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Abstract We consider the estimation of the tail coefficient of a Weibull-type distrib-
ution in the presence of random covariates. The approach followed is non-parametric
and consists of locally weighted estimation in narrow neighbourhoods in the covariate
space. We introduce two families of estimators and study their asymptotic behaviour
under some conditions on the conditional response distribution, the kernel function, the
density function of the independent variables, and for appropriately chosen bandwidth
and threshold parameters. We also introduce a Weissman-type estimator for estimat-
ing upper extreme conditional quantiles. The finite sample behaviour of the proposed
estimators is examined with a simulation experiment. The practical applicability of
the methodology is illustrated on a dataset of sea storm measurements.
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1 Introduction

The estimation of the tail index of a distribution plays a central role in the area of
extreme value statistics. It is typically the first step in a practical data analysis, since
such an estimate is needed in models used to estimate upper extreme quantiles. In this
paper, we will consider some estimation problems within the Gumbel class, which
is a rich subclass of the max-domain of attraction. Although different types of tail
behaviour are possible, all these distributions have in common an extreme value index
γ equal to zero and thus differentiating them on the basis of this parameter alone is
impossible. To solve this issue, we restrict our study to Weibull-type distributions,
which have distribution functions F defined for some θ > 0 as

1 − F(y) = exp(−y1/θ �∗(y)), y > 0, (1)

where �∗ is a slowly varying function at infinity, i.e.

�∗(λy)
�∗(y)

→ 1 as y → ∞ for all λ > 0.

The parameter θ , called theWeibull-tail coefficient, clearly governs the tail behaviour,
where larger values correspond to a slower decay of 1 − F towards zero. Different
values of it allow the Weibull-type distributions to cover a large part of the Gumbel
class, and hence to constitute a flexible subgroup. The model finds important appli-
cations in areas such as hydrology, meteorology, environmental and actuarial science,
to name but a few. For a given dataset, one can evaluate the adequacy of the Gumbel
class by performing a test for γ = 0 versus γ �= 0, see e.g. Segers and Teugels (2000).
The more specific Weibull-type class can be visually evaluated by an inspection of
the Weibull quantile plot, which should become linear in the largest observations.
Goegebeur and Guillou (2010) introduced a formal goodness-of-fit test for the semi-
parametric Weibull-type model based on a quantification of the linearity of the upper
part of the Weibull quantile plot. In the analysis of univariate Weibull-type tails, the
estimation of θ and the subsequent estimation of upper extreme quantiles assume
a central position. We refer to Broniatowski (1993), Beirlant et al. (1995), Girard
(2004), Gardes and Girard (2005, 2008a), Diebolt et al. (2008), Dierckx et al. (2009),
Goegebeur et al. (2010), Goegebeur and Guillou (2011), and the references therein.

In this paper, we will consider the estimation of the Weibull-tail coefficient and
of upper extreme quantiles when a random covariate X is recorded simultaneously
with the variable of interest Y . Thus, we do not consider the classical experimental
situationwhere the researcher can control X and then subsequently observe Y . Instead,
X and Y are observed together, and therefore X is considered to be random. Having
methodology that allows taking covariate information into account in an extreme value
analysis is important as it enables one to differentiate the tail behaviour in terms of
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Kernel regression with Weibull-type tails 1137

one or more risk factors. Our approach to this regression on extreme values is non-
parametric and based on locally weighted estimation.

The regression analysis of extreme values with fixed, i.e. non-random, covariates
has been extensively considered in the extreme value literature in a parametric, semi-
parametric or non-parametric way, but mostly in the case of Pareto-type distributions.
On the contrary, the development of extreme value regression methodology with ran-
dom covariates is still in its infancy. Somemethodology has been introduced but again
focusing on the case of Pareto-type distributions. One has to wait for Daouia et al.
(2013) for a non-parametric estimationmethod that is valid in the general max-domain
of attraction. In the present paper, we will develop a methodology for estimating the
tail coefficient and upper extreme conditional quantiles for the class of the Weibull-
type distributions, which, asmentioned above, forms a rich subset of the Gumbel class.
To the best of our knowledge, this estimation problem has not been considered in the
extreme value literature.

The remainder of this paper is organized as follows. In the next section we intro-
duce two classes of estimators for the conditional Weibull-tail coefficient and study
their asymptotic properties. The estimation of upper extreme conditional quantiles is
considered in Sect. 3. In Sect. 4 we examine the small sample behaviour of the pro-
posed estimators by a simulation experiment, and in Sect. 5 we show the results for the
real data example. Section 6 concludes the paper. The proofs of the main results are
deferred to the appendix, while for other results we refer to the supporting information
which is available online.

2 Construction and asymptotic properties

Let (Xi ,Yi ), i = 1, . . . , n, be independent copies of the random vector (X,Y ) ∈
R
q×R+,0, where X has a distributionwith joint density function g, and the conditional

survival function of Y given X = x , denoted F̄(y; x) := 1 − F(y; x), is of Weibull-
type, that is, for some θ(x) > 0,

F̄(y; x) = exp(−y1/θ(x)�∗(y; x)), y > 0, (2)

where �∗ is a slowly varying function at infinity. Themodel can also be defined in terms
of the generalized inverse of F , denoted Q, i.e. Q(p; x) := inf{y : F(y; x) ≥ p},
0 < p < 1:

Q(p; x) = (− ln(1 − p))θ(x)�(− ln(1 − p); x), (3)

where � is again a slowly varying function at infinity (Bingham et al. 1987, p. 6).
Our approach to the estimation of the Weibull-tail coefficient and of extreme con-

ditional quantiles is based on elemental kernel statistics of the form

T (t)
n (x, K ) := 1

n

n∑

i=1

Khn (x − Xi )(ln Yi − lnωn)
t+1{Yi > ωn}, (4)
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1138 T. de Wet et al.

where t ≥ 0, Khn (x) := K (x/hn)/h
q
n , where K is a joint density function on Rq , hn

is a non-random sequence of bandwidths with hn → 0 if n → ∞, 1{A} is the indicator
function on the event A and ωn is a local non-random threshold sequence satisfying
ωn → ∞ if n → ∞. The parameter t is a tuning parameter, introduced to allow for
more flexibility. Since θ(x) is a tail parameter for the conditional distribution of Y
given X = x , it is natural to consider statistics like (4) that involve exceedances over
a high threshold, and that also occur in some neighbourhood of the point of interest
x ∈ R

q .
To obtain the limiting behaviour of (4), we need to introduce some conditions on

the conditional quantile function Q(p; x), the density function g of the independent
variables and the kernel function K . Concerning Q(p; x), we introduce the so-called
second-order condition on its slowly varying function �.

Assumption (R) There exists a constant ρ(x) < 0 and a rate function b(.; x) satis-
fying b(y; x) → 0 as y → ∞, such that for all λ ≥ 1, we have

ln

(
�(λy; x)
�(y; x)

)
= b(y; x)Dρ(x)(λ)(1 + o(1))

with Dρ(x)(λ) :=
∫ λ

1
tρ(x)−1dt , and where o(1) is uniform in λ ≥ 1, as y → ∞.

Since ln x ∼ x−1 for x → 1, we have that Assumption (R)makes the convergence
of �(λy; x)/�(y; x) to its limit, being 1, explicit. In fact, as shown in Geluk and de
Haan (1987), (R) implies that |b(y; x)| is regularly varying with index ρ(x), i.e.
|b(λy; x)|/|b(y; x)| → λρ(x) as y → ∞ for all λ > 0, so ρ(x) governs the rate of
this convergence. If |ρ(x)| is small then the convergence is slow and the estimation of
tail quantities is generally difficult. Assumption (R) is well accepted in the literature.
It was formulated in a slightly different form in Diebolt et al. (2008) and Goegebeur
and Guillou (2011) in the Weibull-type framework, and Gardes and Girard (2008b)
invoked it for tail analysis in the Fréchet max-domain of attraction.

As a first step in the development of estimators for θ(x), we study in Lemma 1,
given in the appendix, the local behaviour of the conditional expectation of a power
transformed excess

m(ωn, t; x) := E[(ln Y − lnωn)
t+1{Y > ωn}|X = x].

