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Abstract This paper studies the strong consistency of some estimators for an errors-
in-variables regression model. We first provide an extension of Meister’s theorem.
Then, the same problem is dealt with under the Fourier-oscillating noises. Finally,
we prove two strong consistency theorems for wavelet estimators corresponding to
non-oscillating and Fourier-oscillating noises.
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1 Introduction

In this paper, we study the following errors-in-variables regression problem. Let
(Wj ,Y j ) ( j = 1, 2, . . . , n) be independent and identically distributed (i.i.d.) data
valued in Rd × R from the model

Y j = m
(
X j
)+ ε j , Wj = X j + δ j . (1)

The errors ε j and δ j are independent of each other and independent of X j . The
functions fX and fδ denote the densities of X j and δ j , respectively. The regression
errors ε j satisfies Eε j = 0. The problem is to approximate the regression function
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m by some estimator m̂n (depending on (Wj ,Y j ), j = 1, 2, . . . , n) in the sense of
strong convergence.

This above model has some practical applications in the field of medical statistics
(Carroll et al. 2006, 2007) and econometrics (Schennach 2004). For a special case
δ j = 0, the Nadaraya–Watson estimator works well.

Fan and Truong (1993) apply a deconvolution technique to extend Nadaraya–
Watson estimator to the general case. More precisely, they provide optimal weak
convergence rates of their estimator tom for two types of noises δ j , whenm has some

regularity, d = 1 and f f t
δ (t) has no zeros. Here and after, t · x := ∑d

i=1 ti xi for
t = (t1, . . . , td), x = (x1, . . . , xd) ∈ R

d , and

f f t (t) :=
∫

Rd
f (x)eit ·xdx (2)

denotes the Fourier transform of f ∈ L1(Rd). A standard method extends that defin-
ition to L2(Rd) functions.

However, many noise densities have zeros in the Fourier transform domain. For
example, in the experiment of Sun et al., the measurement errors are assumed
to be uniformly distributed (Sun et al. 2002). Nonparametric function estimators
under Fourier-oscillating noises are investigated (Hall and Meister 2007; Meister
2008; Delaigle and Meister 2011; Guo and Liu 2014). To get some convergence
rates, they assume the estimated functions to be located in some Sobolev or Besov
spaces.

Because we do not know if the estimated functions are smooth or not in some
practical applications, it ismore reasonable to consider the consistency for an estimator
(Shen and Xie 2013). For the model (1) with f f t

δ (t) �= 0 and d = 1, Meister (2009)
shows a strong consistency theorem without assuming any regularity of the regression
and density functions m, fX . However, he requires the boundedness of fX and the
continuity of fX at x .

In this small work, we first remove those conditions and rewrite the theorem for d ≥
1.Then,we extendour result to themodelwithFourier-oscillatingnoises bydeveloping
Delaigle–Meister’s technique (Delaigle and Meister 2011) from one-dimensional to
multidimensional cases. Wavelet estimators are widely used in regression estimation
(Li et al. 2008; Chesneau 2010; Gencay and Gradojevic 2011; Chaubey et al. 2013).
We finally study the strong consistency of wavelet estimators.

The current paper is organized as follows: The first section gives an extension of
Meister’s theorem.We discuss the same problemwith Fourier-oscillating noises using
a kernel method in the second part. The strong consistency of wavelet estimators is
proved in Sect. 4. More precisely, we use the Meyer’s scaling function to define our
estimator when f f t

δ (t) �= 0, and use the Daubechies’ to do for Fourier-oscillating
noises. The last part provides some concluding remarks.

For two variables A and B, A � B denotes A ≤ CB for some positive constant C
in later discussions; A � B means B � A; we use A ∼ B to stand for both A � B
and B � A.
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2 An extension of Meister’s Theorem

This section is devoted to generalizing the following theorem by Meister (2009). For
the model (1), define m̂n(x) := pn(x)/ fX,n(x) with

fX,n(x) = 1

n

n∑

l=1

1

2π

∫

R

exp(−i t x)K f t (ht) exp(i tWl)
/
f f t
δ (t)dt (3)

and

pn(x) = 1

n

n∑

l=1

Yl
1

2π

∫

R

exp(−i t x)K f t (ht) exp(i tWl)
/
f f t
δ (t)dt. (4)

Then, we state Meister’s theorem (Theorem 3.2, Meister 2009, page 114) as follows:

Theorem 1 Consider the errors-in-variables regression problem defined in (1) with
d = 1 under the conditions that f f t

δ (t) �= 0 for all t ∈ R; the functions p = m · fX
and fX are bounded on the whole real line and continuous at some x ∈ R; p ∈ L1(R);
the continuous and bounded kernel function K ∈ L1(R) satisfies

∫
R
K (z)dz = 1 and

K f t is supported on [−1, 1]. Furthermore, select the bandwidth h = hn → 0 such
that

h · min
|t |≤ 1

h

∣∣∣ f f t
δ (t)

∣∣∣ ≥ n−ξ

for some ξ ∈ (0, 1
2 ) and all n sufficiently large; assume that the (2s)th moment of Y1

exists for some s > 1/(1 − 2ξ), and that

|m(x)| ≤ C1 and fX (x) ≥ C2

holds for some constants C1, C2 > 0. Then, the estimator m̂n satisfies

lim
n→∞ m̂n(x)

a.s.= m(x).

We aim to remove the boundedness assumption of both fX and p, to relax the
continuity of those functions to a Lebesgue point. Moreover, the above theorem will
be extended to multidimensional cases.

It is well known that f ∈ L1(Rd) denotes an equivalence class of functions, which
means two functions different from a measure zero set belong to the same class. In
particular, f ∈ L1(Rd) is allowed to take value ∞ on a measure zero set. Hence, it
does not make sense to talk about a function value at a given point for f ∈ L1(Rd)

in general. However, to define a Lebesgue point x of f ∈ L1(Rd), we can choose
a representation element of f (still denoted by f ) such that | f (x)| < +∞ for each
x ∈ R

d , because the Lebesgue measure of the set {x, | f (x)| = +∞} must be zero for
f ∈ L1(Rd).
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Let f ∈ L1(Rd) and B(x, r) denote the Euclidean ball centered at x ∈ R
d with

radius r > 0. If lim
r→0

r−d
∫
B(x,r) | f (y) − f (x)|dy = 0, then x is called a Lebesgue

point of f . Clearly, a continuous point of f must be a Lebesgue point. Although
f ∈ L1(Rd) may not have any continuous points, almost every x ∈ R

d is a Lebesgue
point (Stein and Shakarchi 2005). The following lemma (Stein and Shakarchi 2005)
is needed in the proof of Theorem 2.

Lemma 1 If f ∈ L1(Rd) and {Kh}h>0 satisfy (i)
∫
Rd Kh(x)dx = 1; (ii) |Kh(x)|

� h−d for all h > 0; (iii) |Kh(x)| � h/|x |d+1 for all h > 0 and x ∈ R
d , then

lim
h→0

f ∗ Kh(x) = f (x)

holds for each Lebesgue point x of f .

Example 1 Let K (x) = C
∏d

s=1[2x−1
s sin(2−1xs)]d+1 with C being the normalized

constant such that
∫
Rd K (x)dx = 1.Define Kh(x) = h−d K (h−1x). Then, Kh satisfies

all conditions of Lemma 1.

