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Abstract We prove that the expectation of the binomial distribution of order k with
success probability p is monotonically increasing with respect to p for all n and k. The
result is extended to the problems on exchangeable random sequences and expecta-
tions of distributions of mixtures of binomial distributions of order k are studied. If the
mixing measure is stochastically increasing with respect to its parameter, the expec-
tation of the mixture of binomial distributions of order k becomes nondecreasing. As
examples of mixing measures two submodels of beta distributions are examined and
the resulting expectation of the mixture distribution is monotonically strictly increas-
ing. Further, we prove some properties on the expectation of the �-overlapping 1-runs
in a sequence of independent and identically distributed n trials.

Keywords Binomial distribution of order k · Method of moments · Exchangeability ·
Negative hypergeometric distribution of order k · Beta distribution

1 Introduction

The study on exact distributions of runs and scans has been much developed recently.
Above all, distributions of number of runs in random sequences of finite length are
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1056 S. Aki, K. Hirano

studied by many authors (see, for example, Balakrishnan and Koutras 2002; Eryilmaz
and Demir 2007; Eryilmaz and Yalçin 2011; Balakrishnan et al. 2014; Yalcin and
Eryilmaz 2014). Let X1, X2, . . . , Xn be {0, 1}-valued independent identically distrib-
uted random variables with P(Xi = 1) = p = 1− q. The distribution of the number
of non-overlapping 1-runs of length k in X1, X2, . . . , Xn is called the binomial distri-
bution of order k and denoted by Bk(n, p).

The present authors proved that the expectation mn(p) of Bk(n, p) is expressed as

mn(p) =
[ nk ]∑

j=1

{(n − jk + 1)p jk − (n − jk)p jk+1}, (1)

in Aki and Hirano (1988). In order to show that the moment estimator of p is uniquely
determined, they tried to prove that the expectation is monotonically increasing with
respect to p in Aki and Hirano (1989). In spite of the simple form, it was not easy to
show the monotonicity with respect to p for all n and k. However, as the expectation
is represented by a polynomial function with respect to p for given n and k, they
checked the monotonicity for k = 2, 3, . . . , 10 and n = k, k + 1, . . . , 100 using a
computer algebra system with an algorithm based on Sturm’s theorem. Though it is
not so difficult to check the monotonicity with respect to p for given n with n > 100,
it is still unknown whether the expectation is monotonically increasing with respect
to p for all n and k with k ≤ n.

In this paper, we show that the mean of the binomial distribution of order k is
monotonically increasingwith respect to p for alln and k. The idea of the proof is a kind
of the special construction of random variables. As themonotonicity of the expectation
with respect to p is a distributional property, it may be shown from the formula (1)
directly. In this paper, however,we construct specially on a commonprobability space a
family of random variables {Y (p)(ω)|0 < p < 1}, each of which follows the Bk(n, p).
When 0 < p1 < p2 < 1, the inequality Y (p1)(ω) ≤ Y (p2)(ω) is shown for every ω.
Since taking expectation (integral) preserves the order, we obtain the monotonicity of
expectation. The result will be extended to exchangeable random sequences. Further,
we shall prove some properties on the mean of the �-overlapping number of 1-runs. In
the last section, we shall provide some properties of the binomial distributions of order
k. We shall show that some random variables observed in various random sequences,
which are not necessarily independent sequences, follow a binomial distribution of a
specified order. Similar properties were discussed in Aki and Hirano (2000), where
the binomial distributions of order k was slightly generalized. However, the results
of the present paper will be proved without generalizing the binomial distributions of
order k.

2 Expectations of the number of runs

First, we prove that the mean of the binomial distribution of order k is monotonically
increasing with respect to p for all n and k.
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Monotonicity of the mean of run-related distributions 1057

Theorem 1 Let n and k be integers with 1 ≤ k ≤ n. Then, the mean of the binomial
distribution of order k is monotonically strictly increasing with respect to p.

Proof The mean of the binomial distribution of order k is a nonzero polynomial of p
having degree at most n. LetU1, . . . ,Un be independent random variables defined on
a probability space (�,F , P) having uniform distribution on the unit interval [0, 1].
For 0 < p < 1, we set X (p)

i (ω) = I (Ui (ω) < p), where I (A) is the indicator
of the statement A. Let Y (p)(ω) be the number of non-overlapping 1-runs in the
independent trials {X (p)

i (ω)}ni=1. Then, Y
(p)(ω) follows the binomial distribution of

order k. Suppose that 0 < p1 < p2 < 1. Then, by definition, for everyω, “X (p1)
i (ω) =

1” implies “X (p2)
i (ω) = 1”. Therefore, we obtain that Y (p1)(ω) ≤ Y (p2)(ω) for every