Then, to deal with the randomness of X , we have to consider the unconditional expec-
tation

m̃n(K , t; x) := E[Khn (x − X)(ln Y − lnωn)
t+1{Y > ωn}]

which is exactly the expectation of our elemental kernel T (t)
n . In Lemma 2, given in

the appendix, we state its main asymptotic expansion under the following additional
assumptions. The density function of the covariate X is assumed to satisfy a Lipschitz
condition. For all x, z ∈ R

q , the Euclidean distance between x and z is denoted by
d(x, z).
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Kernel regression with Weibull-type tails 1139

Assumption (G) There exists cg > 0 such that |g(x) − g(z)| ≤ cgd(x, z) for all
x, z ∈ R

q .

For the weight or kernel function K we assume the following.

Assumption (K) K is a bounded density function on Rq , with support � included in
the unit hypersphere in R

q .

This assumption is standard in the framework of kernel estimation.
Finally, since the estimation takes place in a narrow neighbourhood in the covariate

space, we have to introduce a condition on the oscillation of the conditional response
distribution, when considered as a function of x . This condition is formulated in terms
of the conditional expectation m(ωn, t; x).
Assumption (F)The conditional excess functionm(ωn, t; x) satisfies that, forωn →
∞, hn → 0, and some T > 0,

	(ωn, hn; x) := sup
t∈[0,T ]

sup
z∈�

∣∣∣∣
m(ωn, t; x − hnz)

m(ωn, t; x) − 1

∣∣∣∣ → 0 if n → ∞.

This assumption is a smoothness condition on the underlying conditional distribution
function (when t = 0) and on some conditional expectations of power transformed
excesses (when t > 0). As illustrated in the supporting information, which is online
available, this assumption is satisfied in case t = 0 by imposing some more structure
on F̄ (in particular that �∗(.; x) is normalized) and suitable conditions on hn and ωn .

From Lemmas 1 and 2 in the appendix, we obtain the following asymptotic expan-
sion in case t > 0

E(T (t)
n (x, K )) = F̄(ωn; x)

(− ln F̄(ωn; x))t
g(x)θ t (x)
(t + 1)

×
{
1 + b(− ln F̄(ωn; x); x) t

θ(x)
(1 + o(1)) + O

(
1

(− ln F̄(ωn; x))1−ε

)

+O(hn) + O(	(ωn, hn; x))
}
, (5)

while for t = 0

E(T (0)
n (x, K )) = g(x)F̄(ωn; x)(1 + O(hn) + O(	(ωn, hn; x)). (6)

The leading terms of (5) and (6) motivate our estimators for θ(x):

θ̂ (1)
n (x; t, K1, K2) =

(
(− ln ˆ̄F(ωn; x))t T (t)

n (x, K1)


(t + 1)T (0)
n (x, K2)

)1/t

, t > 0,

θ̂ (2)
n (x; t, K1, K2) = (− ln ˆ̄F(ωn; x))T (t+1)

n (x, K1)

(t + 1)T (t)
n (x, K2)

, t ≥ 0,
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1140 T. de Wet et al.

where K1 and K2 are kernel functions satisfying (K), ˆ̄F(ωn; x) denotes a non-
parametric estimator for F̄(ωn; x):

ˆ̄F(ωn; x) := T (0)
n (x, K )

ĝn(x)
with ĝn(x) := 1

n

n∑

i=1

Khn (x − Xi ), (7)

being a classical kernel density estimator for g. The estimators can also bemotivated as
generalizations of estimators that were initially presented in the univariate independent
and identically distributed (i.i.d.) setting, e.g. those by Goegebeur et al. (2010), to the
regression case.

We can now establish the limiting distributions of θ̂
(1)
n (x; t, K1, K2) and θ̂

(2)
n

(x; t, K1, K2), when appropriately normalized. These are given in Theorems 1 and 2,
respectively.

Theorem 1 Let (X1,Y1), . . . , (Xn,Yn) be a sample of independent copies of
the random vector (X,Y ) where the conditional quantile function of Y given
X = x satisfies (3) with X a random vector having density function g, and
assume (R), (G), (F) hold and kernel functions K1 and K2 satisfying (K). For
all x ∈ R

q where g(x) > 0, we have that if hn → 0, ωn → ∞ for
n → ∞, with nhqn F̄(ωn; x) → ∞,

√
nhqn F̄(ωn; x)b(− ln F̄(ωn; x); x) → λ,

nhq+2
n F̄(ωn; x) → 0,

√
nhqn F̄(ωn; x)/(− ln(F̄(ωn; x)))1−ε → 0 for some small

ε > 0, and nhqn F̄(ωn; x)	2(ωn, hn; x) → 0, then

√
nhqn F̄(ωn; x)g(x) [θ̂ (1)

n (x; t, K1, K2) − θ(x)] D→ N

(
λ
√
g(x),

θ2(x)

t2
2(t + 1)

[

(2t + 1)‖K1‖22 + 
2(t + 1)‖K2‖22 − 2
2(t + 1)‖K1K2‖1

])
.

Theorem 2 Under the same assumptions as in Theorem 1, we have

√
nhqn F̄(ωn; x)g(x) [θ̂ (2)

n (x; t, K1, K2) − θ(x)] D→ N

(
λ
√
g(x),

θ2(x)
(2t + 1)

(t + 1)
2(t + 1)

[
2(2t + 1)‖K1‖22 + (t + 1)‖K2‖22 − 2(2t + 1)‖K1K2‖1

])
.

Note that the mean of the limiting distribution is not necessarily centred at zero,
meaning that the estimators may show some asymptotic bias, which is common for
estimators of tail parameters. Similar to the estimation of univariate Weibull-type tails
(see e.g. Goegebeur et al. 2010; Gardes and Girard 2008a) we have that, apart from
the factor

√
g(x), the mean of the asymptotic distribution only depends on λ, and not

on other distributional parameters, nor on t . As expected, the asymptotic variance is
increasing in θ(x) (i.e. when the tail of the conditional response distribution becomes
more heavy), and also depends on the kernel functions K1 and K2, as well as on the
tuning parameter t . In the common situation where the kernel functions K1 and K2
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Kernel regression with Weibull-type tails 1141

are assumed to be equal, the asymptotic variance expressions in Theorems 1 and 2
simplify and are given by

AVar1 = θ2(x)‖K‖22
t2

(

(2t + 1)


2(t + 1)
− 1

)
,

AVar2 = θ2(x)‖K‖22

(2t + 1)


2(t + 1)
,

respectively. If we compare the two variances (without the factor θ2(x)‖K‖22 which
is in common), we can see that no estimator performs uniformly best, although
θ̂

(1)
n (x; t, K , K ) outperforms θ̂

(2)
n (x; t, K , K ) over a wide range of values of the para-

meter t .

3 Upper extreme quantile estimation

In this section, we study the estimation of upper extreme conditional quantiles. Let
Q̂(p; x) denote the kernel estimator of the conditional quantile function Q(p; x), i.e.

Q̂(p; x) := inf{y : ˆ̄F(y; x) ≤ 1 − p}, p ∈ (0, 1),

where ˆ̄F is defined in (7).
We consider the behaviour of Q̂(1 − αn; x) for αn → 0 as n → ∞. In the first

instance, we work under an intermediate order condition
√
nhqnαn(− ln αn) → ∞.

Let V (y; x) := y1/θ(x)�∗(y; x), so that F̄(y; x) = exp(−V (y; x)) and assume that
�∗(y; x) is a normalized slowly varying function (see Bingham et al. 1987, p. 15), i.e.

�∗(y; x) = c(x)e
∫ y
1

ε(u;x)
u du,

for y ≥ 1, where c(x) > 0 and ε(t; x) → 0 as t → ∞. In terms of V (y; x), we have
that

V (y; x) = c(x)e
∫ y
1

ε̃(u;x)
u du,

where ε̃(t; x) → 1/θ(x) as t → ∞. In the sequel, we will say for short that V (y; x)
is normalized regularly varying. Note that in this case

yV ′(y; x)
V (y; x) = ε̃(y; x), a.e.

