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Abstract A class of linear transformation models with censored data was proposed
as a generalization of Cox models in survival analysis. This paper develops inference
procedure for regression parameters based on jackknife empirical likelihood approach.
We can show that the limiting variance is not necessary to estimate and the Wilk’s
theorem can be obtained. The jackknife empirical likelihood method benefits from the
simpleness in optimization using jackknife pseudo-value. In our simulation studies,
the proposed method is compared with the traditional empirical likelihood and normal
approximation methods in terms of coverage probability and computational cost.

Keywords Linear transformation model · Empirical likelihood · Jackknife ·
Coverage probability

1 Introduction

When the association between the dependent and independent variables is not appro-
priately represented by conditional mean m(x) = E(Y |X = x), transformations
are recommended to apply on either dependent or independent variables or both.
Subjectively, transformation models can afford many flexible choices for practical
users; objectively, better statistical performance is achieved in choosing appropriate
transformation functions, for example, Box–Cox transformation. As pioneers of trans-
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formationmodels, Box andCox (1964) introduced the power family transformation on
the dependent variable. A large amount of literature discussed transformation mod-
els, such as Bickel and Doksum (1981), Carroll and Ruppert (1984), Breiman and
Friedman (1985).

In survival analysis, covariate effects are considered to be associated with failure
time, odds rate and hazard rate, etc. Calling for the better interpretation, researchers
proposed the well-known proportional hazards model with right censoring (Cox 1972;
Andesen andGill 1982, etc.), proportional oddsmodel (Bennett 1983), and accelerated
failure time models (Pettitt 1982). Generally, those models with right censoring have
linear covariate effect and can be obtained by taking transformations of survival func-
tion, i.e., g{SZ (t)} = h(t) + ZTβ, where SZ (t) is the survival function of the failure
time T conditioned on p-dimensional covariate Z , h(·) is a strictly increasing unspec-
ified function and g(·) is a given decreasing function. Cheng et al. (1995) proposed a
linear transformation model with censoring which generalizes most popular survival
models, including models mentioned above, h(T ) = −ZTβ + ε, where ε is a random
variable independent of covariate Z with the distribution function F(x) = 1−g−1(x).
We can specify g(x) to obtain the Cox regression model and the proportional odds
model, respectively. Chen et al. (2002) andKong et al. (2006)made great contributions
to the linear transformation model with right censoring.

To estimate the asymptotic variance in the linear transformation model consistently
is complicated and less computational efficient. In small samples, the performances
of normal approximation approach often are limited by the accuracy of variance esti-
mation [see Fine et al. (1998)]. Empirical likelihood (EL) method proposed by Owen
(1988), Owen (1990) can tackle with this problem. Under mild conditions, the Wilk’s

theorem holds −2 ln R(θ0)
D−→ χ2

1 , where R(θ0) = sup
�θ0

L(F)/sup
�

L(F) and �θ0 , a

subset of empirical distribution space �, is controlled by the targeting parameter θ0.
Zhao (2010) proposed the EL inference method for linear transformation models with
right censoring (see Cheng et al. 1995). Using EL approach, Yu et al. (2011) and Yang
and Zhao (2012) adjusted the estimation equation of the transformationmodel to avoid
estimating the covariance matrix. Moreover, the optimization problem in EL approach
is a critical step to find the precise and reliable solution. Researchers in statistics field
are hindered to improve EL method for U-statistics type estimating questions fre-
quently encountered until Jing et al. (2009) introduced the jackknife pseudo- sample
into the EL procedure. In this paper, we develop the jackknife empirical likelihood
(JEL) method for linear transformation models.

The rest of the paper is organized as follows. In Sect. 2, we develop the jackknife
empirical likelihood method for the linear transformation model. Then, we compare
the JEL method and the existing methods in Sect. 3. In Sect. 4, we discuss the current
method and some possible future work. The proofs are provided in the Appendix.

2 Inference procedure

Consider censored data (Xi , δi ), i = 1, . . . , n, where Xi = min(Ti ,Ci ) and δi =
I (Ti ≤ Ci ). Ci with distribution function G(t) and failure time Ti are independent.
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In this paper, we adopt the same notations as Yang and Zhao (2012) did. Covariate
vector {Zi }ni=1 ∈ Rp is the corresponding vectors and Zi j = Zi − Z j .

