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Abstract This paper develops an empirical likelihood approach to testing for the
presence of uniform stochastic ordering (or hazard rate ordering) among univariate
distributions based on independent random samples from each distribution. The pro-
posed test statistic is formed by integrating a localized empirical likelihood statistic
with respect to the empirical distribution of the pooled sample. The asymptotic null
distribution of this test statistic is found to have a simple distribution-free representa-
tion in terms of standard Brownian motion. The approach is extended to the case of
right-censored survival data via multiple imputation. Two applications are discussed:
(1) uncensored survival time data of mice exposed to radiation, and (2) right-censored
time-to-infection data from a human HIV vaccine trial comparing a placebo group
with a vaccine group.

Keywords Distribution-free · Order-restricted inference · Nonparametric likelihood
ratio testing

1 Introduction

The nonparametric comparison of univariate distributions is an extensive field, but
empirical likelihood methods have yet to be fully exploited when order-restricted
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comparisons are needed. There are many types of ordering for the comparison of
distributions. These include, with increasing generality, likelihood ratio ordering, uni-
form stochastic ordering (equivalent to hazard rate ordering), stochastic ordering, and
increasing convex ordering (of interest in economics and actuarial science); see Shaked
and Shanthikumar (2006). The aim of this paper is to develop an empirical likelihood
approach to testing for the presence of uniform stochastic ordering. Such ordering
often arises in the engineering and biomedical sciences, for example in reliability
studies, or in the comparison of survival outcomes in randomized clinical trials.

Let X1 and X2 be non-negative random variables with respective distribution func-
tions F1 and F2, and survival functions F̄1 and F̄2. Then X1 is said to be uniformly
stochastically smaller than X2 if t �→ F̄1(t)/F̄2(t) is nonincreasing for t ∈ [0, τF2),
where τF2 ≡ inf{x : F2(x) = 1}. We denote this by X1 � X2 or F1 � F2. It is well
known that if F1 and F2 are absolutely continuous with densities f1 and f2, respec-
tively, then F1 � F2 is equivalent to their corresponding hazard rates being ordered:
f1(t)/F̄1(t) ≥ f2(t)/F̄2(t) for all t ≥ 0. We also note that this is equivalent to

P[X1 > t + s|X1 > t] ≤ P[X2 > t + s|X2 > t], for all s, t ≥ 0.

That is, the conditional distribution of X1 given that X1 ≥ t is stochastically smaller
than that corresponding to X2. For this reason, uniform stochastic ordering has a
more useful and practical interpretation than the classical form of stochastic ordering
(Lehmann 1955), which orders survival functions rather than hazard functions.

Uniform stochastic ordering is useful in applications in which risks change dynam-
ically (over time), or in which the rates of extreme events (in the upper-tail of the
distributions) need to be compared, as with risk assessment studies in engineering.
Dykstra et al. (1991) note that uniform stochastic ordering is especially of interest
in clinical trials involving competing medical treatments. Even if the corresponding
survival times are stochastically ordered initially, they may not be when patients are
examined at a later time. However, under uniform stochastic ordering, one of the
treatments can be considered the best.

Many tests for classical stochastic ordering are available in the literature, including
an empirical likelihood test for uncensored data developed by El Barmi andMcKeague
(2013), but testing for the presence of uniform stochastic ordering has received little
attention (formal theory is only available for discrete distributions). Although our
present approach is also based on empirical likelihood, the formulation of the problem
and the derivation of the test statistic are completely different. Dykstra et al. (1991)
obtained the nonparametric maximum likelihood estimators (NPMLE) of uniformly
stochastically ordered distribution functions, and derived the likelihood ratio test for
equality of multinomial distributions against the alternative that they are uniformly
stochastically ordered.

Ad hoc hypothesis tests for uniform stochastic ordering in k-sample right-censored
data settings go back to Tarone (1975) and Tarone and Ware (1977). Versions of such
tests for the comparison of counting process intensities (“trend tests”) were developed
by Andersen et al. (1993), p. 388, generalizing the one-sided log-rank test to the k
sample setting; see also Andersen et al. (1982). A choice of of k “scores” is needed
to balance the contribution of each sample in the overall test statistic. Unfortunately,
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such tests are only well powered for proportional hazards alternatives, and are not
guaranteed to performwell under general hazard rate ordering.As far aswe know, fully
nonparametric tests for uniform stochastic ordering are not available in the literature
(even in uncensored settings). Our aim in the present study is to fill this gap.

Estimation under uniform stochastic ordering has received considerable attention.
In the one-sample case, Rojo and Samaniego (1991) derived the NPMLE of F1 when
F1 � F2 with F2 known, continuous and strictly increasing and showed that it is
inconsistent. Mukerjee (1996) and Rojo and Samaniego (1993) studied alternative
estimators that are consistent in the one- and two-sample cases. Their weak conver-
gence properties were studied by Arcones and Samaniego (2000).

We provide k-sample tests for general uniform stochastic ordering initially in the
uncensored case, and then extend to right-censored data by adapting a multiple impu-
tation approach considered by Taylor et al. (2002). The test statistics are constructed
via the empirical likelihood (EL) method (Owen 1988, 1990), which has flexibility of
being nonparametric while preserving the efficiency of likelihood ratio-based infer-
ence. Inference based on EL has many attractive properties: estimation of variance
is typically not required, the range of the parameter space is automatically respected,
and confidence regions have greater accuracy than those based on the Wald approach.

EL has an extended formulation for right-censored data (Thomas and Grunkemeir
1975), but our proposed approach of adapting the uncensored EL test statistic to the
right-censored setting via multiple imputation has the advantage of being much more
straightforward and transparent—the censored-data version of the EL statistic does
not have an explicit expression when uniformly stochastically ordered alternatives
are involved, and its asymptotic properties are not known. Einmahl and McKeague
(2003) developed a localized version of EL to allow nonparametric hypothesis testing
in uncensored settings, and showed via simulation studies that it outperforms (in terms
of power) the corresponding Cramér–vonMises statistics for a variety of classical test-
ing problems. However, their approach is restricted to omnibus alternatives, whereas
ordered alternatives are often more useful because they can provide a more direct
interpretation of the result of the test. As mentioned earlier, El Barmi and McKeague
(2013) adapted the EL approach for testing the classical form of stochastic ordering
in the uncensored case. There is also an extensive literature on non-EL-based tests for
classical stochastic ordering, including the early paper of Schmid and Trede (1996),
and recent papers of (Ledwina andWyłupek 2012, 2014). As far as we know, however,
(nonparametric) tests for uniform stochastic ordering are not yet available.