Clearly, the function K ∈ L1(Rd) and |Kh(x)| � h−d by the definitions of K and
Kh . For condition (iii), it suffices to check the boundedness of the function

F(x1, x2, . . . , xd) :=
(

d∏

s=1

sin xs
xs

) (
x21 + x22 + · · · + x2d

)1/2

on Rd .
When |xs | > 1 for s = 1, 2, . . . , d, it is easy to see that

F2(x1, . . . , xd) �
(

d∏

s=1

1

x2s

) (
x21 + x22 + · · · + x2d

)

= 1

x22 · · · x2d
+ · · · + 1

x21 · · · x2d−1

≤ d.

Hence, F is bounded. In the other cases, we can assume that |xs | ≤ 1 for 1 ≤ s ≤ l,
and |xs | > 1 otherwise, where 1 ≤ l ≤ d. By (|a| + |b|)θ � |a|θ + |b|θ (θ > 0),

|F(x1, x2, . . . , xd)| �
(

d∏

s=1

∣∣
∣∣
sin xs
xs

∣∣
∣∣

) [(
x21 + · · · + x2l

)1/2+
(
x2l+1 + · · · + x2d

)1/2]

� 1 +
(

d∏

s=l+1

∣∣∣∣
sin xs
xs

∣∣∣∣

) (
x2l+1 + · · · + x2d

)1/2
.

The same arguments as in the first case conclude the boundedness of F .
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We shall use the kernel function K (x) = C
∏d

s=1[2x−1
s sin(2−1xs)]d+1 in Example

1 to define our estimator m̂n(x) for m(x). More precisely,

m̂n(x) := pn(x)/ fX,n(x) (5)

with

fX,n(x) := 1

n

n∑

l=1

1

(2π)d

∫

Rd
exp(−i t · x)K f t (ht) exp(i t · Wl)

/
f f t
δ (t)dt (6)

and

pn(x) := 1

n

n∑

l=1

Yl
1

(2π)d

∫

Rd
exp(−i t · x)K f t (ht) exp(i t · Wl)

/
f f t
δ (t)dt. (7)

This above estimator m̂n(x) is the multidimensional version of Meister’s except
for our choosing a special kernel function K for convenient discussions. Note that
K0(x) := [2x−1 sin(2−1x)]d+1 satisfies

K f t
0 (t) = 2π I[−1/2, 1/2] ∗ · · · ∗ I[−1/2, 1/2]︸ ︷︷ ︸

d+1

(t),

where I[−1/2, 1/2](t) stands for the indicator function of the set [−1/2, 1/2]. Then,
supp K f t

0 ⊂ [− d+1
2 , d+1

2 ] and the function K f t (t) = C
∏d

s=1 K
f t
0 (ts) so that

supp K f t ⊂ [− d+1
2 , d+1

2 ]d . This with f f t
δ (t) �= 0 (t ∈ R

d ) shows that fX,n(x) �= 0
for almost every x ∈ R

d . Hence, m̂n(x) is a.e. well defined.
To prove the consistency of m̂n(x), we need a lemma, which comes from the proof

of Theorem 3.2 in Meister (2009). We rewrite it in a multidimensional version and
give a short proof.

Lemma 2 Let f ∈ C(Rd) (the continuous function set onRd ) and f (t) �= 0 for each
t ∈ R

d . Then, there exists a positive bandwidth sequence hn → 0 such that

hdn · min
t∈[−1/hn , 1/hn]d

| f (t)| ≥ n− 1
6

holds for sufficiently large n.

Proof For n ∈ Z
+ (the positive integer set), define

�n :=
{
h > 0 : hd min

t∈[−1/h, 1/h]d
| f (t)| ≥ n−1/6

}
.

Since f ∈ C(Rd) and f (t) �= 0, �n �= ∅ and dn = inf �n ≥ 0. Moreover, there
exists hn ∈ �n such that dn ≤ hn ≤ dn + 1

n for each n ∈ N
+. Note that �n ⊂ �n+1.
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Then, dn+1 ≤ dn . This with dn ≥ 0 shows {dn}n∈N+ convergent. It suffices to show
lim
n→∞ dn = 0 to conclude Lemma 2.

If lim
n→∞ dn = d0 > 0, there would exist d∗ ∈ (0, d0) such that for each n ∈ N

+,

dd∗ · min
t∈[−1/d∗, 1/d∗]d

| f (t)| < n− 1
6 . (8)

Let n in (8) tends to +∞, one receives dd∗ · min
t∈[−1/d∗, 1/d∗]d

| f (t)| = 0. By f ∈
C([−1/d∗, 1/d∗]d), f (t0) = 0 for some t0 ∈ R

d . This contradicts with f (t) �= 0 for
t ∈ R

d . �


Remark 1 From the above proof, we find that Lemma 2 still holds, when n− 1
6 is

replaced by 0 < εn ↓ 0. However, the current version is enough for our later discus-
sions.

Now, we are in the position to state the main result of this section:

Theorem 2 Consider the problem defined by (1) with f f t
δ (t) �= 0 for each t ∈ R

d . If
p := m fX ∈ L1(Rd), E |Y1|4 < +∞, x is a Lebesgue point of fX and p ( fX (x) �= 0),
then with h = hn for f = f f t

δ in Lemma 2, m̂n(x) defined by (5)–(7) satisfies

lim
n→∞ m̂n(x)

a.s.= m(x).

Proof It is sufficient to prove lim
n→∞ pn(x)

a.s.= p(x) and lim
n→∞ fX,n(x)

a.s.= fX (x),

since m̂n(x) := pn(x)/ fX,n(x), m(x) = p(x)/ fX (x) with fX (x) �= 0. One shows
lim
n→∞ pn(x)

a.s.= p(x) only. The proof for lim
n→∞ fX,n(x)

a.s.= fX (x) is similar and even

simpler.
Clearly, |pn(x) − p(x)| ≤ |pn(x) − Epn(x)| + |Epn(x) − p(x)| and P[|pn(x) −

p(x)| ≥ ε] ≤ P[|pn(x) − Epn(x)| ≥ ε/2] + P[|Epn(x) − p(x)| ≥ ε/2] for each
ε > 0. By Markov’s inequality,

P [|pn(x) − p(x)| ≥ ε] � ε−4E |pn(x) − Epn(x)|4 + I[ε/2, ∞)(|p(x) − Epn(x)|).
(9)

To estimate the second term in (9), one observes first from (7) and h = hn that

Epn(x) = (2π)−d
∫

Rd
exp(−i t · x)K f t (hnt)E

[
Y1 exp(i t · W1)

] /
f f t
δ (t)dt. (10)

Since W1 = X1 + δ1 and X1 is independent of δ1,

E
(
Y1e

it ·W1
)

= E
(
Y1e

it ·X1
)
Eeit ·δ1 = E

(
Y1e

it ·X1
)
f f t
δ (t).
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On the other hand, it follows from Eε1 = 0, the independence between X1 and ε1
that

E (Y1|X1 = x) = E (m(X1) + ε1|X1 = x) = m(x) + E (ε1|X1 = x) = m(x).

Hence, E(Y1eit ·X1) = E(E(Y1|X1)eit ·X1) = ∫
Rd m(u)eit ·u fX (u)du = p f t (t). Then,

(10) reduces to

Epn(x) = (2π)−d
∫

Rd
exp(−i t · x)K f t (hnt)p

f t (t)dt.