Fine et al. (1998) proposed the constrained variable t0 satisfies Pr{min(T,C) >

t0} > 0, α = h(t0) and p + 1 dimensional parameter θ = (α, βT )T . Denote true
θ0 = (α0, β

T
0 )T . The estimating equation of a transformation model is

	w(θ) =
n∑

i=1

n∑

j=1,i �= j

wi j (θ)η̇i j (θ)

{
δ j I {min(Xi , t0) ≥ X j }

Ĝ2(X j )
− ηi j (θ)

}
, (1)

where Ĝ(·) is the Kaplan–Meier estimator ofG, the positive weighted functionwi j (·),
ηi j (θ) = η(ZT

i jβ)−Pr(Ti ≥ Tj ≥ t0|Zi , Z j ) and its derivative vector η̇i j (θ) is defined
in Yang and Zhao (2012).

Define Ui = (ZT
i , Xi ,Ci ). We have the same notations as Zhao (2010) and Yang

and Zhao (2012) did

ei j (θ) = wi j (θ)η̇i j (θ)

{
δ j I (min(Xi , t0) ≥ X j )

G2(X j )
− ηi j (θ)

}
,

and

di (θ) = 2
∫ t0

0

q(θ, t)

π(t)
dMi (t),

where

q(θ, t)= lim
n→∞

1

n(n − 1)

n∑

i=1

n∑

j=1, j �=i

wi j (θ)η̇i j (θ)
δ j I {min(Xi , t0)≥ X j }

G2(X j )
I (X j ≥ t),

π(t) = lim
n→∞

1

n

n∑

i=1

I (Xi ≥ t),

and

dMi (t) = I (Xi ≤ t, δi = 0) −
∫ t

0
I (Xi ≥ u)d�G(u).

The term �G(t) in the above equation is a cumulative hazard function. Denote d̂i (θ)

the estimator of di (θ) when q(θ, t), π(t) and �G(t) are estimated by finite sample.
Denote êi j (θ) the estimator of ei j (θ) when G(t) is estimated by Ĝ(t) with finite
sample. Furthermore, by Zhao (2010) and Yang and Zhao (2012), we have that

b(Ui ,Uj ; θ) = {ei j (θ) + di (θ) + e ji (θ) + d j (θ)},

V (θ) = 1

n(n − 1)

n∑

i=1

n∑

j=1, j �=i

{
b(Ui ,Uj ; θ)

}
,
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Zhao (2010) interpreted equation (1) as one U-statistics

V̂ (θ) = 1

n(n − 1)

n∑

i=1

n∑

j=1, j �=i

{b̂(Ui ,Uj ; θ)},

with the symmetric kernel of 2 degrees b̂(Ui ,Uj ; θ) = {êi j (θ) + d̂i (θ) +
ê j i (θ) + d̂ j (θ)}. In fact, V̂ (θ0) = 2/{n(n − 1)}	w(θ0) from Lemma A.1 of Yang
and Zhao (2012). Yang and Zhao (2012) developed empirical likelihood method
based on dependent vectors {Ŵi (θ), i = 1, . . . , n}, where Ŵi (θ) = 1/(n −
1)

∑n
j=1, j �=i {b̂(Ui ,Uj ; θ)}. Motivated by Jing et al. (2009), we construct the jack-

knife pseudo-sample for U-statistics V̂ (θ). The kernel {b̂(Ui ,Uj ; θ)} is not fully
determined by independent samples Ui and Uj , but incorporates with entire sam-
ples due to d̂ j (θ) and Ĝ(·) in ê j i (θ). The arguments about jackknife empirical
likelihood for U-statistics in Jing et al. (2009) could not guarantee that the Wilk’s
theorem is valid in this case. However, the consistency of Ĝ(·) and the property that∑n

i=1 d̂i (θ) = 0 are essential for us to believe that b̂(Ui ,Uj ; θ) approaches the ker-
nel of U-statistics from Ui and Uj after using the jackknife procedure. Denote the
pseudo-value Q̂l(θ) = nV̂ (θ) − (n − 1)V̂l(θ), where

V̂l(θ) = 1

(n − 1)(n − 2)

n∑

i=1,i �=l

n∑

j=1, j �=i,l

{
b̂(Ui ,Uj ; θ)

}
, l = 1, . . . , n.

