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Abstract When the number of zeros in a count dataset exceeds the accommodation
of the probability mass of a regular Poisson distribution at zero, the zero-inflated Pois-
son (ZIP) distribution is often used. To characterize the potential non-linear effects
of covariates and avoid the “curse of dimensionality”, we propose a spline-based
ZIP regression single-index model. B-splines are employed to estimate the unknown
smooth function. A modified Fisher scoring method is proposed to simultaneously
estimate the linear coefficients and the regression function. It is shown that the spline
estimator of the nonparametric component is uniformly consistent, and achieves the
optimal convergence rate under the smooth condition, and that the estimators of
regression parameters are asymptotically normal and efficient. The spline-based semi-
parametric likelihood ratio test is also established. Moreover, a direct and consistent
variance estimationmethod based on least-squares estimation is proposed. Simulations
are performed to evaluate the proposed method.

Keywords B-spline · Likelihood estimator · Single-index model · Zero-inflated
Poisson regression

1 Introduction

Count data usually contain large numbers of zeros, which can be seen in many disci-
plines, e.g., biomedical studies, environmental economics, among others. When the
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number of zeros exceeds the accommodation of the probability mass of a regular Pois-
son distribution at zero, the ZIP distribution is often used to analyze the type of count
data (Singh 1963; Johnson et al. 2005). A ZIP distribution is amixture of a degenerated
distribution at zero and a Poisson distribution, which is expressed as follows:

Pr(Y = y;π, λ) = π I{y=0} + (1 − π)
e−λλy

y! , y = 0, 1, 2, . . . ,

=
{

π + (1 − π)e−λ, if y = 0,

(1 − π) e
−λλy

y! , if y = 1, 2, . . .
(1)

Here π ∈ [0, 1] is a mixing weight for the accommodation of extra zeros. λ is the
Poisson mean. I{·} is the indicator function. It is noted that the ZIP distribution is
reduced to a regular Poisson distribution when the mixing weight π = 0. The ZIP
distribution can be thought of as a population that consists of two latent groups: the
susceptible group consisting of those who are at risk of an event of interest, and may
have the event several times during a specific time period, and the non-susceptible
group consisting of thosewho are not at risk of the event of interest (Dietz and Böhning
1997).

To study covariate effects, Lambert (1992) proposed a parametric ZIP regression
model to analyze an example of soldering defects on printed wiring boards. Some
researchers also have successfully applied the ZIP regression models to several impor-
tant clinical studies (e.g., Böhning et al. 1999; Yau and Lee 2001; Cheung 2002; Lu
et al. 2004). In these ZIP regression models, the effects of covariates are usually mod-
eled via a linear predictor function. However, it sometimes may not be completely
appropriate to assume that the effect of a covariate is linear or some other parametric
form. The nonparametric estimation methods have been used to relax the restrictive
parametric assumption via modeling the possibly non-linear effect of the covariate
by an unspecified smooth function. However, the phenomenon referred to as “curse
of dimensionality” (Stone 1985) may arise if the dimension of covariates that have
possibly non-linear effects is large. To address the issue, structured nonparametric
regression methodology, such as additive models (Stone 1985; Hastie and Tibshirani
1990), has been extensively considered. A single-index model is an alternative way
to deal with the curse of dimensionality and meanwhile retain enough flexibility on
modeling. Therefore, we propose a ZIP regression single-indexmodel that is described
in detail in Sect. 2.

Some authors have widely applied single-index models to a variety of fields, e.g.,
clinical trials (Huang and Liu 2006; Sun et al. 2008), environmental studies (Yu and
Ruppert 2002), and dose-response modeling (Härdle et al. 1993). Estimation methods
for single-indexmodels have been extensively discussed, including, e.g., spline estima-
tion (Yu and Ruppert 2002; Huang and Liu 2006; Sun et al. 2008), local linear method
(Carroll et al. 1997), average derivative method (Härdle and Stoker 1989; Horowitz
and Härdle 1996), and kernel smoothing (Ichimura 1993; Härdle et al. 1993; Dele-
croix et al. 2003). In contrast to these estimationmethods, we consider the spline-based
sieve M-estimation method (Lu and Loomis 2013). After the spline basis functions
are chosen, the spline coefficients are used to completely describe the approximated
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unknown smooth function. Therefore, the regression parameters and the spline coeffi-
cients can be estimated simultaneously by maximizing the spline likelihood function.
Furthermore, the spline estimation can be used to directly estimate the asymptotic
variances of the estimators of the regression parameters.

Our estimation method is different from the mentioned spline estimation method
for single-index models, in which the number of knots are pre-specified. By allowing
for the number of knots to increase at an appropriate rate, it can be shown that the
spline estimator of the unknown smooth function achieves the optimal convergence
rate. Furthermore, the semiparametric efficient score and the efficiency bound are
derived. It is shown that the spline-based sieve semiparametric model can achieve the
asymptotic efficiency for the estimators of the regression parameters.

In Sect. 2, we introduce the ZIP regression single-index model and the method
of estimating the model parameters. Section 3 states asymptotic results of the spline
estimators and likelihood ratio inference. In Sect. 4, we propose an approach to consis-
tently estimate thevariances of the estimators of the regressionparameters. Simulations
are given in Sect. 5. Proofs of the asymptotic results are sketched in the Appendix.

2 Model and method

2.1 ZIP regression single-index model

Letx = (x0, . . . , x p−1)
T, for x0 = 1, be a p×1 covariate vector, and z = (z1, . . . , zd)T

a d×1 covariate vector. Letw = (xT, zT)T. In thiswork,we are interested in smoothing
the effects of z on the Poissonmean and consider theZIP regression single-indexmodel
as follows:

logit[π(w;α)] = wTα, (2)

log[λ(w;β1,β2, ψ)] = xTβ1 + ψ(zTβ2). (3)

Here α = (α0, . . . , αp+d−1)
T. β1 = (β10, . . . , β1(p−1))

T. β2 = (β21, . . . , β2d)T. ψ
is an unknown smooth function. In the ZIP regression single-index model, we assume
that the covariates w have linear effects on the logit of the non-susceptible probability
π(w;α). The covariates z have non-linear effects on the logarithmof the Poissonmean,
and the effects of x remain linear. To the best of our knowledge, the ZIP regression
single-index model has not been proposed for modeling zero-inflated count data when
the dimension of covariates that have possibly non-linear effects is large.

Because the regression functionψ can only be identified up to an additive constant,
and the scale of zTβ2 inψ(zTβ2) can be determined arbitrarily, for purposes of identifi-
ability, impose the restriction E[ψ(zTβ2)] = 0, and standardizeβ2 by ‖β2‖2 = 1with
the first nonzero element being positive, where ‖ · ‖2 denotes L2-norm. We handle the
constraint ‖β2‖2 = 1with the first nonzero element being positive by reparameterizing
the single-index parameter vector β2. To do so, let φ = (φ1, . . . , φd−1)

T be a (d −1)-
dimensional parameter vector, and define ζ = ((1 − ‖φ‖22)1/2, φ1, . . . , φd−1

)T
, where

‖φ‖22 = φ2
1 + · · · + φ2

d−1. Assume the true parameter vector φ0 satisfies ‖φ0‖2 < 1.
Thus, ζ is infinitely differentiable in a neighborhood of φ0.

123
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Let {(yi ,wT
i )T : i = 1, . . . , n} be the observed data set. The kernel of the log-

likelihood function for (αT,βT
1 ,φ

T, ψ)T is

�(α,β1,φ, ψ) =
n∑

i=1

{
I{yi =0} log

{
π(wi ;α) + [1 − π(wi ;α)]e−λ(wi ;β1,φ,ψ)

}
+ I{yi >0}

{
log[1 − π(wi ;α)] − λ(wi ;β1,φ, ψ)

+ yi log
[
λ(wi ;β1,φ, ψ)

]} }
. (4)

Let Tn = {ξi }mn+2l
1 with a = ξ1 = · · · = ξl < ξl+1 < · · · < ξmn+l < ξmn+l+1 =

· · · = ξmn+2l = b be a sequence of knots that divide the interval [a, b] into mn + 1
subintervals Ii = [ξl+i , ξl+1+i ], i = 0, . . . , mn . The spline of order l ≥ 1 with the
knot sequence Tn is a polynomial of degree l −1 within any subinterval [ξl+i , ξl+i+1].
A spline of order l = 4 is a piecewise cubic polynomial with continuous second
order derivative. Let Sn(Tn, l) be the class of splines of order l ≥ 1 with knots Tn .
According to Corollary 4.10 of Schumaker (1981), for any s ∈ Sn(Tn, l), there exists
a set of B-spline basis functions {b j : 1 ≤ j ≤ qn} such that s = ∑qn

j=1 γ j b j , where
qn = mn + l is the number of basis functions. To ensure E[ψ(·)] = 0, we introduce
empirically centered B-splines S0,n = {

s : s ∈ Sn, 1
n

∑n
i=1 s(zTi ζ ) = 0

}
. The basis

of S0,n can be constructed by the set
{

B j = b j − 1
n

∑n
i=1 b j (zTi ζ ), j = 1, . . . , qn

}
.