ω. Thus, themonotonicity of the integral (or taking expectation in other words) implies
mn(p1) ≤ mn(p2). Noting thatmn(p) is a polynomial function of p, it is differentiable
and the derivativem′

n(p) is also a polynomial function of p. Therefore, the set of zeros
of m′

n(p) is finite from the fundamental theorem of algebra. Consequently, mn(p) is
monotonically strictly increasing with respect to p, i.e., “0 < p1 < p2 < 1” implies
“mn(p1) < mn(p2)”. ��

It is not difficult to extend the above result to exchangeable sequences. Let π

be a probability measure on the unit interval [0, 1] and let {Xi } be the infinite
exchangeable sequence with the de Finetti measure (or the mixing measure) π . We
denote by MBk(n, π) the distribution of the non-overlapping number of 1-runs in
X1, X2, . . . , Xn . MBk(n, π) is also regarded as a mixture of binomial distributions of
order k (see Johnson et al. 2005). On the mean of the distribution, we obtain the next
proposition.

Proposition 1 The mean of the distribution MBk(n, π) can be written as

[ nk ]∑

j=1

{(n − jk + 1)Mjk − (n − jk)Mjk+1},

where Mm is the m-th moment of the probability measure π .

Proof From de Finetti’s theorem (see, for example, Durrett 2010) and the formula
(1), the mean of the distribution MBk(n, π) is represented as

[ nk ]∑

j=1

{(n − jk + 1)
∫ 1

0
p jkπ(dp) − (n − jk)

∫ 1

0
p jk+1π(dp)}.

This completes the proof. ��
Next, when the above mixing measure has a parameter which defines a stochastic

ordering (see Lehmann and Romano 2005), we study the monotonicity of the mean
of the binomial distribution of order k with respect to the new parameter.
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1058 S. Aki, K. Hirano

Theorem 2 Let {πθ } be a family of distributions with parameter θ on the unit interval
[0, 1]. Fθ (x) denotes the cumulative distribution function of πθ . Suppose that the
function Fθ (x) is continuous and strictly increasing with respect to x. Further, we
assume that the family {Fθ } is stochastically increasing, i.e.,

θ1 < θ2 implies Fθ1(x) ≥ Fθ2(x) for every x ∈ [0, 1].

Then, the mean of the distribution MBk(n, πθ ) is nondecreasing with respect to θ .

Proof From the assumption of the theorem, for every θ , Fθ (x) has its inverse function
F−1

θ (y) which is continuous and strictly increasing. Suppose that θ1 < θ2. Then, for
every y ∈ [0, 1], x1 and x2 satisfying y = Fθ1(x1) = Fθ2(x2) are uniquely determined.
Since Fθ1(x1) ≥ Fθ2(x1) holds, we have x1 ≤ x2, i.e., F

−1
θ1

(y) ≤ F−1
θ2

(y). Suppose
that independent random variables V,U1, . . . ,Un defined on the probability space �

follow the uniform distribution on the unit interval [0, 1]. For every ω ∈ �, we set
Pθ (ω) = F−1

θ (V (ω)) and define

X (θ)
i (ω) =

{
1 if Ui (ω) ≤ Pθ (ω)

0 otherwise .

Let Y θ
n (ω) be the number of non-overlapping 1-runs in {X (θ)

i (ω)}ni=1. Then Y θ
n (ω)

follows the distribution MBk(n, πθ ).
Suppose that θ1 < θ2. For every ω ∈ �, we see that

X (θ1)
i (ω) = 1 ⇐⇒ Ui (ω) ≤ F−1

θ1
(V (ω))


⇒ Ui (ω) ≤ F−1
θ2

(V (ω))

⇐⇒ X (θ2)
i (ω) = 1.

Therefore, for every ω, we have Y (θ1)
n (ω) ≤ Y (θ2)

n (ω). Consequently, from the
monotonicity of integral, we have E[Y (θ1)

n ] ≤ E[Y (θ2)
n ]. ��

Here, we show two examples as applications of Theorem 2. These examples are
given by one-parameter sub-families of beta distributions Beta(α, β) as the mixing
measures. These are distributions of numbers of non-overlapping runs based on the
Pólya–Eggenberger sampling schemes and are called the beta-binomial distribution
of order k or the negative hypergeometric distribution of order k (see, Panaretos and
Xekalaki 1986; Johnson et al. 2005).