According to p, K ∈ L1(Rd), one finds that p ∗ Khn ∈ L1(Rd) and
(p ∗ Khn )

f t (t) = p f t (t) · K f t (hnt). Moreover,

Epn(x) = (2π)−d
∫

Rd
exp(−i t · x)(p ∗ Khn )

f t (t)dt.

Clearly, |(p ∗ Khn )
f t (t)| � |K f t (hnt)| ∈ L1(Rd). Then, by the inverse Fourier

transform theorem (Stein and Shakarchi 2005),

Epn(x) = (p ∗ Khn )(x)

holds at each Lebesgue point x of p. This with Lemma 1 and Example 1 shows that
lim
n→∞(p ∗ Khn )(x) = p(x). Since lim

n→∞ hn = 0, the second term of (9) vanishes as

n → ∞ and

P [|pn(x) − p(x)| ≥ ε] � ε−4E |pn(x) − Epn(x)|4. (11)

The remaining proofs are completely same as those in Meister (2009), except for Rd

data replacing R ones. One includes a proof for completeness. By (7),

pn(x) − Epn(x) = (2π)−dn−1
n∑

l=1

∫

Rd
exp(−i t · x)K f t (hnt)

[
Yl exp(i t · Wl)

−EYl exp(i t · Wl)
]/

f f t
δ (t)dt.

With the notation �l(t) := Yl exp(i t · Wl) − EYl exp(i t · Wl), this above identity
reduces to

pn(x) − Epn(x) = (2π)−dn−1
n∑

l=1

∫

Rd
exp(−i t · x)K f t (hnt)�l(t)

/
f f t
δ (t)dt.
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Furthermore,

E |pn(x) − Epn(x)|4 � n−4
n∑

l1=1

· · ·
n∑

l4=1

∫

Rd
· · ·

∫

Rd

{
2∏

r=1

exp(−i t2r−1 · x)

exp(i t2r · x)K f t (hnt2r−1)K
f t (−hnt2r )

[
f f t
δ (t2r−1) f

f t
δ (−t2r )

]−1
}

E
2∏

r=1

�l2r−1(t2r−1)�l2r (−t2r )dt1 . . . dt4. (12)

Whenever the set {l1, . . . , l4} contains more than 2 different elements, at least one of
the �lr is stochastically independent of all other �lr ′ with r

′ �= r , so that

E
2∏

r=1

�l2r−1(t2r−1)�l2r (−t2r ) = 0.

For 	{l1, . . . , l4} ≤ 2, Jensen’s inequality tells

∣∣
∣∣∣
E

2∏

r=1

�l2r−1(t2r−1)�l2r (−t2r )

∣∣
∣∣∣
≤ 16E |Y1|4.

Note that #Ln := #{(l1, l2, l3, l4), 	{l1, . . . , l4} ≤ 2} � n2, supp K f t ⊂
[− d+1

2 , d+1
2 ]d and |K f t (t)| � 1. Then, (12) becomes

E |pn(x) − Epn(x)|4 � n−2
[
hdn min

t∈
[
− d+1

2hn
, d+1

2hn

]d

∣∣
∣ f f t

δ (t)
∣∣
∣
]−4

E |Y1|4. (13)

Applying Lemma 2, one obtains that

E |pn(x) − Epn(x)|4 � n−2 n2/3 = n−4/3. (14)

Finally, it follows from (11) and (14) that P[|pn(x) − p(x)| � ε] � n−4/3 and
∑∞

n=1 P[|pn(x) − p(x)| � ε] < ∞ for any ε > 0. This concludes lim
n→∞ pn(x)

a.s.=
p(x) thanks to Borel–Cantelli lemma in probability theory. �


3 Consistency with Fourier-oscillating noises

In this section, we consider the same problem as in Sect. 2, but allow for f f t
δ having

some zeros. More precisely, we assume that for positive numbers λs (as in Delaigle
and Meister 2011), vs ∈ Z

+ ∪ {0} (1 ≤ s ≤ d), and
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C
(
R
d
)

� f f t
δ (t1, . . . , td)

d∏

s=1

(
sin

(
π ts
λs

))−vs

�= 0 for each t ∈ R
d . (15)

The price to pay requires fX ∈ L2(Rd) compactly supported, say supp fX ⊂ � :=
[a, b]d . In general, if the Fourier transform of a noise density contains the factor∏d

s=1(sin
π ts
λs

)vs , we call that noise Fourier-oscillating. When f f t
δ (t) �= 0 for each

t ∈ R
d , we say the noise non-oscillating.

Motivated by Delaigle and Meister (2011), we introduce an auxiliary function
f̃ X ∈ L2(Rd) defined by

f̃ f t
X (t) :=

[
d∏

s=1

(exp(i
2π ts
λs

) − 1)vs

]

· f f t
X (t). (16)

Note that fX ∈ L2(Rd) implies f f t
X ∈ L2(Rd), |∏d

s=1(exp(i2π tsλ
−1
s ) − 1)vs | � 1.

Then, f̃ X in (16) exists uniquely in L2(Rd).
Since [exp(i2π tsλ−1

s ) − 1]vs = ∑vs
ks=0

(
vs
ks

)
(−1)vs−ks exp(2π iks tsλ−1

s ),

f̃ f t
X (t) =

v1∑

k1=0

· · ·
vd∑

kd=0

[
d∏

s=1

(
vs

ks

)
(−1)vs−ks exp

(
2π iks ts

λs

)]

· f f t
X (t).

Taking the inverse Fourier transform, we find that

f̃ X (x1, . . . , xd) =
v1∑

k1=0

· · ·
vd∑

kd=0

[
d∏

s=1

(
vs

ks

)
(−1)vs−ks

]

fX

(
x1 − 2πk1

λ1
, . . . , xd − 2πkd

λd

)

holds almost everywhere on Rd . With the notation k
λ

:= ( k1
λ1

, k2
λ2

, . . . ,
kd
λd

),

f̃ X (x1, . . . , xd) :=
v∑

k=0

[
d∏

s=1

(
vs

ks

)
(−1)vs−ks

]

fX

(
x − 2πk

λ

)
, (17)

where k = (k1, . . . , kd), v = (v1, . . . , vd), 0 = (0, 0, . . . , 0) and

v∑

k=0

:=
v1∑

k1=0

· · ·
vd∑

kd=0

.

Let J := (J1, . . . , Jd) and Js stand for the smallest integer larger than or equal
to (b−a)λs

2π (denoted by � (b−a)λs
2π �), 1 ≤ s ≤ d. Then, those terms for ks > Js do not
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contribute to the summation in (17), when x ∈ � := [a, b]d . It is important to note
that fX can be represented by linear combinations of f̃ X (x − 2πk

λ
), as in Delaigle and

Meister (2011) for one-dimensional case. In fact, there exist ηk1,...,kd , (0 ≤ ks ≤ Js)
such that for x ∈ �,

fX (x) =
J1∑

k1=0

. . .

Jd∑

kd=0

ηk1,...,kd f̃X

(
x1 − 2πk1

λ1
, . . . , xd − 2πkd

λd

)
. (18)

For easily understanding, one proves (18) for d = 2 first. Define a vector F̃(x) of
dimension (J1 + 1)(J2 + 1) by its transpose

F̃T (x) : =
(
f̃ X (x1, x2), f̃ X

(
x1, x2 − 2π

λ2

)
, . . . , f̃ X

(
x1, x2 − 2π J2

λ2

)
,

f̃ X

(
x1 − 2π

λ1
, x2

)
, f̃ X

(
x1 − 2π

λ1
, x2 − 2π

λ2

)
, . . . , f̃ X

(
x1 − 2π

λ1
, x2 − 2π J2

λ2

)
,

· · · ,

f̃ X

(
x1 − 2π J1

λ1
, x2

)
, f̃ X

(
x1 − 2π J1

λ1
, x2 − 2π

λ2

)
, . . . ,

f̃ X

(
x1 − 2π J1

λ1
, x2 − 2π J2

λ2

))
.