Theorem 3 Let (X1,Y1), . . . , (Xn,Yn) be a sample of independent copies of the ran-
dom vector (X,Y ) where the conditional survival function of Y given X = x satisfies
(2) with a normalized regularly varying function V (y; x), X a random vector having
density function g, and assume (G), (F) and (K) hold. For all x ∈ R

q where g(x) > 0,
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1142 T. de Wet et al.

we have that if hn → 0, αn → 0 for n → ∞, with nhqnαn → ∞, nhq+2
n αn → 0, and

nhqnαn	
2(Q(1 − αn; x)(1 + o(1)), hn; x) → 0 then

(− ln αn)

√
nhqnαng(x)

[
Q̂(1 − αn; x)
Q(1 − αn; x) − 1

]
D→ N

(
0, θ2(x)‖K‖22

)
.

Similar to theWeibull-tail coefficient estimators (see Theorems 1 and 2), the asymp-
totic variance of the extreme quantiles is increasing in θ(x) and depends on the kernel
function K . The condition nhqnαn → ∞ in Theorem 3 implies that αn should be of
a larger order than 1/(nhqn), and hence, ultimately, αn > 1/n. As a consequence, the
estimator Q̂(1 − αn; x) cannot be used to extrapolate beyond the data range.

For the purpose of estimating quantiles that are further in the upper tail than
the (1 − αn)− quantile, we propose an estimator of Q(1 − βn; x) with τn :=
(− ln βn)/(− ln αn) → τ ∈ (1,∞) if αn → 0, that is in the spirit of the Weiss-
man estimator (Weissman 1978):

Q̂W (1 − βn; x) := Q̂(1 − αn; x)τ θ̂(x)
n ,

where θ̂ (x) is either θ̂
(1)
n (x; t, K1, K2) or θ̂

(2)
n (x; t, K1, K2).

Theorem 4 Let (X1,Y1), . . . , (Xn,Yn) be a sample of independent copies of the ran-
dom vector (X,Y ) where the conditional survival function of Y given X = x satisfies
(2) with a normalized regularly varying function V (y; x), X a random vector having
density function g, and assume (R), (G), (F) hold and kernel functions K1 and K2
satisfying (K). For all x ∈ R

q where g(x) > 0, we have that if hn → 0, αn → 0,
τn → τ ∈ (1,∞) for n → ∞, with nhqnαn → ∞ and, for some small ε > 0,
√
nhqnαn max

{
b(− ln αn; x), hn, 1

(− ln αn)1−ε
, 	(Q(1 − αn; x)(1 + o(1)), hn; x)

}
→ 0,

then

√
nhqnαng(x)

ln τn

[
Q̂W (1 − βn; x)
Q(1 − βn; x) − 1

]
D→ N (0, V 2(x)),

where V 2(x) denotes the asymptotic variance of either θ̂
(1)
n (x; t, K1, K2) or θ̂

(2)
n

(x; t, K1, K2).

Remark that the extreme quantile estimator inherits the asymptotic behaviour of
the estimator for θ(x) that was used. For what concerns the improvement of Q̂W (1−
βn; x) over Q̂(1 − αn; x) in terms of extrapolation: note that one can take e.g. βn =
ατ∗
n , for some τ ∗ > 1, leading to βn > 1/nτ∗

, which relaxes the earlier constraint
that αn > 1/n. By taking τ ∗ large one thus improves considerably the order of
the quantile that can be estimated. Note also that the only condition that we impose
on βn , namely (− ln βn)/(− ln αn) → τ ∈ (1,∞), simplifies the interpretation in
terms of extrapolation compared to Daouia et al. (2013) where they impose several
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Kernel regression with Weibull-type tails 1143

conditions that mix the parameters αn and βn together with several functions involving
the conditional extreme value index, the conditional quantile and an auxiliary function.
In that case, it is very difficult to obtain information about the possible rate of βn .

4 Simulations

In this section, we illustrate our methodology with a simulation experiment. For the
practical implementation of our estimators, we have to determine both the bandwidth
parameter hn and the threshold ωn . For the latter, we take, as usual in extreme value
statistics, the (k + 1)-th largest response observation in the ball B(x, hn). There is,
in fact, some discrepancy between the theory, established in case of a fixed, i.e. non-
random, threshold and practical use with a data-driven one. This is often observed
in extreme value statistics, see for instance, Smith (1987) and Davison and Smith
(1990), in the framework of GPDmodelling of excesses, or Wang and Tsai (2009) and
Goegebeur et al. (2014b), for Pareto-type models. Instead of a non-random threshold
one could haveworkedwith a random threshold, aswas done, e.g. by Stupfler (2013) in
the general max-domain of attraction. However, this approachwith a random threshold
would make the theoretical derivations much more difficult. Also, in the general max-
domain of attraction, Goegebeur et al. (2014a) observed that working with a non-
random threshold can lead to the same asymptotic distributions as the one obtained
under a random threshold (as in Stupfler 2013), though the practical performance of
the approach based on a random threshold is not better. One can expect that similar
findings will also apply to the present paper. The selection of (hn, k) is carried out
using a data-driven method which does not require any prior knowledge about the
function θ(x). This approach is based on a two-step procedure, where we first select
the bandwidth parameter hn using a cross-validation criterion

hcv := argmin
hn∈H

n∑

i=1

n∑

j=1

(
1
{
Yi ≤ Y j

} − F̂n,−i
(
Y j ; Xi

))2
, (8)

where H is a grid of values for hn and

F̂n,−i (y; x) :=
∑n

j=1, j �=i Khn

(
x − X j

)
1
{
Y j ≤ y

}
∑n

j=1, j �=i Khn

(
x − X j

) .

This criterionwas introduced inYao (1999), implemented byGannoun et al. (2002) and
considered in an extreme value context by Daouia et al. (2011, 2013). Using this band-
width, we compute in the second step, the estimates for θ(x) with k = 5, . . . , kmax,
where kmax is an appropriately chosen value. The median of these estimates is then
the estimate we use for θ(x). From the simulation results reported in Gardes and
Girard (2008a) and Goegebeur et al. (2010) for the estimation of θ in the univariate
framework, we deduce that the parameter kmax should be chosen relatively small com-
pared to the typical number of observations in B(x, hcv), because for Weibull-type
distributions the bias of the tail estimators is in some cases important. Concerning the
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1144 T. de Wet et al.

estimation of upper extreme conditional quantiles, we use the estimate for θ(x) we
just obtained and compute the extreme conditional quantiles for k = 5, . . . , kmax. We
use again the median of these values as our final conditional quantile estimate.

We report the results for two conditional distributions of Y given X = x , which are
of Weibull type:

• The strict Weibull distribution W(α(x), λ),

1 − F(y; x) = e−λyα(x)
, y > 0;α(x), λ > 0,

for which θ(x) = 1/α(x) and ρ(x) = −∞. We consider the case λ = 1.
• The extended Weibull distribution EW(α(x), β) (Klüppelberg and Villaseñor
1993),

1 − F(y; x) = r(y)e−yα(x)
,

where α(x) > 0 and r(y) is a regularly varying function at infinity with index β.
Here θ(x) = 1/α(x), b(y; x) = −β ln y/[α2(x)y] and ρ(x) = −1. We choose
r(y) = 1/y.

In the simulation experiment, we also considered some other conditional Weibull-
type distributions, like the Gaussian, Gamma and perturbed Weibull distributions, but
these lead to similar results and therefore, for brevity, we omit them from the paper.

For the Weibull-tail coefficient θ(x) and the covariate distribution we consider two
settings:

• Setting 1: X ∼ U (0, 1) and

θ(x) = 1

2

(
1

10
+ sin(πx)

)(
11

10
− 1

2
exp

(
−64

(
x − 1

2

)2
))

.

This function was also considered in Daouia et al. (2011), though in the framework
of Pareto-type distributions. The function is differentiable with several stationary
points.