Example 1 Let c be a constant with c ≥ 1. For θ ≥ 1, we define

Fθ (x) =
∫ x

0

1

B(θ, c)
tθ−1(1 − t)c−1dt (0 ≤ x ≤ 1),

where B(α, β) is the beta function. Then, the family of distribution functions
{Fθ (x); θ ≥ 1} satisfies the assumption of Theorem 2. Let θ1 and θ2 be parameters

123



Monotonicity of the mean of run-related distributions 1059

satisfying 1 ≤ θ1 < θ2. Let Y1, Y2 and Y3 be independent random variables defined
on a probability space (�,F , P) following the gamma distributions Gamma(θ1),
Gamma(θ2 − θ1) and Gamma(c), respectively, where the gamma distribution
Gamma(α) is a distribution on the interval (0,∞) having the probability density
function

1

	(α)
xα−1e−x , (x > 0),

where 	(α) is the gamma function. Noting that Y1(ω)
Y1(ω)+Y3(ω)

and Y1(ω)+Y2(ω)
Y1(ω)+Y2(ω)+Y3(ω)

follow the Beta(θ1, c) and Beta(θ2, c), respectively (see, for example, Wilks 1962).
Then, for x ∈ (0, 1), it holds that

Fθ1(x) = E

[
I

(
Y1(ω)

Y1(ω) + Y3(ω)
≤ x

)]
,

and

Fθ2(x) = E

[
I

(
Y1(ω) + Y2(ω)

Y1(ω) + Y2(ω) + Y3(ω)
≤ x

)]
.

Since for almost all ω ∈ �, Y1(ω), Y2(ω) and Y3(ω) are positive,

Y1(ω)

Y1(ω) + Y3(ω)
≤ Y1(ω) + Y2(ω)

Y1(ω) + Y2(ω) + Y3(ω)

holds and, therefore, we have

I

(
Y1(ω)

Y1(ω) + Y3(ω)
≤ x

)
≥ I

(
Y1(ω) + Y2(ω)

Y1(ω) + Y2(ω) + Y3(ω)
≤ x

)
.

Thus, the monotonicity of integral implies Fθ1(x) ≥ Fθ2(x) and we have seen that
the family of the distribution functions {Fθ (x); θ ≥ 1} satisfies the assumption of
Theorem 2.

Therefore, from Theorem 2, we see that the mean M(θ) of the distribution
MBk(n, πθ ) is nondecreasing with respect to θ . Further, we have

Mjk =
∫ 1

0
p jk 1

B(θ, c)
pθ−1(1 − p)c−1dp = B(θ + jk, c)

B(θ, c)
.

Noting that

B(θ + jk, c)

B(θ, c)
= 	(θ + jk)

	(θ)

	(θ + c)

	(θ + c + jk)
= (θ) jk↑

(θ + c) jk↑
,

we see that every moment Mjk is a rational function of θ . Here, (x)n↑ denotes the
nth factorial power of x with increment 1. Since the expectation M(θ) of MBk(n, πθ )
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1060 S. Aki, K. Hirano

Fig. 1 Distribution functions Fθ (x) with c = 7 and θ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

is a linear combination of the moments of πθ from Proposition 1, M(θ) is also a
rational function of θ . Then, the expectation M(θ) is differentiable with respect to θ

and d
dθ

M(θ) ≥ 0 holds by Theorem 2. Since d
dθ

M(θ) is also a rational function of θ ,
the set of zeros of d

dθ
M(θ) is finite by the fundamental theory of algebra. Therefore,

the expectation M(θ) of MBk(n, πθ ) is strictly increasing with respect to θ .
Figure 1 illustrates the distribution functions Fθ (x) with c = 7 and θ =

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 which are stochastically increasing. Figure 2 plots the mean
of the MBk(n, πθ ), M(θ), where k = 3, n = 14, c = 7 and the distribution function
of πθ is given by the Fθ (x) of Example 1. We observe that the mean M(θ) is strictly
increasing with respect to θ .

The next model which is a modification of Example 1 has a similar property.

Example 2 Let c be a constant with c ≥ 2. For every θ with 1 ≤ θ ≤ c−1, we define

Fθ (x) =
∫ x

0

1

B(θ, c − θ)
tθ−1(1 − t)c−θ−1dt (0 ≤ x ≤ 1).

Then, the family of distribution functions {Fθ (x); 1 ≤ θ ≤ c−1} satisfies the assump-
tion of Theorem 2. We can show it in the same manner of Example 1. The difference
from Example 1 is that the random variable Y3 is assumed to follow the gamma dis-
tribution Gamma(c − θ2) and only to show

Y1(ω)

Y1(ω) + Y2(ω) + Y3(ω)
≤ Y1(ω) + Y2(ω)

Y1(ω) + Y2(ω) + Y3(ω)
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Monotonicity of the mean of run-related distributions 1061

Fig. 2 Mean of the MBk (n, πθ ), M(θ), is strictly increasing with respect to θ , where k = 3, n = 14,
c = 7 and the distribution function of πθ is given by the Fθ (x) of Example 1

for every ω ∈ �.
Theorem 2 implies that the expectation M(θ) of MBk(n, πθ ) is nondecreasing with

respect to θ . Further, by observing that

Mjk =
∫ 1

0
p jk 1

B(θ, c − θ)
pθ−1(1 − p)c−θ−1dp = B(θ + jk, c − θ)

B(θ, c − θ)

and

B(θ + jk, c − θ)

B(θ, c − θ)
= 	(θ + jk)

	(θ)

	(c)

	(+c + jk)
= (θ) jk↑

(c) jk↑
,

we can see that the expectation M(θ) of MBk(n, πθ ) is strictly increasing with respect
to θ in the same manner of Example 1.