Similarly, F(x) is defined by fX . According to (17), there exists an upper triangular
matrix � of order (J1 + 1)(J2 + 1) such that

F̃(x) = �F(x)

with the diagonal component (−1)v1+v2 . Hence,� is invertible and F(x) = �−1 F̃(x).
Then, (18) follows from the definitions of F̃(x) and F(x).

To show (18) for d ≥ 3, one uses ek1,k2,...,kd := (0, . . . , 0, 1, 0, . . . , 0) to denote the
row vector of dimension (J1+1)(J2+1) . . . (Jd +1)with the lk1,k2,...,kd -th coordinate
being 1 and all others 0, where

lk1,k2,...,kd :=
d−1∑

s=1

ks(Js+1 + 1) . . . (Jd + 1) + kd + 1.

Similar to the case d = 2, define two column vectors F̃(x) and F(x) by

F̃T (x) =
d∑

s=1

Js∑

ks=0

Tk1,k2,...,kd f̃X (x)ek1,k2,...,kd

and

FT (x) =
d∑

s=1

Js∑

ks=0

Tk1,k2,...,kd fX (x)ek1,k2,...,kd ,
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where the translation operators

Tk1,k2,...,kd f (x) := f

(
x1 − 2πk1

λ1
, x2 − 2πk2

λ2
, . . . , xd − 2πkd

λd

)
.

By (17), F̃(x) = �F(x) for some upper triangular matrix � of order (J1 + 1)(J2 +
1) . . . (Jd + 1) with the diagonal component (−1)v1+v2+···+vd . Therefore, (18) holds
for d ≥ 3.

To introduce explicitly our estimators, we need to know the coefficients ηk1,k2,...,kd
in (18). It is easy to see

d∑

s=1

Js∑

ks=0

ηk1,k2,...,kd ek1,k2,...,kd = (1, 0, . . . , 0)�−1

thanks to F(x) = �−1 F̃(x) and the definitions of F(x) and F̃(x). Clearly, all elements
of the matrix � are provided by the coefficients in (17). On the other hand, we can
easily calculate �−1 because � is upper triangular.

With the notation ηk := ηk1,...,kd , (18) is rewritten as

fX (x) =
J∑

k=0

ηk f̃X

(
x − 2πk

λ

)
. (19)

Let K (x) = C
∏d

s=1[2x−1
s sin(2−1xs)]d+1 be the kernel function in Example 1 of

Sect. 2, hn be the bandwidth sequence for

f (t) := f f t
δ (t)

d∏

s=1

(
exp

(
2π i tsλ

−1
s

)
− 1

)−vs

in Lemma 2. Define

f̃ X,n(x) = 1

n

n∑

l=1

1

(2π)d

∫

Rd
exp(−i t · x)K f t (hnt)

×
[

d∏

s=1

(
exp

(
i
2π ts
λs

)
− 1

)vs
]

exp(i t · Wl)
/
f f t
δ (t)dt.

Then, compared with (19), it is natural to define that for x ∈ �,

fX,n(x) := 1

n

n∑

l=1

1

(2π)d

∫

Rd
exp(−i t · x)K f t (hnt)ξ(t) exp(i t · Wl)

/
f f t
δ (t)dt

(20)
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and

pn(x) := 1

n

n∑

l=1

Yl
1

(2π)d

∫

Rd
exp(−i t · x)K f t (hnt)ξ(t) exp(i t · Wl)

/
f f t
δ (t)dt,

(21)

where

ξ(t) =
[

J∑

k=0

ηk exp

(
i
2πk · t

λ

)] d∏

s=1

[
exp

(
2π i ts
λs

)
− 1

]vs

. (22)

Theorem 3 Consider the problem (1)with (15). If fX , p := m fX ∈ L1(Rd)∩L2(Rd)

have compact support �, f f t
X , p f t ∈ L1(Rd), E |Y1|4 < +∞ and fX (x) �= 0, then

the estimator m̂n(x) := pn(x)/ fX,n(x) defined by (20)–(22) satisfies that for almost
all x ∈ �,

lim
n→∞ m̂n(x)

a.s.= m(x).

Proof As in the proof of Theorem 2, it suffices to show

lim
n→∞ p̂n(x)

a.s.= p(x).

Since J is a fixed number (independent of t), |ξ(t)| �
∏d

s=1 | exp( 2π i ts
λs

)−1|vs thanks
to (22). A careful inspection for the proof of (13) leads to

E |pn(x) − Epn(x)|4

� n−2

⎧
⎪⎨

⎪⎩
hdn min

t∈
[
− d+1

2hn
, d+1

2hn

]d

[

| f f t
δ (t)|

d∏

s=1

∣∣∣
∣∣

(
exp

(
2π i ts
λs

)
− 1

)−vs
∣∣∣
∣∣

]
⎫
⎪⎬

⎪⎭

−4

E |Y1|4.

Combining this with Lemma 2 and (15), one obtains

E |pn(x) − Epn(x)|4 � n−2 n2/3 = n−4/3. (23)

The remaining and key work is to show that for almost all x ∈ �,

lim
n→∞ Epn(x) = p(x). (24)

For a non-oscillating noise, Epn(x) = p ∗ Khn (x) and (24) holds automatically due
to Lemma 1. Although Epn(x) is no longer a convolution form in this current case,
one can still prove (24) as follows.
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Similar to (16), one defines

p̃ f t (t) :=
[

d∏

s=1

(
exp

(
2π i ts
λs

)
− 1

)vs
]

p f t (t). (25)

Then, p̃(x) = ∑v
k=0[

∏d
s=1

(
vs
ks

)
(−1)vs−ks ]p(x − 2πk

λ
). These with the assumptions

p, p f t ∈ L1(Rd) show p̃, p̃ f t ∈ L1(Rd). Hence,

p̃(x) = 1

(2π)d

∫

Rd
exp(−i t · x) p̃ f t (t)dt (26)

holds almost everywhere on Rd .
Since supp p ⊂ supp fX ⊂ �, similar arguments to (18) lead to

p(x) =
J∑

k=0

ηk p̃

(
x − 2πk

λ

)
(27)

for x ∈ �. Furthermore, it follows from (26) and (27) that

p(x) =
J∑

k=0

ηk
1

(2π)d

∫

Rd
exp

(
−i t ·

(
x − 2πk

λ

))
p̃ f t (t)dt.

This with (25) shows that

p(x) = 1

(2π)d

∫

Rd
exp(−i t · x)ξ(t)p f t (t)dt (28)

for almost all x ∈ �, where ξ(t) is given by (22). It is important to note that (28) holds
only for x ∈ �, not for all x ∈ R

d . Otherwise, it would contradict with p f t being the
Fourier transform of p.

On the other hand, one observes from (21) that

Epn(x) = 1

(2π)d

∫

Rd
exp(−i t · x)K f t (hnt)ξ(t)EY1 exp(i t · W1)

/
f f t
δ (t)dt.