The development of the proposed test statistic and results on its asymptotic null
distribution are given in Sect. 2. First we consider the special case of testing whether
a distribution function is uniformly stochastically larger than a specified distribution
function, based on a single sample. Once the theory has been developed in this one-
sample case, it is relatively straightforward to extend the approach to the general
k-sample setting in which all the distribution functions are unknown.We also describe
a simple extension of the proposed test to a two-sided alternative, in which the ordering
can be in either direction. In the case of right-censored survival data, we provide a
multiple imputation procedure that allows the proposed test to be applied directly to
the imputed complete data. In Sect. 3, we provide critical values for the proposed
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test, and illustrate the method in a simulation study and in two real data examples.
Discussion is provided in Sect. 4, and the proofs of all the results are in Sect. 5.

2 Localized empirical likelihood tests

2.1 Comparison with a specified distribution

Supposewe are given a random sample X1, X2, . . . , Xn from the cdf F , andwewant to
test the null hypothesis H0 : F = F0 versus H1 : F ≺ F0, where F0 is a (pre-)specified
continuous cdf. Here ≺ denotes � with equality excluded.

Our approach is based on translating the problem into testing a family of “local”
null hypotheses of the form

Hx,y
0 : F̄(x)/F̄0(x) = F̄(y)/F̄0(y) versus Hx,y

1 : F̄(x)/F̄0(x) > F̄(y)/F̄0(y),

where x < y. The local empirical likelihood procedure (at fixed x < y) rejects Hx,y
0

for small values of

R(x, y) = sup {L(F) : θ = θ0}
sup {L(F) : θ ≤ θ0} , (1)

where L(F) is the nonparametric likelihood function, the parameter of interest is
θ = θ(F) ≡ F̄(y)/F̄(x) ∈ [0, 1], and its null value is θ0 ≡ F̄0(y)/F̄0(x). Here
the suprema are restricted to cdfs F that are supported by the data points, and, by
convention, sup∅ = 0 and 0/0 = 1.

First we decompose the nonparametric likelihood function, using pi to denote the
point mass that F places at Xi , as

L(F) =
n∏

i=1

pi =
⎧
⎨

⎩
∏

i : Xi≤x

pi

⎫
⎬

⎭

⎧
⎨

⎩
∏

i : x<Xi≤y

pi

⎫
⎬

⎭

⎧
⎨

⎩
∏

i : Xi>y

pi

⎫
⎬

⎭

=
⎧
⎨

⎩
∏

i : Xi≤x

pi
F(x)

⎫
⎬

⎭

⎧
⎨

⎩
∏

i : x<Xi≤y

pi
F(y) − F(x)

⎫
⎬

⎭

⎧
⎨

⎩
∏

i : Xi>y

pi
F̄(y)

⎫
⎬

⎭

×[F(x)]nF̂(x)[F(y) − F(x)]n(F̂(y)−F̂(x))[F̄(y)]n ˆ̄F(y),

where F̂ and ˆ̄F are the empirical cdf and survival functions, respectively. The terms
in braces in the above expression can be maximized separately from the remaining
terms (by distributing the available mass uniformly over the data points in the relevant
interval), and the constraints on θ in the numerator and denominator of (1) have no
effect. Thus, the terms in bracesmake no contribution toR(x, y). The remaining terms
can be written as

[1 − θ ]n( ˆ̄F(x)− ˆ̄F(y))θn
ˆ̄F(y)[F(x)]nF̂(x)[F̄(x)]n ˆ̄F(x)
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and, similarly, we only need to consider the terms involving θ , as the last two terms
again cancel and make no contribution to R(x, y). Indeed, the terms involving F(x)
and F̄(x) can be maximized separately from those involving θ : specifying F̄(x) does
not restrict the values of θ = F̄(y)/F̄(x) in [0, 1], since 0 ≤ F̄(y) ≤ F̄(x) is the only
constraint on F̄(y).

We have now reduced the evaluation ofR(x, y) to an elementary constrained opti-
mization problem, resulting in

R(x, y) = [1 − θ0]n( ˆ̄F(x)− ˆ̄F(y))θ
n ˆ̄F(y)
0

[1 − θn]n( ˆ̄F(x)− ˆ̄F(y))θn
n ˆ̄F(y)

,

where θn = θ̂ ∧ θ0, θ̂ = ˆ̄F(y)/ ˆ̄F(x) and we make the convention that any term raised
to a zero power is set to 1. Using a second-order Taylor expansion of log(1+ y) about
y = 0, it can be shown (see the proof of the theorem below) that for given x < y such
that 0 < θ0 < 1, under Hx,y

0 ,

−2 logR(x, y) = n ˆ̄F(x)(θ̂ − θ0)
2
[
1

θ̂
+ 1

1 − θ̂

]
I [0 < θ̂ ≤ θ0] + op(1)

d→ F̄0(x)

θ0(1 − θ0)
U 2 I (U ≥ 0) = Z2 I (Z ≥ 0),

where the delta method was used to obtain
√
n(θ̂ − θ0)

d→ U = σ Z , where
Z ∼ N (0, 1), σ 2 = θ0(1 − θ0)/F̄0(x), and we also applied the continuous map-
ping theorem. That is, the asymptotic null distribution of −2 logR(x, y) is chi-bar
square.

To test H0 against H1, we introduce the integral-type test statistic:

Tn = −2
∫ ∞

0

∫ ∞

x
log(R(x, y)) dF̂(y) dF̂(x)

= − 2

n2
∑

Xi<X j

log(R(Xi , X j )).