If ψ is smooth enough, then ψ can be approximated by a B-spline function ψn ∈
S0,n ; that is,

ψ(zTζ ) ≈ ψn(zTζ ) =
qn∑
j=1

γ j B j (zTζ ). (5)

Let γ = (γ1, . . . , γqn )
T. Note that (αT,βT

1 ,φ
T, γ T)T is one-dimension lower than

(αT,βT
1 ,β

T
2 , γ

T)T. Replacing ψ(zTζ ) by ψn(zTζ ) in the kernel of the log-likelihood
function (4), we can obtain the log-likelihood function for τ̄ = (αT,βT

1 ,φ
T, γ T)T up

to an additive constant not containing τ̄ as follows:

�(τ̄ ) =
n∑

i=1

�(τ̄ ; yi ,wi )

=
n∑

i=1

{
I{yi =0} log

{
π(wi ;α) + [1 − π(wi ;α)]e−λ(wi ;β1,φ,ψn)

}
+ I{yi >0}

{
log[1 − π(wi ;α)] − λ(wi ;β1,φ, ψn)

+ yi log
[
λ(wi ;β1,φ, ψn)

]} }
. (6)

Let (α̂
T
, β̂

T
1 , φ̂

T
, γ̂

T
)T be the values that maximize the spline log-likelihood

function (6). The spline estimate of ψ(zTζ ) is defined as
∑qn

j=1 γ̂ j B j (zTζ̂ ). The
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advantage of this reparametrization is that we can estimate the regression parame-
ters (αT,βT

1 ,φ
T)T and the spline coefficients γ simultaneously and, hence, make the

computation less demanding.

2.2 Algorithm

Let πi = π(wi ;α) and λi = λ(wi ;β1,φ, ψn), i = 1, . . . , n. Denote

�̇π (τ̄ ; yi ,wi ) = ∂�(τ̄ ; yi ,wi )/∂πi ,

�̇λ(τ̄ ; yi ,wi ) = ∂�(τ̄ ; yi ,wi )/∂λi ,

�̈ππ (τ̄ ; yi ,wi ) = ∂2�(τ̄ ; yi ,wi )/∂π2
i ,

�̈πλ(τ̄ ; yi ,wi ) = ∂2�(τ̄ ; yi ,wi )/∂πi∂λi , and

�̈λλ(τ̄ ; yi ,wi ) = ∂2�(τ̄ ; yi ,wi )/∂λ2i .

Let

l̇π (τ̄ ) = (�̇π (τ̄ ; y1,w1), . . . , �̇π (τ̄ ; yn,wn))T,

l̇λ(τ̄ ) = (�̇λ(τ̄ ; y1,w1), . . . , �̇λ(τ̄ ; yn,wn))T,

l̈ππ (τ̄ ) = diag{E[�̈ππ (τ̄ ; y1,w1)|w1], . . . , E[�̈ππ (τ̄ ; yn,wn)|wn]},
l̈πλ(τ̄ ) = diag{E[�̈πλ(τ̄ ; y1,w1)|w1], . . . , E[�̈πλ(τ̄ ; yn,wn)|wn]}, and

l̈λλ(τ̄ ) = diag{E[�̈λλ(τ̄ ; y1,w1)|w1], . . . , E[�̈λλ(τ̄ ; yn,wn)|wn]}.

Define XT = (x1, . . . , xn), bzi = (B1(zTi ζ ), . . . , Bqn (z
T
i ζ ))T, BT = (bz1, . . . ,bzn ),

ξ = (ξir )n×(d−1), where ξir = ∑qn
j=1 γ j B ′

j (z
T
i ζ )

[
−φr

(1−‖φ‖22)1/2
zi1 + zi(r+1)

]
, π =

diag{π1, . . . , πn}, π̄ = diag{π̄1, . . . , π̄n}, for π̄i = πi (1 − πi ), and λ =
diag{λ1, . . . , λn}. Denote D = (X, ξ ,B) and WT = (w1, . . . ,wn). Some derivative
calculations yield the score vector

∇�(τ̄ ) = HT
(
l̇π (τ̄ )

l̇λ(τ̄ )

)
≡
[
WTπ̄ 0
0 DTλ

](
l̇π (τ̄ )

l̇λ(τ̄ )

)

and the expected information matrix

E(τ̄ ) = HT
[
l̈ππ (τ̄ ) l̈πλ(τ̄ )

l̈πλ(τ̄ ) l̈λλ(τ̄ )

]
H.

We apply the following modified Fisher scoring iterative procedure to calculate the

spline estimates (α̂
T
, β̂

T
1 , φ̂

T
, γ̂

T
)T.

Step 0. Choose β
(0)
2k ∼ N (0, 1), k = 1, . . . , d. Standardize β

(0)
2 = (β

(0)
21 , . . . , β

(0)
2d )T

with the first nonzero element being positive to get the initial estimate φ(0) for φ.
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1116 M. Lu and C.-S. Li

Step 1. Maximize the following log-likelihood function over (αT,βT
1 , γ

T)T

�(αT,βT
1 , γ

T) =
n∑

i=1

{
I{yi =0} log

{
π(wi ;α) + [1 − π(wi ;α)]e−λ(wi ;β1,φ

(0),ψn)
}

+ I{yi >0}
{
log[1 − π(wi ;α)] − λ(wi ;β1,φ

(0), ψn)

+ yi log
[
λ(wi ;β1,φ

(0), ψn)
]}}

to get (α(0)T,β
(0)T
1 , γ (0)T)T.

Step 2. Given the initial values (α(0)T,β
(0)T
1 ,φ(0)T, γ (0)T)T, use the Fisher-scoring

method τ̄ (m) = τ̄ (m−1) −E−1(τ̄ (m−1))∇�(τ̄ (m−1)) to update τ̄ (m)T = (α(m)T,β
(m)T
1 ,

φ(m)T, γ (m)T)T in themth iteration. Repeat the iteration until the convergence criterion,
e.g., ‖τ̄ (m) − τ̄ (m−1)‖ < ε = 10−6, is met.

2.3 Comments on selection of knots

In this study,weemploy cubic splines to approximate the unknown functionψ .Assume
the true functionψ0 has the r th continuous derivative, r ≥ 1. According to the optimal
rate of convergence for ψ̂ given in Theorem 1, we select the number of inner knots,
mn , from a neighborhood of n1/(1+2r), such as [0.5Nr ,min(4Nr , n1/2)], where Nr =
n1/(1+2r). The optimal number of inner knots,m∗

n , is selected tominimize the Akaike’s
information criterion (AIC) value

AIC(mn) = −2�(α̂, β̂1, φ̂, γ̂ ; mn) + 2(mn + l + 2d + 2p − 1).

After m∗
n is determined, we propose two ways to select the locations of knots. Let

zTζmin and zTζmax be minimum and maximum values of zTζ respectively. One way
is to equally divide [zTζmin, z

Tζmax] into m∗
n + 1 subintervals and choose the end

points of subintervals as the locations of knots. The alternative one is a data-driven
approach first proposed by Rosenbeg (1995) in which the k/(m∗

n + 1) quantiles of
zTζ , k = 1, . . . , m∗

n , are selected as interior knots. The similar method can be found
in Lu and Loomis (2013).

3 Asymptotic results

Let Rd−1, Rp, and Rp+d be interiors of some compact sets in Rd−1, Rp, and Rp+d

respectively. Denote θ = (φT,αT,βT
1 )

T and τ = (θT, ψ)T. Let τ 0 = (θT0 , ψ0)
T be the

true value of τ . Denote the regression parameter space by  = Rd−1 ×Rp+d ×Rp,
and let

� = {ψ : the third derivative ofψ is Lipschitz on a compact subset� of (0,∞)}
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be the nonparametric space. Define L2-norm ‖·‖2 on×� as follows: ‖τ 1−τ 2‖22 =
‖θ1 − θ2‖22 + ‖ψ1 − ψ2‖22, where τ i = (θTi , ψi )

T, i = 1, 2.
For a single observation (y,wT)T, its kernel of log density of τ is

�(τ ; y,w) = I{y=0} log
{
π(w;α) + [1 − π(w;α)]e−λ(w;β1,φ,ψ)

}
+I{y>0}

{
log[1 − π(w;α)] − λ(w;β1,φ, ψ) + y log

[
λ(w;β1,φ, ψ)

]}
.