By the independent assumptions in model (1), EY1eit ·W1 = EY1eit ·X1Eeit ·δ1 =
E(E(Y1eit ·X1 |X1)) f f t

δ (t) = E(E(Y1|X1)eit ·X1) f f t
δ (t) = p f t (t) f f t

δ (t). Hence,

Epn(x) = 1

(2π)d

∫

Rd
exp(−i t · x)K f t (hnt) ξ(t)p f t (t)dt. (29)

According to (28)–(29), Epn(x) − p(x) = (2π)−d
∫
Rd exp(−i t · x)(K f t (hnt) −

1)ξ(t)p f t (t)dt and
∫
�

|Epn(x) − p(x)|2dx ≤ ∫
Rd |(2π)−d

∫
Rd exp(−i t · x)
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(K f t (hnt) − 1)ξ(t)p f t (t)dt |2dx . Using the Parseval identity, the boundedness of
|ξ(t)| and |p f t (t)|, one receives that

∫

�

|Epn(x) − p(x)|2dx �
∫

Rd
|K f t (hnt) − 1|2|p f t (t)|dt.

By the choice of K , lim
hn→0

K f t (hnt) = 1 and |K f t (hnt) − 1|2 � 1. These with the

given assumption p f t ∈ L1(Rd) and the dominated convergence theorem show that

lim
n→∞

∫

�

|Epn(x) − p(x)|2dx = 0. (30)

Since Epn depends on hn (see 29), one rewrites Epn(x) := Fx (hn) and finds that

|Fx (hn) − Fx (hm)| ≤
∣∣∣∣

1

(2π)d

∫
exp(−i t · x)

(
K f t (hnt) − K f t (hmt)

)
ξ(t)p f t (t)dt

∣∣∣∣

�
∫ ∣∣∣K f t (hnt) − K f t (hmt)

∣∣∣
∣∣∣p f t (t)

∣∣∣ dt.

When n, m → ∞, |Fx (hn) − Fx (hm)| → 0. As a Cauchy sequence of R, Fx (hn) =
Epn(x) → g(x)(n → ∞) pointwisely. By Fatou’s Lemma and (30),

∫

�

|g(x) − p(x)|2dt =
∫

�

lim
n→∞ |Epn(x) − p(x)|2 dx

≤ lim
n→∞

∫

�

|Epn(x) − p(x)|2 dx = 0,

which means g
a.e.= p and hence, lim

n→∞ Epn(x) = p(x) for almost all x ∈ �. This

completes the proof of (24). �

Remark 2 Compared with Theorem 2, Theorem 3 allows for f f t

δ having some zeros.
The price to pay requires fX compactly supported, fX , p ∈ L2(Rd) as well as
f f t
X , p f t ∈ L1(Rd). It should be pointed out that the compact supportedness of fX

cannot be easily removed. In fact, the inequality

|ξ(t)| :=
∣∣∣
∣∣

[
J∑

k=0

ηk exp

(
i
2πk · t

λ

)] d∏

s=1

[
exp

(
2π i ts
λs

)
− 1

]vs
∣∣∣
∣∣

�
d∏

s=1

∣∣∣∣exp
(
2π i ts
λs

)
− 1

∣∣∣∣

vs

(31)

plays a key role in our proof of Theorem 3. Recall that J := (J1, J2, . . . , Jd) and
Jk = � (b−a)λk

2π � (1 ≤ k ≤ d) with supp fX ⊂ [a, b]d . Then, ∑J
k=0 ηk exp(i 2πk·tλ

)

may become a summation of infinitely many terms, if fX is not compactly supported.
Hence, it seems hard for us to conclude (31) in that case.
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4 Consistency for wavelet estimators

This section aims to prove the strong consistency of wavelet regression estimators for
both Fourier-oscillating and non-oscillating noises. We begin with a classical notation
in wavelet analysis.

A Multiresolution Analysis (Meyer 1992) is a sequence of closed subspaces {Vj }
of the square integrable function space L2(Rd) satisfying the following properties:

1. Vj ⊂ Vj+1, j ∈ Z (the integer set);
2. ∪ j∈ZVj = L2(Rd) (the space ∪ j∈ZVj is dense in L2(Rd));
3. f (2x) ∈ Vj+1 if and only if f (x) ∈ Vj for all j ∈ Z;
4. There exists ϕ(x) ∈ L2(Rd) (scaling function) such that {ϕ(x − k)}k∈Zd forms

an orthonormal basis of V0 = span{ϕ(x − k)}k∈Zd .

Many important wavelets are constructed by Multiresolution Analysis, which include
Meyer and Daubechies wavelets.

Let Pj be the orthogonal projection operator from L2(Rd) to the space Vj with
the orthonormal basis {ϕ j,k(x), k ∈ Z

d} := {2 jd/2ϕ(2 j x − k), k ∈ Z
d}. Then, for

f ∈ L2(Rd) and α j,k := 〈 f, ϕ j,k〉,

Pj f =
∑

k∈Zd

α j,kϕ j,k (32)

holds in L2(Rd). Moreover, lim
j→∞ ‖Pj f − f ‖L2 = 0. When the scaling function ϕ

satisfies some additional conditions, Pj f converges to f pointwisely.

Lemma 3 (Kelly et al. 1994) Let a scaling function ϕ be bounded by an L1 radially
decreasing function. Then, for f ∈ L p(Rd)(1 ≤ p ≤ ∞), Pj f converges to f
pointwise almost everywhere on Rd .

Example 2 If ϕ0 is an orthonormal scaling function of dimension one, and |ϕ0(x)| ≤
(1 + |x |)−d−1, then ϕ(x) = ∏d

s=1 ϕ0(xs) is bounded by an L1 radially decreasing
function.

In fact, it is easy to see that
∏d

s=1(1+|xs |)−2 ≤ (1+ x21 + x22 +· · ·+ x2d )
−1,which

implies that

|ϕ(x)| ≤
d∏

s=1

(1 + |xs |)−d−1 ≤
(
1 + |x |2

)− d+1
2 := �(|x |).

Clearly, �(|x |) is a radially decreasing function and
∫
Rd �(|x |)dx < +∞.

To consider first the strong consistency of a wavelet regression estimator when
f f t
δ (t) �= 0 (t ∈ R

d), we choose the one-dimensional Meyer scaling function ϕM

with supp ϕ
f t
M (t) ⊂ [− 4π

3 , 4π
3 ] and ϕ

f t
M ∈ C∞. Then,

ϕ(x) :=
d∏

s=1

[ϕM ](xs)
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satisfies the requirement of Lemma 3. Let Pj denote the corresponding projection
operator in (32). Then, Pj fX = ∑

k∈Zd α j,kϕ j,k , Pj p = ∑
k∈Zd γ j,kϕ j,k with α j,k =

〈 fX , ϕ j,k〉 and γ j,k = 〈p, ϕ j,k〉. The estimators for fX and p are defined, respectively,
by

fX,n(x) =
∑

k∈Zd

α̂ j,kϕ j,k(x) and pn(x) =
∑

k∈Zd

γ̂ j,kϕ j,k(x)

with

α̂ j,k = 1

n

n∑

l=1

1

(2π)d

∫

Rd
eit ·Wl

[
ϕ j,k

] f t
(t)
/
f f t
δ (t)dt, (33)

γ̂ j,k = 1

n

n∑

l=1

Yl
1

(2π)d

∫

Rd
eit ·Wl

[
ϕ j,k

] f t
(t)
/
f f t
δ (t)dt. (34)

Note that [ϕ j,k] f t is compactly supported and bounded, as well as f f t
δ has no zeros.