Figure 3 illustrates the distribution functions Fθ (x) with c = 7 and θ =
1, 2, 3, 4, 5, 6 which are stochastically increasing. Figure 4 presents the mean of the
MBk(n, πθ ), M(θ), where k = 3, n = 14, c = 7 and the distribution function of
πθ is given by the Fθ (x) of Example 2. We observe that the mean M(θ) is strictly
increasing with respect to θ .
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1062 S. Aki, K. Hirano

Fig. 3 Distribution functions Fθ (x) of Example 2 with c = 7 and θ = 1, 2, 3, 4, 5, 6

Fig. 4 Mean of the MBk (n, πθ ), M(θ), is strictly increasing with respect to θ , where k = 3, n = 14,
c = 7 and the distribution function of πθ is given by the Fθ (x) of Example 2

123



Monotonicity of the mean of run-related distributions 1063

3 Estimating the parameter of mixtures of binomial distributions of
order k

In Examples 1 and 2 in the previous section, we proved that the expectations of the
mixing models are strictly increasing with respect to the parameter θ . Therefore, we
can estimate the parameter θ of the examples by the method of moments at least
theoretically. Since the expectations are expressed as rational functions of θ , we show
the feasibility of estimating the parameter by simulation experiments. Note that these
examples are subclasses of the beta-binomial or negative hypergeometric distributions
of order k, because the de Finetti (or mixing) measure of the model are one-parameter
subclasses of the beta distributions.

Initially, we need to construct simulated data which follow the beta-binomial dis-
tribution of order k. A simple method is to repeat generating a random number of
Bk(n, p) with p from the beta distribution. However, it takes much time to generate
random variables of Bk(n, p) for varying values of p at all times.

Here, we use the inverse cumulative distribution function method for discrete
distributions (see, for example, Gentle 2003) after calculating the probability of
MBk(n, πθ ).

The probability generating function of the negative hypergeometric distribution of
order k, which is equal to the mixture of binomial distributions of order k with the
mixing measure Beta(a, b), is expressed as

k−1∑

m=0

∑

x1+2x2+···+kxk=n−m

(
x1 + · · · + xk
x1, . . . , xk

)
(b)(

∑
xi )↑(a)(n−∑

xi )↑
(a + b)n↑

×F(−xk,−a + n −
∑

xi ; b + 1 −
∑

xi ; t),

where F(α, β; γ ; z) is the hypergeometric function (see Aki and Hirano 1988). How-
ever, it is not so easy to evaluate it from the above form.

For numerical evaluation of the function, the following recurrence relation is con-
venient:

φ(a, b, k, n) = 1 if n < k

φ(a, b, k, n) = (a)k↑
(a + b)k↑

t +
(
1 − (a)k↑

(a + b)k↑

)
if n = k

φ(a, b, k, n) =
k∑

m=1

(a)(m−1)↑b
(a + b)m↑

φ(a + m − 1, b + 1, k, n − m)

+ (a)k↑
(a + b)k↑

tφ(a + k, b, k, n − k) if n > k,

where φ(a, b, k, n) is the probability generating function of the negative hypergeo-
metric distribution of order k.
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1064 S. Aki, K. Hirano

Alternatively, it is also convenient for numerical evaluation of the probability
generating function to integrate the probability generating function of the binomial
distribution of order k after multiplying the density of the beta distribution Beta(a, b)
with respect to p (see Panaretos and Xekalaki 1986).

We illustrate the feasibility of estimation of the parameter of MBk(n, πθ ) by the
following numerical examples:

Example 3 (Continuation of Example 1) We consider the mixture model of Example
1 of Sect. 2 with k = 3, n = 14 and c = 7. By setting θ = 8.0, we have constructed a
simulated sample which follow the mixture model MBk(n, πθ ). By using the method
stated above, we see that the probability of MB3(14, π8) as follows. Suppose that X
follows the distribution MB3(14, π8). Then, we have that

P(X = 0) = 0.31935657558218

P(X = 1) = 0.35097411046799

P(X = 2) = 0.2222973033607

P(X = 3) = 0.089014522666427

P(X = 4) = 0.018357487922705.

