
Ann Inst Stat Math (2016) 68:929–954
DOI 10.1007/s10463-015-0520-2

Testing the constancy of Spearman’s rho in multivariate
time series

Ivan Kojadinovic1 · Jean-François Quessy2 ·
Tom Rohmer3

Received: 14 July 2014 / Revised: 9 January 2015 / Published online: 1 May 2015
© The Institute of Statistical Mathematics, Tokyo 2015

Abstract A class of tests for change-point detection designed to be particularly sen-
sitive to changes in the cross-sectional rank correlation of multivariate time series
is proposed. The derived procedures are based on several multivariate extensions of
Spearman’s rho. Two approaches to carry out the tests are studied: the first one is
based on resampling and the second one consists of estimating the asymptotic null
distribution. The asymptotic validity of both techniques is proved under the null for
strongly mixing observations. A procedure for estimating a key bandwidth parame-
ter involved in both approaches is proposed, making the derived tests parameter-free.
Their finite-sample behavior is investigated throughMonte Carlo experiments. Practi-
cal recommendations are made and an illustration on trivariate financial data is finally
presented.
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1 Introduction

Let X1, . . . , Xn be a multivariate times series of d-dimensional observations and, for
any i ∈ {1, . . . , n}, let F (i) denote the cumulative distribution function (c.d.f.) of X i .
We are interested in procedures for testing H0 : F (1) = · · · = F (n) against ¬H0.
Notice that the aforementioned null hypothesis can be simply rewritten as

H0 : ∃ F such that X1, . . . , Xn have c.d.f. F. (1)

Such statistical procedures are commonly referred to as tests for change-point detec-
tion (see, e.g., Csörgő and Horváth 1997, for an overview of possible approaches).
The majority of tests for H0 developed in the literature deal with the case d = 1. We
aim at developing nonparametric tests formultivariate time series that are particularly
sensitive to changes in the dependence among the components of the d-dimensional
observations. The availability of such tests seems to be of great practical importance
for the analysis of economic data, among others. In particular, assessing whether the
dependence among financial assets can be considered constant or not over a given time
period appears crucial for risk management, portfolio optimization and related statisti-
cal modeling (see, e.g.,Wied et al. 2014; Dehling et al. 2014, and the references therein
for a more detailed discussion about the motivation for such statistical procedures).

The above context, rather naturally, suggests to address the informal notion of
dependence through that of copula (see, e.g., Nelsen 2006). Assume that H0 in (1)
holds and that, additionally, the common marginal c.d.f.s F1, . . . , Fd of X1, . . . , Xn

are continuous. Then, from the work of Sklar (1959), the common multivariate c.d.f.
F of the observations can be written as

F(x) = C{F1(x1), . . . , Fd(xd)}, x ∈ R
d ,

where the function C : [0, 1]d → [0, 1] is the unique copula associated with F . It
follows that H0 can be rewritten as H0,m ∩ H0,c, where

H0,m : ∃ F1, . . . , Fd such that X1, . . . , Xn have marginal c.d.f.s F1, . . . , Fd , (2)

H0,c : ∃C such that X1, . . . , Xn have copula C. (3)

Several nonparametric tests designed to be particularly sensitive to certain alternatives
under H0,m∩¬H0,cwere proposed in the literature. Tests for the constancy ofKendall’s
tau (which is a functional of C) were investigated by Gombay and Horváth (1999)
(see also, Gombay and Horváth 2002) and Quessy et al. (2013) in the case of serially
independent observations. A version of the previous tests adapted to a very general
class of bivariate time serieswas proposed byDehling et al. (2014). Recentmultivariate
alternatives are the tests studied in (Bücher et al. 2014, see also the references therein)
based on Cramér–von Mises functionals of the sequential empirical copula process.
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The aim of this work was to derive tests for the constancy of several multivari-
ate extensions of Spearman’s rho (which are also functionals of C) in multivariate
strongly mixing time series. A similar problem was recently tackled by Wied et al.
(2014). However, as the functional they considered does not exactly correspond to a
multivariate extension of Spearman’s rho (because of theway ranks are calculated), the
corresponding test turns out to have a rather low power. We remedy that situation by
computing ranks with respect to the relevant subsamples. From a theoretical perspec-
tive, as inWied et al. (2014), no assumptions on the first order partial derivatives of the
copula are made. The latter is actually an advantage of the studied tests over that inves-
tigated in Bücher et al. (2014). An inconvenience with respect to the aforementioned
approach is however that, as all tests based onmoments of copulas (such as Spearman’s
rho or Kendall’s tau), the derived tests will have no power, by construction, against
alternatives involving changes in the copula at a constant value of Spearman’s rho.

To carry out the tests, we propose two approaches for computing approximate p
values: the first one is based on resampling while the second one consists of esti-
mating the asymptotic null distribution. In addition, a procedure for estimating a key
bandwidth parameter involved in both approaches is proposed, making the derived
tests fully data-driven. The versions of the studied tests based on the estimation of the
asymptotic null distribution can be seen as alternatives to the test based on Kendall’s
tau recently proposed by Dehling et al. (2014).

The paper is organized as follows: The test statistics are defined in Sect. 2 and their
limiting null distribution is established under strong mixing. Section 3 presents two
approaches for computing approximate p values based, respectively, on bootstrapping
and on the estimation of an asymptotic variance. The fourth section partially reports
the results of Monte Carlo experiments involving bivariate and fourvariate time series
generated from autoregressive and GARCH-like models. The fifth section contains
practical recommendations and an illustration on trivariate financial data, while the
last section concludes.

In the rest of the paper, the arrow ‘�’ denotes weak convergence in the sense of
Definition 1.3.3 in van der Vaart and Wellner (2000). Also, given a set T , �∞(T ;R)

denotes the space of all bounded real-valued functions on T equippedwith the uniform
metric. The proofs of the stated theoretical results are available in the online supple-
mentary material and the studied tests for change-point detection are implemented in
the package npcp (Kojadinovic 2014) for the R statistical system (R Development
Core Team 2014).

2 Test statistics

2.1 Multivariate extensions of Spearman’s rho and their estimation

Spearman’s rho is a very well-known measure of bivariate dependence (see, e.g.,
Nelsen 2006, Section 5.1 and the references therein). For a bivariate random vector
with continuous margins and copula C , it can be expressed as

ρ(C) = 12
∫

[0,1]2
C(u)du − 3 = 12

∫
[0,1]2

u1u2dC(u) − 3.
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932 I. Kojadinovic et al.