Note that the above definition does not require modification when there are ties in the
data because logR(x, x) = 0. We only use the assumption of a continuous F0 (under
which therewouldbeno ties a.s.) to help in the derivationof the asymptotic distribution.
Use of the functional delta method (in place of the standard delta method) in the above
argument leads to the following result giving the asymptotic null distribution of both
of these test statistics.

Theorem 1 If F0 is continuous and H0 holds, then Tn converges in distribution to

∫ 1

0

∫ 1

s

W+ ( f (s, t))2

f (s, t)
dt ds,
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960 H. El Barmi, I. W. McKeague

where W is a standard Brownian motion, W+ = max(W, 0) and

f (s, t) = t − s

(1 − s)(1 − t)
.

2.2 Uniform stochastic ordering among k distributions

In this section, we study the extension of the one-sample test of Sect. 2.1 to the
case of a uniform stochastic ordering of k ≥ 2 unknown distributions. That is, given
independent random samples with cdfs Fj , j = 1, . . . , k, we wish to test

H0 : F1 = · · · = Fk versus H1 : F1 � F2 � · · · � Fk,

where at least one of the uniform stochastic orderings is strict under the alternative.
For simplicity, assume that the proportion γ j = n j/n of observations in the j th

sample remains fixed as the total sample size n → ∞, with 0 < γ j < 1, j = 1, . . . , k.
The localized empirical likelihood ratio is given by

R(x, y) =
sup

{∏k
j=1 L(Fj ) : θ j = θ j+1, j = 1, . . . , k − 1

}

sup
{∏k

j=1 L(Fj ) : θ j ≤ θ j+1, j = 1, . . . , k − 1
} , (2)

where in each supremum Fj is supported by the observations in the j th sample, and
θ j = θ(Fj ) ≡ F̄j (y)/F̄j (x) ∈ [0, 1] for given x ≤ y. Using the same parame-
terization as before, separately for each Fj , and making the same cancelation in the
numerator and denominator, it suffices to maximize

k∏

j=1

θ
n j

ˆ̄Fj (y)
j [1 − θ j ]n j

( ˆ̄Fj (x)− ˆ̄Fj (y)
)

(3)

subject to the constraint 0 < θ1 = · · · = θk < 1, or 0 < θ1 ≤ · · · ≤ θk < 1,
depending on whether it is the numerator or the denominator of (2). Under the first of

these constraints, (3) is maximized by θ j = θ̂0 = ˆ̄F(y)/ ˆ̄F(x), where ˆ̄F = ∑k
j=1 γ j

ˆ̄Fj

is the empirical survival function of the pooled sample, whereas in the absence of any

constraint it is maximized by θ j = θ̂ j = ˆ̄Fj (y)/
ˆ̄Fj (x). Under the second constraint,

we are in the setting of the classical bioassay problem (see Robertson et al. 1988, p.
32), and it follows that (3) is maximized by

θ j = θ̃ j = Ew(θ̂ |I) j ,

here θ̃ = Ew(θ̂ |I) is the weighted least squares projection of θ̂ = (θ̂1, . . . , θ̂k)
T onto

I = {z ∈ Rk : z1 ≤ z2 ≤ · · · ≤ zk}, with random weights w j = w j (x) = γ j
ˆ̄Fj (x).

The pool-adjacent-violators algorithm can be used to compute this projection, see
Robertson et al. (1988). We now have
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R(x, y) =
k∏

j=1

[
θ̂0

θ̃ j

]n j
ˆ̄Fj (y) [

1 − θ̂0

1 − θ̃ j

]n j

( ˆ̄Fj (x)− ˆ̄Fj (y)
)

(4)

under the convention that any term raised to a zero power is set to 1. It can be shown that
the asymptotic null distribution of the EL statistic −2 logR(x, y) is chi-bar square.

To test H0 against H1, we propose the integrated EL statistic of the same form as
the Tn in the previous section:

Tn = −2
∫ ∞

0

∫ ∞

x
logR(x, y) dF̂(y)dF̂(x)

= − 2

n2
∑

Zi<Z j

log(R(Zi , Z j )) (5)

where {Zi , i = 1, . . . , n} is the pooled sample. Note that this test statistic has the
attractive property of being distribution-free: its finite sample null distribution does not
depend on the common distribution function in the groups (given that it is continuous).

Theorem 2 Under H0 and assuming that the common distribution function F is con-
tinuous,

Tn
d→

k∑

j=1

γ j

∫ 1

0

∫ 1

s

(Eγ [Z( f (s, t))|I] j − Z( f (s, t)))2

f (s, t)
dt ds, (6)

where Z = (W1/
√

γ1, . . . ,Wk/
√

γ k)
T , the W j are independent standard Brownian

motions, Z = γ TZ, γ = (γ j ) and f is defined in Theorem 1.

2.3 Two-sided tests

In the two-sample case, it can be of interest to test H0 : F1 = F2 against the alternative
H2 : F1 � F2 or F2 � F1, the union of the two one-sided alternatives. The two-sided
test is especially relevant when there is no a priori information as to the direction of
the ordering, for example in comparing two medical treatments. The EL statistic in
this case can be formed as a union-intersection statistic, i.e., the maximum of the two
one-sided test statistics of the form Tn constructed above. Similarly, in the k sample
case we can easily construct a test for the broader alternative consisting of the union
of the k! possible ordered alternatives.

2.4 Right-censored data

In this section, we discuss how the proposed tests can be adapted to handle right-
censored data using a multiple imputation approach (Taylor et al. 2002). We restrict
attention to the k-sample case, but the same approach works for the one-sample case.
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First consider the situation of Type I censoring: all subjects enter at baseline and are
followed for a set time-period, [0, τ ] say, then at the end of follow-up τ any subjects
remaining at risk are right-censored (and this is the only type of censoring). The right-
censored subjects can be viewed as failing in some (unknown) random order after the
end of follow-up. Moreover, note that it is only the order in which they fail that affects
the complete-data test statistic Tn (which would be available if all failure times are
observed), as implied by the distribution-free property of Tn . Our proposal is simply
to average Tn over all possible permutations of these unobserved survival times. An
average based on Monte Carlo sampling could be used to reduce the computational
cost when the rate of censoring is high. The null distribution is unchanged.