• Setting 2: X ∼ Beta(1.25, 1.5) and

θ(x) = 1

4

{
1 + exp(−60(x − 1/4)2)1{3x ∈ (0, 1]} + exp(−5/12)1{3x ∈ (1, 2]}

+(5 − 6x)(exp(−5/12)1{3x ∈ (2, 5/2]} − 1{3x ∈ (5/2, 3)})} ,

which was proposed by Gardes and Stupfler (2013), also in the framework of
Pareto-type modelling. This function is considered because it has a smooth but
non-constant part, a constant part and also some points where it is continuous but
not differentiable.

For all the distributions, we simulate N = 500 samples of size n = 1000. As
measures of efficiency we use the empirical root mean squared error and the bias,
computed over points x1, . . . , xM , regularly spread over the covariate space, as follows
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RMSE(̂ξ (.)) :=
√√√√ 1

MN

M∑

m=1

N∑

j=1

(̂
ξ j (xm) − ξ(xm)

)2
,

Bias(̂ξ (.)) := 1

M

M∑

m=1

∣∣∣∣∣∣
1

N

N∑

j=1

ξ̂ j (xm) − ξ(xm)

∣∣∣∣∣∣
,

where ξ̂ j (xm) is the estimator for the tail parameter ξ(xm), either the Weibull-tail
coefficient or an upper extreme conditional quantile, from simulation run j at covariate
value xm . Note that in the bias calculation, we use the absolute value to avoid that
positive and negative biases at different values of x cancel each other out.

In the estimation of θ(x), we consider the estimators θ̂
(1)
n (x; t, K1, K2) and

θ̂
(2)
n (x; t, K1, K2) for different values of t , and where both kernel functions are taken
as the bi-quadratic kernel function

K (x) = 15

16

(
1 − x2

)2
1{x ∈ [−1, 1]}.

The choice of the kernel function is not very crucial for the practical performance
of our estimators. Note that we rerun our simulations for other choices of kernel
functions, e.g. the triweight kernel function K (x) = 35(1 − x2)3/32, x ∈ [−1, 1],
and the results do not change a lot. To keep the length of the paper under control,
we only report the results for this bi-quadratic function. The bandwidth hn is selected
using the cross-validation criterion in (8) on a grid of hn ∈ {0.05, 0.075, . . . , 0.15},
whereafter the estimate of θ(x) is computed as described above using kmax = 25.
Concerning the estimation of upper extreme conditional quantiles, we examine the
behaviour of Q̂W (1 − βn; x) obtained with θ̂

(1)
n (x; t, K , K ) and θ̂

(2)
n (x; t, K , K ),

denoted as Q̂(1)
W (1 − βn; x) and Q̂(2)

W (1 − βn; x), respectively, and quantile levels
βn = 1/1200, 1/2000 and 1/4000. The considered quantile orders imply a rather
serious extrapolation since the local sample sizes are typically much smaller than
n. These quantile estimators are compared with the extreme quantile estimator from
Daouia et al. (2013), denoted q̃ RP

n (βn|x), which is developed for the full max-domain
of attraction, and therefore it also applies in our context of conditional Weibull-type
tails. Concerning the latter we considered constant and linear weights, leading to the
estimators q̃ RP,1

n (βn|x) and q̃ RP,2
n (βn|x), respectively, and both were implemented

with J = 3 and J = 4, where J can be seen as the number of elemental Pickands
statistics the estimator is based on. For more details, we refer to the Daouia et al.
(2013) paper. The data-driven method is the one where h and k are selected separately,
which is consistent with the data-driven method considered for our estimators. Note
that for the estimation of theWeibull-tail coefficient θ(x) there is to date no alternative
estimation procedure available as basis for comparison.

Thus, summarized, in the simulation experiment we compared the small sam-
ple behaviour of the Weibull-tail coefficient estimators θ̂

(1)
n (x; t, K , K ) and θ̂

(2)
n

(x; t, K , K ), and that of the extreme conditional quantile estimators Q̂(1)
W (1− βn; x),

Q̂(2)
W (1 − βn; x), q̃ RP,1

n (βn|x) and q̃ RP,2
n (βn|x). The estimator θ̂

(1)
n (x; t, K , K ) out-
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performs θ̂
(2)
n (x; t, K , K ) in terms of bias and RMSE, for all values of t and all

distributions, and similarly, the extreme quantile estimator Q̂(1)
W (1− βn; x) has a per-

formance superior to that of Q̂(2)
W (1 − βn; x). For what concerns the Daouia et al.

(2013) estimators, q̃ RP,1
n (βn|x) with J = 4 has the best performance. For brevity, in

the paper we only comment on the performance of the best estimators and draw the
following conclusions

• In Tables 1 and 2, we show the performance of θ̂
(1)
n (x; t, K , K ) and Q̂(1)

W (1 −
βn; x), obtained with the data-driven strategy on Settings 1 and 2, respectively.
The results indicate that in most cases the best estimation results are obtained for
small values of the tuning parameter t . As expected, the behaviour of the extreme
quantile estimator deteriorates as more extreme quantile orders are considered,
although the increase in bias and RMSE is modest.

• Comparison of the results in Tables 1 and 2with Table 3 indicates that the estimator
Q̂(1)

W (1 − βn; x) is better than q̃ RP,1
n (βn|x) in terms of RMSE for all values of βn

and t . In terms of bias, it is better for almost all βn and t .

From these simulations, one can say that the proposed Weissman-type extreme
conditional quantile estimator is competitive compared to the Daouia et al. (2013)
estimator, which is to date the only alternative. However, this result is not completely
unexpected since the Daouia et al. (2013) estimator is more general in that it was
proposed for the general max-domain of attraction, whereas ours is specific for the
class of Weibull-type distributions.

Table 1 Setting 1: Performance of θ̂
(1)
n (x; t, K , K ), Q̂(1)

W (1 − 1/1200; x), Q̂(1)
W (1 − 1/2000; x) and

Q̂(1)
W (1 − 1/4000; x)

t θ̂
(1)
n (x; t, K , K ) Q̂(1)

W (1 − 1/1200; x) Q̂(1)
W (1 − 1/2000; x) Q̂(1)

W (1 − 1/4000; x)
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Strict Weibull distribution

0.2 0.041 0.102 0.110 0.237 0.120 0.259 0.132 0.287

0.4 0.046 0.102 0.120 0.239 0.130 0.261 0.143 0.289

0.6 0.053 0.105 0.130 0.243 0.141 0.265 0.156 0.294

0.8 0.059 0.108 0.139 0.249 0.152 0.271 0.168 0.301

1.0 0.065 0.111 0.150 0.255 0.163 0.278 0.181 0.309

Extended Weibull distribution

0.2 0.041 0.101 0.113 0.231 0.124 0.253 0.139 0.283

0.4 0.049 0.103 0.127 0.237 0.140 0.260 0.157 0.290

0.6 0.057 0.106 0.140 0.243 0.154 0.267 0.174 0.298

0.8 0.063 0.110 0.153 0.250 0.169 0.274 0.190 0.307

1.0 0.069 0.113 0.164 0.257 0.182 0.282 0.205 0.315

The results are averaged over 500 Monte Carlo simulations, with n = 1000. The numbers in bold indicate
the value of t with smallest bias, respectively RMSE
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Table 2 Setting 2: Performance of θ̂
(1)
n (x; t, K , K ), Q̂(1)

W (1 − 1/1200; x), Q̂(1)
W (1 − 1/2000; x) and

Q̂(1)
W (1 − 1/4000; x)

t θ̂
(1)
n (x; t, K , K ) Q̂(1)

W (1 − 1/1200; x) Q̂(1)
W (1 − 1/2000; x) Q̂(1)

W (1 − 1/4000; x)
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Strict Weibull distribution