Hence, the jackknife empirical likelihood ratio at θ based on Q̂l is given by,

R(θ) = sup

{
n∏

i=1

npi :
n∑

i=1

pi = 1,
n∑

i=1

pi Q̂i (θ) = 0, pi ≥ 0

}
.

Using Lagrange multiplier method, the jackknife empirical log-likelihood ratio is as
follows,

l(θ) = −2 log{R(θ)} = 2
n∑

i=1

log{1 + λ(θ)T Q̂i (θ)}, (2)

where p + 1-dimensional Lagrange multiplier λ(θ) satisfies

g(λ(θ)) ≡ 1

n

n∑

i=1

Q̂i (θ)

1 + λ(θ)T Q̂i (θ)
= 0. (3)

Assume the standard regularity conditions, which are the same as those in Yang
and Zhao (2012). We establish the Wilk’s theorem as follows.
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Theorem 1 Under the regularity conditions in Yang and Zhao (2012), as n −→ ∞,
we have

l(θ0)
D−→ χ2

p+1, (4)

where χ2
p+1 is a standard Chi-squared random variable with p+1 degrees of freedom.

The 100(1 − α) % jackknife empirical likelihood confidence region for θ can be
established as Rα = {θ : l(θ) ≤ χ2

p+1(α)}, where χ2
p+1(α) is the upper α-quantile of

distribution of χ2
p+1.

When one is interested in θ10, a sub-vector of θ0 = (θT10, θ
T
20)

T , the hypothesis is
shown as H0 : θ1 = θ10, where θ1 ∈ Rq and θ2 ∈ Rp+1−q . The Wilk’s theorem for
the profiled jackknife empirical likelihood ratio l∗(θ1) = infθ2 l(θ1, θ2) (see Qin and
Lawless 1994) is given as follows.

Theorem 2 Under the regularity conditions in Yang and Zhao (2012), as n −→ ∞,

l∗(θ10)
D−→ χ2

q . (5)

Thus, we can construct the jackknife empirical likelihood confidence region for

θ10 with 100(1− α) % level R∗
α =

{
θ1 : l∗(θ1) ≤ χ2

q (α)
}

, where χ2
q (α) is the upper

α-quantile of distribution of χ2
q . Unlike the existing methods, the unscaled limiting

distribution ensures that inference is driven by data automatically, without estimating
covariance matrix.

3 Numerical studies

We carry out simulation studies in terms of coverage probability of confidence regions,
comparing jackknife empirical likelihood with the normal approximation and EL
methods. Based on (1), Fine et al. (1998) constructed normal approximation (NA)-
based confidence regions, which need to estimate a complicated covariance matrix
for the inference. The scenarios of simulation are considered as those in Yang and
Zhao (2012). We choose the logarithm function as a link function. The ε is a standard
extreme value function and the transformation model becomes the Cox regression
model. We denote w(·) = 1. Note that t0 is corresponding to 20% upper quantile
of the censoring data. The censoring data are from U [0, c]. The censoring rates are
selected as 0.1, 0.2, 0.3 and 0.4, respectively. As Yang and Zhao (2012) did for the
EL method, we have setting (A), β = (−0.5, 0.5). Z1 followsU [0, 1], and Z2 is from
Bernoulli distribution with success probability 0.2. In setting (B), β1 = 1 and β2 = 0.
Z1 isU [0, 1], and Z2 is from Bernoulli distribution with 0.2. The sample sizes are 60
and 100, and the data are repeated 1000 times.