Then, α̂ j,k and γ̂ j,k are well defined. In fact, E α̂ j,k = α j,k and E γ̂ j,k = γ j,k , which
can be easily proved. Moreover, the strong consistency holds for the wavelet estimator
m̂n(x) := pn(x)/ fX,n(x) under the same assumptions as in Theorem 2.

Theorem 4 Consider the problem (1) with f f t
δ (t) �= 0 for each t ∈ R

d . If p :=
m fX ∈ L(Rd), E |Y1|4 < ∞ and x is a Lebesgue point of both p and fX ( fX (x) �= 0),
then

lim
n→∞ m̂n(x)

a.s.= m(x).

Proof Similar to Theorem 2, it is sufficient to prove lim
n→∞ pn(x)

a.s.= p(x). By the

definition of pn(x),

pn(x) − Epn(x)

= 1

n

n∑

l=1

1

(2π)d

∫

Rd

(
Yle

it ·Wl − EYle
it ·Wl

) ∑

k∈Zd

ϕ j,k(x)
[
ϕ j,k

] f t
(t)
/
f f t
δ (t)dt.

With the notation �l(t) := Yleit ·Wl − EYleit ·Wl , this above identity reduces to

E |pn(x) − Epn(x)|4 � n−4
n∑

l1=1

· · ·
n∑

l4=1

∫

Rd
· · ·

∫

Rd

⎧
⎨

⎩

2∏

r=1

⎡

⎣
∑

k∈Zd

ϕ j,k(x)

[ϕ j,k] f t (t2r−1)
]
⎡

⎣
∑

k∈Zd

ϕ j,k(x)
[
ϕ j,k

] f t
(−t2r )

⎤

⎦
[
f f t
δ (t2r−1) f f t

δ (−t2r )
]−1

⎫
⎬

⎭
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E
2∏

r=1

�l2r−1(t2r−1)�l2r (−t2r )dt1 . . . dt4. (35)

Note that [ϕ j,k] f t (t) = 2− d j
2
∏d

s=1[ϕM ] f t (2− j ts)eitsks2
− j
, ϕ j,k(x) = 2 jd/2 ϕ(2 j x −

k) and sup
x∈Rd

∑

k∈Zd

|ϕ(x − k)| � 1. Then,

∣∣∣
∣∣∣

∑

k∈Zd

ϕ j,k(x)
[
ϕ j,k

] f t
(t)

∣∣∣
∣∣∣
�
∣∣∣
∣∣

d∏

s=1

[ϕM ] f t
(
2− j ts

)
∣∣∣
∣∣
.

Combining this with supp ϕ
f t
M ⊂ [− 4π

3 , 4π
3 ], one knows that

∫

Rd

∣
∣∣∣∣∣

∑

k∈Zd

ϕ j,k(x)

[
ϕ j,k

] f t
(t)

f f t
δ (t)

∣
∣∣∣∣∣
dt �

⎡

⎢
⎣
(
4π

3
2 j
)−d

min
t∈
[
− 4π2 j

3 , 4π2 j
3

]d

∣∣∣ f f t
δ (t)

∣∣∣

⎤

⎥
⎦

−1

.

(36)

By f f t
δ (t) �= 0 and Lemma 2, there exists a positive sequence hn → 0 such that

hdn min
t∈
[
− 1

hn
, 1

hn

]d

∣∣∣ f f t
δ (t)

∣∣∣ ≥ n− 1
6 .

Since hn → 0, 3
4πhn

> 1 for large n and

j :=
⌊
log2

(
3

4πhn

)⌋
> 0 (37)

( �x� denotes the largest integer less than or equal to x). Clearly, j ≤ log2(
3

4πhn
) and

4π
3 2 j ≤ 1

hn
. Furthermore, (36) becomes

∫

Rd

∣∣
∣∣∣∣

∑

k∈Zd

ϕ j,k(x)

[
ϕ j,k

] f t
(t)

f f t
δ (t)

∣∣
∣∣∣∣
dt �

⎡

⎢
⎣hdn min

t∈
[
− 1

hn
, 1
hn

]d

∣∣∣ f f t
δ (t)

∣∣∣

⎤

⎥
⎦

−1

≤ n
1
6 .

This with (35) leads to E |pn(x) − Epn(x)|4 � n− 4
3 , as in the proof of Theorem 2.

Hence, P(|pn(x)−Epn(x)| ≥ ε/2) ≤ (ε/2)−4E |pn(x)−Epn(x)|4 � n− 4
3 .Because

P[|pn(x)− p(x)| ≥ ε] ≤ P[|pn(x)− Epn(x)| ≥ ε/2]+ P[|Epn(x)− p(x)| ≥ ε/2],
it remains to show

lim
n→∞ |Epn(x) − p(x)| = 0. (38)
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By the definition of γ̂ j,k in (34), one finds easily

E γ̂ j,k = (2π)−d
∫

Rd
p f t (t)

[
ϕ j,k

] f t
(t)dt.

If p ∈ L2(Rd), then the Plancherel formula would imply

E γ̂ j,k = γ j,k (39)

and Epn(x) = Pj p(x). According to (37), j goes to +∞ as n → ∞. Then, (38)
follows from Lemma 3 and Example 2. However, one assumes p ∈ L1(Rd) only in
Theorem 4. Fortunately,

(2π)−d
∫

Rd
p f t (t)

[
ϕ j,k

] f t
(t)dt =

∫

Rd
p(x)ϕ j,k(x)dx

still holds in the current case, which can be checked by the following arguments.
For p ∈ L1(Rd), there exists pn ∈ L1(Rd) ∩ L2(Rd) such that lim

n→∞ ‖pn −
p‖L1(Rd ) = 0. Since pn, ϕ j,k ∈ L2(Rd),

1

(2π)d

∫

Rd
p f t
n (t)

[
ϕ j,k

] f t
(t)dt =

∫

Rd
pn(x)ϕ j,k(x)dx . (40)

Clearly, | ∫
Rd p f t

n (t)[ϕ j,k] f t (t)dt−
∫
Rd p f t (t)[ϕ j,k] f t (t)dt | ≤ ∫

Rd |p f t
n (t)− p f t (t)|

|[ϕ j,k] f t (t)|dt . Because lim
n→∞ ‖pn − p‖L1(Rd ) = 0, lim

n→∞(pn − p) f t (t) = 0 uniformly

and for fixed j , k,

lim
n→∞

∫

Rd
p f t
n (t)

[
ϕ j,k

] f t
(t)dt =

∫

Rd
p f t (t)

[
ϕ j,k

] f t
(t)dt (41)

thanks to [ϕ j,k] f t ∈ L1(Rd). On the other hand, | ∫
Rd pn(x)ϕ j,k(x)dx − ∫

Rd

p(x) ϕ j,k(x)dx | �
∫
Rd |pn(x) − p(x)|dx = ‖pn − p‖L1(Rd ) → 0 due to the bound-

edness of ϕ j,k(x), which means lim
n→∞

∫
Rd pn(x)ϕ j,k(x)dx = ∫

Rd p(x)ϕ j,k(x)dx for

fixed j , k. This with (40) and (41) concludes the desired identity

1

(2π)d

∫

Rd
p f t (t)

[
ϕ j,k

] f t
(t)dt =

∫

Rd
p(x)ϕ j,k(x)dx .