When the random vector of interest is d-dimensional with d > 2, the following three
possible extensions were proposed by Schmid and Schmidt (2007):

ρ1(C) = d + 1

2d − d − 1

{
2d
∫

[0,1]d
C(u)du − 1

}
,

ρ2(C) = ρ1(C̄),

ρ3(C) =
(
d

2

)−1 ∑
1≤i< j≤d

ρ
(
C (i, j)

)
,

where C (i, j) is the bivariate margin obtained from C by keeping dimensions i and j ,
and C̄ is the survival function corresponding to C . It is well known that the latter can
be expressed in terms of C . To see this, let D = {1, . . . , d} and, for any u ∈ [0, 1]d
and A ⊆ D, let uA be the vector of [0, 1]d such that uA

i = ui if i ∈ A and uA
i = 1

otherwise. Then, for any u ∈ [0, 1]d , C̄(u) = ∑
A⊆D(−1)|A|C(uA). Other related

d-dimensional coefficients are considered in Quessy (2009).
Let us now discuss the estimation of the above theoretical quantities. Specifically,

we assume that we have at hand n copies X1, . . . , Xn of a d-dimensional random
vector X with copula C and continuous margins. Given an estimator of C , natural
estimators of ρ1(C), ρ2(C) and ρ3(C) can be obtained using the plug-in principle.
Restricting attention to a sample Xk, . . . , X l , 1 ≤ k ≤ l ≤ n, for reasons that will
become clear in the next subsection, a natural estimator of C is given by

Ck:l(u) = 1

l − k + 1

l∑
i=k

1
(
Û

k:l
i ≤ u

)
, u ∈ [0, 1]d , (4)

where

Û
k:l
i = 1

l − k + 1

(
Rk:l
i1 , . . . , Rk:l

id

)
, i ∈ {k, . . . , l}, (5)

with Rk:l
i j = ∑l

t=k 1(Xt j ≤ Xi j ) the maximal rank of Xi j among Xkj , . . . , Xl j . The
quantity given by (4) is commonly referred to as the empirical copula of Xk, . . . , X l

(see, e.g., Rüschendorf 1976; Deheuvels 1981). Corresponding natural estimators
of the three aforementioned multivariate versions of Spearman’s rho are, therefore,
ρ1(Ck:l), ρ2(Ck:l) and ρ3(Ck:l), respectively.

It is important to notice that we do not necessarily assume the observations to be
serially independent. Serial independence and continuity of the marginal distributions
together guarantee the absence of ties in the d component series. However, continu-
ity of the marginal distributions alone is not sufficient to guarantee the absence of
ties when the observations are serially dependent (see,e.g., Bücher and Segers 2014,
Example 4.2). This is the reason whymaximal ranks are used in (5). The possible pres-
ence of ties in the component series makes the study of the tests under consideration
substantially more complicated.
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2.2 Change-point statistics

To derive tests for change-point detection particularly sensitive to changes in the
strength of the cross-sectional dependence, one natural possibility is to base these
tests on differences of Spearman’s rhos. By analogy with the classical approach to
change-point analysis (see, e.g., Csörgő and Horváth 1997), one could for instance
consider the following three test statistics:

Sn,i = max
1≤k≤n−1

k(n − k)

n3/2
|ρi (C1:k) − ρi (Ck+1:n)| , i ∈ {1, 2, 3}, (6)

where C1:k and Ck+1:n are the empirical copulas of the subsamples X1, . . . , Xk and
Xk+1, . . . , Xn , respectively, defined analogously to (4). All three statistics above turn
out to be particular cases of a generic statistic which is the primary focus of this work.
Before we can define it, some additional notation is necessary.

For any A ⊆ D = {1, . . . , d}, let φA be the map from �∞([0, 1]d;R) to R defined
by

φA(g) =
∫

[0,1]d
g
(
uA
)
du, g ∈ �∞ (

[0, 1]d ;R
)

. (7)

Then, define the empirical process

Tn,A(s) = √
n λn(0, s) λn(s, 1) {φA(C1:
ns�) − φA(C
ns�+1:n)}, s ∈ [0, 1],

where λn(s, t) = (
nt�−
ns�)/n for (s, t) ∈ � = {(s, t) ∈ [0, 1]2 : s ≤ t}, and with
the additional convention that Ck:l = 0 whenever k > l. Simple calculations reveal
that Tn,∅ = 0. Next, consider the R2d−1-valued empirical process

Tn(s) = (Tn,{1}(s),Tn,{2}(s), . . . ,Tn,D(s)), s ∈ [0, 1]. (8)

Finally, given a function f : R2d−1 → R, define the generic change-point statistic

Sn, f = sup
s∈[0,1]

| f {Tn(s)}| = max
1≤k≤n−1

| f {Tn(k/n)}|. (9)

We shall now verify that the statistics Sn,i , i ∈ {1, 2, 3}, given by (6) are particular

cases of Sn, f when f is linear, that is, when there exists a vector a ∈ R
2d−1 such

that, for any x ∈ R
2d−1, f (x) = a
x. As we continue, with some abuse of notation,

we index the components of vectors of R2d−1 by subsets of D of cardinality greater
than 1, i.e., for any x ∈ R

2d−1, we write x = (x{1}, x{2}, . . . , xD). Then, we have

Sn,i = Sn, fi , i ∈ {1, 2, 3}, where, for any x ∈ R
2d−1,

f1(x) = (d + 1)2d

2d − d − 1
xD, f2(x) = (d + 1)2d

2d − d − 1

∑
A⊆D
|A|≥1

(−1)|A|xA,
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934 I. Kojadinovic et al.

f3(x) = 24

d(d − 1)

∑
A⊆D
|A|≥2

xA.

Similar relationships hold for the statistics constructed from the additional coefficients
mentioned in Quessy (2009), though the corresponding functions f are not necessarily
linear anymore but only continuous.

Let usmake a brief remark concerning the statistic Sn,2. Expressing it as Sn, f2 above
is clearly not the most efficient way to compute it. To see this, for any 1 ≤ k ≤ l ≤ n,
define

C̄k:l(u) = 1

l − k + 1

l∑
i=k

1
(
Û

k:l
i > u

)
, u ∈ [0, 1]d ,

where the Û
k:l
i are defined in (5), and notice that, for any u ∈ [0, 1]d , C̄k:l(u) =∑

A⊆D(−1)|A|Ck:l(uA), where Ck:l is defined in (4). Then, by definition of ρ2,

Sn,2 = max
1≤k≤n−1

k(n − k)

n3/2
∣∣ρ1(C̄1:k) − ρ1(C̄k+1:n)

∣∣ .
Under the assumption of no ties in the d component series, some additional simple
calculations reveal that the latter is actually nothing else than Sn,1 computed from the
sample −X1, . . . ,−Xn .

We end this section by a discussion of the differences between Sn,1 and the similar
statistic considered in Wied et al. (2014). Instead of basing their approach on the
empirical copula, these authors considered the alternative estimator of C defined, for
any 1 ≤ k ≤ l ≤ n, as

Ck:l,n(u) = 1

l − k + 1

l∑
i=k

1
(
Û

1:n
i ≤ u

)
, u ∈ [0, 1]d , (10)

with the convention thatCk:l,n = 0 if k > l. The apparently subtle yet crucial difference
betweenCk:l in (4) andCk:l,n above is that the scaled ranks are computed relative to the
complete sample X1, . . . , Xn for Ck:l,n , while, for Ck:l , they are computed relative
to the subsample Xk, . . . , X l . As a consequence, the analogue of the statistic Sn,1
considered in Wied et al. (2014) is not really a maximally selected absolute difference
of sample Spearman’s rhos. From a practical perspective, as illustrated empirically
in Bücher et al. (2014), the use of Ck:l instead of Ck:l,n in a change-point detection
framework results in tests that are more powerful when the change in distribution in
only due to a change in the copula. We provide similar empirical evidence in Sect. 4:
tests based on Sn,1 appear substantially more powerful than their analogues based
on (10) for alternatives involving a change of ρ1(C) at constant margins. Reasons that
explain this improved efficiency are discussed in Bücher et al. (2014, Section 2).

