Exact γ ” column in Table 4). The estimation for function α2(u) with
the estimated γ̂ performs as well as if we knew the true value of γ regardless the
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Table 4 The simulation results for Example 3

Penalty Exact γ Estimated γ̂

RASE21 SD RASE22 SD ME SD RASE21 SD RASE22 SD

n = 500

B 0.0567 0.0357 0.0680 0.0398 0.0713 0.0332 0.0709 0.0520 0.0743 0.0459

P 0.0735 0.0431 0.0754 0.0432 0.0807 0.0413 0.0724 0.0538 0.0776 0.0468

N 0.0776 0.0491 0.0784 0.0451 0.8721 0.2341 0.9124 0.2439 0.1123 0.0676

n = 1000

B 0.0359 0.0235 0.0531 0.0333 0.0507 0.0294 0.0527 0.0409 0.0549 0.0330

P 0.0615 0.0387 0.0554 0.0346 0.0710 0.0367 0.0554 0.0438 0.0549 0.0350

N 0.0554 0.0389 0.0648 0.0405 0.6493 0.1285 0.7393 0.2193 0.0885 0.0510

ME simulation mean of ‖γ̂ −γ ‖2, SD associated standard deviation, RASE2• square root of average square
errors
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Fig. 1 Simulation results (n = 1000) for Example 2 along with the benchmark procedure, i.e., using ξ(v).
RASE based on the true γ against RASE based on estimated γ̂ for α1(u) (left panel) and α2(u) (right
panel)

proposed estimation method or naive estimation. But the estimation procedure for
α1(u) does not have such a nice property; i.e., the RASE value for α1(u) increases
from 0.0527 for the proposed method to 0.7993 for the naive estimation when the
sample size n = 1000, whereas the RASE value for α2(u) keeps the same scale for
the proposed method and the naive estimation. This substantial difference is because
α1(u) but α2(u) includes the biases caused by ignoring measurement errors. These
features can further be observed in the left panels and right panels of Fig. 1 for the
benchmark procedure when n = 1000, i.e., using ξ(v) and Fig. 2 for the proposed
procedure, i.e., using ξ̂ (v), where we plot the RASE values based on the true γ against
the RASE values based on the estimated γ̂ for α1(u) the (left panel) and α2(u) (right
panel). It can be seen that the estimation procedure (11) for α2(u) with the estimated
γ̂ performs as well as if we knew the true value of γ .
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Fig. 2 Simulation results (n = 1000) for Example 2 along with the proposed procedure, i.e., using ξ̂ (v).
RASE based on the true γ against RASE based on estimated γ̂ for α1(u) (left panel) and α2(u) (right
panel)

Example 4 In this example, we examine the performance of the test procedures pro-
posed in Sect. 4.2. The simulation setting is the same as in Example 3. Consider the
hypothesis

H0 : α2(u) = 0 vs H1 : α2(u) �= 0, (15)

where α2(u) is a sequence of alternative models indexed by Co of form α2(u) =
Co × u(1 − u). We conducted 400 simulations at four different significance levels:
0.01, 0.025, 0.05 and 0.10 for the benchmark procedure and the proposed procedure.
500 conditional bootstrap (Cai et al. 2000) samples were generated in each simulation
for power calculation. The simulation results are reported in Table 5 and Fig. 3. We
can see that when Co = 0, all empirical levels obtained by these two procedures
are close to the four nominal levels, which indicates that the bootstrap method gives
proper Type I errors. As Co increases, the power functions increases rapidly. It is
worth noting that the simulation results for the benchmark procedure concur with
what Li and Liang (2008) observed, and the proposed estimation procedure performs
also well. This indicates that the proposed GLRT under the measurement error setting
works well numerically and confirms our theoretical findings.

4.2 An empirical example

Weanalyzed adata setwith 358 complete observations fromadiabetes study conducted
in centralVirginia forAfricanAmericans,whose aimwas at understanding the relation-
ship between the prevalence of obesity, diabetes, and other cardiovascular risk factors.
There are 14 covariates of potential interest: “TC, Total Cholesterol”; “SG, Stabilized
Glucose”; “HDL,High-Density Lipoprotein”; “Ratio, Cholesterol/HDL”; “GH,Gly-
cosolated Hemoglobin”; “age”; “gender”; “height”; “weight”; “frame”; “FSBP, First
Systolic Blood Pressure”; “ FDBP, First Diastolic Blood Pressure”; “waist” and “hip”.
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Table 5 The simulation results
for Example 4