In Table 1, we report coverage probabilities of 95 % JEL, EL and normal approxi-
mation (NA) confidence regions. For the sample size 60, the NA, JEL and ELmethods
have good performances. When the sample size increases to 100, the estimated cov-
erage probabilities for NA, EL and JEL methods are close to 95 % nominal level. The
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Table 1 Coverage probability of 95 % confidence region for β

n Censoring rate JEL (A) EL (A) NA (A) JEL (B) EL (B) NA (B)

60 0.1 0.928 0.933 0.929 0.920 0.929 0.936

60 0.2 0.943 0.944 0.938 0.949 0.950 0.932

60 0.3 0.949 0.951 0.913 0.961 0.965 0.931

60 0.4 0.927 0.952 0.912 0.934 0.956 0.906

100 0.1 0.960 0.949 0.941 0.954 0.951 0.950

100 0.2 0.958 0.953 0.929 0.949 0.956 0.948

100 0.3 0.957 0.945 0.933 0.956 0.968 0.952

100 0.4 0.931 0.940 0.915 0.936 0.954 0.935

Table 2 Average time (second) per repetition for computing 95 % coverage probabilities for β

n Censoring rate JEL (A) EL (A) NA (A) JEL (B) EL (B) NA (B)

60 0.1 0.354 0.353 0.998 0.355 0.351 1.055

60 0.2 0.354 0.352 1.023 0.354 0.351 1.052

60 0.3 0.355 0.353 1.057 0.355 0.352 1.051

60 0.4 0.356 0.354 1.055 0.355 0.352 1.055

100 0.1 0.974 0.961 3.143 0.992 0.977 3.007

100 0.2 0.987 0.973 3.135 1.008 0.993 3.013

100 0.3 0.992 0.978 3.136 1.022 1.008 2.927

100 0.4 0.993 0.980 3.146 1.023 1.009 2.944

average computation times per repetition (with the second as the unit) of the three
methods for calculating coverage probability are shown in Table 2 with 1000 repe-
titions. Even though the EL method spends slightly shorter time than JEL does, we
would conclude that JEL and EL methods take similar running time because of very
small difference of computational burden. When calculating the estimation equations,
the JEL is comparable with EL method in speed because jackknifing technique does
not leverage computational complexity. The jackknife procedure in a linear transfor-
mation model can be simplified because the estimating equations are calculated by
the summation. Moreover, both finding β and the variance estimation for the normal
approximation method need more computational cost than JEL and EL methods.

4 Discussion

In this paper,we apply jackknife empirical likelihood to theU-statistics type estimation
equation of linear transformation model. TheWilk’s theorem for any fixed component
has been established, where b̂(Ui ,Uj ; θ) is close to the kernel function of U-statistics.
Thus, the JEL method can be applied to more general case than U-statistics. Recently,
the linear transformation model with the diverging number of dimensions pwas exten-
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sively discussed. Penalized empirical likelihood methods for large pwere investigated
by Tang and Leng (2010) and Lahiri and Mukhopadhyay (2012), among others. In the
future, we will develop the jackknife EL procedure for linear transformation models
to solve the high-dimensional optimization issue and computational cost problem.

Proofs of Theorems

Denote �(θ0) = �1(θ0) − �2(θ0), which is a limiting covariance matrix for
n(−3/2)	w(θ0) defined by Fine et al. (1998), where

�1(θ) = lim
n→∞

1

n3

n∑

i=1

n∑

j=1, j �=i

n∑

k=1,k �= j

{ei j (θ) + e ji (θ)}{eik(θ) + eki (θ)}T ,

�2(θ) = 4
∫ t0

0

q(θ, t)qT (θ, t)

π(t)
d�G(t).

Lemma 1 Under the conditions of Theorem 1,

√
n
1

n

n∑

l=1

Q̂l(θ0) = √
nV̂ (θ0)

D−→ N (0, 4�(θ0)),

as n → ∞.

Proof Noticing that Ĝ(·) and �̂G(t) in b̂(Ui ,Uj ; θ0) are estimated by the full sample,
we re-express

∑n
l=1 Q̂l as follows,

n∑

l=1

Q̂l(θ0) =
n∑

l=1

nV̂ (θ0) −
n∑

l=1

(n − 1)V̂l(θ0)

= n2V̂ (θ0) − 1

n − 2

n∑

l=1

n∑

i=1,i �=l

n∑

j=1, j �=i,l

{
b̂(Ui ,Uj ; θ0)

}

= n2V̂ (θ0) − 1

n − 2

n∑

{i, j,l|1≤i, j,l≤n,i �= j, j �=l,l �=i}

{
b̂(Ui ,Uj ; θ0)