2.3 Limiting null distribution under strong mixing

Let us first recall the notion of strongly mixing sequence. For a sequence of d-
dimensional random vectors (Y i )i∈Z, the σ -field generated by (Y i )a≤i≤b, a, b ∈
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Z ∪ {−∞,+∞}, is denoted by Fb
a . The strong mixing coefficients corresponding to

the sequence (Y i )i∈Z are defined by

αr = sup
p∈Z

sup
A∈F p

−∞,B∈F+∞
p+r

|P(A ∩ B) − P(A)P(B)|

for strictly positive integer r . The sequence (Y i )i∈Z is said to be strongly mixing if
αr → 0 as r → ∞.

The limiting null distribution of the vector-valued empirical process Tn defined
in (8) can be obtained by rewriting its components in terms of the processes

Sn,A(s, t) = √
nλn(s, t){φA(C
ns�+1:
nt�) − φA(C)}, (s, t) ∈ �, (11)

for A ⊆ D, |A| ≥ 1. Indeed, it is easy to verify that, under H0 defined in (1),

Tn,A(s) = λn(s, 1)Sn,A(0, s) − λn(0, s)Sn,A(s, 1), s ∈ [0, 1]. (12)

As we shall see below, the limiting null distribution of Tn is then a mere consequence
of the fact that the empirical processes Sn,A, A ⊆ D, |A| ≥ 1, are asymptotically
equivalent to continuous functionals of the sequential empirical process

Bn(s, t, u) = 1√
n


nt�∑
i=
ns�+1

{1(U i ≤ u) − C(u)}, (s, t, u) ∈ � × [0, 1]d , (13)

where U1, . . . ,Un is the unobservable sample obtained from X1, . . . , Xn by the
probability integral transforms Ui j = Fj (Xi j ), i ∈ {1, . . . , n}, j ∈ D.

If U1, . . . ,Un is drawn from a strictly stationary sequence (U i )i∈Z whose strong
mixing coefficients satisfy αr = O(r−a) with a > 1, we have from Bücher (2014)
that Bn(0, ·, ·) converges weakly in �∞([0, 1]d+1;R) to a tight centered Gaussian
process B

◦
C with covariance function cov{B◦

C (s, u),B◦
C (t, v)} = (s ∧ t)κC (u, v),

(s, u), (t, v) ∈ [0, 1]d+1, where

κC (u, v) = cov
{
B

◦
C (1, u),B◦

C (1, v)
} =

∑
k∈Z

cov{1(U0 ≤ u), 1(Uk ≤ v)}. (14)

As a consequence of the continuous mapping theorem, Bn � BC in �∞(� ×
[0, 1]d ;R), where

BC (s, t, u) = B
◦
C (t, u) − B

◦
C (s, u), (s, t, u) ∈ � × [0, 1]d . (15)

The following proposition, proved in Section A of the supplementary material, is the
key step for obtaining the limiting null distribution of the vector-valued process Tn

defined in (8).

Proposition 1 Assume that X1, . . . , Xn is drawn from a strictly stationary sequence
(X i )i∈Z with continuous margins and whose strong mixing coefficients satisfy αr =
O(r−a), a > 1. Then, for any A ⊆ D, |A| ≥ 1,
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936 I. Kojadinovic et al.

sup
(s,t)∈�

|Sn,A(s, t) − ψC,A{Bn(s, t, ·)}| = oP(1), (16)

where ψC,A is a linear map from �∞([0, 1]d ;R) to R defined by

ψC,A(g) = φA(g) −
∫

[0,1]d
∑
j∈A

∏
l∈A\{ j}

(1− vl)g(v
{ j})dC(v), g ∈ �∞([0, 1]d ;R),

(17)
with φA given in (7).

From the work of Mokkadem (1988), we know that the strong mixing conditions
stated in the previous proposition (as well as those stated in the forthcoming proposi-
tions and corollaries) are for instance satisfied (with much to spare) when X1, . . . , Xn

is drawn from a stationary vector ARMA process with absolutely continuous innova-
tions. A similar conclusion holds for a large class of GARCH processes (see Lindner
2009, Section 5, and the references therein).

The next result, proved in SectionB of the supplementarymaterial, is a consequence
of the previous proposition and establishes the limiting null distribution of the generic
statistic Sn, f defined in (9) under strong mixing.

Corollary 2 Under the conditions of Proposition 1,

Tn � s �→ TC (s) = (
TC,{1}(s),TC,{2}(s), . . . ,TC,D(s)

)
(18)

in �∞([0, 1];R2d−1), where

TC (s) = ψC {BC (0, s, ·) − sBC (0, 1, ·)}, s ∈ [0, 1], (19)

with BC defined in (15) and ψC a map from �∞([0, 1]d ;R) to R2d−1 defined by

ψC (g) = (
ψC,{1}(g), ψC,{2}(g), . . . , ψC,D(g)

)
, g ∈ �∞([0, 1]d;R). (20)

As a consequence, for any f : R2d−1 → R continuous,

Sn, f = sup
s∈[0,1]

| f {Tn(s)}| � SC, f = sup
s∈[0,1]

| f {TC (s)}|,

and, if f is additionally linear and σ 2
C, f = var[ f ◦ ψC {BC (0, 1, ·)}] > 0, the weak

limit of σ−1
C, f Sn, f is equal in distribution to sups∈[0,1] |U(s)|, where U is a standard

Brownian bridge on [0, 1].

3 Computation of approximate p values

Corollary 2 suggests two related ways to compute p values for the generic test statistic
Sn, f defined in (9). The first approach, based on resampling, consists of exploiting
the fact that, under H0, Tn defined in (8) is asymptotically equivalent to a continuous
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functional of the sequential empirical process Bn defined in (13) and can be applied
as soon as f : R

2d−1 → R is continuous. The second approach, restricted to the
situation when f is linear, is motivated by the last claim of Corollary 2. It consists of
estimating σ 2

C, f and thus the asymptotic null distribution of Sn, f .

3.1 Approximate p values by bootstrapping

The first approach that we consider consists of bootstrapping the vector-valued empir-
ical processTn defined in (8) using a bootstrap for the sequential empirical processBn .
This way of proceeding actually allows us to consider not only linear but also continu-
ous functions f in (9). More specifically, we consider a multiplier bootstrap for Bn in
the spirit of van der Vaart andWellner (2000, Chapter 2.9) when observations are seri-
ally independent, or Bühlmann (1993, Section 3.3) when they are serially dependent.
In the latter case, we rely on the recent work of Bücher and Kojadinovic (2014).

The notion of multiplier sequence is central to this resampling technique. We say
that a sequence of random variables (ξi,n)i∈Z is an i.i.d. multiplier sequence if:

(M0) (ξi,n)i∈Z is i.i.d., independent of X1, . . . , Xn , with distribution not chang-
ing with n, having mean 0, variance 1, and being such that

∫∞
0 {P(|ξ0,n| >

x)}1/2dx < ∞.

We say that a sequenceof randomvariables (ξi,n)i∈Z is adependentmultiplier sequence
if

(M1) the sequence (ξi,n)i∈Z is strictly stationary with E(ξ0,n) = 0, E(ξ20,n) = 1 and
supn≥1 E(|ξ0,n|ν) < ∞ for all ν ≥ 1, and is independent of the available sample
X1, . . . , Xn .