0.2 0.040 0.095 0.094 0.208 0.103 0.228 0.113 0.254

0.4 0.047 0.097 0.106 0.208 0.115 0.228 0.128 0.254

0.6 0.053 0.099 0.116 0.211 0.127 0.231 0.142 0.257

0.8 0.060 0.103 0.127 0.215 0.139 0.235 0.155 0.262

1.0 0.066 0.107 0.136 0.220 0.150 0.241 0.167 0.269

Extended Weibull distribution

0.2 0.037 0.094 0.095 0.201 0.105 0.220 0.118 0.247

0.4 0.045 0.096 0.108 0.203 0.120 0.224 0.136 0.251

0.6 0.052 0.099 0.120 0.208 0.134 0.228 0.151 0.256

0.8 0.059 0.102 0.132 0.213 0.146 0.235 0.165 0.263

1.0 0.065 0.106 0.142 0.219 0.157 0.241 0.178 0.271

The results are averaged over 500 Monte Carlo simulations, with n = 1000. The numbers in bold indicate
the value of t with smallest bias, respectively RMSE

Table 3 Performance of q̃ RP,1
n (1/1200|x), q̃ RP,1

n (1/2000|x) and q̃ RP,1
n (1/4000|x)with J = 4 in Setting

1 and Setting 2

q̃ RP,1
n (1/1200|x) q̃ RP,1

n (1/2000|x) q̃ RP,1
n (1/4000|x)

Bias RMSE Bias RMSE Bias RMSE

Setting 1

Strict Weibull 0.207 0.327 0.249 0.373 0.309 0.437

Extended Weibull 0.161 0.299 0.192 0.342 0.237 0.400

Setting 2

Strict Weibull 0.197 0.288 0.240 0.332 0.302 0.393

Extended Weibull 0.145 0.257 0.175 0.297 0.218 0.352

The results are averaged over 500 Monte Carlo simulations, with n = 1000

5 Case study: sea storm data

To illustrate the usefulness and practical relevance of the model considered and the
methodology developed in this paper, we will use the sea level data presented in
Chapter 6 of de Haan and Ferreira (2006); see also de Haan and de Ronde (1998) for
a more elaborate discussion. This dataset consists of measurements of wave height
(HmO) and still water level (SWL), both expressed in metres, recorded during 828
storm events that are relevant for the seawall called Pettemer Zeewering in the province
of North Holland (The Netherlands). The data have been extensively analysed in the
extreme value literature. For instance, in Draisma et al. (1999), the focus was on
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estimating the tail of the wave height distribution, ignoring the information in the
variable still water level. Their analysis indicated that the HmO distribution belongs
to the Gumbel class. On the other hand, de Haan and de Ronde (1998) and Draisma
et al. (2004) took a multivariate approach and estimated the tail dependence between
the two variables, i.e. when both variables are simultaneously large. Our approach is
complementary to these earlier analyses in that we want to estimate tail parameters
of the HmO distribution given a value for the variable SWL , where the latter is not
necessarily extreme.

The scatterplot of the data is shown in Fig. 1a and clearly indicates that higherwaves
tend to occur together with higher still water levels. For engineers it can be of interest
to study the distribution of wave heights at a given value of still water level, e.g. to
decide on the height of a sea wall or, related to this, to assess the danger of overflowing
an existing sea wall. We illustrate the adequacy of the Weibull-type model (2) for the
variable HmO given that SWL = 0.6, by the Weibull quantile plot of the HmO
measurements with the corresponding SWL in a neighbourhood of SWL = 0.6, say
in the interval [0.5,0.7]; see Fig. 1b. TheWeibull quantile plot clearly becomes linear in
the largest observations, which supports the hypothesis of an underlying Weibull-type
model for the conditional response distribution. Similar quantile plots were obtained
at other positions in the covariate space. Obviously, estimators for parameters related
to the conditional distribution of HmO , given SWL , should take into account that the
available SWL measurements are in fact realizations of a random covariate. Based on
these considerations, we can conclude that the methodology developed in this paper
is appropriate for analysing the sea storm data.

As a first step we focus on the estimation of the conditional Weibull-tail coefficient
of the variable HmO , considered as a function of SWL . In Fig. 1c, we show the tail
coefficient estimates θ̂

(1)
n (SWL; 0.2, K , K ), where K is the bi-quadratic kernel func-

tion, as a function of SWL . We focus here only on the estimator θ̂
(1)
n (SWL; t, K , K ),

since in the simulations it was found to be superior to θ̂
(2)
n (SWL; t, K , K ) in terms

of bias and RMSE (for all values of t). The value of t used, t = 0.2, can also be
motivated from the simulation results. The tuning parameters h and k were selected
according to the data-drivenmethodwith hn ∈ {0.05, 0.075, . . . , 0.15} and kmax = 25,
as described in Sect. 4. The figure indicates that the estimates for the tail coefficient
generally follow the pattern in the data in that the estimates tend to be larger at SWL
positions where the extreme HmO measurements show larger spacings. To illustrate
the extra flexibility of our approach, we also performed a univariate analysis of the
tail of the HmO distribution, thus ignoring the information in SWL , using the mean
excess-based estimator for θ proposed in Goegebeur and Guillou (2011). Figure 1d
shows these univariate estimates for the Weibull-tail coefficient of the variable HmO
as a function of k. This plot suggests a stable estimate of θ for k values between 50 and
100, with median 0.42. This median value is also shown as the solid horizontal refer-
ence line in Fig. 1c, and we also show the univariate 95 % bootstrap interval (based
on 1000 bootstrap samples). The univariate estimate thus provides some average tail
coefficient estimate, and from the bootstrap interval we can conclude that it is clearly
not able to provide an adequate description of the conditional tails.
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Fig. 1 Sea storm data: a scatterplot of wave height (HmO) versus still water level (SW L), b Weibull

quantile plot of the HmO observations with 0.5 ≤ SW L ≤ 0.7, c θ̂
(1)
n (SW L; 0.2, K , K ) as a function of

SW L (the solid horizontal reference line represents the estimate obtained in a univariate analysis ignoring
SW L , and the dashed horizontal reference lines represent a univariate 95% bootstrap interval), d univariate

Weibull-tail coefficient estimate for HmO as a function of k, e Q̂(1)
W (1 − 1/1200; SW L) (solid line) and

Q̂(1)
W (1−1/4000; SW L) (dotted line) versus SW L and f Daouia et al. (2013) estimate q̃ RP,1

n (1/1200|SW L)

(solid line) and q̃ RP,1
n (1/4000|SW L) (dotted line) with J = 4 versus SW L

Next, we consider the estimation of upper extreme quantiles of the HmO distrib-
ution conditional on a given value of SWL . In Fig. 1e, we show the Weissman-type
quantile estimate Q̂(1)

W (1 − 1/1200; SWL) (solid line) and Q̂(1)
W (1 − 1/4000; SWL)
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(dotted line) as a function of SWL . This estimate represents the wave height that will
be exceeded on average once in 1200 and 4000 storms, respectively, for a given value
of SWL . Again the estimate follows the pattern in the data, and it clearly extrapolates
beyond the data range, as it should. As a simple goodness-of-fit check we also esti-
mated a less extreme conditional quantile, namely the conditional quantile 1-1/50, and
counted the number of observations exceeding that quantile. The proportion exceeding
was 0.024, which is in good agreement with the theoretical conditional exceedance
probability 0.02. In panel (f) of Fig. 1, we show the estimator q̃ RP,1

n (1/1200|SWL)

(solid line) and q̃ RP,1
n (1/4000|SWL) (dotted line) with J = 4 of Daouia et al. (2013).

This estimate also follows the pattern in the data reasonably well, although it is gener-
ally located slightly below our extreme conditional quantile estimate and also exhibits
a larger variability compared to our method. Note also that due to data sparsity, the
Daouia et al. (2013) estimate could not be computed for the very small and large val-
ues of SWL . For some values of SWL , the estimate q̃ RP,1

n (1/4000|SWL) is slightly
below q̃ RP,1

n (1/1200|SWL), which is due to the tuning parameter selection method.

6 Conclusion

We considered the estimation of the tail coefficient and upper extreme conditional
quantiles for Weibull-type distributions when there are random covariates. Two fam-
ilies of estimators were introduced and their asymptotic properties were derived. In
extreme value statistics, the bias of estimators for tail quantities is often an issue. In
future research, we will focus on the development of bias-corrected estimators and on
related robustness issues.