Using this discrete distribution, we constructed the simulated sample by the method of
inverse cumulative distribution function with sample size = 50. Based on the sample,
we calculated themoment estimate of θ(=8). Repeating the process 100,000 times, the
sample mean and sample variance of the 100,000 estimates are obtained as 8.035496
and 1.066979, respectively. Figure 5 shows the estimated density function of the
moment estimator with sample size 50 based on the 100,000 estimates.

Example 4 (Continuation of Example 2) We consider the mixture model of Example
2 of Sect. 2 with k = 3, n = 14 and c = 7. By setting θ = 4.5, we have constructed
a simulated sample which follows the mixture model MBk(n, πθ ). Suppose that X
follows the distribution MB3(14, π4.5). Then, we have that

P(X = 0) = 0.19290482997894

P(X = 1) = 0.25314967600363

P(X = 2) = 0.248562717012

P(X = 3) = 0.19545306318573

P(X = 4) = 0.10992971381971.

Similarly as Example 3, we constructed the simulated sample by the method of inverse
cumulative distribution function with sample size = 50. Based on the sample, we
calculated the moment estimate of θ(=4.5). Repeating the process 100,000 times, the
sample mean and sample variance of the 100,000 estimates are obtained as 4.495461
and 0.05145771, respectively. Figue 6 shows the estimated density function of the
moment estimator with sample size 50 based on the 100,000 estimates.
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Monotonicity of the mean of run-related distributions 1065

Fig. 5 Estimated density of the moment estimator with sample size 50 of Example 3 based on the 100,000
estimates

Fig. 6 Estimated density of the moment estimator with sample size 50 of Example 4 based on the 100,000
estimates
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4 Number of 1-runs under the �-overlapping enumeration scheme

There are several enumeration schemes of counting number of 1-runs in random {0, 1}-
sequences. Let � be an integer satisfying 0 ≤ � < k. The �-overlapping number of
1-runs of length k is the number of 1-runs each of which may have overlapping part
of length at most � with the previous 1-run of length k that has been enumerated (see
Definition 1.1 of Aki and Hirano 2000). Then, 0-overlapping and (k−1)-overlapping
numbers of 1-runs of length k mean the usual non-overlapping and overlapping num-
bers of 1-runs of length k, respectively. The (k − 1)-overlapping number of 1-runs
of length k was introduced and studied by Ling (1988). To make the meaning of
�-overlapping counting clear, we assume that n = 15 and outcomes of the sequence
of length n are

111101111111010.

Let us enumerate number of 1-runs of length 3. Then, the non-overlapping (0-
overlapping) number of 1-runs of length 3 in the sequence (111)10(111)(111)1010
is 3. The overlapping (2-overlapping) number of 1-runs of length 3 in the sequence
(1[11)1]0(1[1{1)(1][1}1)1]010 is 7. The 1-overlapping number of 1-runs of length 3
in the sequence (111)10(11[1)1(1]11)010 is 4.

Let X1, X2, . . . , Xn be independent identically distributed {0, 1}-valued random
variables with P(Xi = 1) = p = 1 − q with 0 < p < 1. What we have discussed in
the previous section can be studied under the general counting schemes. Let X(�) be the
number of �-overlapping 1-runs in X1, X2, . . . , Xn . The next result on the expectation
of X(�) was proved in Proposition 2.1 of Makri and Philippou (2005). In Makri et al.
(2013) an even simpler formula for the expectation of X(�) is given.

Theorem 3 Let n� =
[
n−k
k−�

]
. Then, the expectation of X(�) can be written as

E[X(�)] =
n�∑

j=0

{(n−(k+ j (k−�))+1)pk+ j (k−�)−(n − (k + j (k − �)))pk+ j (k−�)+1}.

In particular, setting � = 0 in Theorem 3, X(0) follows the binomial distribution of
order k, Bk(n, p). Hence, we have the next corollary immediately.

Corollary 1 Themean of the binomial distribution of order k, Bk(n, p) can be written
as

E[X(0)] =
[ n
k

]
∑

j=1

{(n − jk + 1)p jk − (n − jk)p jk+1}.

As the expectation of X(�) is expressed as a polynomial of p from Theorem 3, the
next theorem can be proved similarly as Theorem 1.
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Monotonicity of the mean of run-related distributions 1067

Theorem 4 Let n, k and � be integers with 1 ≤ k ≤ n and 0 ≤ � < k. Then, the mean
of the number of �-overlapping 1-runs in X1, X2, . . . , Xn is monotonically strictly
increasing with respect to p.