(M2) There exists a sequence �n → ∞ of strictly positive constants such that �n =
o(n) and the sequence (ξi,n)i∈Z is �n-dependent, i.e., ξi,n is independent of
ξi+h,n for all h > �n and i ∈ N.

(M3) There exists a function ϕ : R → [0, 1], symmetric around 0, continuous at
0, satisfying ϕ(0) = 1 and ϕ(x) = 0 for all |x | > 1 such that E(ξ0,nξh,n) =
ϕ(h/�n) for all h ∈ Z.

The choice of the function ϕ and an approach to generate dependent multiplier
sequences is briefly discussed in Sect. 4. More details can be found in (Bücher and
Kojadinovic 2014, Section 5.2).

Let M be a large integer and let (ξ (1)
i,n )i∈Z, . . . , (ξ

(M)
i,n )i∈Z be M independent copies

of the same multiplier sequence. Then, following Bücher and Kojadinovic (2014) and
Bücher et al. (2014), for any m ∈ {1, . . . , M} and (s, t, u) ∈ � × [0, 1]d , let

B̂
(m)
n (s, t, u) = 1√

n


nt�∑
i=
ns�+1

ξ
(m)
i,n

{
1
(
Û

1:n
i ≤ u

)
− C1:n(u)

}
,

B̌
(m)
n (s, t, u) = 1√

n


nt�∑
i=
ns�+1

(
ξ

(m)
i,n − ξ̄

(m)

ns�+1:
nt�

)
1
(
Û


ns�+1:
nt�
i ≤ u

)
, (21)

where ξ̄
(m)
k:l is the arithmetic mean of ξ

(m)
i,n for i ∈ {k, . . . , l}.
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938 I. Kojadinovic et al.

The following proposition is a consequence of Theorem 1 in Holmes et al. (2013),
Theorem 2.1 and the proof of Proposition 4.2 in Bücher and Kojadinovic (2014), as
well as the proof of Proposition 4.3 in Bücher et al. (2014). It suggests interpreting the
multiplier replicates B̂(1)

n , . . . , B̂
(M)
n (resp. B̌(1)

n , . . . , B̌
(M)
n ) as “almost” independent

copies of Bn as n increases.

Proposition 3 Assume that either

(i) the random vectors X1, . . . , Xn are i.i.d. with continuous margins and the
sequences (ξ

(1)
i,n )i∈Z, . . . , (ξ

(M)
i,n )i∈Z are independent copies of a multiplier

sequence satisfying (M0),
(ii) or the random vectors X1, . . . , Xn are drawn from a strictly stationary sequence

(X i )i∈Z with continuous margins whose strong mixing coefficients satisfy αr =
O(r−a) for some a > 3 + 3d/2, and (ξ

(1)
i,n )i∈Z, …, (ξ

(M)
i,n )i∈Z are inde-

pendent copies of a dependent multiplier sequence satisfying (M1)–(M3) with
�n = O(n1/2−ε) for some 0 < ε < 1/2.

Then,

(
Bn, B̂

(1)
n , . . . , B̂(M)

n

)
�
(
BC ,B

(1)
C , . . . ,B

(M)
C

)
,(

Bn, B̌
(1)
n , . . . , B̌(M)

n

)
�
(
BC ,B

(1)
C , . . . ,B

(M)
C

)

in {�∞(� × [0, 1]d ;R)}M+1, where BC is given in (15) and B(1)
C , . . . ,B

(M)
C are inde-

pendent copies of BC .

Starting from the quantities defined above, we shall now define appropriate mul-
tiplier replicates under H0 of Tn defined in (8). From (12), we see that to do so, we
first need to define multiplier replicates of the processes Sn,A, A ⊆ D, |A| ≥ 1,
defined in (11). From (16) and Proposition 3, natural candidates would be the
processes (s, t) �→ ψC,A{B̂(m)

n (s, t, ·)} or the processes (s, t) �→ ψC,A{B̌(m)
n (s, t, ·)},

m ∈ {1, . . . , M}, where the map ψC,A is defined in (17). These, however, still
depend on the unknown copula C . The latter could be estimated either by C1:n or by
C
ns�+1:
nt�, which led us to consider the following two computable versions instead:

Ŝ
(m)
n,A(s, t) = ψC1:n ,A

{
B̂

(m)
n (s, t, ·)

}
, Š

(m)
n,A(s, t) = ψC
ns�+1:
nt�,A

{
B̌

(m)
n (s, t, ·)

}
,

for (s, t) ∈ �. The processes Š(m)
n,A were found to lead to better behaved tests than the

Ŝ
(m)
n,A in our Monte Carlo experiments, which is why, from now on, we focus solely on

the former. It is easy to verify that the Š(m)
n,A can be rewritten as

Š
(m)
n,A(s, t) = 1√

n


nt�∑
i=
ns�+1

(
ξ

(m)
i,n − ξ̄

(m)

ns�+1:
nt�

)
IC
ns�+1:
nt�,A

(
Û


ns�+1:
nt�
i

)
,
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where, for any u ∈ [0, 1]d ,

IC,A(u) = ψC,A{1(u ≤ ·)}
=
∏
l∈A

(1 − ul) −
∫

[0,1]d
∑
j∈A

∏
l∈A\{ j}

(1 − vl)1(u j ≤ v j )dC(v). (22)

Next, by analogy with (12), for any m ∈ {1, . . . , M}, A ⊆ D, |A| ≥ 1, let

Ť
(m)
n,A(s) = λn(s, 1)Š

(m)
n,A(0, s) − λn(0, s)Š

(m)
n,A(s, 1), s ∈ [0, 1],

and let Ť(m)
n be the corresponding version of Tn in (8). Finally, for some continuous

function f : R2d−1 → R, let Š(m)
n, f = sups∈[0,1] | f {Ť(m)

n (s)}| by analogy with (9).

Interpreting the Š(m)
n, f as multiplier replicates of Sn, f under H0, it is natural to compute

an approximate p value for the test as

1

M

M∑
m=1

1
(
Š(m)
n, f ≥ Sn, f

)
. (23)

The null hypothesis is rejected if the estimated p value is smaller than the desired
significance level.

The following result, proved in Section C of the supplementary material, can be
combined with Proposition F.1 in Bücher and Kojadinovic (2014) to show that a test
based on Sn, f whose p value is computed as in (23) will hold its level asymptotically
as n → ∞ followed by M → ∞.