Let ψ ′ denote the first derivative of ψ . The score functions for (φT,αT,βT
1 )

T are

�̇φ(τ ; y,w) = ∂�(τ ; y,w)

∂φ
= �̇λ(τ ; y,w)λ(w;β1,φ, ψ)ψ ′(zTζ )D(φ)z,

�̇α(τ ; y,w) = ∂�(τ ; y,w)

∂α
= �̇π (τ ; y,w)π̄(w;α)w, and

�̇β1
(τ ; y,w) = ∂�(τ ; y,w)

∂β1
= �̇λ(τ ; y,w)λ(w;β1,φ, ψ)x.

Here D(φ) = [−(1 − ‖φ‖22)−1/2φ, Id−1](d−1)×d for Id−1 being a (d − 1) × (d − 1)
identity matrix. Consider a parametric smooth submodel (θ, ψt ), where ψt |t=0 = ψ

and dψt/dt |t=0 = h. Let H be the class of such h with bounded variation on �. The
score operator for ψ is defined as

�̇ψ (τ ; y,w)[h] = d�(θ , ψt ; y,w)

dt
|t=0 = �̇λ(τ ; y,w)λ(w;β1,φ, ψ)h.

Moreover, denote �̇ψ (τ ; y,w)[h]=(�̇ψ(τ ; y,w)[h1], . . . , �̇ψ (τ ; y,w)[h2p+2d−1])T,
where h = (h1, . . . , h2p+2d−1)

T ∈ H2p+2d−1.
The efficient score function for θ at the true parameter vector τ 0 is

�∗
θ (τ 0; y,w) = �̇θ (τ 0; y,w) − �̇ψ (τ 0; y,w)[h∗],

where h∗ minimizes ρ(h) = ‖�̇θ (τ 0; y,w) − �̇ψ (τ 0; y,w)[h]‖22 for h ∈ H2p+2d−1.
More specifically, E[�̇θ (τ 0; y,w) − �̇ψ (τ 0; y,w)[h∗]]T�̇ψ (τ 0; y,w)[h] = 0 for any
h = (hT1 ,hT2 ,hT3 )T ∈ H2p+2d−1. Denote ξ0 = �̇π (τ 0; y,w)π̄(w;α0), u0 = zTζ 0,
and η0 = �̇λ(τ 0; y,w)λ(w;β10,φ0, ψ0). Some calculations then yield

h∗ =
⎛
⎝h∗

1
h∗
2

h∗
3

⎞
⎠ = 1

E(y,w)|u0 [η20|u0]

⎛
⎝ψ ′

0(u0)E(y,w)|u0 [η20D(φ0)z|u0]
E(y,w)|u0 [ξ0η0w|u0]
E(y,w)|u0 [η20x|u0]

⎞
⎠ .

Therefore, the efficient score function for θ at τ 0 is

�∗
θ (τ 0; y,w) =

⎛
⎝η0[ψ ′

0(u0)D(φ0)z − h∗
1]

ξ0w − η0h∗
2

η0(x − h∗
3)

⎞
⎠ .
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The efficient information I(θ0) takes the form E
[
�∗
θ (τ 0; y,w)

]⊗2, where a⊗2 = aaT

for any vector a.
The following assumptions are needed to derive the asymptotic properties of the

spline estimator τ̂ = (θ̂
T
, ψ̂)T.

(C1) The maximum spacing of the knots is assumed to be O(n−ν) for 0 < ν < 1/2.
Moreover, the ratio of maximum and minimum spacings of knots is uniformly
bounded.

(C2) The true regression parameters (θT0 , ψ0)
T is in the interior of  × �.

(C3) (a) The support of zTζ is an interval within � for ζ in a neighborhood of ζ 0; (b)
the density of zTζ is positive and bounded away from 0 on �.

(C4) The fourth moment of x is finite.
(C5) Write ε = y − E(y|w). Given w, ε is sub-Gussian.
(C6) For any α �= α0, ζ �= ζ 0, and β1 �= β10, Pr(w

Tα �= wTα0) > 0, Pr(zTζ �=
zTζ 0) > 0, and Pr(xTβ1 �= xTβ10) > 0.

Remark 1 Condition C1 is a mild assumption on knots and similar to those required
by Stone (1986). Condition C2 is the standard assumption in semiparametric esti-
mation. Conditions C3 and C4 are needed for entropy calculations in the proofs of
Theorems 1–4. Condition C5 is essential to calculate the bracketing integral with
respect to Bernstein norm (van der Vaart and Wellner 1996). Condition C6 is required
to establish the identifiability of the model.

Theorem 1 (Uniform convergence and rate of convergence) Let qn = O(nν) for
1/(2r + 2) < ν < 1/(2r). Suppose conditions C1–C6 hold. Then, ‖τ̂ − τ 0‖2 =
Op
(
n−min(rν,(1−ν)/2)

)
. Consequently, by Lemma 7 of Stone (1986), ‖ψ̂ − ψ0‖∞ =

op(1). Furthermore, if ν = 1/(1 + 2r), Op(n−min(rν,(1−ν)/2)) = Op(n−r/(1+2r)),
which is the optimal rate of convergence in nonparametric regression.

Let ϑ = (ζT,αT,βT
1 )

T and ϑ0 = (ζT
0 ,α

T
0 ,β

T
10)

T. The Jacobian matrix of F : ϑ →
θ is

J(φ) =
⎡
⎣−(1 − ‖φ‖22)−1/2φT 0
Id−1 0
0 I2p+d

⎤
⎦ .

Note that J(φ) is a matrix of dimension (2p + 2d) × (2p + 2d − 1).

Theorem 2 (Asymptotic normality) Suppose conditions C1–C6 hold and I(θ0) is
nonsingular. Then

n1/2(θ̂ − θ0) = n1/2I−1(θ0)

n∑
i=1

�∗
θ (τ 0; yi ,wi ) + op(1) → N (0, I−1(θ0))

in distribution as n → ∞. Furthermore, the vector of constrained spline estimators

ϑ̂ = (ζ̂
T
, α̂

T
, β̂

T
1 )

T with ‖ζ̂‖2 = 1 is asymptotically normally distributed
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Table 1 (ρ = 0.0) Summary of parameter estimation for simulation study

n = 300 n = 500

Mean Bias SD MSE Mean Bias SD MSE

α00 0.3925 −0.0075 0.7243 0.5247 0.4168 0.0168 0.5582 0.3119

α10 0.5319 0.0319 0.2121 0.0460 0.5101 0.0101 0.1643 0.0271

α20 −0.8510 −0.0510 0.1828 0.0360 −0.8261 −0.0261 0.1320 0.0181

α30 −0.7165 −0.0165 0.3552 0.1264 −0.7123 −0.0123 0.2548 0.0651

α40 0.5364 0.0364 0.3373 0.1151 0.5051 0.0051 0.2492 0.0621

α50 −0.8277 −0.0277 0.3518 0.1245 −0.8209 −0.0209 0.2648 0.0705

β110 1.0013 0.0013 0.0179 0.0003 1.0004 0.0004 0.0124 0.0002

β120 0.4001 0.0001 0.0051 0.0000 0.4000 −0.0000 0.0035 0.0000

β210 0.5768 −0.0005 0.0141 0.0002 0.5776 0.0003 0.0102 0.0001

β220 0.5779 0.0006 0.0128 0.0002 0.5774 0.0001 0.0099 0.0001

β230 0.5768 −0.0005 0.0135 0.0002 0.5768 −0.0006 0.0102 0.0001

π10 0.6050 0.0051 0.0662 0.0044 0.5996 −0.0003 0.0511 0.0026

π20 0.8087 0.0034 0.0799 0.0064 0.8010 −0.0043 0.0643 0.0042

λ10 12.3285 0.0303 0.5182 0.2694 12.2999 0.0017 0.3795 0.1440

λ20 48.0766 −0.0259 2.4502 6.0043 48.0216 −0.0810 1.9838 3.9421

α0 = (α00, α10, α20, α30, α40, α50)
T = (0.4, 0.5,−0.8,−0.7, 0.5,−0.8)T and β0 = (βT

10, β
T
20)

T

for β10 = (β110, β120)
T = (1, 0.4)T and β20 = (β210, β220, β230)

T = (1/
√
3, 1/

√
3, 1/

√
3)T.

π10 = π(w, α0) = 0.5998884 and λ10 = λ(w, β10, β20, ψ10) = 12.298234 for ψ10 =
ψ0(zTβ20) = 5 sin(zTβ20) − 15

√
3/8

[
3 cos(2/

√
3) − 3 cos(4/

√
3) − 1 + cos(6/

√
3)
]

= 0.7694557 at

w = (1.0, 1.5, 0.6, 0.7, 1.25, 0.5)T. π20 = π(w, α0) = 0.8053384 and λ20 = λ(w, β10, β20, ψ20) =
48.102577 for ψ20 = ψ0(zTβ20) = 0.5533357 at w = (1.0, 3.2, 0.3, 0.9, 1.70, 0.7)T. Sample mean
(mean), bias, standard deviation (SD), and mean squared error (MSE) of the partial linear zero-inflated
Poisson single-index model by B-splines, based on 1000 Monte Carlo samples with sample size 300 or
500, respectively

n1/2(ϑ̂ − ϑ0) → N
(
0, J(φ0)I

−1(θ0)JT(φ0)
)

.