}

= n2V̂ (θ0) − n − 2

n − 2

n∑

i=1

n∑

j=1, j �=i

{
b̂(Ui ,Uj ; θ0)

}

= n2V̂ (θ0) − n(n − 1) · 1

n(n − 1)

n∑

i=1

n∑

j=1, j �=i

{
b̂(Ui ,Uj ; θ0)

}

= n2V̂ (θ0) − n(n − 1)V̂ (θ0)

= nV̂ (θ0). (6)
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Thus, the following result holds by Lemma A.1 of Yang and Zhao (2012),

√
n
1

n

n∑

l=1

Q̂l(θ0) = √
nV̂ (θ0)

D−→ N (0, 4�(θ0)). (7)

��
Lemma 2 Denote

Vl(θ) = 1

(n − 1)(n − 2)

n∑

i=1,i �=l

n∑

j=1, j �=i,l

{
b(Ui ,Uj ; θ)

}
,

and

Ql(θ) = nV (θ) − (n − 1)Vl(θ).

Under the conditions of Theorem 1, let

�n(θ0) = 1

n

n∑

l=1

Ql(θ0)Q
T
l (θ0),

and

�̂n(θ0) = 1

n

n∑

l=1

Q̂l(θ0)Q̂
T
l (θ0).

Then, we have (a) �n(θ0)
P−→ 4�(θ0); ii) �̂n(θ0)

P−→ 4�(θ0).

Proof This lemma is to prove that variance of Q̂l(θ0), denoted as �̂n(θ0), whose com-
ponents are estimated by random samples, converges to 4�(θ0) in probability. It is not a
strictly full version of traditional jackknife sample in Q̂l(θ0), whichmeans thatwe can-
not apply the properties of jackknife EL to ourmethod directly. Note that b(Ui ,Uj ; θ0)

depends on both i-th and the j-th samples, since the terms q(θ, t), π(t), G(·), �G(t)
are determined, instead of random. Therefore, what we are required to do is to: (a)
prove that �n(θ0) converges to 4�(θ0) in probability; (b) verify that the gap between
�n(θ0) and �̂n(θ0) is close to zero in probability. The details are given as follows.

For (a), similar to Lemma A.3 of Jing et al. (2009), one has

�n(θ0) = 1

n

n∑

l=1

Ql(θ0)Q
T
l (θ0)

= 1

n

n∑

l=1

{
Ql(θ0)Q

T
l (θ0)−2Ql(θ0)V

T (θ0)+V (θ0)V
T (θ0)

}
+V (θ0)V

T (θ0)

= 1

n

n∑

l=1

(Ql(θ0) − V (θ0))(Ql(θ0) − V (θ0))
T + V (θ0)V (θ0)

T . (8)
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Like equation (A.4) in Yang and Zhao (2012), it is clear that

Var(V (θ0)) = 4�(θ0)

n
+ o

(
n−1

)
, a.s. (9)

Denote the jackknife estimator of Var(V (θ0)) by V̂ar( jack) ≡ 1
n(n−1)

∑n
l=1(Ql(θ0)−

V (θ0))(Ql(θ0) − V (θ0))
T , and it is consistent with Var(V (θ0)) from Lee (1990), i.e.,

n
[
V̂ar( jack) − Var(V (θ0))

]
→ 0, a.s. (10)

Thus, combining (9) and (10), the first part of (8) equals to

1

n

n∑

l=1

(Ql(θ0) − V (θ0))(Ql(θ0) − V (θ0))
T = (n − 1)V̂ar( jack)

= 4�(θ0) + o(1).

Note that 1/n
∑n

i=1 Ql(θ0) = V (θ0), which is similar to (6). Combining (9) and the
Law of Large Numbers for U-statistics, we obtain V (θ0) = O(n−1/2). Therefore, (8)
equals to

�n(θ0) = 4�(θ0) + o(1), a.s.,

i.e.,

�n(θ0)
P−→ 4�(θ0). (11)

For (b), to prove the difference between �n(θ0) and �̂n(θ0) is close to zero in
probability, we need to check that |Q̂l(θ0) − Ql(θ0)| = op(1) first. Like Yang and
Zhao (2012), it is clear that

sup
i, j=1,...,n

∣∣∣b̂(Ui ,Uj ; θ0) − b(Ui ,Uj ; θ0)

∣∣∣ = op(1).