Appendix

In this appendix, we give the proofs of our main results.
First, we study the local behaviour of the conditional expectation of a power trans-

formed excess.

Lemma 1 Case (i), t = 0:

m(ωn, 0; x) = F̄(ωn; x).

Case (ii), t > 0: assume (3) and (R), then for some small ε > 0 and ωn → ∞ we
have that

m(ωn, t; x) = F̄(ωn; x)
(− ln F̄(ωn; x))t

θ t (x)
(t + 1)

{
1 + b(− ln F̄(ωn; x); x) t

θ(x)
(1 + o(1))

+O

(
1

(− ln F̄(ωn; x))1−ε

)}
.

Proof of Lemma 1 The case t = 0 is trivial so we only focus on the case where t > 0.
Let pn := F(ωn; x) and p̃n = 1− (1− pn)/ ln(e/(1− pn)). Note that pn ≤ p̃n ≤ 1.
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From the inverse probability integral transform, and denoting V ∼ U (0, 1), we have
that

m(ωn, t; x) = E[(ln Q(V ; x) − ln Q(pn; x))t+]

=
∫ p̃n

pn
(ln Q(v; x) − ln Q(pn; x))t dv

+
∫ 1

p̃n
(ln Q(v; x) − ln Q(pn; x))t dv

=: I1 + I2.

Concerning I1, from (3) and (R), we obtain

I1 = (1 − pn)
∫ 1

1− p̃n
1−pn

[
θ(x) ln

(
1 + − ln z

− ln(1 − pn)

)

+b(− ln(1 − pn); x)Dρ(x)

(
1 + − ln z

− ln(1 − pn)

)
(1 + o(1))

]t
dz.

Inspired by the inequality

ξ − 1

2
x2 ≤ Dξ (1 + x) − x ≤ 0, (9)

for ξ ≤ 0 and x ≥ 0, we write

I1 = 1 − pn
(− ln(1 − pn))t

∫ 1

1− p̃n
1−pn

(− ln z)t {θ(x)

+ θ(x)
− ln(1 − pn)

− ln z

[
ln

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]

+ b(− ln(1 − pn); x)(1 + o(1)) + b(− ln(1 − pn); x)− ln(1 − pn)

− ln z

×
[
Dρ(x)

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]
(1 + o(1))

}t

dz.

From (9) we deduce

sup
z∈[ 1− p̃n

1−pn
,1]

∣∣∣∣
− ln(1 − pn)

− ln z

[
ln

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]∣∣∣∣

≤ ln(1 − ln(1 − pn))

2(− ln(1 − pn))
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and hence

sup
z∈[ 1− p̃n

1−pn
,1]

∣∣∣∣
− ln(1 − pn)

− ln z

[
ln

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]∣∣∣∣ = o(1),

for pn ↑ 1. Similarly

sup
z∈[ 1− p̃n

1−pn
,1]

∣∣∣∣
− ln(1 − pn)

− ln z

[
Dρ(x)

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]∣∣∣∣ = o(1),

for pn ↑ 1.
By Taylor’s theorem,

I1 = 1 − pn
(− ln(1 − pn))t

{
θ t (x)

∫ 1

1− p̃n
1−pn

(− ln z)t dz

+ tθ t (x)
∫ 1

1− p̃n
1−pn

(− ln z)t
− ln(1 − pn)

− ln z

×
[
ln

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]
dz(1 + o(1))

+ b(− ln(1 − pn); x)tθ t−1(x)
∫ 1

1− p̃n
1−pn

(− ln z)t dz(1 + o(1))

+ b(− ln(1 − pn); x)tθ t−1(x)
∫ 1

1− p̃n
1−pn

(− ln z)t
− ln(1 − pn)

− ln z

×
[
Dρ(x)

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]
dz(1 + o(1))

}

=: 1 − pn
(− ln(1 − pn))t

{
I1,1 + I1,2 + I1,3 + I1,4

}
.

For I1,1, by straightforward calculus, we obtain

I1,1 = θ t (x)
(t + 1) + O

(
lnt (1 − ln(1 − pn))

− ln(1 − pn)

)
.

Concerning I1,2, use (9) to obtain

|I1,2| ≤ tθ t (x)

2(− ln(1 − pn))

∫ 1

1− p̃n
1−pn

(− ln z)t+1dz(1 + o(1)) = O

(
1

− ln(1 − pn)

)
.
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The terms I1,3 and I1,4 can be analysed in a similar way and yield

I1,3 = b(− ln(1 − pn); x)tθ t−1(x)
(t + 1)(1 + o(1)),

|I1,4| = O

(
b(− ln(1 − pn); x)

− ln(1 − pn)

)
.

Collecting the terms gives

I1 = 1 − pn
(− ln(1 − pn))t

{
θ t (x)
(t + 1) + b(− ln(1 − pn); x)tθ t−1(x)
(t + 1)(1 + o(1))

+ O

(
lnt (1 − ln(1 − pn))

− ln(1 − pn)

)}
.

For what concerns I2 we introduce the tail quantile functionU , defined asU (y; x) =
Q(1 − 1/y; x), y > 1, and write

I2 =
∫ 1

p̃n

[
lnU

(
1 − pn
1 − v

1

1 − pn
; x
)

− lnU

(
1

1 − pn
; x
)]t

dv.

The Weibull-type distributions are a subset of the Gumbel max-domain of attraction,
and hence for some positive function a(.; x) we have that

lim
y→∞

U (y; x)
a(y; x) (lnU (uy; x) − lnU (y; x)) = ln u, ∀u > 0, (10)

see for instance de Haan and Ferreira (2006), p. 101. Thus

I2 =
⎛

⎝
a
(

1
1−pn

; x
)

U
(

1
1−pn

; x
)

⎞

⎠
t ∫ 1

p̃n

⎡

⎣
lnU

(
1−pn
1−v

1
1−pn

; x
)

− lnU
(

1
1−pn

; x
)

a
(

1
1−pn

; x
)

/U
(

1
1−pn

; x
)

⎤

⎦
t

dv

=: ãt
(

1

1 − pn
; x
)
Ĩ2.

Note that (1 − pn)/(1 − v) ≥ (1 − pn)/(1 − p̃n) ≥ 1, for v ∈ [ p̃n, 1).
Now use Corollary B.2.10 in de Haan and Ferreira (2006) p. 376, to obtain for any

ε > 0 and for some c > 0 that for pn sufficiently large

Ĩ2 ≤ c
∫ 1

p̃n

(
1 − pn
1 − v

)tε

dv = c
1 − pn
1 − tε

1

(− ln(1 − pn))1−tε
(1 + o(1)),

provided tε < 1.
Finally, for ã(.; x) we use Lemma S1 (see supporting information) according to

which

ã

(
1

1 − pn
; x
)

∼ E(ln Q(V ; x) − ln Q(pn; x)|V > pn)
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if pn ↑ 1. Now

E(ln Q(V ; x) − ln Q(pn; x)|V > pn) = θ(x)

− ln(1 − pn)

∫ 1

0
(− ln z)dz

+ θ(x)
∫ 1

0

[
ln

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]
dz

+ b(− ln(1 − pn); x)
− ln(1 − pn)

∫ 1

0
(− ln z)dz(1 + o(1))

+ b(− ln(1 − pn); x)
∫ 1

0

[
Dρ(x)

(
1 + − ln z

− ln(1 − pn)

)
− − ln z

− ln(1 − pn)

]
dz(1 + o(1))

=: I2,1 + I2,2 + I2,3 + I2,4.

With arguments similar to those used when considering I1 we obtain

I2,1 = θ(x)

− ln(1 − pn)
,

I2,2 = O

(
1

(− ln(1 − pn))2

)
,

I2,3 = b(− ln(1 − pn); x)
− ln(1 − pn)

(1 + o(1)),

I2,4 = O

(
b(− ln(1 − pn); x)
(− ln(1 − pn))2

)
.

Consequently

E(ln Q(V ; x) − ln Q(pn; x)|V > pn) = O

(
1

− ln(1 − pn)

)
.