Remark 2 Theorem 1 shows ψ̂ is a uniformly consistent estimator of ψ0. Although
the overall rate of convergence for spline estimators τ̂ is nr/(1+2r) < n1/2, the rate
of convergence for θ̂ is still n1/2. Theorem 2 shows the vector of spline estimators θ̂

achieves the information bound, and is therefore efficient in the semiparametric sense.

Let ψ̂θ be the spline estimator of ψ for any θ in the neighborhood of θ̂ . The profile
log-likelihood for θ is defined as pl(θ) = �(θ , ψ̂θ ) = ∑n

i=1 �(θ , ψ̂θ ; yi ,wi ). The
likelihood ratio test statistic for testing θ = θ0 is given by lr t (θ0) = 2pl(θ̂)−2pl(θ0).

Theorem 3 (Likelihood ratio inference) Suppose conditionsC1–C6 hold. Then under
H0 : θ = θ0, lr t (θ0) → χ2

2p+2d−1 in distribution as n → ∞.
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Table 2 (ρ = 0.3) Summary of parameter estimation for simulation study

n = 300 n = 500

Mean Bias SD MSE Mean Bias SD MSE

α00 0.4466 0.0466 0.7151 0.5135 0.3967 −0.0033 0.5518 0.3044

α10 0.5142 0.0142 0.2162 0.0469 0.5228 0.0228 0.1599 0.0261

α20 −0.8520 −0.0520 0.1840 0.0366 −0.8243 −0.0243 0.1378 0.0196

α30 −0.7362 −0.0362 0.3679 0.1366 −0.7125 −0.0125 0.2671 0.0715

α40 0.5187 0.0187 0.4578 0.2100 0.5071 0.0071 0.3270 0.1070

α50 −0.8329 −0.0329 0.5039 0.2550 −0.8218 −0.0218 0.3913 0.1536

β110 1.0010 0.0010 0.0176 0.0003 0.9996 −0.0004 0.0133 0.0002

β120 0.3999 −0.0001 0.0056 0.0000 0.4002 0.0002 0.0037 0.0000

β210 0.5772 −0.0001 0.0188 0.0004 0.5773 −0.0001 0.0136 0.0002

β220 0.5778 0.0005 0.0205 0.0004 0.5767 −0.0006 0.0148 0.0002

β230 0.5759 −0.0014 0.0221 0.0005 0.5775 0.0002 0.0157 0.0002

π10 0.6012 0.0013 0.0847 0.0072 0.5995 −0.0004 0.0639 0.0041

π20 0.7960 −0.0093 0.0955 0.0092 0.8034 −0.0019 0.0698 0.0049

λ10 12.3171 0.0188 0.5187 0.2694 12.2894 −0.0088 0.3869 0.1498

λ20 48.2204 0.1179 2.8445 8.1050 48.0024 −0.1002 2.1548 4.6532

α0 = (α00, α10, α20, α30, α40, α50)
T = (0.4, 0.5,−0.8,−0.7, 0.5,−0.8)T and β0 = (βT

10, β
T
20)

T

for β10 = (β110, β120)
T = (1, 0.4)T and β20 = (β210, β220, β230)

T = (1/
√
3, 1/

√
3, 1/

√
3)T.

π10 = π(w, α0) = 0.5998884 and λ10 = λ(w, β10, β20, ψ10) = 12.298234 for ψ10 =
ψ0(zTβ20) = 5 sin(zTβ20) − 15

√
3/8

[
3 cos(2/

√
3) − 3 cos(4/

√
3) − 1 + cos(6/

√
3)
]

= 0.7694557 at

w = (1.0, 1.5, 0.6, 0.7, 1.25, 0.5)T. π20 = π(w, α0) = 0.8053384 and λ20 = λ(w, β10, β20, ψ20) =
48.102577 for ψ20 = ψ0(zTβ20) = 0.5533357 at w = (1.0, 3.2, 0.3, 0.9, 1.70, 0.7)T. Sample mean
(Mean), bias, standard deviation (SD), and mean squared error (MSE) of the partial linear zero-inflated
Poisson single-index model by B-splines, based on 1000 Monte Carlo samples with sample size 300 or
500, respectively

4 Variance estimation

Although the efficient information matrix I(θ0) has an explicit expression, it is not
trivial to estimate I(θ0) directly. There are at least two methods for estimation of
asymptotic variances for semiparametric models. One method is to use the second
derivative of the profile likelihood to estimate I(θ0). Because the profile likelihood
maynot be differentiated directly, instead the discretized version of the observedprofile
information proposed by Nielsen et al. (1992) is often used as an estimator in practice.
Murphy and van der Vaart (1999) showed that I(θ0) can be consistently estimated
by a discretized version of the negative second derivative of the profile likelihood
function. In this study, we adopt the alternative estimation method proposed by Huang
et al. (2008). This approach is based on the orthogonal projection of the efficient score
function for θ onto the tangent space for ψ .

Estimate I(θ0) by its empirical version

Pn[�̇θ (τ̂ ; y,w) − �̇ψ (τ̂ ; y,w)[h∗]]⊗2,
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Table 3 (ρ = 0.55) Summary of parameter estimation for simulation study

n = 300 n = 500

Mean Bias SD MSE Mean Bias SD MSE

α00 0.4357 0.0357 0.7298 0.5339 0.4015 0.0015 0.5921 0.3506

α10 0.5391 0.0391 0.2219 0.0508 0.5177 0.0177 0.1642 0.0273

α20 −0.8628 −0.0628 0.1951 0.0420 −0.8369 −0.0369 0.1437 0.0220

α30 −0.7158 −0.0158 0.4075 0.1663 −0.7205 −0.0205 0.3095 0.0962

α40 0.5493 0.0493 0.5716 0.3292 0.5072 0.0072 0.4490 0.2016

α50 −0.8895 −0.0895 0.6674 0.4535 −0.8059 −0.0059 0.5368 0.2882

β110 0.9997 −0.0003 0.0194 0.0004 1.0008 0.0008 0.0137 0.0002

β120 0.3999 −0.0001 0.0059 0.0000 0.4003 0.0003 0.0037 0.0000

β210 0.5778 0.0004 0.0245 0.0006 0.5771 −0.0002 0.0177 0.0003

β220 0.5757 −0.0016 0.0264 0.0007 0.5764 −0.0009 0.0201 0.0004

β230 0.5767 −0.0007 0.0292 0.0009 0.5775 0.0001 0.0214 0.0005

π10 0.6102 0.0103 0.1001 0.0101 0.5966 −0.0033 0.0802 0.0064

π20 0.8066 0.0013 0.1046 0.0109 0.7979 −0.0075 0.0838 0.0071

λ10 12.2913 −0.0070 0.5563 0.3096 12.2451 −0.0531 0.3967 0.1602

λ20 48.1524 0.0498 3.1996 10.2498 48.1175 0.0149 2.4536 6.0205

α0 = (α00, α10, α20, α30, α40, α50)
T = (0.4, 0.5,−0.8,−0.7, 0.5,−0.8)T and β0 = (βT

10, β
T
20)

T

for β10 = (β110, β120)
T = (1, 0.4)T and β20 = (β210, β220, β230)

T = (1/
√
3, 1/

√
3, 1/

√
3)T.

π10 = π(w, α0) = 0.5998884 and λ10 = λ(w, β10, β20, ψ10) = 12.298234 for ψ10 =
ψ0(zTβ20) = 5 sin(zTβ20) − 15

√
3/8

[
3 cos(2/

√
3) − 3 cos(4/

√
3) − 1 + cos(6/

√
3)
]

= 0.7694557 at

w = (1.0, 1.5, 0.6, 0.7, 1.25, 0.5)T. π20 = π(w, α0) = 0.8053384 and λ20 = λ(w, β10, β20, ψ20) =
48.102577 for ψ20 = ψ0(zTβ20) = 0.5533357 at w = (1.0, 3.2, 0.3, 0.9, 1.70, 0.7)T. Sample mean
(Mean), bias, standard deviation (SD), and mean squared error (MSE) of the partial linear zero-inflated
Poisson single-index model by B-splines, based on 1000 Monte Carlo samples with sample size 300 or
500, respectively

where Pn is the empirical measure, and h∗ = (h∗
1, . . . , h∗

2p+2d−1)
T minimizes ρ(h) =

‖�̇θ (τ 0; y,w) − �̇ψ (τ 0; y,w)[h]‖22 over H2p+2d−1. Approximate h∗
s by a B-spline

function h∗
n,s = ∑qn

j=1 γ j,s B j , s = 1, . . . , 2p + 2d − 1. The coefficient vectors
γ s = (γ1,s, . . . , γqn ,s)