A similar idea can be used to handle the case of random right-censoring. First note
that the Kaplan–Meier estimator based on the j th sample can be plugged-in to provide
an estimate θ̂ j of the residual survival function θ j (y) = F̄j (y)/F̄j (x), for y ≥ x ,

provided ˆ̄Fj (x) > 0. If we specify τ > 0 such that ˆ̄Fj (τ ) > 0 for all j = 1, . . . , k,
we have that for any right-censored observation at x < τ , the estimated residual
survival function θ̂ j (for its corresponding sample) is well defined. Simulating from
this estimated residual survival distribution produces a new “uncensored” observation
(in the j th sample) if it falls in [x, τ ), but otherwise a Type I censored observation.
Any observations (censored or non-censored) at x ≥ τ become right-censored at τ . In
this way, we reduce the problem to the Type I censored case discussed above. Clearly
it would be important to set the value of τ as large as possible to minimize the amount
of extraneous right-censoring at τ , and in practice this could be achieved by setting
it slightly to the left of min j τ j , where τ j is the largest uncensored observation in the
j th sample. In the sequel, when we use this procedure we average the complete-data
test statistic Tn over 1000 simulated “complete” data samples.

Justification for the proposed imputation procedure can be derived using a result
of (Akritas 1986, Theorem 2.2) on bootstrapping the Kaplan–Meier estimator. Reid
(1981) had discussed a bootstrap procedure based on an iid sample from the Kaplan–
Meier estimator, and Akritas pointed out that such a resampling plan is inconsistent:
its limiting distribution (over a fixed follow-up period [0, τ ], conditional on the data)
in fact coincides with the limit of the empirical process for the underlying survival
times prior to censoring, rather than that of the Kaplan–Meier estimator. On the other
hand, Akritas’s result shows that resampling based on the Kaplan–Meier estimator
reproduces the asymptotic behavior of the uncensored case, which is exactly what we
need. In this way, it can be shown (by adapting the proof of Theorem 2) that the limit
distribution of the imputed version of Tn (conditional on the data) has the same limit
as Tn provided in Theorem 2.

3 Numerical results

3.1 Calibrating the tests

Table 1 shows some approximate cut-off points for the k-sample test statistic Tn , at
various significance levels and for k in the range 2–5. They are obtained by simulat-
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Table 1 Selected critical points
of Tn

k Significance level α

0.01 0.02 0.05 0.10

2 1.243 1.014 0.777 0.592

3 1.613 1.412 1.112 0.892

4 1.956 1.728 1.373 1.111

5 2.113 1.829 1.490 1.231

ing 10,000 samples of size 100 (in each group) from the unit-parameter exponential
distribution, and computing the quantiles of the resulting test statistics.

For the two-sided statistic discussed earlier, the approximate cut-off points corre-
sponding to the first row of Table 1 are 1.448, 1.224, 0.977 and 0.783.

3.2 Simulation study

The simulation study compares the performance of the proposed test Tn with the test
Sn developed by El Barmi andMcKeague (2013) for testing equality of k distributions
against the (broader) alternative that they are stochastically ordered. The test Sn is
a natural competitor for Tn because it is also based on empirical likelihood, and the
question arises as towhether the new test has greater power than Sn under the alternative
of uniform stochastic ordering that it is specfically designed to detect. For k = 2
we also compare Tn with the standard one-sided log-rank test, and for k = 3 with
the (Tarone–Ware) log-rank trend test [in the form given by Andersen et al. (1993),
Example V.3.5]; these tests are both denoted Rn .

We specify each cdf Fj in terms of its hazard function r j (x), setting r1(x) = x ,
r2(x) = x I (0 < x < 1) + ax I (x ≥ 1), and r3(x) = x I (0 < x < 1) + bx I (x ≥ 1),
for various choices of a ≥ 1 (when k = 2) and b ≥ a (when k = 3). In each
simulation run, 10,000 data sets were used to approximate the rejection probabilities
at a nominal level of α = 0.05; the critical value for Tn is taken from Table 1. In the
right-censored case, the imputed versions of Tn and Sn were obtained following the
procedure described in Sect. 2.4. The censoring distribution in each sample is taken
to be Weibull with shape parameter 2, and scale parameter specified in a way that
produces 25 or 50 % censoring.

The results are given inTables 2, 3, 4 and5.All the tests are slightly anti-conservative
(see the first row in each table), except that Tn becomes conservative in the censored
data case (Tables 4, 5) in which multiple imputation is applied to Tn and Sn . The
proposed test Tn has substantially greater power than Sn and Rn in Tables 2 and 3
(uncensored examples). In the right-censored case, Rn has slightly greater power than
Tn close to the null hypothesis. This may be due in part to the slightly conservative
nature of Tn in this case, but also because the log-rank test is well adapted to censoring
compared to the multiple imputation procedure that we use. We have highlighted the
entries in the tables where Tn has the largest increase in power over Sn and Rn (the
next best being indicated in italics). The censoring severely reduces the power of both
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964 H. El Barmi, I. W. McKeague