Proposition 4 Under the conditions of Proposition 3, for any A ⊆ D, |A| ≥ 1,

(
Sn,A, Š

(1)
n,A, . . . , Š

(M)
n,A

)
�
(
SC,A,S

(1)
C,A, . . . ,S

(M)
C,A

)

in {�∞(�;R)}M+1, where, for any (s, t) ∈ �, SC,A(s, t) = ψC,A{BC (s, t, ·)} and
S

(1)
C,A, . . . ,S

(M)
C,A are independent copies of SC,A. As a consequence,

(
Tn, Ť

(1)
n , . . . , Ť(M)

n

)
�
(
TC ,T

(1)
C , . . . ,T

(M)
C

)

in {�∞([0, 1];R2d−1)}M+1, where TC is given in (19) and T
(1)
C , . . . ,T

(M)
C are inde-

pendent copies of TC , and, for any continuous function f : R2d−1 → R,

(
Sn, f , Š

(1)
n, f , . . . , Š

(M)
n, f

)
�
(
SC, f , S

(1)
C, f , . . . , S

(M)
C, f

)

in R
M+1, where SC, f = sups∈[0,1] | f {TC (s)}| and S(1)

C, f , . . . , S
(M)
C, f are independent

copies of SC, f .
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The finite-sample behavior of the tests under consideration based on the processes
Š

(m)
n,A is not, however, completely satisfactory: the tests appear too liberal for multivari-

ate time series with strong cross-sectional dependence. This prompted us to try other
asymptotically equivalent versions of the Š(m)

n,A. Under an additional assumption on the
partial derivatives of the copula, the generic test statistic Sn, f defined in (9) can be
written under H0 as a functional of the two-sided sequential empirical copula process
studied in Bücher and Kojadinovic (2014), and could, therefore, be bootstrapped via
the multiplier processes defined in (4.4) of Bücher et al. (2014). Without imposing any
condition on the partial derivatives of the copula, the latter remark led us to consider,
instead of the processes

Š
(m)
n,A(s, t) = φA

{
B̌

(m)
n (s, t, ·)

}

−
∫

[0,1]d
∑
j∈A

∏
l∈A\{ j}

(1 − vl)B̌
(m)
n (s, t, v{ j})dC
ns�+1:
nt�(v), (24)

the processes

S̃
(m)
n,bn ,A

(s, t) = φA

{
B̌

(m)
n (s, t, ·)

}

−
∫

[0,1]d
∑
j∈A

∏
l∈A\{ j}

(1 − vl)B̃
(m)
n,bn , j

(s, t, v j )dC
ns�+1:
nt�(v), (25)

where, for any j ∈ D, B̃(m)
n,bn , j

is a linearly smoothed version of (s, t, u) �→
B̌

(m)
n (s, t, u j ) with u j the vector of [0, 1]d whose components are all equal to 1

except the j th one which is equal to u, and bn a strictly positive sequence of constants
converging to 0. Specifically, for (s, t, v) ∈ � × [0, 1],

B̃
(m)
n,bn , j

(s, t, v) = 1√
n


nt�∑
i=
ns�+1

(
ξ

(m)
i,n − ξ̄

(m)

ns�+1:
nt�

)
Lbn

(
Û 
ns�+1:
nt�
i j , v

)
,

where

Lbn (u, v) = u+ ∧ v − u− ∧ v

u+ − u− , u, v ∈ [0, 1],

with u+ = (u + bn) ∧ 1 and u− = (u − bn) ∨ 0. It is easy to verify that, for any
u ∈ [0, 1], Lbn (u, ·) differs from 1(u ≤ ·) only on the interval (u−, u+) on which it
linearly increases from 0 to 1.

Notice that (25) can be rewritten as

S̃
(m)
n,bn ,A

(s, t) = 1√
n


nt�∑
i=
ns�+1

(
ξ

(m)
i,n − ξ̄

(m)

ns�+1:
nt�

)
Ibn ,C
ns�+1:
nt�,A

(
Û


ns�+1:
nt�
i

)
,

where, for any u ∈ [0, 1]d ,
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Ibn ,C,A(u) =
∏
l∈A

(1 − ul) −
∫

[0,1]d
∑
j∈A

∏
l∈A\{ j}

(1 − vl)Lbn (u j , v j )dC(v). (26)

For any m ∈ {1, . . . , M}, let T̃(m)
n,bn

and S̃(m)
n,bn , f

be the analogues of Ť(m)
n and Š(m)

n, f ,

respectively, defined from the processes S̃(m)
n,bn ,A

in (25). The following result, proved in
Section C of the supplementary material, is then the analogue of Proposition 4 above.

Proposition 5 If bn = o(n−1/2), Proposition 4 holds with Š
(m)
n,A replaced by S̃(m)

n,bn ,A
,

Ť
(m)
n replaced by T̃(m)

n,bn
and Š(m)

n, f replaced by S̃(m)
n,bn , f

.

Finally, notice that it is possible to consider a version of the above construction in
which the smoothing sequence is b
nt�−
ns� instead of bn . We focused above only on
the latter approach as it led to better behaved tests in our Monte Carlo experiments.

3.2 Estimating the asymptotic null distribution

When the function f used in the definition of Sn, f in (9) is linear, Corollary 2 gives
conditions under which, provided σ 2

C, f = var[ f ◦ ψC {BC (0, 1, ·)}] > 0, the weak

limit of σ−1
C, f Sn, f under H0 is equal in distribution to sups∈[0,1] |U(s)|. The distribution

of the latter random variable can be approximated very well (this aspect is discussed
in more detail in Sect. 4). To be able to estimate an asymptotic p value for Sn, f , it
thus remains to estimate the unknown variance σ 2

C, f .
Let Eξ and varξ denote the expectation and variance, respectively, conditional on

the data. By analogy with the classical way of proceeding when estimating variances
using resampling procedures (see,e.g., Künsch 1989; Shao 2010), in our context, a
first natural estimator of the unknown variance under H0 is of the form

σ̌ 2
n,C, f = varξ

[
f ◦ ψC

{
B̌

(m)
n (0, 1, ·)

}]
, (27)

where B̌
(m)
n is defined in (21). To simplify the notation, we shall drop the super-

script (m) in the rest of this section. The previous estimator is not computable as C is
unknown, which is why we will eventually consider the estimator σ̌ 2

n,C1:n , f instead.

To obtain a more explicit expression of σ̌ 2
n,C, f , first, let

IC (u) = (IC,{1}(u), IC,{2}(u), . . . , IC,D(u)
)
, u ∈ [0, 1]d , (28)

where IC,A, A ⊆ D, |A| ≥ 1, is defined in (22). From the linearity of f ◦ ψC , we
then obtain that

σ̌ 2
n,C, f = varξ

{
1√
n

n∑
i=1

(ξi,n − ξ̄1:n) f ◦ IC
(
Û

1:n
i

)}

= varξ

⎡
⎣ 1√

n

n∑
i=1

ξi,n

⎧⎨
⎩ f ◦ IC

(
Û

1:n
i

)
− 1

n

n∑
j=1

f ◦ IC
(
Û

1:n
j

)⎫⎬
⎭
⎤
⎦.
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Using the fact that, from (22) and (28),

1

n

n∑
i=1

f ◦ IC
(
Û

1:n
i

)
= 1

n

n∑
i=1

f ◦ ψC

{
1
(
Û

1:n
i ≤ ·

)}
= f ◦ ψC (C1:n),

we obtain that

σ̌ 2
n,C, f = 1

n

n∑
i, j=1

Eξ (ξi,nξ j,n) f
{
IC
(
Û

1:n
i

)
− ψC (C1:n)

}

× f
{
IC
(
Û

1:n
j

)
− ψC (C1:n)

}
.