The proof of Theorem 4 is finished. �

Remark 3 Chesneau (2010) provides a nice convergence rate of some wavelet esti-
mators over L2 risk for the same model, when the estimated regression function m is
smooth. In fact, his estimators do not depend on the smoothness index (so adaptive).
Our Theorem 4 shows the strong consistency of a wavelet estimator in the pointwise
sense. Since we do not assume any regularity of the function m, our estimator can be
considered adaptive as well in some sense.
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Remark 4 Compared with model (1), Gencay and Gradojevic (2011) study a linear
regressionmodel in which both the regressor and regressand havemeasurement errors.
Using the discrete wavelet transformation, they employ extensive simulations and
demonstrate their approach better than the traditional methods. It is interesting to do
further theoretic research in that area.

To extend Theorem 4 from a non-oscillating to a Fourier-oscillating case whose
density function fδ satisfies

∣
∣∣ f f t

δ (t1, . . . , td)
∣
∣∣ ≥

d∏

s=1

∣∣
∣∣sin

(
π ts
λs

)∣∣
∣∣

vs

(1 + |ts |)−αs (42)

with λs > 0, αs ≥ 0 and vs ∈ Z
+ ∪ {0}, we need to assume fX ∈ L2(Rd) and

supp fX ⊂ � := [a, b]d as in Sect. 3.
Recall that the Meyer scaling function is used in Theorem 4. However, we need the

Daubechies scaling function ϕN = D2N (for large N ) to define our estimator in the
current case, because it seems hard to get the asymptotic unbiased property using the
Meyer function (see the discussions below). It is well known that the support length
of ϕN is 2N − 1. We define �̃ := [a − 2N + 1, b + 2N − 1]d . With

f̃ f t
X (t) :=

[
d∏

s=1

(
exp

(
i
2π ts
λs

)
− 1

)vs
]

f f t
X (t), (43)

similar arguments to (19) show that

fX (x) =
J̃∑

k=0

ηk f̃X

(
x − 2πk

λ

)
, ∀x ∈ �̃, (44)

where ηk := ηk1,...,kd ,
k
λ

:= ( k1
λ1

, k2
λ2

, . . . ,
kd
λd

), J̃ = ( J̃1, J̃2 . . . , J̃d) with J̃s =
� (b̃−ã)λs

2π � and ã := a − 2N + 1, b̃ := b + 2N − 1.

Let ϕ(x) = ∏d
s=1 ϕN (xs), ϕ j,k(x) = 2 jd/2ϕ(2 j x − k) and K j := {k =

(k1, k2, . . . , kd) ∈ Z
d : supp (ϕN ) j,ks ∩ [a, b] �= ∅, s = 1, 2, . . . , d}. Define an

estimator for fX by

fX,n(x) :=
∑

k∈K j

α̂ j,kϕ j,k(x), (45)

where

α̂ j,k := 1

n

n∑

l=1

1

(2π)d

∫

Rd
ξ(t)eit ·Wl

[ϕ j,k] f t (t)
f f t
δ (t)

dt
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with

ξ(t) =
⎛

⎝
J̃∑

m=0

ηme
i 2πm

λ
·t
⎞

⎠

[
d∏

s=1

(
e
2π i ts
λs − 1

)vs

]

. (46)

Then, E α̂ j,k = (2π)−d
∫
Rd ξ(t) f f t

X (t)[ϕ j,k] f t (t)dt , thanks to Eeit ·Wl= f f t
X (t) f f t

δ (t).
This with (43) and (46) leads to

E α̂ j,k = 1

(2π)d

∫

Rd

⎡

⎣
J̃∑

k=0

ηm f̃X

(
x − 2πm

λ

)
⎤

⎦

f t

(t)
[
ϕ j,k

] f t
(t)dt. (47)

By Plancherel’s formula, (47) reduces to

E α̂ j,k =
∫

Rd

⎡

⎣
J̃∑

k=0

ηm f̃X

(
x − 2πm

λ

)⎤

⎦ϕ j,k(x)dx (48)

because of fX ∈ L2(Rd) (and therefore f̃ X ∈ L2(Rd )). Note that � := [a, b]d , �̃ =
[a − 2N + 1, b+ 2N − 1]d and K j := {k = (k1, k2, . . . , kd) ∈ Z

d : supp (ϕN ) j,ks ∩
[a, b] �= ∅, s = 1, 2, . . . , d}. Then, supp ϕ j,k ⊂ �̃ for k ∈ K j with j ≥ 0. This with
(48) and (44) leads to E α̂ j,k = ∫

�̃
fX (x)ϕ j,k(x)dx = 〈 fX , ϕ j,k〉 = α j,k .

Similarly, the estimator pn(x) of p(x) is defined by

pn(x) :=
∑

k∈K j

γ̂ j,kϕ j,k(x) (49)

with

γ̂ j,k := 1

n

n∑

l=1

Yl
1

(2π)d

∫

Rd
ξ(t)eit ·Wl

[ϕ j,k] f t (t)
f f t
δ (t)

dt.

Then, for k ∈ K j and j ≥ 0, E γ̂ j,k = γ j,k and Epn(x) = Pj p(x). Finally, define

m̂n(x) := pn(x)/ fX,n(x). (50)

The same arguments as (35) show that

E |pn(x) − Epn(x)|4 � n−4
n∑

l1=1

· · ·
n∑

l4=1

∫

Rd
· · ·

∫

Rd

{
2∏

r=1

ξ(t2r−1)ξ(−t2r )

×
⎡

⎣
∑

k∈Zd

ϕ j,k(x)[ϕ j,k] f t (t2r−1)

⎤

⎦

⎡

⎣
∑

k∈Zd

ϕ j,k(x)[ϕ j,k] f t (−t2r )

⎤

⎦
[
f f t
δ (t2r−1)
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f f t
δ (−t2r )

]−1
}
E

2∏

r=1

�l2r−1(t2r−1)�l2r (−t2r )dt1 . . . dt4, (51)

where ϕ(x) = ∏d
s=1 ϕN (xs) and ξ(t) is defined in (46). As in Theorem 2,

E
∏2

r=1 �l2r−1 (t2r−1)�l2r (−t2r ) � 1, and E
∏2

r=1 �l2r−1(t2r−1)�l2r (−t2r ) = 0
when 	{l1, . . . , l4} > 2. These with (51) show that

E |pn(x) − Epn(x)|4

� n−4
∑

(l1, ...,l4)∈Ln

∫

Rd
· · ·

∫

Rd

2∏

r=1

ξ(t2r−1)ξ(−t2r )

[ ∑

k∈Zd

ϕ j,k(x)[ϕ j,k] f t (t2r−1)

]

×
[ ∑

k∈Zd

ϕ j,k(x)[ϕ j,k] f t (−t2r )

] [
f f t
δ (t2r−1) f

f t
δ (−t2r )

]−1
dt1 . . . dt4, (52)

where Ln := {{l1, . . . , l4} : 	{l1, . . . , l4} ≤ 2}. Using (42), |ξ(t)| �
∏d

s=1

|e2π i tsλ−1
s − 1|vs and [ϕ j,k] f t (t) = 2−d j/2∏d

s=1 e
itsks2− j

ϕ
f t
N (2− j ts), we obtain that

∫

Rd
|ξ(t)|

∣
∣∣∣∣

∑
k∈Zd ϕ j,k(x)[ϕ j,k] f t (t)

f f t
δ (t)

∣
∣∣∣∣
dt �

∫

Rd

d∏

s=1

(1 + |ts |)αs
∣∣∣ϕ f t

N (2− j ts)
∣∣∣ dt.