Table 2 Power comparison of
Tn , Sn and Rn (log-rank), no
censoring, k = 2

a n1 = n2 = 30 n1 = n2 = 50

Tn Sn Rn Tn Sn Rn

1.0 0.057 0.062 0.053 0.053 0.055 0.050

1.2 0.123 0.095 0.105 0.156 0.103 0.129

1.4 0.227 0.144 0.193 0.297 0.174 0.259

1.6 0.332 0.197 0.262 0.471 0.269 0.379

1.8 0.451 0.263 0.356 0.617 0.370 0.502

2.0 0.552 0.324 0.438 0.739 0.474 0.615

2.2 0.637 0.386 0.497 0.831 0.569 0.706

2.4 0.719 0.448 0.570 0.899 0.662 0.774

2.6 0.771 0.499 0.626 0.939 0.729 0.826

2.8 0.824 0.554 0.670 0.958 0.776 0.857

3.0 0.863 0.608 0.709 0.971 0.828 0.893

Table 3 Power comparison of
Tn , Sn and Rn (Tarone–Ware),
no censoring, k = 3

a b n1 = n2 = n3 = 30 n1 = n2 = n3 = 50

Tn Sn Rn Tn Sn Rn

1.0 1.0 0.058 0.056 0.059 0.057 0.059 0.053

1.2 1.4 0.216 0.129 0.110 0.292 0.171 0.140

1.4 1.8 0.446 0.243 0.194 0.605 0.344 0.264

1.6 2.2 0.633 0.360 0.278 0.819 0.524 0.401

1.8 2.6 0.766 0.469 0.375 0.927 0.668 0.530

2.0 3.0 0.861 0.559 0.455 0.971 0.791 0.638

2.2 3.4 0.918 0.643 0.523 0.989 0.864 0.726

2.4 3.8 0.944 0.705 0.596 0.995 0.912 0.793

2.6 4.2 0.968 0.760 0.658 0.999 0.944 0.852

2.8 4.6 0.978 0.808 0.708 0.999 0.965 0.887

3.0 5.0 0.985 0.842 0.744 1.000 0.975 0.912

Tn and Rn , as can be seen when comparing the highlighted entries in the bottom rows
of Tables 2, 4 and 5.

3.3 Survival time under exposure to radiation

Our first real data example illustrates our approach in the case of uncensored data.
We consider survival time data from a tumorigenicity study in which 181 mice were
exposed to radiation (Hoel 1972). One group (99 mice) lived in a conventional lab-
oratory environment, while the others (82 mice) lived in a germ-free environment.
Clearly, it is reasonable that the life distribution of the group in the germ-free envi-
ronment (F2) should be uniformly stochastically larger than that of the group in the
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Table 4 Power comparison of
Tn and Sn and Rn (log-rank),
25 % censoring, k = 2

a n1 = n2 = 30 n1 = n2 = 50

Tn Sn Rn Tn Sn Rn

1.0 0.042 0.056 0.055 0.038 0.053 0.052

1.2 0.070 0.076 0.095 0.094 0.092 0.108

1.4 0.115 0.104 0.133 0.168 0.128 0.171

1.6 0.167 0.128 0.194 0.265 0.183 0.256

1.8 0.216 0.155 0.230 0.356 0.229 0.324

2.0 0.278 0.199 0.286 0.453 0.280 0.404

2.2 0.334 0.223 0.333 0.541 0.341 0.481

2.4 0.388 0.253 0.370 0.618 0.395 0.545

2.6 0.440 0.282 0.418 0.696 0.460 0.597

2.8 0.489 0.316 0.461 0.747 0.507 0.645

3.0 0.542 0.347 0.488 0.801 0.564 0.694

Table 5 Power comparison of
Tn and Sn and Rn (log-rank),
50 % censoring, k = 2

a n1 = n2 = 30 n1 = n2 = 50

Tn Sn Rn Tn Sn Rn

1.0 0.036 0.053 0.051 0.039 0.054 0.054

1.2 0.056 0.067 0.069 0.065 0.075 0.071

1.4 0.071 0.080 0.091 0.093 0.098 0.105

1.6 0.092 0.097 0.113 0.135 0.124 0.138

1.8 0.116 0.114 0.131 0.180 0.153 0.167

2.0 0.141 0.138 0.154 0.228 0.186 0.206

2.2 0.161 0.154 0.172 0.274 0.216 0.228

2.4 0.183 0.167 0.198 0.316 0.241 0.265

2.6 0.205 0.182 0.210 0.360 0.275 0.292

2.8 0.227 0.187 0.226 0.383 0.281 0.307

3.0 0.256 0.216 0.251 0.430 0.316 0.328

conventional lab setting (F1). Indeed, the prime motivation for the original study was
to examine this very question.

Figure 1 shows the empirical survival functions for the two groups, and strongly
suggests the presence of stochastic ordering: the estimate of F̄1 falls completely below
the estimate of F̄2. Although it would be difficult to infer hazard rate ordering simply
from inspection of Fig. 1, our test statistic Tn = 6.219, with a p value of <10−5,
provides extremely strong evidence.

3.4 Time to infection in an HIV vaccine efficacy trial

Our second real data example involves right-censored survival time data from an HIV
vaccine trial.We consider data from the Step Study (Duerr et al. 2012), a double-blind,
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Fig. 1 Estimates of the survival functions F̄1 (solid line) and F̄2 (dashed line) for the two groups of mice

Phase II study in which 3000 HIV-1-seronegative male participants were recruited and
randomly assigned to either anHIV vaccine arm or a placebo arm. The aim of the study
was to assess the effect of treatment on the risk of HIV infection. Data are available on
the 1836 participantswho finished follow-up; 172 of thesewere infected before the end
of follow-up.The time-to-event variablewas defined as time fromfirst vaccination until
estimated time of infection. Random right-censorship is present due to the staggered
entry of the participants (91 % being right-censored). Kaplan–Meier estimates of the
survival functions in the vaccine and placebo arms are displayed in Fig. 2.

Duerr et al. examined four subgroups specified by uncircumcised or circum-
cised (Uncirc, Circ), and Ad5-seropositive or Ad5-seronegative (Ad5-pos, Ad5-neg)
(Table 6). Based on adjusted-Cox model analyses, they found a vaccine to placebo
hazard ratio of 0.69 in the Ad5-seropositive and uncircumcised subgroup (with a 2-
sided Bonferroni adjusted p value of 0.02). Our (unadjusted) subgroup results, on the
other hand, do not reveal any evidence of a uniformly larger hazard rate in the vaccine
arm (based on Tn), nor any evidence of stochastic ordering (based on Sn), see Table
5. For comparison, we carried out an analysis on the full data set, and also found no
evidence of an increase in the hazard rate in the vaccine arm: Tn = 0.298 (p value
0.30), Sn = 1.017 (p value 0.13); the one-sided Kolmogorov–Smirnov (KS) test gave
a p value of 0.21. Kaplan–Meier estimates of the survival functions in the vaccine and
placebo arms corresponding to the four groups are displayed in Fig. 3.