Let B(�)
k (n, p) denote the distribution of X(�), i.e., the distribution of the number

of �-overlapping 1-runs in the i.i.d. sequence X1, X2, . . . , Xn . As in the previous
section, let πθ be a probability measure on the unit interval [0, 1] with parameter
θ . Let ξ1, ξ2, . . . be an infinite exchangeable sequence with the mixing measure πθ .
To be precise, let 
 be a [0, 1]-valued random variable with distribution πθ and let
ξ1, ξ2, . . . be conditionally independent identically distributed {0, 1}-valued random
variables with P(ξi = 1|
 = p) = p given that 
 = p. Let X (θ)

(�) be the number

of �-overlapping 1-runs in ξ1, . . . , ξn and let MB(�)
k (n, πθ ) denote the distribution of

X (θ)
(�) .
Then, we obtain the next theorem similarly as Theorem 2.

Theorem 5 Let {πθ } be a family of distributions with parameter θ on the unit interval
[0, 1]. Fθ (x) denotes the cumulative distribution function of πθ . Suppose that the
function Fθ (x) is continuous and strictly increasing with respect to x. Further, we
assume that the family {Fθ } is stochastically increasing, i.e.,

θ1 < θ2 implies Fθ1(x) ≥ Fθ2(x) for every x ∈ [0, 1].

Then, the mean of the distribution MB(�)
k (n, πθ ) is nondecreasing with respect to θ .

5 Some examples related to the binomial distributions of order k

First, let X1, X2, . . . be {0, 1}-valued independent identically distributed random vari-
ables with P(Xi = 1) = p = 1 − q (0 < p < 1).

The next proposition was proved by Aki and Hirano (1988).
Let X be the number of non-overlapping 1-runs in X1, X2, . . . , Xn . The distribution

of X is the binomial distribution of order k. We denote by φ(k, n; t) the probability
generating function of X .

Proposition 2 (Aki and Hirano 1988) φ(k, n; t) satisfies the following recurrence
relations:

⎧
⎨

⎩

φ(k, n; t) = ∑k
m=1 p

m−1qφ(k, n − m; t) + pktφ(k, n − k; t) if n > k,
φ(k, n; t) = (1 − pk) + pkt if n = k,
φ(k, n; t) = 1 if n < k.

(2)

Then, we obtain the next proposition.

Proposition 3 Let k > 1. Let N be the number of 1-overlapping 1-runs of length k
until the n-th occurrence of “1” in X1, X2, . . .. Then, N follows the binomial distrib-
ution of order (k − 1), Bk−1(n − 1, p).
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Proof Let φn(t) be the probability generating function of N . If n < k, φn(t) = 1,
since a 1-run of length k does not occur. If n = k, a 1-run of length k occurs if and
only if a 1-run of length k occurs just after a 0-run of arbitrary length in X1, X2, . . ..
Since the probability of the event is

( ∞∑

�=0

q�

)
× pk = 1

1 − q
× pk = pk−1,

it follows that φk(t) = pk−1t + (1 − pk−1). Let us consider the case of n > k. If we
observe the first trial, “1” or “0” necessarily occurs and hence we see that

φn(t) = pφ(1)
n−1(t) + qφn(t),

where φ
(�)
m (t) is the conditional probability generating function of number of 1-

overlapping 1-runs of length k until the m-th “1” starting from the condition that
the current length of 1-run which we are observing is just �. Here, if � = 0, we prefer
to write φm(t) rather than φ

(0)
m (t). Thus, we see that φn(t) = φ

(1)
n−1(t) and we have the

following system of equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ
(1)
n−1(t) = pφ(2)

n−2(t) + qφ
(1)
n−2(t)

φ
(2)
n−2(t) = pφ(3)

n−3(t) + qφ
(1)
n−3(t)· · · · · ·

φ
(k−1)
n−(k−1)(t) = ptφ(1)

(n−1)−(k−1)(t) + qφ
(1)
(n−1)−(k−1)(t).

From the equations of conditional probability generating functions, we easily obtain
the following recurrence relation:

φ
(1)
n−1(t)=qφ

(1)
n−2(t)+ pqφ

(1)
n−3(t)+· · ·+ pk−2qφ

(1)
(n−1)−(k−1)(t)+ pk−1tφ(1)

(n−1)−(k−1)(t).

Comparing this with (2) of Proposition 2, we see that the distribution of φ
(1)
n−1(t) is the

binomial distribution of order (k − 1), Bk−1(n − 1, p). ��

Though we have given the above proof using the traditional method of conditional
probability generating functions, we give an alternative proof of Proposition 3 by
constructing a new sequence of Bernoulli trials. The idea leads us more intuitive
understanding.