T can be estimated by minimizing

Pn

2p+2d−1∑
s=1

⎡
⎣�̇θ ,s(τ̂ ; y,w) −

qn∑
j=1

γ j,s �̇ψ (τ̂ ; y,w)[B j ]
⎤
⎦
2

,

where �̇θ ,s(τ̂ ; y,w) is the sth element of �̇θ (τ̂ ; y,w). Therefore, the variance estima-
tion is essentially a least-squares estimation problem. The estimator of h∗

s is defined
as ĥ∗

s =∑qn
j=1 γ̂ j,s B j . Let ĥ∗ = (ĥ∗

1, . . . , ĥ∗
2p+2d−1)

T and Bn = (B1, . . . , Bqn )
T. By

standard least-squares calculation, it follows that

Pn[�̇θ (τ̂ ; y,w) − �̇ψ (τ̂ ; y,w)[ĥ∗]]⊗2 = Âθθ − Âθψ Â−1
ψψ Âψθ ,
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Table 4 (ρ = 0.8) Summary of parameter estimation for simulation study

n = 300 n = 500

Mean Bias SD MSE Mean Bias SD MSE

α00 0.4316 0.0316 0.7786 0.6072 0.4368 0.0368 0.5783 0.3357

α10 0.5304 0.0304 0.2187 0.0488 0.5072 0.0072 0.1703 0.0291

α20 −0.8635 −0.0635 0.2004 0.0442 −0.8272 −0.0272 0.1465 0.0222

α30 −0.7521 −0.0521 0.6080 0.3724 −0.7201 −0.0201 0.4335 0.1883

α40 0.5204 0.0204 0.8671 0.7522 0.5021 0.0021 0.6393 0.4087

α50 −0.8149 −0.0149 0.9947 0.9896 −0.8213 −0.0213 0.7708 0.5947

β110 1.0002 0.0002 0.0198 0.0004 1.0002 0.0002 0.0144 0.0002

β120 0.3998 −0.0002 0.0061 0.0000 0.4002 0.0002 0.0041 0.0000

β210 0.5761 −0.0012 0.0346 0.0012 0.5759 −0.0014 0.0255 0.0007

β220 0.5762 −0.0011 0.0388 0.0015 0.5773 −0.0001 0.0308 0.0010

β230 0.5758 −0.0016 0.0425 0.0018 0.5765 −0.0008 0.0333 0.0011

π10 0.5963 −0.0036 0.1402 0.0197 0.5968 −0.0031 0.1109 0.0123

π20 0.7841 −0.0212 0.1406 0.0202 0.7873 −0.0180 0.1111 0.0127

λ10 12.2993 0.0011 0.5994 0.3593 12.2737 −0.0245 0.4802 0.2312

λ20 48.0720 −0.0306 3.8491 14.8167 47.9548 −0.1478 2.9917 8.9723

α0 = (α00, α10, α20, α30, α40, α50)
T = (0.4, 0.5,−0.8,−0.7, 0.5,−0.8)T and β0 = (βT

10, β
T
20)

T

for β10 = (β110, β120)
T = (1, 0.4)T and β20 = (β210, β220, β230)

T = (1/
√
3, 1/

√
3, 1/

√
3)T.

π10 = π(w, α0) = 0.5998884 and λ10 = λ(w, β10, β20, ψ10) = 12.298234 for ψ10 =
ψ0(zTβ20) = 5 sin(zTβ20) − 15

√
3/8

[
3 cos(2/

√
3) − 3 cos(4/

√
3) − 1 + cos(6/

√
3)
]

= 0.7694557 at

w = (1.0, 1.5, 0.6, 0.7, 1.25, 0.5)T. π20 = π(w, α0) = 0.8053384 and λ20 = λ(w, β10, β20, ψ20) =
48.102577 for ψ20 = ψ0(zTβ20) = 0.5533357 at w = (1.0, 3.2, 0.3, 0.9, 1.70, 0.7)T. Sample mean
(Mean), bias, standard deviation (SD), and mean squared error (MSE) of the partial linear zero-inflated
Poisson single-index model by B-splines, based on 1000 Monte Carlo samples with sample size 300 or
500, respectively

where Âθθ = Pn[�̇θ (τ̂ ; y,w)]⊗2, Âθψ = Pn[�̇θ (τ̂ ; y,w)�̇Tψ(τ̂ ; y,w)[Bn]], Âψθ =
ÂT

θψ
, and Âψψ = Pn[�̇ψ (τ̂ ; y,w)[Bn]]⊗2. DenoteOn = Âθθ − Âθψ Â−1

ψψ Âψθ . Huang
et al. (2008) applied the observed informationOn to estimate the efficient information.
We instead employ the Fisher information to estimate I(θ0). Denote Êθθ = E[ Âθθ |w],
Êθψ = E[ Âθψ |w], Êψθ = ÊT

θψ
, and Êψψ = E[ Âψψ |w]. Theorem 4 shows that the

conditional expected information Ên = Êθθ−Êθψ Ê−1
ψψ Êψθ is a consistent estimator of

I(θ0). More specifically, with the notations defined in Sect. 2, I(θ0) can be consistently
estimated by

Ên = 1

n

⎧⎪⎨
⎪⎩
⎡
⎢⎣ ξ̂

T
L̂λλξ̂ ξ̂

T
L̂πλW ξ̂

T
L̂λλX

WTL̂πλξ̂ WTL̂ππW WTL̂πλX
XTL̂λλξ̂ XTL̂πλW XTL̂λλX

⎤
⎥⎦

−
⎡
⎢⎣ ξ̂

T
L̂λλB̂

WTL̂πλB̂
XTL̂λλB̂

⎤
⎥⎦ (B̂TL̂λλB̂)−1

⎡
⎢⎣ ξ̂

T
L̂λλB̂

WTL̂πλB̂
XTL̂λλB̂

⎤
⎥⎦
T⎫⎪⎬
⎪⎭ . (7)
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Table 5 (ρ = 0.0) Results of variance study

n = 300 n = 500

Mean.se SD.se CP (%) Mean.se SD.se CP (%)

α00 0.7059 0.0560 95.1 0.5388 0.0324 95.8

α10 0.2075 0.0212 94.3 0.1570 0.0126 94.5

α20 0.1782 0.0284 95.1 0.1345 0.0155 96.8

α30 0.3331 0.0275 93.8 0.2538 0.0157 94.9

α40 0.3233 0.0240 94.1 0.2457 0.0127 95.9

α50 0.3362 0.0282 93.9 0.2562 0.0159 94.8

β110 0.0174 0.0029 93.7 0.0125 0.0018 95.7

β120 0.0050 0.0014 95.0 0.0034 0.0009 94.9

β210 0.0131 0.0019 93.3 0.0095 0.0012 92.7

β220 0.0131 0.0019 95.2 0.0095 0.0012 93.7

β230 0.0131 0.0019 94.3 0.0095 0.0012 93.3

Samplemeanof estimated standard errors (mean.se), standard deviation of estimated standard errors (SD.se),
and coverage probability of 95%confidence interval (CP) of (αT

0 ,βT
0 )T, based on1000MonteCarlo samples

with sample size 300 or 500, respectively

Table 6 (ρ = 0.3) Results of variance study

n = 300 n = 500

Mean.se SD.se CP(%) Mean.se SD.se CP (%)

α00 0.7148 0.0558 94.6 0.5412 0.0320 95.5

α10 0.2082 0.0232 95.1 0.1579 0.0123 95.7

α20 0.1808 0.0287 95.4 0.1362 0.0168 95.0

α30 0.3450 0.0305 93.7 0.2615 0.0162 95.1

α40 0.4271 0.0316 93.9 0.3237 0.0173 95.8

α50 0.5023 0.0386 95.7 0.3817 0.0212 95.2

β110 0.0178 0.0030 94.7 0.0130 0.0019 94.6

β120 0.0052 0.0015 93.8 0.0036 0.0009 96.5

β210 0.0178 0.0026 94.3 0.0132 0.0016 95.0

β220 0.0189 0.0026 92.4 0.0139 0.0017 93.4

β230 0.0203 0.0028 93.8 0.0150 0.0017 93.4

Samplemeanof estimated standard errors (mean.se), standard deviation of estimated standard errors (SD.se),
and coverage probability of 95%confidence interval (CP) of (αT

0 ,βT
0 )T, based on1000MonteCarlo samples

with sample size 300 or 500, respectively

Here Lππ = l̈ππ (τ̄ )π̄2. Lπλ = l̈πλ(τ̄ )π̄λ. Lλλ = l̈λλ(τ̄ )λ2. ξ̂ , B̂, L̂ππ , L̂πλ, and L̂λλ

represent ξ , B, Lππ , Lπλ, and Lλλ evaluated at τ̄ = ˆ̄τ respectively.