On the one hand, should the sequence (ξi,n)i∈Z be an i.i.d. multiplier sequence, that
is, should it satisfy (M0), unsurprisingly, the above estimator simplifies to

σ̌ 2
n,C, f = 1

n

n∑
i=1

[
f
{
IC
(
Û

1:n
i

)
− ψC (C1:n)

}]2
. (29)

On the other hand, if the multiplier sequence satisfies (M1)–(M3), one obtains

σ̌ 2
n,C, f = 1

n

n∑
i, j=1

ϕ

(
i − j

�n

)
f
{
IC
(
Û

1:n
i

)
− ψC (C1:n)

}

× f
{
IC
(
Û

1:n
j

)
− ψC (C1:n)

}
, (30)

which has the form of the HAC kernel estimator of de Jong and Davidson (2000).
Very naturally, onceC has been replaced byC1:n , we use the form in (29) (resp. (30))

for serially independent (resp. weakly dependent) observations. The following result,
proved in Section D of the supplementary material, establishes the consistency of
σ̌ 2
n,C1:n , f under H0.

Proposition 6 Assume that f : R2d−1 → R in the definition of (9) is linear and that
either

(i) the random vectors X1, . . . , Xn are i.i.d. with continuous margins,
(ii) or the random vectors X1, . . . , Xn are drawn from a strictly stationary sequence

(X i )i∈Z with continuous margins whose strong mixing coefficients satisfy αr =
O(r−a) for some a > 6, and �n = O(n1/2−ε) for some 0 < ε < 1/2 such that,
additionally, ϕ defined in (M3) is twice continuously differentiable on [−1, 1]with
ϕ′′(0) �= 0 and is Lipschitz continuous on R.

Then, σ̌ 2
n,C1:n , f

P→ σ 2
C, f . As a consequence, the weak limit of σ̌

−1
n,C1:n , f Sn, f is equal in

distribution to sups∈[0,1] |U(s)|.
As in the previous subsection, better behaved tests are obtained if (26) is used

instead of (22) in the above developments. Let
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Ibn ,C (u) = (Ibn ,C,{1}(u), Ibn ,C,{2}(u), . . . , Ibn ,C,D(u)
)
, u ∈ [0, 1]d ,

and let σ̃ 2
n,bn ,C1:n , f be the corresponding estimator of σ 2

C, f . Proceeding as above, for

serially independent data, the appropriate form of σ̃ 2
n,bn ,C1:n , f is

σ̃ 2
n,bn ,C1:n , f = 1

n

n∑
i=1

[
f
{
Ibn ,C1:n

(
Û

1:n
i

)
− Ībn ,C1:n

}]2
, (31)

where Ībn ,C1:n = n−1∑n
=1 Ibn ,C1:n (Û

1:n
i ), while, for weakly dependent observations,

σ̃ 2
n,bn ,C1:n , f = 1

n

n∑
i, j=1

ϕ

(
i − j

�n

)
f
{
Ibn ,C1:n

(
Û

1:n
i

)
− Ībn ,C1:n

}

× f
{
Ibn ,C1:n

(
Û

1:n
j

)
− Ībn ,C1:n

}
. (32)

The following analogue of Proposition 6 is proved inSectionDof the supplementary
material.

Proposition 7 If bn = o(n−1/2), Proposition 6 holds with σ̌ 2
n,C1:n , f replaced with

σ̃ 2
n,bn ,C1:n , f .

3.3 Estimation of the bandwidth parameter �n

When the available observations are weakly dependent, both the approaches based
on resampling presented in Sect. 3.1 and the one based on the estimation of the
asymptotic null distribution discussed in Sect. 3.2 require the choice of the bandwidth
parameter �n . The latter quantity appears in the definition of the dependent multiplier
sequences and, as mentioned in Bücher and Kojadinovic (2014), plays a role some-
how analogous to that of the block length in the block bootstrap. The value of �n is,
therefore, expected to have a crucial influence on the finite-sample performance of the
two versions of the test based on Sn, f described previously.

The aim of this subsection was to propose an estimator of �n in the spirit of that
investigated in Paparoditis and Politis (2001), Politis and White (2004) and Patton
et al. (2009), among others, for other resampling schemes. By analogy with (27), we
start from the non computable estimator of σ 2

C, f defined by

σ 2
n,C, f = varξ [ f ◦ ψC {B̄n(0, 1, ·)}], (33)

where

B̄n(s, t, u) = 1√
n


nt�∑
i=
ns�+1

ξi,n{1(U i ≤ u) − C(u)}, (s, t, u) ∈ � × [0, 1]d ,
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and (ξi,n)i∈Z is a dependent multiplier sequence. Proceeding as for (27), it is easy to
verify that

σ 2
n,C, f = 1

n

n∑
i, j=1

ϕ

(
i − j

�n

)
f {IC (U i ) − ψC (C)} f

{IC (U j ) − ψC (C)
}
. (34)

Under the conditions of Proposition 6 (ii) and from the fact that the random variables
| f ◦IC (U i )| are bounded by supx∈[−1,1]2d−1 | f (x)| < ∞ (since supu∈[0,1]d |IC,A(u)|
≤ 1 for all A ⊆ D |A| ≥ 1), we can proceed as in the proofs of Propositions 5.1 and
5.2 in Bücher and Kojadinovic (2014) (see also Lemmas 3.12 and 3.13 in Bühlmann
1993 and Proposition 2.1 in Shao 2010) to obtain that

E
(
σ 2
n,C, f

)
− σ 2

C, f = �

�2n
+ o

(
�−2
n

)
and var

(
σ 2
n,C, f

)
= �n

n
� + o(�n/n),

where � = ϕ′′(0)/2
∑∞

k=−∞ k2τ(k) with τ(k) = cov{ f ◦ IC (U0), f ◦ IC (Uk)}, and
� = 2σ 4

C, f

∫ 1
−1 ϕ(x)2dx . As a consequence, the mean squared error of σ 2

n,C, f is

MSE
(
σ 2
n,C, f

)
= �2

�4n
+ �

�n

n
+ o

(
�−4
n

)
+ o(�n/n). (35)

Differentiating the function x �→ �2/x4 + �x/n and equating the derivative to zero,
we obtain that the value of �n that minimizes the mean square error of σ 2

n,C, f is,
asymptotically,

�
opt
n =

(
4�2

�

)1/5

n1/5.

To estimate �
opt
n , it is necessary to estimate the infinite sum

∑
k∈Z k2τ(k) as well as

σ 2
C, f = ∑

k∈Z τ(k) through a pilot estimate. To do so, we adapt the approach described
in (Paparoditis and Politis 2001, page 1111) and (Politis andWhite 2004, Section 3) to
the current context (see also Patton et al. 2009). Let τ̂n(k) be the sample autocovariance

at lag k computed from the sequence f ◦Ibn ,C1:n (Û
1:n
1 ), . . . , f ◦Ibn ,C1:n (Û

1:n
n ). Then,

we estimate � and � by

�̂n = ϕ′′(0)/2
L∑

k=−L

λ(k/L)k2τ̂n(k)

and

�̂n = 2

{
L∑

k=−L

λ(k/L)τ̂n(k)

}2 {∫ 1

−1
ϕ(x)2dx

}
,

respectively, where λ(x) = [{2(1−|x |)}∨0]∧1, x ∈ R, is the “flat top” (trapezoidal)
kernel of Politis and Romano (1995) and L is an integer estimated by adapting the
procedure described in (Politis and White 2004, Section 3.2). Let �̂n(k) be the sample
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autocorrelation at lag k estimated from f ◦Ibn ,C1:n (Û
1:n
1 ), . . . , f ◦Ibn ,C1:n (Û

1:n
n ). The

parameter L is then taken as the smallest integer k afterwhich �̂n(k) appears negligible.
The latter is determined automatically by means of the algorithm described in detail in
(Politis andWhite 2004, Section 3.2) . Our implementation is based onMatlab code by
A.J. Patton (available on his web page) and itsR version by J. Racine and C. Parmeter.