Then, according to the definition of Ql(θ0), it can be re-expressed as follows.

Ql(θ0) = nV (θ0) − (n − 1)Vl(θ0)

= n

n(n − 1)

n∑

i=1

n∑

j=1, j �=i

{
b(Ui ,Uj ; θ0)

}

− n − 1

(n − 1)(n − 2)

n∑

i=1,i �=l

n∑

j=1, j �=i,l

{
b(Ui ,Uj ; θ0)

}

= 1

n − 1

n∑

j=1, j �=l

{
b(Ul ,Uj ; θ0)

} + 1

n − 1

n∑

i=1,i �=l

{b(Ui ,Ul; θ0)}
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− 1

(n − 1)(n − 2)

n∑

i=1,i �=l

n∑

j=1, j �=i,l

{
b(Ui ,Uj ; θ0)

}

= 2Wl(θ0) − Vl(θ0),

as b(Ui ,Uj ; θ0) is symmetric for any i and j . Similarly,

Q̂l(θ0) = nV̂ (θ0) − (n − 1)V̂l(θ0)

= n

n(n − 1)

n∑

i=1

n∑

j=1, j �=i

{
b̂(Ui ,Uj ; θ0)

}

− n − 1

(n − 1)(n − 2)

n∑

i=1,i �=l

n∑

j=1, j �=i,l

{
b̂(Ui ,Uj ; θ0)

}

= 1

n − 1

n∑

j=1, j �=l

{
b̂(Ul ,Uj ; θ0)

}
+ 1

n − 1

n∑

i=1,i �=l

{
b̂(Ui ,Ul; θ0)

}

− 1

(n − 1)(n − 2)

n∑

i=1,i �=l

n∑

j=1, j �=i,l

{
b̂(Ui ,Uj ; θ0)

}

= 2Ŵl(θ0) − V̂l(θ0).

Therefore, we have

∣∣∣Q̂l(θ0) − Ql(θ0)

∣∣∣ =
∣∣∣2

[
Ŵl(θ0) − Wl(θ0)

]
+

[
Vl(θ0) − V̂l(θ0)

]∣∣∣ . (12)

For the first part of (12), by Yang and Zhao (2012), we obtain that

2|Ŵl(θ0) − Wl(θ0)|

= 2

n − 1

∣∣∣∣∣∣

n∑

j=1, j �=l

{b(Ul ,Uj ; θ0) − b̂(Ul ,Uj ; θ0)}
∣∣∣∣∣∣

≤ 2

n − 1

n∑

j=1, j �=l

sup
l, j=1,...,n

∣∣∣b(Ul ,Uj ; θ0) − b̂(Ul ,Uj ; θ0)

∣∣∣

= op(1). (13)

Similarly, for the second part of (12), one has that

|Vl(θ0) − V̂l(θ0)|

= 1

(n − 1)(n − 2)

∣∣∣∣∣∣

n∑

i=1,i �=l

n∑

j=1, j �=i,l

{b(Ui ,Uj ; θ0) − b̂(Ui ,Uj ; θ0)}
∣∣∣∣∣∣
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≤ 1

(n − 1)(n − 2)

n∑

i=1,i �=l

n∑

j=1, j �=i,l

sup
i, j=1,...,n

∣∣∣b(Ui ,Uj ; θ0) − b̂(Ui ,Uj ; θ0)

∣∣∣

= op(1). (14)

Combining (12), (13) and (14), it leads to

|Q̂l(θ0) − Ql(θ0)| = op(1). (15)

For any α ∈ Rp+1, by (15)

αT
{
�n(θ0) − �̂n(θ0)

}
α

= 1

n
αT

{
n∑

l=1

Ql(θ0)Q
T
l (θ0) −

n∑

l=1

Q̂l(θ0)Q̂
T
l (θ0)

}
α

= 1

n
αT

{
n∑

l=1

Ql(θ0)Q
T
l (θ0) − 2

n∑

l=1

Q̂l(θ0)Q
T
l (θ0) +

n∑

l=1

Q̂l(θ0)Q̂
T
l (θ0)