Significant level 0.01 0.025 0.05 0.10

Benchmark procedure using ξ(v)

n = 500

Co = 0.00 0.011 0.029 0.047 0.090

Co = 0.50 0.017 0.023 0.065 0.142

Co = 1.00 0.079 0.198 0.278 0.357

Co = 1.50 0.254 0.456 0.503 0.656

Co = 2.00 0.687 0.774 0.876 0.891

Co = 2.50 0.856 0.904 0.923 0.941

Co = 3.00 0.917 0.946 0.975 0.991

n = 1000

Co = 0.00 0.010 0.027 0.043 0.092

Co = 0.50 0.027 0.032 0.071 0.151

Co = 1.00 0.089 0.223 0.313 0.393

Co = 1.50 0.295 0.482 0.598 0.714

Co = 2.00 0.759 0.821 0.911 0.955

Co = 2.50 0.911 0.955 0.964 0.982

Co = 3.00 1.000 1.000 1.000 1.000

Proposed procedure using estimated ξ̂ (v)

n = 500

Co = 0.00 0.008 0.021 0.044 0.104

Co = 0.50 0.014 0.048 0.089 0.176

Co = 1.00 0.165 0.212 0.309 0.423

Co = 1.50 0.406 0.498 0.579 0.623

Co = 2.00 0.643 0.798 0.857 0.904

Co = 2.50 0.889 0.913 0.937 0.957

Co = 3.00 0.924 0.943 0.987 0.992

n = 1000

Co = 0.00 0.009 0.022 0.041 0.103

Co = 0.50 0.018 0.054 0.107 0.188

Co = 1.00 0.179 0.253 0.337 0.495

Co = 1.50 0.467 0.539 0.618 0.696

Co = 2.00 0.701 0.836 0.911 0.936

Co = 2.50 0.938 0.955 0.964 0.991

Co = 3.00 0.991 0.993 1.000 1.000

Usually, GH over 7.0 indicates a positive diagnosis of diabetes. So Y was assigned
1 if GH > 7.0 and 0 otherwise. We are interested in the relationship between the
probability being diabetes and the collected covariates. Cambien et al. (1987) found
that blood pressure is strongly associated with glucose. Han et al. (1995) also found
that Ratio is associated with TC and HDL. On the basis of preliminary results, we
treat η = (FSBP,FDBP)T and V = SG as ancillary variables to remit unobserv-
able variables ξ = (ξ1(V ), ξ2(V ))T . Take X = (TC,HDL)T and U = Ratio to
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Fig. 3 Simulation results (n = 1000) for Example 3—power plot for the bootstrap test proposed in Sect.
4.2. The significance level is 0.01, 0.025, 0.05 and 0.01. The dotted lines represent the power functions for
the benchmark procedure by directly using ξ(v). The solid lines represent the proposed procedure using
estimated ξ̂ (v)

possibly investigate the varying coefficient functions α(·) = (α1(U ), α2(U ))T . Other
W -variables include age, gender, height, weight, frame, waist, hip. Both
gender and frame are discrete variables of 1 and 0 for male and female, and of
1, 2, 3 for small, medium and large frames, respectively. All continuous covariates
were standardized.

We used the proposed quasi-likelihood method and the penalized quasi-likelihood
with SCAD penalty for estimation and variable selection. To make a comparison,
we also considered AIC, BIC and RIC variable selection procedures. The bandwidth
h = 0.5n−1/3 was used for local regression fitting. The results are reported in Table 6.
We can see that the SCAD procedure is in conjunction with BIC and RIC proce-
dures, and all the three methods indicate that only the possibly remitted variables
ξ = (ξ1(V ), ξ2(V ))T are significant, while all W -variable are not significant. Com-
pared with the estimated value of β, the SCAD-based estimates for β are close to
those obtained using the quasi-likelihood. AIC selects extra 2 W -variables: waist
and hip. Recalling the simulation performance in Sect. 4.1, AIC may suggest an
over-fitted model. As such, the model selected through SCAD, BIC and RIC may be
more proper.
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Table 6 Estimation and variable selection results of real data analysis

Method Age Gender Height Weight Frame Waist Hip ξ̂1(V ) ξ̂2(V )

Quasi-
likelihood

0.0365 −0.2312 0.3174 −0.0863 −0.2044 0.06752 −0.7062 13.7826 −12.1243

SCAD 0 0 0 0 0 0 0 13.5329 −10.9978

RAIC 0 0 0 0 0 0.6302 −0.6364 13.4154 −11.3623

RBIC 0 0 0 0 0 0 0 13.6825 −11.5036

RRIC 0 0 0 0 0 0 0 13.6825 −11.5036
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Fig. 4 Results for real data example. The local linear estimators for TC-α1(u) (the left panel) and HDL-
α2(u) (the right panel) against variable U = Ratio and the associated 95% pointwise confidence intervals
(dotted lines)

We further considered estimation procedure and variable selection for X -variables.
Weconducted500bootstraps to testα1(·) = 0.The correspondingGLRT-basedpvalue
is 0.0711, larger than the 97.5% quantile of 500 bootstraps, 0.0418, and suggests a
rejection of the null hypothesis. In the same way, we tested α2(·) = 0 and got the
corresponding p value 0.3027, much larger than the 97.5% quantile of 500 bootstraps,
0.0355. This also indicates that we should reject the null hypothesis. The estimated
curves associated with their 95% pointwise confidence bands are depicted in Fig. 4,
which shows a nonzero and nonlinear pattern. As a result, both α1(u) and α2(u) should
be included in the final model.
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