4 Monte Carlo experiments

In the previous section, twoways to compute approximate p values for generic change-
point tests based on (9) were studied under the null. These asymptotic results do not,
however, guarantee that such tests will behave satisfactorily in finite-samples, which
is why additional numerical simulations are needed. In our experiments, we restricted
attention to the three statistics given in (6). For each statistic Sn,i , i ∈ {1, 2, 3}, an
approximate p value was computed using either the resampling approach based on
the processes in (25), or the estimated asymptotic null distribution based on variance
estimators of the form (31) or (32). To distinguish between these two situations, we
shall talk about the test S̃n,i and the test San,i , respectively, in the rest of the paper.

The experiments were carried out in the R statistical system using the copula
package (Hofert et al. 2013). The sequencebn involved inboth classes of testswas taken
equal to n−0.51. The only (asymptotically negligible) difference with the theoretical
developments presented in the previous sections is that the rescaled maximal ranks
in (5) were computed by dividing the ranks by l − k + 2 instead of l − k + 1.

Data generating procedure Twomultivariate time series models were used to generate
d-dimensional samples of size n in our Monte Carlo experiments: a simple autore-
gressive model of order one and a GARCH(1,1)-like model. Apart from d, n and
the parameters of the models, the other inputs of the procedure are a real t ∈ (0, 1)
determining the location of the possible change-point in the innovations, and two
d-dimensional copulas C1 and C2. The procedure used to generate a d-dimensional
sample X1, . . . , Xn then consists of

1. generating independent random vectors U i , i ∈ {−100, . . . , 0, . . . , n} such that
U i , i ∈ {−100, . . . , 0, . . . , 
nt�} are i.i.d. from copula C1 and U i , i ∈ {
nt� +
1, . . . , n} are i.i.d. from copula C2,

2. computing εi = (�−1(Ui1), . . . , �
−1(Uid)), where � is the c.d.f. of the standard

normal distribution,
3. setting X−100 = ε−100 and, for any j ∈ D, computing recursively either

Xi j = γ Xi−1, j + εi j , (AR1)

or

σ 2
i j = ω j + β jσ

2
i−1, j + α jε

2
i−1, j and Xi j = σi jεi j , (GARCH)

for i = −99, . . . , 0, . . . , n.
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If the copulas C1 and C2 are chosen equal, the above procedure generates samples
under H0 defined in (1). Three possible values were considered for the parameter γ

controlling the strength of the serial dependence in (AR1): 0 (serial independence),
0.25 (mild serial dependence), and 0.5 (strong serial dependence). Model (GARCH)
was only considered in the bivariate case, and following Bücher and Ruppert (2013),
with (ω1, β1, α1) = (0.012, 0.919, 0.072) and (ω2, β2, α2) = (0.037, 0.868, 0.115).
The latter values were estimated by Jondeau et al. (2007) from SP500 and DAX daily
logreturns, respectively.

Samples under H0,m ∩ (¬H0,c), where H0,m and H0,c are defined in (2) and (3),
respectively, were obtained by taking C1 �= C2 and t ∈ {0.1, 0.25, 0.5}. Notice that
when γ = 0 in (AR1), the latter are samples under H0,m ∩ H1,c, where

H1,c : ∃ distinct C1 and C2, and t ∈ (0, 1) such that

X1, . . . , X
nt� have copula C1 and X
nt�+1, . . . , Xn have copula C2.

This is not the case anymore when γ > 0 as the change in cross-sectional dependence
is then gradual by (AR1).

Other factors of the experiments Five copula families were considered (the Clayton,
the Gumbel–Hougaard, the Normal, the Frank, and the Student), the cross-sectional
dimensional d was taken in {2, 4}, and the values 50, 100, 200, 400, and 500 were used
for n. To estimate the power of the tests, 1000 samples were generated under each
combination of factors and all the tests were carried out at the 5 % significance level.

Computation of the test statistics and of the corresponding p values The data-
generating procedure above generatesmultivariate time serieswhose component series
do not contain ties with probability one. Consequently, as explained in Sect. 2.2, Sn,2
is merely Sn,1 computed from the sample −X1, . . . ,−Xn . Furthermore, if d = 2,
it is easy to see that Sn,1 = Sn,2 = Sn,3. However, it can be verified that only the
approximate p values for the tests S̃n,1 and S̃n,3 (resp. San,1 and San,3) will be equal.
Indeed, the multiplier replicates based on the processes in (25) (resp. the variance
estimators of the form (31) or (32)) computed from X1, . . . , Xn do not coincide in
general with those computed from −X1, . . . ,−Xn , even in dimension two.

From Proposition 7, we see that, to compute an asymptotic p value for the tests San,i ,
it is necessary to be able to compute the c.d.f. of the random variable sups∈[0,1] |U(s)|.
The distribution of the latter random variable is known as the Kolmogorov distribu-
tion. As classically done in other contexts, we approach this distribution by that of
the statistic of the classical Kolmogorov–Smirnov goodness-of-fit test for a simple
hypothesis. Specifically, we use the function pkolmogorov1x given in the code of
the R function ks.test.

Empirical levels and power of the tests based on i.i.d. multipliers/a variance estimator
of the form (31) Table 1 gives the empirical levels of the tests when the observations
are serially independent. For the sake of brevity, the results are reported only for two
copula families. Overall, we find that the tests S̃n,i withmultiplier sequences satisfying
(M0) (here standard normal sequences) hold there level rather well both for d = 2 and
d = 4, and all the considered degrees of cross-sectional dependence. This is not the
case for the tests San,i which frequently appear way too liberal when the cross-sectional
dependence is high.
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Table 1 Percentage of rejection of H0 computed from 1000 samples of size n ∈ {50, 100, 200, 400}
generated with γ = 0 in (AR1) and when C1 = C2 = C is either the d-dimensional Clayton (Cl) or
Gumbel–Hougaard (GH) copula the bivariate margins of which have a Kendall’s tau of τ