Theorem 4 (Variance estimation) Under the same conditions assumed in Theorem 2,
Ên is asymptotically consistent to I(θ0). Furthermore, J(φ̂)Ê−1

n JT(φ̂) is asymptotically
consistent to J(φ0)I

−1(θ0)JT(φ0).
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Table 7 (ρ = 0.55) Results of variance study

n = 300 n = 500

Mean.se SD.se CP (%) Mean.se SD.se CP (%)

α00 0.7276 0.0576 95.6 0.5538 0.0351 94.4

α10 0.2128 0.0225 94.8 0.1606 0.0131 94.9

α20 0.1854 0.0317 95.5 0.1398 0.0176 95.4

α30 0.3990 0.0347 95.0 0.3030 0.0194 94.5

α40 0.5638 0.0431 94.8 0.4279 0.0250 93.9

α50 0.6700 0.0508 95.6 0.5089 0.0301 93.6

β110 0.0189 0.0032 94.1 0.0134 0.0020 94.6

β120 0.0054 0.0016 93.7 0.0037 0.0009 95.2

β210 0.0228 0.0033 93.5 0.0167 0.0020 93.7

β220 0.0256 0.0036 94.2 0.0187 0.0022 93.2

β230 0.0280 0.0038 94.5 0.0203 0.0022 94.5

Samplemeanof estimated standard errors (mean.se), standard deviation of estimated standard errors (SD.se),
and coverage probability of 95%confidence interval (CP) of (αT

0 ,βT
0 )T, based on1000MonteCarlo samples

with sample size 300 or 500, respectively

Table 8 (ρ = 0.8) Results of
variance study

Sample mean of estimated
standard errors (mean.se),
standard deviation of estimated
standard errors (SD.se), and
coverage probability of 95 %
confidence interval (CP) of
(αT

0 , βT
0 )T, based on 1000

Monte Carlo samples with
sample size 300 or 500,
respectively

n = 300 n = 500

Mean.se SD.se CP Mean.se SD.se CP

α00 0.7551 0.0663 95.7 0.5714 0.0362 94.5

α10 0.2192 0.0243 95.7 0.1651 0.0140 95.1

α20 0.1897 0.0342 95.3 0.1419 0.0182 95.2

α30 0.5860 0.0508 94.6 0.4429 0.0274 95.8

α40 0.8437 0.0673 95.7 0.6403 0.0365 94.3

α50 0.9747 0.0755 95.4 0.7387 0.0415 94.3

β110 0.0199 0.0034 94.7 0.0144 0.0021 96.5

β120 0.0057 0.0017 96.2 0.0039 0.0010 95.5

β210 0.0337 0.0046 95.1 0.0247 0.0028 93.6

β220 0.0387 0.0056 95.1 0.0284 0.0034 93.0

β230 0.0418 0.0056 95.2 0.0304 0.0034 92.4

5 Simulation study

Results from Monte Carlo experiments are now presented to evaluate the finite-
sample performance of the proposed method. We conducted 1000 replications for
each configuration of the experiments. The covariate vector is assumed to take the
form w = (xT, zT)T. Here x = (x0, x1, x2)T for x0 = 1. z = (z1, z2, z3)T. The data
of x1 were generated from the normal distribution with mean 1 and standard devia-
tion 1. The data of x2 were generated from the exponential distribution with rate 0.5
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Fig. 1 (ρ = 0.0) Curve estimates and corresponding 95 % confidence intervals for ψ0(zTβ20). The solid
curves are the true mean functions. The dashed curves are the average B-spline fits and the long dashed
curves are the corresponding 2.5 and 97.5 % quantiles, based on 1000 Monte Carlo samples with sample
size 300 or 500, respectively

(i.e., mean 2). We considered four scenarios of correlation between zi and z j , i �= j ,
i, j = 1, 2, 3, where the correlation coefficient ρ = corr(zi , z j ) = 0.0, 0.3, 0.55, and
0.80 respectively when the data of z1, z2, and z3 were generated from the uniform
[0, 2] distribution. The data of count outcome variable Y were generated from the
ZIP regression single-index model that consists of the following two sub-regression
models: the logistic regression model for the probability π that an individual is not at
risk of the event

logit [π(w;α0)] = wTα0

and the Poisson regression single-index model with mean λ for the event count when
an individual is at risk of the event

log[λ(w,β10,β20, ψ0)] = β110x1 + β120x2 + ψ0(zTβ20).

Here α0 = (α00, α10, α20, α30, α40, α50)
T = (0.4, 0.5,−0.8,−0.7, 0.5,−0.8)T.

β10 = (β110, β120)
T = (1, 0.4)T. β20 = (1/

√
3, 1/

√
3, 1/

√
3)T. ψ0(zTβ20) =

5 sin(zTβ20) − 15
√
3/8

[
3 cos(2/

√
3) − 3 cos(4/

√
3) − 1 + cos(6/

√
3)
]
.
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Fig. 2 (ρ = 0.30) Curve estimates and corresponding 95 % confidence intervals for ψ0(zTβ20). The solid
curves are the true mean functions. The dashed curves are the average B-spline fits and the long dashed
curves are the corresponding 2.5 and 97.5 % quantiles, based on 1000 Monte Carlo samples with sample
size 300 or 500, respectively

The unknown functionψ0(·)was approximated by cubic B-splines.We selected the
number of interior knots mn based on the AIC criteria that was discussed in Sect. 2.3.
Whenmn is determined, we considered equally spaced and quantilemethods to choose
the knot locations. Because the experiments show that the results were not sensitive to
the selection of knot locations, the simulation results are only presented by the quantile
method.

Tables 1, 2, 3, and 4 present the summary statistics for the estimates of
(αT

0 ,β
T
10,β

T
20)

T, π10 = π(w,α0) = 0.5998884 and λ10 = λ(w,β10,β20, ψ10) =
12.298234 forψ10 = ψ0(zTβ20) = 0.7694557 atw = (1.0, 1.5, 0.6, 0.7, 1.25, 0.5)T,
and π20 = π(w,α0) = 0.8053384 and λ20 = λ(w,β10,β20, ψ0) = 48.102577
for ψ20 = ψ0(zTβ20) = 0.5533357 at w = (1.0, 3.2, 0.3, 0.9, 1.70, 0.7)T when
ρ = 0.0, 0.3, 0.55, and 0.8 respectively from the ZIP regression single-index model
by B-spline, including sample mean (mean), bias, standard deviation (SD), and mean
squared error (MSE). Because the ZIP regression model is misspecified, the estimates
of (αT

0 ,β
T
10,β

T
20)

T, π10, λ10, π20, and λ20 for the ZIP regression model were far from
the true values. On the other hand, it was observed that the B-spline estimates of
(αT

0 ,β
T
10,β

T
20)

T, π10, λ10, π20, and λ20 are much more accurate than those for the ZIP
regression model. The summary statistics for the estimates of (αT

0 ,β
T
10,β

T
20)

T, π10,
λ10, π20, and λ20 are not shown when ρ = 0.0, 0.3, 0.55, and 0.8 respectively from
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Fig. 3 (ρ = 0.55) Curve estimates and corresponding 95 % confidence intervals for ψ0(zTβ20). The solid
curves are the true mean functions. The dashed curves are the average B-spline fits and the long dashed
curves are the corresponding 2.5 and 97.5 % quantiles, based on 1000 Monte Carlo samples with sample
size 300 or 500, respectively

the ZIP regression model. The results indicate that the biases of spline estimates are
very small. These standard deviations of the estimates decrease at a rate of n−1/2 as n
increases when ρ = 0; however, their standard deviations tend to increase when ρ is
larger.

The performance of the proposed standard error method for the B-spline estimates
of (αT

0 ,β
T
10,β

T
20)

T was also evaluated based on the conditional expected information
given in (7). Tables 5, 6, 7, and 8 show the standard errors of the B-spline estimates of
(αT

0 ,β
T
10,β

T
20)

T when ρ = 0.0, 0.3, 0.55, and 0.8 respectively. Overall, the proposed
standard error estimation method was found to work reasonably well. The empirical
coverage probabilities were not statistically significantly different from the nominal
coverage probability 95 % except for β210 (n = 300) and α20 and β210 (n = 500)
when ρ = 0.0, β220 (n = 300) and β120, β220, and β230 (n = 500) when ρ = 0.3,
β210 (n = 300) and α50 and β220 (n = 500) when ρ = 0.55, and β110, β210, β220,
and β230 (n = 500) when ρ = 0.8 and tended to be closer to this nominal coverage
probability when the sample size was increased. In addition, the averages of estimated
standard errors were all close to the corresponding Monte Carlo standard deviations
of the estimators.