Proof (Alternative proof of Proposition 3) In X1, X2, . . ., we transform just after the
first “1” to the following {S, F}-sequence such as

00 · · · 01SFSF · · · ,
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Monotonicity of the mean of run-related distributions 1069

where S is “1” and F is a finite sequence of 0-run of positive length followed by “1”. In
the sequence X1, X2, . . ., the probabilities of occurrence of S and F are, respectively,

P(S) = p

P(F) =
∞∑

�=1

q� p = p
q

1 − q
= q.

When S · · · S︸ ︷︷ ︸
k−1

occurs for the first time, just before this pattern is the first “1” or F .

Hence, at the corresponding trial of X1, X2, . . ., 1-run of length k occurs. When the
next S · · · S︸ ︷︷ ︸

k−1

occurs under the non-overlapping counting, the outcome just before the

pattern is F or S · · · S︸ ︷︷ ︸
k−1

. Therefore, at the corresponding trial of X1, X2, . . ., 1-run of

length k occurs under the 1-overlapping counting. Noting that just one “1” is included
in S and F and the first “1” is not included in S. Consequently, the distribution
of N is equal to that of the number of S-run of length (k − 1) in the independent
{S, F}-sequence of length (n − 1), that is, the binomial distribution of order (k − 1),
Bk−1(n − 1, p). ��

Using the idea of the above alternative proof, Proposition 3 can be generalized
further.

Proposition 4 Let � be an integer satisfying 1 ≤ � < k. Let N be the number of
�-overlapping 1-runs of length k until the n-th overlapping occurrence of 1-run of
length � in X1, X2, . . .. Then, N follows the binomial distribution of order (k − �),
Bk−�(n − 1, p).

Proof In X1, X2, . . ., we transform just after the first 1-run of length � to the following
{S, F}-sequence:

X1, X2, . . . , Xτ�
,Y1,Y2, . . . .

Here, τ� is thewaiting time for the first 1-run of length �, andYi is the following {S, F}-
valued independent random variable, where S = “1” and F = “00101 · · · 0 1 · · · 1︸ ︷︷ ︸

�

”,

i.e., F is a finite subsequence which starts from “0” until the next 1-run of length �.
As we assume that 0 < p < 1, the next 1-run of length � necessarily occurs, and
hence we have P(F) = q from P(S) = p. For rigorous proof of the statement, we
need the second Borel–Cantelli lemma (see Remark 1 for the details). When S · · · S︸ ︷︷ ︸

k−�

occurs for the first time, the value just before it is 1-run of length � or F . Therefore, at
the corresponding trial of the sequence of {Xi }, 1-run of length k necessarily occurs.
When the next S · · · S︸ ︷︷ ︸

k−�

occurs under the non-overlapping counting, just before it F or

S · · · S︸ ︷︷ ︸
k−�

must have occurred. Hence, at the corresponding trial of the sequence of {Xi },
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1070 S. Aki, K. Hirano

using 1-run of length � which has occurred just before, a 1-run of length k occurs
under �-overlapping counting. Though each S and F correspond to overlapping 1-run
of length �, respectively, only the first 1-run of length � does not correspond to any of S
or F . Therefore, the distribution of N is equal to the number of non-overlapping 1-runs
of length (k − �) in independent {S, F}-sequence of length (n − 1). Consequently, N
follows the binomial distribution of order (k − �), Bk−�(n − 1, p). ��
Remark 1 As 0 < p < 1 is assumed, {0, 1}-pattern of finite length occurs infinitely
often. For example, let the pattern be a 1-run of length m. For k = 1, 2, . . ., we define
the sequence of events Ak = {Xm(k−1)+1 = 1, Xm(k−1)+2 = 1, . . . , Xm(k−1)+m =
1} (k ≥ 1). Then, they are mutually independent and

∑∞
k=1 P(Ak) = ∞ holds, since

P(Ak) = pm . Therefore, we see that P(Ak i.o. ) = 1 from the second Borel-Cantelli
lemma.

Random variates which follow a binomial distribution of some order are observed
not only on independent sequences but also on dependent sequences.We can obtain the
corresponding results to Proposition 4 on time homogeneous {0, 1}-valued mth order
Markov chain. For a rigorous statement, we need the second conditional Borel-Cantelli
lemma.

Lemma 1 (Conditional second Borel-Cantelli lemma) Let Fn Cn ≥ 0 be a filtration
with F0 = {∅,�} and {An}, n ≥ 1 a sequence of events with An ∈ Fn. Then

{An i.o. } =
{ ∞∑

n=1

P(An|Fn−1) = ∞
}

.

For a proof of the lemma, see, for example, Durrett (2010) or Chandra (2012).