Note that for large N ,

∫

Rd

d∏

s=1

(1 + |ts |)αs
∣
∣
∣ϕ f t

N

(
2− j ts

)∣∣
∣ dt �

d∏

s=1

2 j
∫

R

(
1 + |2 j ts |

)αs
∣
∣
∣ϕ f t

N (ts)
∣
∣
∣ dts � 2

∑d
s=1(1+αs ) j .

Then, (52) reduces to

E |pn(x) − Epn(x)|4 � n−2
[
2
∑d

s=1(1+αs ) j
]4

� n− 4
3 (53)

by choosing j such that 2
∑d

s=1(1+αs ) j � n
1
6 . The remaining proofs are the same as in

Theorem 4. We summarize our findings as follows:

Theorem 5 Consider the problem (1)with (42). If fX , p := m fX ∈ L1(Rd)∩L2(Rd)

have compact support �, E |Y1|4 < ∞, x ∈ � is a Lebesgue point of both fX and p
( fX (x) �= 0), then m̂n(x) defined by (45), (49) and (50) satisfies

lim
n→∞ m̂n(x)

a.s.= m(x).

Remark 5 The noise condition (42) is a little stronger than (15). However, we do not
assume f f t

X , p f t ∈ L1(Rd) as in Theorem 3. This shows some differences between
kernel estimators and wavelet ones.
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5 Concluding remarks

In this paper, we study the strong consistency of an estimator m̂n of the functions m
(on Rd ) for the regression problem

Y j = m
(
X j
)+ ε j , Wj = X j + δ j ( j = 1, 2, . . . , n),

where fX and fδ denote the densities of X j and δ j , ε j and δ j are independent of each
other and independent of X j , as well as Eε j = 0.

Theorem 2 extends Meister’s theorem from one-dimensional to multidimensional
setting. We remove the boundedness assumption of fX and p (p := m fX ), relax the
continuity to a Lebesgue point of fX and p; Theorem 3 allows for the noise density
fδ having Fourier-oscillating zeros, which produces a difficulty that Epn is no longer
a convolution form. However, we find a new proof for lim

n→∞ Epn(x) = p(x).

Theorems 4–5 deal with the strong consistency of wavelet estimators. We use the
Meyer wavelet for non-oscillating noises (Theorem 4). All conditions of Theorem 4
and Theorem 2 are exactly same. However, the proofs for lim

n→∞ Epn(x) = p(x) are

totally different. The Daubechies wavelet is chosen to study Fourier-oscillating noises
(Theorem 5). The key point is that we use compact supportedness of the Daubechies
function in the proof of Theorem 5.

We may ask if the strong consistency holds for a thresholding wavelet estimator.
The following discussions tell some difficulties, if we use the method in Sect. 4.

For simplicity, we assume the dimension d = 1 and consider only the non-
oscillating noise (i.e., f f t

δ (t) �= 0). As usual, a thresholding wavelet estimator is
defined by

pn(x) =
∑

k

α̂ j0,kϕ j0,k(x) +
j1−1∑

j= j0

∑

k

β̂∗
j,kψ j,k(x).

Here, ψ is the wavelet function corresponding to the scaling one ϕ and

α̂ j,k = 1

n

n∑

l=1

Yl
1

2π

∫

R

2− j/2eitWl e−i tk2− j
ϕ f t (2− j t)

/
f f t
δ (t)dt. (54)

The coefficients β̂ j,k are given by replacing ϕ by ψ in (54), and β̂∗
j,k = β̂ j,k I{|β̂ j,k |>λ}.

Similar to (39), E β̂ j,k = β j,k with β j,k = 〈p, ψ j,k〉.
As in the proof of Theorem 4, we need to estimate P{|pn(x)− p(x)| ≥ ε}. Clearly,

P (|pn(x) − p(x)| ≥ ε) ≤ P

(∣∣
∣
∣
∣

∑

k

(
α̂ j0,k − α j0,k

)
ϕ j0,k(x)

∣
∣
∣
∣
∣
≥ ε/3

)

+P

⎛

⎝

∣∣
∣
∣
∣
∣

j1−1∑

j= j0

∑

k

(
β̂∗
j,k − β j,k

)
ψ j,k(x)

∣∣
∣
∣
∣
∣
≥ ε/3

⎞

⎠+ P

⎛

⎝

∣∣
∣
∣
∣
∣

∞∑

j= j1

∑

k

β j,kψ j,k(x)

∣∣
∣
∣
∣
∣
≥ ε/3

⎞

⎠ .
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The first and third terms of the above equality can be treated similarly as in the proof
of Theorem 4. However, the middle one is totally different, because it involves the
coefficients β̂∗

j,k .
Let us look at

T = P

⎡

⎣

∣∣∣∣∣∣

j1−1∑

j= j0

∑

k

(
β̂ j,k − β j,k

)
ψ j,k(x)I{∣∣∣β̂ j,k

∣
∣
∣>λ

}

∣∣∣∣∣∣
≥ ε

⎤

⎦ .

By Markov’s inequality,

T ≤ ε−4( j1 − j0)
3
j1−1∑

j= j0

E

∣∣∣
∣∣

∑

k

(
β̂ j,k − β j,k

)
ψ j,k(x)I{∣∣∣β̂ j,k

∣
∣∣>λ

}

∣∣∣
∣∣

4

. (55)

Similar to (35),

E

∣∣∣
∣∣

∑

k

(
β̂ j,k − β j,k

)
ψ j,k(x)I{∣∣∣β̂ j,k

∣
∣∣>λ

}

∣∣∣
∣∣

4

= 1

n4

n∑

l1=1

· · ·
n∑

l4=1

2−2 j

(2π)4

∫

R

· · ·
∫

R

[E F(t, x)]G(t, x)dt1 . . . dt4, (56)

where G(t, x) = ∏2
r=1 ψ f t (2− j t2r−1)ψ f t (−2− j t2r )[ f f t

δ (t2r−1) f
f t

δ (−t2r )]−1 and

F(t, x) =
2∏

r=1

�l2r−1

(
t2r−1

)
�l2r (−t2r )

⎡

⎣
∑

k

e−i t2r−1k2− j
ψ j,k(x)I{

∣∣
∣β̂ j,k

∣∣
∣>λ

}

⎤

⎦

×
⎡

⎣
∑

k

eit2r k2
− j

ψ j,k(x)I{
∣
∣∣β̂ j,k

∣
∣∣>λ

}

⎤

⎦ with �l (t) := Yle
itWl − EYle

itWl .

Although G(t, x) can be estimated by the same way as in (35), F(t, x) is much
more complicated: In addition to �l2r−1(t2r−1)�l2r (−t2r ), F(t, x) contains additional
stochastic terms related to I{|β̂ j,k |>λ}. Therefore, the number of the summation terms

in (56) does not reduce to O(n2) in general. Thus, the Borel–Cantelli lemma cannot
be applied for our desired conclusion.

Finally, we want to point out that the current paper focuses only on theoretic inves-
tigations. There are existing references dealing with numerical experiments for kernel
estimators with both non-oscillating and oscillating noises.We shall try to do the same
things for our wavelet estimators in future.
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