Figures 1, 2, 3 and 4 depict the pointwisemean estimate ofψ0 and the corresponding
2.5 and 97.5 % quantiles obtained based on 1000 Monte Carlo samples when ρ =
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Fig. 4 (ρ = 0.80) Curve estimates and corresponding 95 % confidence intervals for ψ0(zTβ20). The solid
curves are the true mean functions. The dashed curves are the average B-spline fits and the long dashed
curves are the corresponding 2.5 and 97.5 % quantiles, based on 1000 Monte Carlo samples with sample
size 300 or 500, respectively

0.0, 0.3, 0.55, and 0.8 respectively. The fitted curves followed closely the true curve
ψ0, which indicates that the bias is little. The lower and upper limits of confidence
intervals were also reasonably close to the true function except on boundaries, which
reveals that the variation in the estimateswas small. Thevariabilitywasdecreasedwhen
sample size was increased. In summary, it can be seen from the Monte Carlo study
that the proposed zero-inflated Poisson regression single-index model is a practical
model for zero-inflated count data when the dimension of covariates that have possibly
non-linear effects is large.

A Appendix

A.1 Notations and lemmas

Let Pτ be the distribution of (y,wT)T under the parameter vector τ and pτ the cor-
responding density. Denote P0 ≡ Pτ 0 and p0 ≡ pτ 0 . For a measurable function f ,
define P f as the expectation of f under P . For any class of measurable functions
F , the bracketing number N[](ε,F , L2(P)) is defined as the minimum number of
brackets [ f L

i , f R
i ], i = 1, . . . , m, such that, for f ∈ F , there exists 1 ≤ i ≤ m

such that f L
i ≤ f ≤ f R

i and ‖ f R
i − f L

i ‖2 ≤ ε. Define the bracketing integral
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J[](δ,F , L2(P)) = ∫ δ

0

[
1 + N[](ε,F , L2(P))

]1/2
dε. DenoteGn f = √

n(Pn − P) f
and ‖Gn‖F = sup f ∈F |Gn f |. In the following, C represents a positive constant that
may vary from place to place.

Lemma 1 For any δ > 0, define L = {�(τ ; y,w) : ψ ∈ S0,n, θ ∈ R2p+2d−1, ‖τ −
τ 0‖2 ≤ δ}. Then, for any 0 < ε ≤ δ, log N[](ε,L, ‖ · ‖P,B) ≤ Cqn log(δ/ε), and,

hence, J[](δ,L, ‖ · ‖P,B) ≤ Cq1/2
n δ, where ‖ · ‖P,B is the Bernstein norm defined

as ‖ f ‖2P,B = 2P
[
exp(| f |) − | f | − 1

]
in van der Vaart and Wellner (1996) and

qn = mn + l is the number of spline basis functions.

Lemma 2 If conditions C1–C6 hold, then there exists C > 0 such that

P[�(τ 0; y,w) − �(τ ; y,w)] ≥ C‖τ − τ 0‖22,

for τ in a neighborhood of τ 0.

Lemma 3 (Consistency) If conditions C1–C6 hold, then ‖τ̂ − τ 0‖2 = op(1).

Remark 3 Lemma 1 and the similar entropy calculations are used to derive the consis-
tency of τ̂ and to proveTheorems 1–4. Lemma2 is a key result to derive the consistency
and rate of convergence of τ̂ . Lemma 3 shows τ̂ is asymptotically consistent to τ 0.

A.2 Proof of Lemma 1

Proof According to the bracketing calculation in Shen andWong (1994), for any δ > 0
and 0 < ε ≤ δ, the logarithm of bracketing number of S0,n , computed with L2(P), is
bounded by qn log(δ/ε) up to a constant. It is known that the neighborhoods A(δ) =
{α : ‖α − α0‖2 ≤ δ}, Z(δ) = {ζ : ‖ζ − ζ 0‖2 ≤ δ}, and B(δ) = {β1 : ‖β1 − β10‖2 ≤
δ} can be covered by O((δ/ε)p+d), O((δ/ε)d), and O((δ/ε)p) balls with radius ε,
respectively. In view of Theorem 9.23 of Kosorok (2008), the bracketing numbers for
{wTα : ‖α − α0‖2 ≤ δ}, {zTζ : ‖ζ − ζ 0‖2 ≤ δ}, and {xTβ1 : ‖β1 − β10‖2 ≤ δ} are
bounded by O((δ/ε)p+d), O((δ/ε)d), and O((δ/ε)p), respectively. It follows that, for
sufficiently large n,

log N[]
(
ε, {xTβ1 + ψ(zTζ ) : ψ ∈ S0,n, ‖τ − τ 0‖2 ≤ δ}, L2(P)

) ≤ Cqn log(δ/ε).

and, hence,

log N[]
(
ε, {λ(w;β1,φ, ψ) : ψ ∈ S0,n, ‖τ − τ 0‖2 ≤ δ}, L2(P)

) ≤ Cqn log(δ/ε)

because the function x �→ exp(x) is Lipschitz and monotonic. By inequality
2[exp(|x |) − 1 − |x |] ≤ x2 exp(|x |),

log N[]
(
ε, {λ(w;β1,φ, ψ) : ψ ∈ S0,n, ‖τ − τ 0‖2 ≤ δ}, ‖ · ‖P,B

) ≤ Cqn log(δ/ε).

Similarly, we can show that

log N[]
(
ε, {π(w;α) : ‖α − α0‖2 ≤ δ}, ‖ · ‖P,B

) ≤ C log(δ/ε).

123



1130 M. Lu and C.-S. Li

The transformation
(
π(w;α), λ(w;β1,φ, ψ)

) �→ �(π(w;α), λ(w;β1,φ, ψ); τ ) is
essentially Lipschitz, so it follows that log N[]

(
ε,L, ‖ · ‖P,B

) ≤ Cqn log(δ/ε), and,

hence, the bracketing integral is bounded by q1/2
n δ, up to a constant. ��

A.3 Proof of Lemma 2

Proof Let Mn(τ ) = Pn�(τ ; y,w) and M(τ ) = P�(τ ; y,w). For any τ in a neigh-
borhood of τ 0, a Taylor’s expansion yields

M(τ 0) − M(τ )≥P[(wTα − wTα0)
2]+P{[xTβ1 − xTβ10+ψ(zTζ ) − ψ0(zTζ 0)]2},

up to a constant. Let g1(x) = xT(β1−β10) and g2(z) = ψ(zTζ )−ψ0(zTζ 0). Accord-
ing to the lawof total expectation andCauchy-Schwarz inequality, {E[g1(x)g2(z)]}2 ≤
Ez[g22(z)]Ez[{Ex|z[g1(x)|z]}2]. By the orthogonality of a conditional expectation,
there exists 0 < ξ < 1 such that Ez[{Ex|z[g1(x)|z]}2] = ξ Ex[g21(x)]. Hence,
E[g21(x)g22(z)] ≤ ξ E[g21(x)]E[g22(z)]. In view of Lemma 25.86 of van der Vaart
(2000),

M(τ 0) − M(τ ) ≥ ‖ψ(zTζ ) − ψ0(zTζ 0)‖22 + ‖wTα − wTα0‖22 + ‖xTβ1 − xTβ10‖22,

up to a constant. By Lemma 1 of Stone (1985) and conditions C3 and C4, it follows
that M(τ 0) − M(τ ) ≥ C‖τ − τ 0‖22. ��

A.4 Proof of Lemma 3

Proof We verify the conditions of Theorem 5.7 in van der Vaart (2000) to prove the
consistency of τ̂ . According to Lemma 1, L is a Donsker class, and is therefore a
Glivenko-Cantelli class. Thus, supτ |(Pn − P)�(τ ; y,w)| = op(1) for τ in a neigh-
borhood of τ 0. The first condition of the theorem holds. It follows from Lemma 2 that
sup‖τ−τ 0‖2≥ε M(τ ) ≤ M(τ 0) − Cε2 < M(τ 0). Hence, the second condition of the
theorem also holds.