4 Concluding remarks

In this paper, we have developed an empirical likelihood ratio approach for testing
equality of k-distributions against the alternative that they are uniformly stochastically
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Fig. 2 Kaplan–Meier estimates of the survival functions for the placebo arm (dashed line) and the HIV
vaccine arm (solid line) based on the full data set

Table 6 Subgroup analyses for HIV vaccine efficacy trial

Subgroup Tn p value Sn p value One-sided KS p value

Ad5-neg and Uncirc 0.271 0.315 1.085 0.119 0.799 0.279

Ad5-neg and Circ 0.282 0.312 0.365 0.364 0.578 0.513

Ad5-pos and Uncirc 0.277 0.317 0.942 0.137 0.818 0.262

Ad5-pos and Circ 0.312 0.295 0.892 0.147 0.822 0.259

ordered. The proposed test has the important feature that it does not involve smoothing,
in contrast to the standard approach of comparing plots of Ramlau-Hansen estimates
(i.e., smoothed Nelson–Aalen estimates) to infer hazard rate ordering.

We showed in the uncensored case that the asymptotic null distribution of the EL
test statistic is distribution-free and can be characterized in terms of a standard Brown-
ian motion. We also showed how to extend the test to right-censored data via multiple
imputation. To illustrate our results, we considered examples involving survival times
for mice in two different lab environments, and right-censored time-to-infection data
from an HIV vaccine trial comparing placebo and vaccine groups. Through a simu-
lation study, we compared the performance of the proposed test with an EL test of
classical stochastic ordering developed by El Barmi and McKeague (2013), and also
with the one-sided log-rank test (or the Tarone–Ware log-rank trend test when k ≥ 3).
The results indicate, on balance, that the new test has substantially greater power than
all the competing tests in the uncensored case. In the right-censored case, the log-rank
test has slightly greater power than the new test close to the null hypothesis, but this
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Fig. 3 Kaplan–Meier estimates of the survival functions for the four subgroups (same order as Table 4);
the dashed lines represent the placebo arm and the solid lines the HIV vaccine arm; the Ad5-seropositive
and uncircumcised subgroup is on the lower left

may be due in part to the slightly conservative nature of the new test under multiple
imputation.

A careful inspection of our results shows that the theory we have developed extends
in a natural way to testing H0 against a non-monotonic alternative. Specifically, if �
is a quasi-order (i.e., a binary relation that is reflexive and symmetric) on {1, 2, . . . , k}
and if (F1, F2, . . . , Fk) is defined to be isotonic with respect � if Fi ≺ Fj when-
ever i � j , then our approach can be adapted to test H0 : F1 = F2 = · · · = Fk
against H1 : (F1, F2, . . . , Fk) isotonic with respect to �. The only modification to
the localized empirical likelihood is that θ j = Ew(θ̂ |I) j where I is now the iso-
tonic cone corresponding to �. Examples of H1 include the tree ordering F1 ≺
Fi , i ≥ 2 (for which I = {x ∈ Rk : x1 ≤ xi , i = 2, . . . , k}) and the umbrella
order F1 � F2 . . . � Fi0 ≺ Fi0+1 ≺ · · · ≺ Fk , where i0 is known (for which
I = {x ∈ Rk : x1 ≤ x1 . . . ≤ xi0−1 ≤ xi0 ≤ xi0+1 ≤ · · · ≤ xk}). Several algorithms
exist in the literature for computing Ew(θ̂ |I) and they are described in Robertson et al.
(1988).

A referee askedwhether an extension of the test statistic Tn to involve three different
locations x < y < z is reasonable. If such an extension is created, it would need to be
constructed by constraining the ratio of the survival functions to increase simultane-
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ously at those locations. However, that would be unnatural because as long at the ratio
increases at all pairs of locations, it is increasing, so a third location is superfluous. In
addition, we would be unable to re-parameterize the EL ratio in terms of θ as in (1) in
order to reduce the EL statistic to a form that makes the asymptotic theory tractable.
The same referee asked whether it may be useful to introduce a weight function into
the integrand of Tn . Unfortunately, however, such weighting would distort the inter-
pretation of the uniform stochastic ordering, and also produce a non-distribution-free
test statistic, creating difficulties in calibrating the test.

5 Proofs

Proof of Theorem 1 As mentioned in the discussion leading up to the statement of
the theorem, a key step in the proof is to apply the functional delta method to find

the limiting distribution of the process θ̂ (x, y) = ˆ̄F(y)/ ˆ̄F(x) by representing it

as a functional of the empirical survival function: θ̂ = θ( ˆ̄F), where θ = ψ ◦ φ,
φ(A)(x, y) = (1/A(x), A(y)) and ψ(A, B)(x, y) = A(x)B(y). Here A and B
belong to appropriate domains of functions in D = D[a, b], and it is assumed that
0 < F0(a) < F0(b) < 1. The domain of φ is Dφ = {g ∈ D : g > 0}. The functions φ

and ψ are Hadamard differentiable (φ tangentially to Dφ), with the derivative of φ at
A ∈ Dφ given by

φ′
A(h)(x, y) = (−h(x)/A(x)2, h(y)), h ∈ D,

and the derivative of ψ at (A, B) ∈ D × D given by

ψ ′
(A,B)(h1, h2)(x, y) = A(x)h2(y) + B(y)h1(x), (h1, h2) ∈ D × D,

where x, y ∈ [a, b]. From the chain rule for Hadamard differentiable functions, θ is
Hadamard differentiable tangentially to Dφ , with derivative at A ∈ Dφ given by

θ ′
A(h)(x, y) =

[
ψ ′

φ(A) ◦ φ′
A

]
(x, y) = A(y)

A(x)

[
h(y)

A(y)
− h(x)

A(x)

]
, h ∈ D.