This then gives that

I2 = O

(
1 − pn

(− ln(1 − pn))t+1−δ

)
,

for some small δ > 0.
Combining the results for I1 and I2 establishes the result of Lemma 1. ��
Now, to deal with the randomness of X , we consider the unconditional expectation

m̃n(K , t; x) and derive in the next lemma its main asymptotic expansion under further
conditions.

Lemma 2 Assume (3), (R), (G), (K) and (F). For all x ∈ R
q where g(x) > 0 we

have that if ωn → ∞ and hn → 0 then

m̃n(K , t; x) = m(ωn, t; x)g(x)(1 + O(hn) + O(	(ωn, hn; x))).

123



Kernel regression with Weibull-type tails 1155

Note: (i) In Lemma 2, the proof of the result for the case t = 0 can also be obtained
without conditions (3) and (R). (i i) Because (Xi ,Yi ), i = 1, . . . , n, are independent
and identically distributed randomvectors,wehave that m̃n(K , t; x) = E(T (t)

n (x, K )).
The proof of Lemma 2 is elementary and therefore it is given in the supporting

information.
Since the estimators θ̂

(1)
n (x; t, K1, K2) and θ̂

(2)
n (x; t, K1, K2) are functions of

elemental kernel statistics (4), we need to derive the joint asymptotic behaviour
of a vector of such statistics, when appropriately normalized. Let T̃ (t)

n (x, K ) :=
(− ln F̄(ωn; x))t T (t)

n (x, K ), and for some fixed positive integer J ,

T
′
n := 1

F̄(ωn; x)g(x)
[T̃ (t1)

n (x, K1), . . . , T̃
(tJ )
n (x, KJ )],

and let � be a (J × J ) matrix with elements

σ j,k := θ t j+tk (x)‖K j Kk‖1
(t j + tk + 1).

Lemma 3 Let (X1,Y1), . . . , (Xn,Yn) be a sample of independent copies of the ran-
dom vector (X,Y ) where the conditional quantile function of Y given X = x satisfies
(3) with X a random vector having density function g, and assume (R), (G), (F) hold
and kernel functions K1, . . . , KJ satisfying (K). For all x ∈ R

q where g(x) > 0, we
have that if hn → 0, ωn → ∞ for n → ∞, with nhqn F̄(ωn; x) → ∞, then

√
nhqn F̄(ωn; x)g(x) [Tn − E(Tn)] D→ NJ (0, �).

Proof of Lemma 3 We make use of the Cramér-Wold device (see e.g. van der Vaart
1998, p. 16), according to which it is sufficient to prove that for all ξ ∈ R

J we have
that

�n :=
√
nhqn F̄(ωn; x)g(x) ξ ′[Tn − E(Tn)] D→ N (0, ξ ′�ξ).

From straightforward calculations, we obtain

�n =
n∑

i=1

√
hqn

n F̄(ωn; x)g(x)

×
⎡

⎣
J∑

j=1

ξ j (− ln F̄(ωn; x))t j K j,hn (x − Xi )(ln Yi − lnωn)
t j
+1{Yi > ωn}

−E

⎛

⎝
J∑

j=1

ξ j (− ln F̄(ωn; x))t j K j,hn (x − Xi )(ln Yi − lnωn)
t j
+1{Yi > ωn}

⎞

⎠

⎤

⎦

=:
n∑

i=1

Wi .
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Note that W1, . . . ,Wn are i.i.d. random variables, and hence Var(�n) = nVar(W1).
Now

Var(W1) = hqn
n F̄(ωn; x)g(x)

J∑

j=1

J∑

k=1

ξ jξk(− ln F̄(ωn; x))t j+tkC j,k,

where

C j,k := Cov
(
K j,hn (x − X1)(ln Y1 − lnωn)

t j
+1{Y1 > ωn},

Kk,hn (x − X1)(ln Y1 − lnωn)
tk+1{Y1 > ωn}

)
.

We then have

C j,k = ‖K j Kk‖1
hqn

×E

[
1

hqn‖K j Kk‖1
K j

(
x − X1

hn

)
Kk

(
x−X1

hn

)
(ln Y1 − lnωn)

t j+tk
+ 1{Y1 > ωn}

]

−E

[
K j,hn (x − X1)(ln Y1 − lnωn)

t j
+1{Y1 > ωn}

]

×E

[
Kk,hn (x − X1)(ln Y1 − lnωn)

tk+1{Y1 > ωn}
]
.

Using Lemmas 1 and 2, we obtain that

C j,k = ‖K j Kk‖1
hqn

F̄(ωn; x)
(− ln F̄(ωn; x))t j+tk

g(x)θ t j+tk (x)
(t j + tk + 1)(1 + o(1)),

and consequently Var(�n) = ξ ′�ξ(1 + o(1)).
To establish the asymptotic normality of �n , we verify Lyapounov’s criterion for

triangular arrays of random variables, see e.g. Bilingsley (1995, p. 362). In the present
context, this simplifies to proving that

∑n
i=1 E|Wi |3 = nE|W1|3 → 0. We have

E|W1|3 ≤
(

hqn
n F̄(ωn; x)g(x)

)3/2

×

⎧
⎪⎨

⎪⎩
E

⎡

⎢⎣

⎛

⎝
J∑

j=1

|ξ j |(− ln F̄(ωn; x))t j K j,hn (x − X1)(ln Y1 − lnωn)
t j
+1{Y1 > ωn}

⎞

⎠
3
⎤

⎥⎦

+ 3E

⎡

⎢⎣

⎛

⎝
J∑

j=1

|ξ j |(− ln F̄(ωn; x))t j K j,hn (x − X1)(ln Y1 − lnωn)
t j
+1{Y1 > ωn}

⎞

⎠
2
⎤

⎥⎦
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×E

⎡

⎣
J∑

j=1

|ξ j |(− ln F̄(ωn; x))t j K j,hn (x − X1)(ln Y1 − lnωn)
t j
+1{Y1 > ωn}

⎤

⎦

+ 4

⎡

⎣E

⎛

⎝
J∑

j=1

|ξ j |(− ln F̄(ωn; x))t j K j,hn (x − X1)(ln Y1 − lnωn)
t j
+1{Y1 > ωn}

⎞

⎠

⎤

⎦
3
⎫
⎪⎬

⎪⎭
.

Again by Lemmas 1 and 2, we obtain that

E|W1|3 = O

((
n
√
nhqn F̄(ωn; x)

)−1
)

, (11)

and hence, under the conditions of the lemma nE|W1|3 → 0. ��
In order to obtain the limiting distribution of θ̂

(i)
n (x; t, K1, K2), i = 1, 2, we also

need a result concerning ˆ̄F(ωn; x) as defined in (7). Daouia et al. (2011) studied the

asymptotic behaviour of ˆ̄F(ωn; x) in the framework of conditional Pareto-type tails,
whereas in Daouia et al. (2013) its behaviour was studied for the general max-domain
of attraction, though assuming that F̄(y; x) is twice differentiable. Lemma 4 below
is essentially a simplified version of Proposition 1 in Daouia et al. (2013) since we
only consider a single extreme level ωn , although we do not assume differentiability
of F̄(y; x) nor a max-domain of attraction condition.

Lemma 4 Let (X1,Y1), . . . , (Xn,Yn) be a sample of i.i.d. random vectors, and
assume (G), (F) and (K) hold. For all x ∈ R

q where g(x) > 0, we have that if
hn → 0, ωn → ∞ for n → ∞, with nhqn F̄(ωn; x) → ∞, nhq+2

n F̄(ωn; x) → 0, and
nhqn F̄(ωn; x)	2(ωn, hn; x) → 0 then

√
nhqn F̄(ωn; x)g(x)

[ ˆ̄F(ωn; x)
F̄(ωn; x)

− 1

]
D→ N (0, ‖K‖22).

For the proof of Lemma 4 we refer to the supporting information.