According to Jackson’s theorem for polynomials (de Boor 2001), there exists a
spline of order l ≥ 2ψ0,n ∈ S0,n such that ‖ψ0,n −ψ0‖∞ = O(n−rν) for 1/(2r +2) <

ν < 1/(2r). Let τ 0,n = (θ0, ψ0,n). By definition of τ̂ ,

Mn(τ̂ ) − Mn(τ 0) ≥ Mn(τ 0,n) − Mn(τ 0) = In1 + In2,

where In1 = (Pn − P)[�(τ 0,n; y,w) − �(τ 0; y,w)] and In2 = P[�(τ 0,n; y,w) −
�(τ 0; y,w)]. As shown in the proof of Lemma 1, S0,n is a Donsker class. Because
�(θ0, ψ; y,w) is essentially Lipschitz with respect to ψ , the preservation theorem
of Donsker class yields the class of functions �(θ0, ψ; y,w) − �(θ0, ψ0; y,w), for
ψ ∈ S0,n and ‖ψ − ψ0‖2 ≤ δ, is a Donsker class. Moreover, by the mean value
theorem, P[�(τ 0,n; y,w) − �(τ 0; y,w)]2 ≤ C‖ψ0,n − ψ0‖2∞ → 0 as n → ∞.
In view of Lemma 19.24 of van der Vaart (2000), In1 = op(n−1/2). Observe that
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In2 ≥ −C‖ψ0,n −ψ0‖2∞ = −O(n−2rν). It follows thatMn(τ̂ )−Mn(τ 0) > −op(1).
Therefore, Theorem 5.7 of van der Vaart (2000) applies and yields the of consistency
of τ̂ . ��

A.5 Proof of Theorem 1

Proof Weapply Theorem 3.4.1 of van der Vaart andWellner (1996) to prove the rate of
convergence. Let τ ∈ n = {(φ,α,β1, ψ) : φ ∈ Rd−1,α ∈ Rp+d ,β1 ∈ Rp, ψ ∈
S0,n}. Choose dn(τ , τ 0,n) and Mn(τ ) defined in the theorem to be ‖τ − τ 0,n‖2 and
M(τ ), respectively. By definition of τ̂ ,Mn(τ̂ ) ≥ Mn(τ 0,n). In the proof of Lemma 3
for consistency, we have already shown thatM(τ )−M(τ 0) ≤ −Cd2

n (τ , τ 0). Because
M(τ 0)−M(τ ) ≤ Cdn(τ 0,n, τ 0) ≤ C‖ψ0,n −ψ0‖∞ = O(n−rν), for any τ ∈ n such
that δ/2 ≤ dn(τ , τ 0,n) ≤ δ, we have dn(τ , τ 0) ≥ dn(τ , τ 0,n) − dn(τ 0,n, τ 0) > Cδ

for sufficiently large n. It follows that

M(τ ) − M(τ 0,n) = M(τ ) − M(τ 0) + M(τ 0) − M(τ 0,n)

≤ −Cδ2 + O(n−2rν) = −Cδ2

for sufficiently large n.
For any δ > 0, in view of Lemma 1,

J[]{δ, {�(τ ; y,w) − �(τ 0,n; y,w) : τ ∈ n, δ/2 ≤ dn(τ , τ 0,n) ≤ δ}, ‖ · ‖P,B} ≤ Cq1/2
n δ.

Moreover, forτ ∈ n and δ/2 ≤ dn(τ , τ 0,n) ≤ δ, by inequality 2[exp(|x |)−|x |−1] ≤
x2 exp(|x |) and conditions C3–C5, ‖�(τ ; y,w) − �(τ 0,n; y,w)‖2P,B ≤ Cδ2. Lemma
3.4.3 of van der Vaart and Wellner (1996) yields

E

[
sup

δ/2≤‖τ−τ 0,n‖2≤δ,τ∈n

n1/2|(Mn − M)(τ ) − (Mn − M)(τ 0,n)|
]

≤ Cφn(δ)

with φn(δ) = q1/2
n δ + n−1/2qn . Obviously, φn(δ)/δ is decreasing in δ. It can be

readily shown that r2n φn(1/rn) ≤ n1/2 with rn = nmin(rν,(1−ν)/2). Theorem 3.4.1
of van der Vaart and Wellner (1996) is applied to yield rndn(τ̂ , τ 0,n) = Op(1).
Because dn(τ 0,n, τ 0) = O(n−rν), it follows that rndn(τ̂ , τ 0) ≤ rndn(τ̂ , τ 0,n) +
rndn(τ 0,n, τ 0) = Op(1) + rn O(n−rν) = Op(1). This completes the proof of the rate
of convergence. ��

A.6 Proof of Theorem 2

Proof Theorem 2 follows from the same arguments as those in the proof of Theorem
1(b) of Lu and Loomis (2013) and entropy calculations similar to those in Lemma 1.

��
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A.7 Proof of Theorem 3

Proof We apply Theorem 3.1 ofMurphy and van der Vaart (1997) to prove the asymp-
totic distribution of the spline likelihood ratio test statistic. Let t = (tT1 , tT2 , tT3

)T, where
t1 ∈ R

d−1, t2 ∈ R
p+d , and t3 ∈ R

p. Define an approximately least favorable sub-
model

�t(θ , ψ) = (t, ψt(θ , ψ)) ,

whereψt(θ , ψ) = ψ +(θ −t)Th∗ ◦ψ−1
0 ◦ψ . Let p(t, θ , ψ; y,w) and �(t, θ , ψ; y,w)

be density and log density functions under parameters (t, ψt(θ , ψ)), respectively. Also
denote by �̇(t, θ , ψ; y,w) the first derivatives of �(t, θ , ψ; y,w) with respect to t.
Some derivative calculations then yield

�̇(t, θ , ψ; y,w) =
⎛
⎝ηt[ψ ′

tDtz − h∗
1 ◦ ψ0 ◦ ψt + (φ − t1)T∇t1(h

∗
1 ◦ ψ0 ◦ ψt)]

−ηth∗
2 ◦ ψ0 ◦ ψt + ξtw

ηt(x − h∗
3 ◦ ψ0 ◦ ψt)

⎞
⎠ .

Here ξt, ηt,ψt, andψ ′
t represent ξ , η,ψ , andψ ′ evaluated at (t, ψt(t, ψ)), respectively.

∇t1(h
∗
1 ◦ ψ0 ◦ ψt) is the gradient of h∗

1 ◦ ψ0 ◦ ψt with respect to t1. Observe that
�̇(t, θ , ψ; y,w) converges to �∗

θ (τ 0; y,w) as (t, θ , ψ) → (θ0, θ0, ψ0). Moreover,
using the similar arguments to those in the proof of Lemma 1, we can show that, for
any δ > 0, the class of functions �̇(t, θ , ψ; y,w) with ψ ∈ S0,n , ‖ψ − ψ0‖2 ≤ δ,
‖t − θ0‖2 ≤ δ, and ‖θ − θ0‖2 ≤ δ is P-Donsker. Thus, Lemma 3.2 of Murphy and
van der Vaart (1997) is applicable.

Using the same arguments as above, we can show that, for (t, θ , ψ) in a neigh-
borhood of (θ0, θ0, ψ0), the class of p−1(t, θ , ψ; y,w)∂2 p(t, θ , ψ; y,w)/∂t∂tT

is P-Donsker and is therefore P-Glivenko-Cantelli. Furthermore, as (t, θ , ψ) →
(θ0, θ0, ψ0),

E[p−1(t, θ , ψ; y,w)∂2 p(t, θ , ψ; y,w)/∂t∂tT] → −E[�∗
θ (τ 0; y,w)]⊗2 + I(θ0) = 0.

It follows that condition 3.14 inMurphy and van der Vaart (1997) holds. Thus the con-
ditions in Theorem 3.1 of Murphy and van der Vaart (1997) reduce to the unbiasedness
condition

√
n P0�̇(θ0, θ0, ψ̂0; y,w) = op(1),

where ψ̂0 is the estimator ofψ0 under θ = θ0. Using the same arguments as those in the
proof of the convergence rate of τ̂ , we can deduce that ‖ψ̂0−ψ0‖2 = Op(n−r/(1+2r)).

Abbreviate �̇(θ0, θ0, ψ; y,w) to �̇(ψ; y,w). In view of the fact that Pθ ,ψ �̇

(θ, θ , ψ; y,w) = 0 for all (θ , ψ),we candecompose P0�̇(ψ̂0; y,w) as In5+In6,where
In5 = (P0 − P

θ0,ψ̂0
)�̇(ψ0; y,w) and In6 = (P0 − P

θ0,ψ̂0
)[�̇(ψ̂0; y,w)− �̇(ψ0; y,w)].

Observe that In5 = P0{�̇(ψ0; y,w)[(p0 − p
θ0,ψ̂0

)/p0 − �̇ψ (τ 0; y,w)[ψ0 − ψ̂0]]}. By
a Taylor’s expansion, In5 can be expressed as
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In5 = −(1/2)P0[p−1
0 �̇(ψ0; y,w)d2 p(θ0, ψ0 + t (ψ̂0 − ψ0); y,w)/dt2]|t=t∗,

where 0 < t∗ < 1. According to conditions C3–C5 and the rate of convergence of
ψ̂0, In5 = op(n−1/2). Similarly, a Taylor’s expansion and the rate of convergence of
ψ̂0 yield In6 = op(n−1/2). This completes the proof of Theorem 3. ��

A.8 Proof of Theorem 4

Proof In view of the consistency of τ̂ and Proposition 2.1 of Huang et al. (2008), we
can show thatPn[�̇θ (τ̂ ; y,w)−�̇ψ (τ̂ ; y,w)[ĥ∗]]⊗2 → I(θ0) in probability.According
to some entropy calculations and the law of large numbers, it follows that Êθθ =
Âθθ + op(1), Êθψ = Âθψ + op(1), and Êψψ = Âψψ + op(1). We conclude that
En → I(θ0) in probability. This completes the proof of Theorem 4. ��
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