Noting that θ ′
A is defined and continuous on the whole space D, it follows from the

above display with A = F̄0, and applying the functional delta method (see Section
20.2 of van der Vaart and Wellner 1996), that

√
n(θ̂(x, y) − θ0(x, y)) = θ0(x, y)

[
Ĝ(x)

F̄0(x)
− Ĝ(y)

F̄0(y)

]
+ op(1) (7)

uniformly over (x, y) ∈ [a, b]2 with x ≤ y, where

Ĝ = √
n(F̂ − F0) = −√

n( ˆ̄F − F̄0)
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is the empirical process.
Let

T ∗
n = −2

∫ ∞

0

∫ ∞

x
log(R(x, y)) dF0(y) dF0(x),

which is easier to analyze than Tn , yet is asymptotically equivalent (cf. the last para-
graph of the proof of Theorem 2). For 0 < ε < 1, let 0 < aε < bε be such that
F0(aε) = 1 − F0(bε) = ε/2. We decompose T ∗

n as

T ∗
n = T1n + T2n + T3n, (8)

where

T1n = −2
∫ bε

aε

∫ bε

x
log(R(x, y)) dF0(y) dF0(x),

T2n = −2
∫ aε

0

∫ bε

x
log(R(x, y)) dF0(y) dF0(x),

T3n = −2
∫ ∞

0

∫ ∞

max(x,bε )

log(R(x, y)) dF0(y) dF0(x).

Using Theorem 4.2 of Billingsley (1968) to complete the proof of the theorem, it
suffices to show that for each (sufficiently small) ε > 0,

T1n
d→

∫ 1−ε/2

ε/2

∫ 1−ε/2

s

W+ ( f (s, t))2

f (s, t)
dt ds, (9)

and that the two remainder terms are asymptotically negligible in the sense that

lim sup
n→∞

P(|Tjn| ≥ δ) → 0 (10)

as ε → 0, for j = 2, 3 and all δ > 0.
First consider T1n . Using the inequality | log(1 + y) − y + y2/2| ≤ |y|3 when

|y| ≤ 1/2, Donsker’s theorem, and (7), we have [suppressing the dependence of θ̂ and
θ0 on (x, y)] that

sup
aε≤x≤y≤bε

∣∣∣∣∣log(R(x, y)) + n ˆ̄F(x)

2
(θ̂ − θ0)

2
[
1

θ̂
+ 1

1 − θ̂

]
I [0 < θ̂ ≤ θ0]

∣∣∣∣∣

≤ sup
aε≤x≤y≤bε

n|θ̂ − θ0|3
[
1

θ̂
+ 1

1 − θ̂

]
= op(1).

Note that F̂ = �̂(F0) and Ĝ = Û (F0), where �̂ is the empirical cdf of F0(Xi ) ∼
Unif(0, 1), i = 1, . . . , n, and Û (t) = √

n(�̂(t) − t) is the uniform empirical process.
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Thus, using (7), Donsker’s theorem, Slutsky’s lemma, the above display, and making
the change of variables s = F0(x) and t = F0(y) in the double integral, we obtain

T1n =
∫ 1−ε/2

ε/2

∫ 1−ε/2

s

(1 − s)(1 − t)

t − s
V̂ 2 I

[
V̂ ≤ 0

]
dt ds + op(1), (11)

where

V̂ (s, t) = Û (s)

1 − s
− Û (t)

1 − t

and we have made use of the identity

θ0

[
1

θ0
+ 1

1 − θ0

]
= F̄0(y)

F0(y) − F0(x)
= 1 − t

t − s
.

Since B = {(1 − t)W [t/(1 − t)], t ∈ [0, 1]} is a standard Brownian bridge,

B(s)

1 − s
− B(t)

1 − t
d= W ( f (s, t))

as processes indexed by (s, t) ∈ [0, 1]2. Thus (9) follows from (11) by application of

the continuousmapping theorem to Û
d→ B (Donsker’s theorem), since the functional

h �→
∫ 1−ε/2

ε/2

∫ 1−ε/2

s
h2 I (h ≤ 0)/ f dt ds, h ∈ D[0, 1]2,

is continuous when the Skorohod space D[0, 1]2 is equipped with the uniform norm.
The asymptotic negligibility of the remainder terms (10) is established in a similar

way to analogous terms in Einmahl and McKeague (2003), and we do not include the
details. ��
Remark The expectation of the non-negative limiting random variable T in the state-
ment of the theorem is <

√
6/4 ≈ 0.61. Indeed, using Fubini’s theorem (without

loss of generality W is assumed to be jointly measurable) and repeated use of the
Cauchy–Schwarz inequality,

ET ≤ (ET 2)1/2 ≤
∫ 1

0

∫ 1

s

√
EW+ ( f (s, t))4

f (s, t)
dt ds

=
∫ 1

0

∫ 1

s

√
3 f (s, t)2/2

f (s, t)
dt ds = √

6/4.

Proof of Theorem 2 The proof is similar to the previous one. First note that it suffices
to consider T ∗

n , the asymptotically equivalent version of Tn in which integration over
F̂ is replaced by integration over F0 (the common cdf under H0), and we can use the
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same decomposition of Tn as in (8). Again, the main part of the argument concerns
the leading term T1n , in which the range of double integration is restricted to

Dε = {(x, y) : aε < x ≤ y < bε}.

Denoting θ0(x, y) = F̄0(y)/F̄0(x) for x ≤ y, and using a property of isotonic regres-
sion (see Robertson et al. 1988), we have

max
1≤ j≤k

|θ̃ j (x, y) − θ0(x, y)| ≤ max
1≤ j≤k

|θ̂ j (x, y) − θ0(x, y)|,

where for clarity we now make (x, y) explicit in the notation. Consequently, by the
Glivenko–Cantelli theorem, θ̃(x, y) → θ0(x, y) uniformly over (x, y) ∈ Dε almost
surely. Also, it follows from (7) that

√
n(θ̂(x, y) − θ0(x, y)) = θ0(x, y)

[
Ĝ(x)

F̄0(x)
− Ĝ(y)

F̄0(y)

]
+ op(1)

uniformly over (x, y) ∈ Dε , where Ĝ = (Ĝ1, . . . , Ĝk) and

Ĝ j = √
n j (F̂j − F0)/

√
γ j = −√

n j (
ˆ̄Fj − F̄0)/

√
γ j

is a scaled version of the empirical process for the j th sample. Therefore, from
Donsker’s theorem and a similar argument to the way we represented the limiting
distribution of the process V̂ in the proof of Theorem 1, we have

√
n(θ̂(x, y) − θ0(x, y))

d→ θ0(x, y)Z(ρ(x, y)) (12)

as processes indexed by (x, y) ∈ Dε , where Z is as defined in the statement of the
theorem and

ρ(x, y) = F0(x)

F̄0(x)
− F0(y)

F̄0(y)
.