+2
n∑

l=1

Q̂l(θ0)Q
T
l (θ0) − 2

n∑

l=1

Q̂l(θ0)Q̂
T
l (θ0)

}
α

= 1

n

n∑

l=1

[
αT (Ql(θ0) − Q̂l(θ0))

]2 + 2

n

n∑

l=1

αT Q̂l(θ0)(Ql(θ0) − Q̂l(θ0))
Tα

= op(1),

as both |Ql(θ0)| and |Q̂l(θ0)| are uniformly bounded, due to the boundness of
|b(Ui ,Uj ; θ0)| and (15). Thus,

�̂n(θ0) = �̂n(θ0) − �n(θ0) + �n(θ0)
P−→ 4�(θ0), (16)

and we finish the proof. ��
Lemma 3 Under the conditions of Theorem 1, ‖λ(θ0)‖ = Op(n−1/2), where ‖ · ‖
denotes the Euclidean norm.

Proof As in (Owen (1990), p. 101), we let λ(θ0) = ρν where ρ ≥ 0 and ‖ν‖ = 1,
and have

0 = ‖g(ρν)‖
≥ |νT g(ρν)|

= 1

n

∣∣∣∣∣ν
T

[
n∑

l=1

Q̂l(θ0)

1 + ρνT Q̂l(θ0)

]∣∣∣∣∣ = 1

n

∣∣∣∣∣ν
T

[
n∑

l=1

Q̂l(θ0) − ρ

n∑

l=1

Q̂l(θ0)Q̂T
l (θ0)ν

1 + ρνT Q̂l(θ0)

]∣∣∣∣∣

≥ ρ

n

∣∣∣∣∣ν
T

n∑

l=1

Q̂l(θ0)Q̂T
l (θ0)

1 + ρνT Q̂l(θ0)
ν

∣∣∣∣∣ − 1

n

∣∣∣∣∣ν
T

n∑

l=1

Q̂l(θ0)

∣∣∣∣∣ ,
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where g(·) has been defined by (3). It holds that

ρ

n

∣∣∣∣∣ν
T

n∑

l=1

Q̂l(θ0)Q̂T
l (θ0)

1 + ρνT Q̂l(θ0)
ν

∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣ν
T

n∑

l=1

Q̂l(θ0)

∣∣∣∣∣ .

It is clear that n−1 ∑n
l=1 Q̂l(θ0) = V̂ (θ0) = Op(n−1/2) by (7), and νT �̂n(θ0)ν =

νT (�̂n(θ0) − �(θ0))ν + νT�(θ0)ν = Op(1) by Lemma 2. As shown in Lemma 2,
‖Q̂l(θ0)‖ is uniformly bounded by M for all i , thus 1 + ρνT Q̂l(θ0) ≤ 1 + ρM . We
can obtain that

ρν�̂nν

1 + ρM
≤ ‖ν‖ ·

∥∥∥∥∥
1

n

n∑

l=1

Q̂l(θ0)

∥∥∥∥∥ = Op(n
−1/2).

Hence,

‖λ(θ0)‖ = ρ = Op(n
−1/2). (17)

��

Proof of Theorem 1 We will derive an asymptotic expression for λ(θ) as the root of
g(λ(θ)) when θ is replaced by its true value θ0 as follows

0 = g(λ(θ0)) = 1

n

n∑

l=1

Q̂l(θ0)

1 + λ(θ0)T Q̂l(θ0)

= 1

n

n∑

l=1

Q̂l(θ0)

[
1 − λ(θ0)

T Q̂l(θ0) + λ(θ0)
T Q̂l(θ0)Q̂T

l (θ0)λ(θ0)

1 + λ(θ0)T Q̂l(θ0)

]

= V̂ (θ0) − λ(θ0)
T �̂n(θ0) + 1

n

n∑

l=1

Q̂l(θ0)λ(θ0)
T Q̂l(θ0)Q̂T

l (θ0)λ(θ0)

1 + λ(θ0)T Q̂l(θ0)
.