Remark 2 Let X−m+1, . . . , X0, X1, X2, . . . be time homogeneous {0, 1}-valued mth
order Markov chain and for every positive integer i we set

pi1i2...im = P(Xi = 1|Xi−m = i1, Xi−m+1 = i2, . . . , Xi−1 = im),

qi1i2...im = P(Xi = 0|Xi−m = i1, Xi−m+1 = i2, . . . , Xi−1 = im),

where qi1i2...im = 1 − pi1i2...im . Here, we assume that 0 < pi1i2...im < 1 for every
(i1, i2, . . . , im) ∈ {0, 1} × · · · × {0, 1}︸ ︷︷ ︸

m

. Hence, if we set α = mini1,i2,...,im pi1i2...im ,

α > 0 holds.
Letm ≤ ν andwe set a sequence of events An = {Xn = 1, Xn+1 = 1, . . . , Xn+ν =

1} for n = 1, 2, . . .. LetFn be the σ -field generated by {X−m+1, . . . , Xn} and let Bk =
Aνk+1 and Gk = Fν(k+1) for k = 1, 2, . . .. Then, since, for each k, P(Bk |Gk−1) ≥ αν

holds, we see that
∑∞

k=1 P(Bk |Gk−1) = ∞. Therefore, from the conditional second
Borel-Cantelli lemma P(Bk i.o. ) = 1 holds and hence we obtain P(An i.o. ) = 1.

Though the study like this was attempted intuitively in Aki et al. (1996), we have
stated rigorously here that a pattern of finite length occurs infinitely often almost
surely.
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Proposition 5 Let X−m+1, . . . , X0, X1, X2, . . .bea time-homogeneous {0, 1}-valued
m-th order Markov chain satisfying for every positive integer i ,

pi1i2...im = P(Xi = 1|Xi−m = i1, Xi−m+1 = i2, . . . , Xi−1 = im),

qi1i2...im = P(Xi = 0|Xi−m = i1, Xi−m+1 = i2, . . . , Xi−1 = im),

where qi1i2...im = 1 − pi1i2...im . Here, assume that 0 < pi1i2...im < 1 for every
(i1, i2, . . . , im) ∈ {0, 1} × · · · × {0, 1}︸ ︷︷ ︸

m

. Let 1 ≤ m ≤ � < k and let N be the �-

overlapping number of 1-runs of length k until the n-th overlapping occurrence of
1-run of length � in X1, X2, . . .. Then, N follows the binomial distribution of order
(k − �), Bk−�(n − 1, p11···1).

Proof In X1, X2, . . ., we transform just after the first 1-run of length � to the following
independent {S, F}-sequence

X1, X2, . . . , Xτ�
,Y1,Y2, . . . ,

where τ� is thewaiting time for the first 1-run of length �, andYi is the following {S, F}-
valued independent random variable. Here, S = “1” and F = “00101 · · · 0 1 · · · 1︸ ︷︷ ︸

�

”,

i.e., F is a finite subsequence which starts from “0” until the next 1-run of length �.
From the assumption of the proposition and Remark 2, we observe the next 1-run of
length � necessarily.Noting thatm ≤ � and P(S) = p11...1,we see that P(F) = q11...1.
When we observe the first S · · · S︸ ︷︷ ︸

k−�

, just before it the first 1-run of length � or F must

have occurred. Therefore, at the corresponding trial of the sequence {Xi }, 1-run of
length k occurs under the �-overlapping counting. When the next S · · · S︸ ︷︷ ︸

k−�

occurs under

the non-overlapping counting, just before it F or S · · · S︸ ︷︷ ︸
k−�

must has occurred. Therefore,

at the corresponding trial of the sequence {Xi }, using 1-run of length � just before the
trial, a 1-run of length k occurs under the �-overlapping counting. Note that every S
or F corresponds to a 1-run of length � under overlapping counting. But, only the
first 1-run of length � does not correspond to any of S or F . Therefore, N follows
the binomial distribution of order (k − �) in independent {S, F}-sequence of length
(n − 1), Bk−�(n − 1, p11...1). ��

We have the corresponding result on infinite exchangeable sequences.

Proposition 6 Let X1, X2, . . . be an exchangeable sequence of {0, 1}-valued random
variables with mixing measure π . Let 0 ≤ � < k and let N be the �-overlapping
number of occurrences of 1-run of length k until the n-th overlapping occurrence of
1-run of length �. Then, N follows the mixture of the binomial distribution of order
(k − �), MBk−�(n − 1, π).
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Proof From de Finetti’s theorem, there exists a random variable 
 with 0 ≤ 
 ≤
1 such that X1, X2, . . . are conditionally independently identically distributed with
P(Xi = 1|
 = p) = p given
 = p (see Billingsley 1995). From Proposition 4, the
conditional distribution of N given 
 = p is Bk−�(n − 1, p). Therefore, N follows
the mixture of the binomial distribution of order (k − �), MBk−�(n − 1, π). ��
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