The least squares projection is continuous in all its arguments, as well as in theweights,
so it can be shown using the continuous mapping theorem that

√
n[θ̃(x, y) − θ0(x, y)] d→ θ0(x, y)Eγ [Z(ρ(x, y))|I] (13)

as processes indexed by (x, y) ∈ Dε . To justify the above limit, also note that the
weights w j = w j (x) that appear in θ̃ = Ew(θ̂ |I) converge to γ j F̄0(x) uniformly
over (x, y) ∈ Dε almost surely (by the Glivenko–Cantelli theorem); the factor F̄0(x)
is common to all the weights in the limit, so it is not needed. Also, it can be shown
that, jointly with the weak convergence in (13), we have
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√
n(θ̂0(x, y) − θ0(x, y))

d→ θ0(x, y)
k∑

j=1

√
γ j W j (ρ(x, y))

= θ0(x, y)Z̄(ρ(x, y)) (14)

as processes indexed by (x, y) ∈ Dε .
Again suppressing the dependence on x ≤ y, now write

log

(
θ̃ j

θ̂0

)
= log

(
1 + θ̃ j − θ̂ j

θ̂ j

)
− log

(
1 + θ̂0 − θ̂ j

θ̂ j

)

and

log

(
1 − θ̃ j

1 − θ̂0

)
= log

(
1 + θ̂ j − θ̃ j

1 − θ̂ j

)
− log

(
1 + θ̂ j − θ̂0

1 − θ̂ j

)
.

Using the inequality | log(1 + y) − y + y2/2| ≤ |y|3/3 when |y| ≤ 1/2, and the fact
that

k∑

j=1

n j
ˆ̄Fj (x)θ̃ j =

k∑

j=1

n j
ˆ̄Fj (x)θ̂ j =

k∑

j=1

n j
ˆ̄Fj (x)θ̂0,

where the first equality follows from the properties of isotonic regression (Robertson
et al. 1988), we get

sup
(x,y)∈Dε

∣∣∣∣∣∣
log(R(x, y)) − 1

2

k∑

j=1

n j
ˆ̄Fj (x)

θ̂ j (1 − θ̂ j )

[(
θ̂ j − θ̂0

)2 −
(
θ̃ j − θ̂ j

)2]
∣∣∣∣∣∣

≤ 1

3
sup

(x,y)∈Dε

k∑

j=1

n j
ˆ̄Fj (x)

[
|θ̃ j − θ̂ j |3 + |θ̂ j − θ̂0|3

] [ 1

θ̂2j

+ 1

(1 − θ̂ j )2

]
,

which tends to zero in probability from (12) to (14). Also, noting that in the present
version of T1n , when we replace F̂ by F0 there is a op(1) remainder term (see the end
of the proof for justification of this step), we obtain

T1n =
∫ bε

aε

∫ bε

x

k∑

j=1

n j
ˆ̄Fj (x)

θ̂ j (1 − θ̂ j )

[(
θ̂ j − θ̂0

)2 −
(
θ̃ j − θ̂ j

)2]
dF0(y) dF0(x) + op(1)

=
k∑

j=1

γ j

∫ bε

aε

∫ bε

x

ˆ̄Fj (x)

θ̂ j (1 − θ̂ j )

(√
n(θ̂ j − θ0) − √

n(θ̂0 − θ0)
)2

dF0(y) dF0(x)
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−
k∑

j=1

γ j

∫ bε

aε

∫ bε

x

ˆ̄Fj (x)

θ̂ j (1 − θ̂ j )

(√
n(θ̃ j − θ0) − √

n(θ̂ j − θ0)
)2

dF0(y) dF0(x) + op(1)

d→
k∑

j=1

γ j

∫ bε

aε

∫ bε

x

θ0 F̄0(x)

1 − θ0

(
Zi (ρ(x, y)) − Z(ρ(x, y))

)2
dF0(y) dF0(x)

−
k∑

j=1

γ j

∫ bε

aε

∫ bε

x

θ0 F̄0(x)

1 − θ0

(
Z j (ρ(x, y))−Eγ [Z(ρ(x, y)|I] j

)2 dF0(y) dF0(x)

and, since

k∑

j=1

γ j
(
Z j (ρ(x, y)) − Z̄(ρ(x, y))

)2 −
k∑

j=1

γ j
(
Z j (ρ(x, y)) − Eγ [Z(ρ(x, y)|I] j

)2

=
k∑

j=1

γ j
(
Eγ [Z(ρ(x, y)|I] j − Z̄(ρ(x, y))

)2

by the properties of isotonic regression, it follows that

T1n
d→

k∑

j=1

γ j

∫ bε

aε

∫ bε

x

θ0 F̄0(x)

1 − θ0

(
Eγ [Z(ρ(x, y)|I] j − Z̄(ρ(x, y))

)2
dF0(y) dF0(x).

Using the change of variables s = F0(x) and t = F0(y) in the above display, and
noting that

θ0 F̄0(x)

1 − θ0
= (1 − s)(1 − t)

t − s
= 1/ f (s, t) and ρ(x, y) = f (s, t),

we conclude that

T1n
d→

k∑
j=1

γ j
∫ 1−ε/2
ε/2

∫ 1−ε/2
s

(Eγ [Z( f (s,t))|I] j−Z̄( f (s,t)))
2

f (s,t) dt ds.

The step involving the replacement of F̂ by F0 follows by noting that, given cadlag
functions F andG having bounded variation, themap (F,G) �→ ∫

F dG is Hadamard
differentiable (see Kosorok 2008, p. 238). Each of the three remainder terms that arise
from replacing F0 by F̂ involves double integrals with respect to F̂ − F0, so we
can write them in the form of n−1/2 times a Hadamard differentiable function of an
empirical process, and using the functional delta method we conclude that each term
is of order OP (n−1/2). ��
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