Since ‖Q̂l(θ0)‖ is uniformly bounded by M , and ‖�̂n(θ0)‖ is Op(1). From Lemma 3,
1 + λ(θ0)

T Q̂l(θ0) = Op(1). Thus, the last term of the above equation can be written
as

∣∣∣∣∣
1

n

n∑

l=1

Q̂l(θ0)λ(θ0)
T Q̂l(θ0)Q̂T

l (θ0)λ(θ0)

1 + λ(θ0)T Q̂l(θ0)

∣∣∣∣∣ = Op(n
−1).

Hence, we write

λ(θ0) = �̂−1
n (θ0)V̂ (θ0) + Op(n

−1). (18)

123



Jackknife empirical likelihood for linear transformation models… 1107

By (18), l(θ0) can be expanded as

l(θ0) = 2
n∑

l=1

log{1 + λ(θ0)
T Q̂l(θ0)}

= 2
n∑

l=1

[
λ(θ0)

T Q̂l(θ0)− 1

2
λ(θ0)

T Q̂l(θ0)Q̂
T
l (θ0)λ(θ0)+O((λ(θ0)

T Q̂l(θ0))
3)

]

= 2nV̂ T (θ0)�̂
−1
n (θ0)V̂ (θ0) − nV̂ T (θ0)�̂

−1
n (θ0)�̂n(θ0)�̂

−1
n (θ0)V̂ (θ0)

+ Op(n
−1/2)

= √
nV̂ T (θ0) · �̂−1

n (θ0) · √
nV̂ (θ0) + op(1),

since ‖Q̂l(θ0)‖ is uniformly bounded, V̂ (θ0) = Op(n−1/2), and ‖λ(θ0)‖ =
Op(n−1/2). Thus, combining the results of Lemmas 1 and 2, we obtain that

l(θ0)
D−→ χ2

p+1. (19)

��
Proof of Theorem 2 The proof is along the lines of Zhang and Zhao (2013). Let

θ̃2 = arg infθ2 l(θ10, θ2), D̃(θ0) = lim
n→∞ n−2

n∑

i=1

n∑

j=1, j �=i

wi j (θ0)η̃i j (θ0)η̃
T
i j (θ0),

where η̃Ti j (θ0) is the partial derivative of ηTi j (θ0) with respect to θ2, and �̃(θ0) =
D̃T (θ0)�

−1(θ0)D̃(θ0). Then, following the similar arguments in Qin and Lawless
(1994) and Fine et al. (1998), we have

√
n(θ̃2 − θ20) = −�̃(θ0)

−1 D̃(θ0)
T�(θ0)

−1 1√
n

n∑

l=1

Q̂l(θ0) + op(1),

and the Lagrange multiplier λ2 satisfying

√
nλ2 = S1

1√
n

n∑

l=1

Q̂l(θ0) + op(1),

where S1 = �−1(θ0) − �−1(θ0)D̃(θ0)�̃
−1(θ0)D̃(θ0)

T�−1(θ0). Although Q̂l ’s are
not independent of each other, which is different from situation in Qin and Lawless
(1994), Lemmas1 and2guarantee the convergence rate of

∑n
l=1 Q̂l(θ0) andboundness

of Q̂l(θ0). Then, similar to Zhang and Zhao (2013) and Theorem 1, one has that

l∗(θ10) =
{

1√
n

n∑

l=1

Q̂l(θ0)

}T

S1

{
1√
n

n∑

l=1

Q̂l(θ0)

}
+ op(1)
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=
{

�−1/2(θ0)
1√
n

n∑

l=1

Q̂l(θ0)

}T {
I−�−1/2(θ0)D̃(θ0)�̃

−1(θ0)D̃(θ0)
T�−1/2(θ0)

}

×
{

�−1/2(θ0)
1√
n

n∑

l=1

Q̂l(θ0)

}
+ op(1)

≡
{

�−1/2(θ0)
1√
n

n∑

l=1

Q̂l(θ0)

}T

S2

{
�−1/2(θ0)

1√
n

n∑

l=1

Q̂l(θ0)

}
+ op(1).

Since S2 = I −�−1/2(θ0)D̃(θ0)�̃
−1(θ0)D̃(θ0)

T�−1/2(θ0) is a symmetric and idem-
potent matric with trace q, we have

l∗(θ10)
D−→ χ2

q .

��
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