Proof of Theorem 1 First we consider the estimator θ̂
(1)
n (x; t, K1, K2) assuming that

F̄(ωn; x) is known, and introduce

θ̃ (1)
n (x; t, K1, K2) :=

(
(− ln F̄(ωn; x))t T (t)

n (x, K1)


(t + 1)T (0)
n (x, K2)

)1/t

.

Write

rn

(
(− ln F̄(ωn; x))t T (t)

n (x, K1)


(t + 1)T (0)
n (x, K2)

− θ t (x)

)

= F̄(ωn; x)g(x)
T (0)
n (x, K2)

{
rn

[
(− ln F̄(ωn; x))t T (t)

n (x, K1)


(t + 1)F̄(ωn; x)g(x)
− E

(
(− ln F̄(ωn; x))t T (t)

n (x, K1)


(t + 1)F̄(ωn; x)g(x)

)]
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− θ t (x)rn

[
T (0)
n (x, K2)

F̄(ωn; x)g(x)
− E

(
T (0)
n (x, K2)

F̄(ωn; x)g(x)

)]

+ rn

[
E((− ln F̄(ωn; x))t T (t)

n (x, K1)) − θ t (x)
(t + 1)E(T (0)
n (x, K2))


(t + 1)F̄(ωn; x)g(x)

]}

=: F̄(ωn; x)g(x)
T (0)
n (x, K2)

{I3 + I4 + I5} .

From Lemma 3, we have

I3 + I4
D→ N

(
0,

θ2t (x)


2(t + 1)

[

(2t + 1)‖K1‖22 + 
2(t + 1)‖K2‖22 − 2
2(t + 1)‖K1K2‖1

])
.

Concerning I5, by Lemmas 1 and 2

I5 = rn

{
b(− ln F̄(ωn; x); x)tθ t−1(x)(1 + o(1)) + O

(
1

(− ln F̄(ωn; x))1−ε

)

+O(hn) + O(	(ωn, hn; x))
}
,

and hence under our assumptions, I5 → λ
√
g(x) tθ t−1(x).

Further, from Lemma 3 we have that T (0)
n (x, K2)/(F̄(ωn; x)g(x)) = 1 + oP(1).

Combined, the above gives that

rn

(
(− ln F̄(ωn; x))t T (t)

n (x, K1)


(t + 1)T (0)
n (x, K2)

− θ t (x)

)
D→ N

(
λ
√
g(x) tθ t−1(x) ,

θ2t (x)


2(t + 1)

[

(2t + 1)‖K1‖22 + 
2(t + 1)‖K2‖22 − 2
2(t + 1)‖K1K2‖1

])
.

A straightforward application of the δ−method yields

rn(θ̃
(1)
n (x; t, K1, K2) − θ(x))

D→ N
(
λ
√
g(x),

θ2(x)

t2
2(t + 1)

[

(2t + 1)‖K1‖22 + 
2(t + 1)‖K2‖22 − 2
2(t + 1)‖K1K2‖1

])
.

Now consider θ̂
(1)
n (x; t, K1, K2):

rn(θ̂
(1)
n (x; t, K1, K2) − θ(x)) = rn(θ̃

(1)
n (x; t, K1, K2) − θ(x))

+rn

(
− ln

ˆ̄F(ωn; x)
F̄(ωn; x)

)(
T (t)
n (x, K1)


(t + 1)T (0)
n (x, K2)

)1/t

.
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Using Lemma 4 we have

rn

(
− ln

ˆ̄F(ωn; x)
F̄(ωn; x)

)
= OP(1),

and by Lemmas 1, 2, and 3

(
T (t)
n (x, K1)


(t + 1)T (0)
n (x, K2)

)1/t

= θ(x)

(− ln F̄(ωn; x))
(1 + oP(1)).

Hence

rn(θ̂
(1)
n (x; t, K1, K2) − θ(x)) = rn(θ̃

(1)
n (x; t, K1, K2) − θ(x))

+ OP

(
1

(− ln F̄(ωn; x))
)

,

from which the result follows. ��
Proof of Theorem 2 The proof of this theorem follows arguments similar to those used
in the proof of Theorem 1, and is therefore given in the supporting information.

Proof of Theorem 3 The proof of the theorem is inspired by the approach taken by
Wretman (1978) in the univariate i.i.d. case. Let r̃n := (− ln αn)

√
nhqnαng(x)/Q(1−

αn; x) and r̆n := θ(x)
√
nhqnαng(x). By straightforward inversion we obtain that

P(r̃n(Q̂(1 − αn; x) − Q(1 − αn; x)) ≤ z) =

P

(
r̆n ln

ˆ̄F(Q(1 − αn; x) + z/r̃n; x)
F̄(Q(1 − αn; x) + z/r̃n; x)

≤ r̆n ln
F̄(Q(1 − αn; x); x)

F̄(Q(1 − αn; x) + z/r̃n; x)

)
.

Now let

Zn := r̆n ln
ˆ̄F(Q(1 − αn; x) + z/r̃n; x)
F̄(Q(1 − αn; x) + z/r̃n; x)

and zn := r̆n ln
F̄(Q(1 − αn; x); x)

F̄(Q(1 − αn; x) + z/r̃n; x)
.

Concerning zn we have

zn = r̆nV
′
(
Q(1 − αn; x) + κn

z

r̃n
; x
)

z

r̃n

with κn ∈ (0, 1), where the last step follows from the mean value theorem. Let
Q̃(1−αn; x) := Q(1−αn; x)+κnz/r̃n . Note that Q̃(1−αn; x) = Q(1−αn; x)(1+
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o(1)) → ∞ if αn → 0, and hence, using the assumption that V is a normalized
regularly varying function, we have

Q̃(1 − αn; x)V ′(Q̃(1 − αn; x); x)
V (Q̃(1 − αn; x); x)

→ 1

θ(x)
(12)

for αn → 0. Thus

zn = r̆n
1

θ(x)

V (Q̃(1 − αn; x); x)
Q̃(1 − αn; x)

z

r̃n
(1 + o(1)) = z(1 + o(1)).

Concerning the random term, we have that

Zn = √
�nθ(x)

√
nhqn F̄(Q(1 − αn; x) + z/r̃n; x)g(x) ln

ˆ̄F(Q(1 − αn; x) + z/r̃n; x)
F̄(Q(1 − αn; x) + z/r̃n; x)

,

where

�n := F̄(Q(1 − αn; x); x)
F̄(Q(1 − αn; x) + z/r̃n; x)

.

Again using (12) and by the definition of r̃n , one obtains that �n → 1 as αn → 0.
Hence by Lemma 4 we have that

Zn
D→ N (0, θ2(x)‖K‖22). (13)

Denote by Gn the distribution function of Zn and by G that of the limiting dis-
tribution in (13). Because of the continuity of G, we have that the convergence of
Gn to G is uniform (see e.g. Lemma 2.11 in van der Vaart 1998, p. 12), and hence
limn→∞ Gn(zn) = G(z). This completes the proof of Theorem 3. ��

Proof of Theorem 4 By straightforward rearrangements, we obtain

√
nhqnαng(x)

ln τn
ln

Q̂W (1 − βn; x)
Q(1 − βn; x)

=
√
nhqnαng(x)(θ̂(x) − θ(x))

+
√
nhqnαng(x)

ln τn
ln

Q̂(1 − αn; x)
Q(1 − αn; x)

+
√
nhqnαng(x)

ln τn
[ln Q(1 − αn; x) − ln Q(1 − βn; x) + θ(x) ln τn]

=: I6 + I7 + I8.
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Under the assumptions of the theorem,

√
nhqnαng(x)(θ̂(x) − θ(x))

D→ N (0, V 2(x)).

For I7 we use Theorem 3 to obtain

I7 = (− ln αn)
√
nhqnαng(x)

(− ln αn) ln τn
ln

Q̂(1 − αn; x)
Q(1 − αn; x) = OP

(
1

(− ln αn)

)
.

Finally, using condition (R), the term I8 can be written as

I8 = −
√
nhqnαng(x)b(− ln αn; x) τ

ρ(x)
n − 1

ρ(x) ln τn
(1 + o(1)) → 0.
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