C n τ d = 2 d = 4

S̃n,1 S̃n,2 San,1 San,2 S̃n,1 S̃n,2 S̃n,3 San,1 San,2 San,3

Cl 50 0.1 6.8 7.4 2.6 3.0 4.6 5.1 4.0 1.2 2.1 0.7

0.3 4.1 5.2 1.7 4.2 4.9 5.4 3.7 0.5 2.6 0.7

0.5 3.1 2.7 2.5 8.6 7.1 3.9 4.9 2.8 2.8 1.2

0.7 3.0 0.5 8.3 23.8 7.4 4.1 3.3 5.4 10.3 3.1

100 0.1 3.5 4.3 2.3 2.7 4.1 5.3 4.4 1.6 3.4 2.5

0.3 4.0 4.4 2.3 3.6 5.7 4.7 4.4 2.0 2.8 1.4

0.5 4.2 4.0 4.9 8.3 4.3 4.0 3.5 2.2 3.7 1.9

0.7 5.7 1.6 12.6 23.1 9.1 3.9 7.6 11.3 9.5 7.4

200 0.1 4.9 4.7 2.8 3.1 6.1 5.1 5.2 3.1 3.4 3.3

0.3 4.9 5.3 3.7 4.9 4.1 5.6 4.2 2.3 3.6 1.9

0.5 4.6 4.3 4.8 6.9 4.6 5.5 4.2 4.1 4.8 3.2

0.7 5.6 3.1 11.2 15.1 10.5 5.3 11.1 14.1 8.3 9.9

400 0.1 4.6 4.9 3.7 3.8 6.3 6.7 6.5 4.5 5.5 4.8

0.3 4.3 4.6 4.0 4.4 5.8 5.3 5.5 4.1 4.2 3.8

0.5 4.8 4.6 4.2 4.8 5.8 4.5 5.5 5.5 4.0 4.7

0.7 5.9 4.0 9.3 10.8 8.5 6.6 8.7 13.5 8.1 8.2

GH 50 0.1 6.7 6.3 3.4 2.3 5.8 5.3 4.7 2.4 0.8 2.5

0.3 4.1 3.9 3.5 2.1 5.9 6.0 5.3 1.8 0.7 3.1

0.5 3.1 3.4 6.9 3.4 4.6 4.9 4.0 3.0 2.5 6.5

0.7 2.0 1.8 15.5 10.7 3.4 6.2 2.0 6.2 4.2 10.3

100 0.1 5.2 5.1 2.7 2.5 4.3 4.8 4.1 2.5 1.5 2.1

0.3 5.9 5.3 5.2 3.9 6.1 6.7 6.7 3.1 1.9 4.5

0.5 3.7 3.7 6.6 5.1 5.3 4.8 5.3 3.6 3.4 6.4

0.7 1.3 2.3 16.9 13.8 4.5 7.0 2.7 8.6 9.0 14.2

200 0.1 5.2 5.2 3.8 3.5 4.8 4.3 4.5 3.3 2.6 3.1

0.3 5.2 5.1 4.7 3.9 6.0 6.5 5.3 4.7 3.3 4.3

0.5 4.5 4.5 5.2 4.7 4.2 3.9 4.0 3.2 3.6 3.9

0.7 2.2 3.7 12.8 10.8 4.6 7.0 4.9 6.6 9.0 10.9

400 0.1 6.4 6.1 4.8 4.7 5.1 5.7 4.3 4.0 3.1 3.1

0.3 4.7 4.6 4.1 3.8 4.6 5.3 5.6 3.7 3.6 4.4

0.5 3.3 3.3 3.5 3.0 4.3 5.1 4.5 3.9 4.5 4.7

0.7 4.6 5.8 10.1 9.9 5.3 7.1 5.9 6.3 9.5 10.4

The tests S̃n,i are carried out with i.i.d. multiplier sequences, while the tests San,i use variance estimators
of the form (31)

Table 2 partially reports the percentages of rejection of the i.i.d. multiplier tests for
serially independent observations generated under H0,m∩H1,c resulting from a change
of the copula parameter within a copula family. The columns CvM give the results of
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Table 2 Percentage of rejection of H0 computed from 1000 samples of size n ∈ {50, 100, 200} generated
with γ = 0 in (AR1), t ∈ {0.1, 0.25, 0.5} and whenC1 andC2 are both d-dimensional normal (N) or Frank
(F) copulas such that the bivariate margins of C1 have a Kendall’s tau of 0.2 and those of C2 a Kendall’s
tau of τ

C n τ t d = 2 d = 4

CvM S̃n,1 S̃n,2 CvM S̃n,1 S̃n,2 S̃n,3

N 50 0.4 0.10 5.6 6.0 5.6 5.9 7.9 7.9 8.3

0.25 9.1 8.7 8.9 12.2 17.3 18.9 19.5

0.50 13.4 12.6 12.6 24.3 25.1 27.6 28.2

0.6 0.10 9.0 8.7 8.9 7.1 20.7 21.7 22.4

0.25 32.3 34.7 32.6 45.6 66.3 67.0 69.9

0.50 46.7 42.7 41.6 76.1 78.0 77.5 80.8

100 0.4 0.10 5.7 7.8 7.6 7.6 11.2 12.2 12.3

0.25 14.9 19.7 19.1 27.0 35.3 37.2 43.0

0.50 25.9 28.9 29.2 54.5 54.6 53.5 59.6

0.6 0.10 14.6 22.7 23.4 26.1 47.5 51.1 58.8

0.25 60.0 68.6 69.0 90.3 94.9 94.8 97.6

0.50 81.9 84.8 84.2 98.8 98.4 99.0 99.5

200 0.4 0.10 9.1 11.7 12.3 13.2 18.2 17.9 23.3

0.25 26.5 36.7 36.9 58.9 64.9 67.1 75.5

0.50 47.7 54.2 53.7 83.4 83.5 83.3 88.9

0.6 0.10 34.5 57.7 58.0 63.1 87.3 87.8 93.8

0.25 92.6 96.5 96.7 100.0 100.0 100.0 100.0

0.50 99.1 99.5 99.5 100.0 100.0 100.0 100.0

F 50 0.4 0.10 6.9 5.7 6.2 4.5 7.8 9.0 8.4

0.25 10.8 9.7 10.0 12.9 17.9 19.7 19.9

0.50 15.1 13.6 13.6 24.7 30.2 31.1 29.1

0.6 0.10 11.1 10.6 11.3 7.3 23.3 29.7 24.8

0.25 33.1 32.7 31.9 42.3 67.2 70.2 69.5

0.50 50.9 46.1 46.2 78.3 81.9 82.3 85.5

100 0.4 0.10 6.1 7.0 7.4 6.5 9.2 13.6 11.9

0.25 16.5 18.2 18.7 26.5 38.8 46.8 49.6

0.50 26.4 28.6 28.3 48.9 52.7 58.3 61.6

0.6 0.10 17.7 27.3 27.2 22.7 55.3 63.9 68.6

0.25 66.5 73.6 74.0 91.9 97.7 98.2 99.5

0.50 86.2 87.3 87.5 99.3 98.8 99.4 99.8

200 0.4 0.10 10.2 15.7 15.6 12.5 19.7 25.3 27.1

0.25 34.3 41.3 41.5 53.6 64.4 76.2 78.8

0.50 50.7 54.3 54.4 83.2 83.9 90.4 93.2

0.6 0.10 39.0 64.7 65.6 60.3 88.0 92.2 96.4

0.25 95.4 98.3 98.3 99.9 100.0 100.0 100.0

0.50 99.5 99.8 99.8 100.0 100.0 100.0 100.0

The columns CvM give the results for the test studied in Bücher et al. (2014). All the tests were carried out
with i.i.d. multiplier sequences
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the i.i.d. multiplier test based on the maximally selected Cramér–von Mises statistic
studied in Bücher et al. (2014) (with multiplier replicates of the form (4.6) in the latter
reference) and implemented in the R package npcp. Overall, we find that the tests
S̃n,i are more powerful than that studied in Bücher et al. (2014) for such scenarios,
especially when the change in the copula occurs early or late. Among the tests S̃n,i ,
we observed that the test S̃n,3 (which coincides with the test S̃n,1 in dimension two)
led frequently to slightly higher rejection rates, although this conclusion is based on
a limited number of simulation scenarios. The rejection rates of the tests San,i with a
variance estimator of the form (31) are not reported for the sake of brevity. They were
found to be slightly less powerful than the tests S̃n,i when τ = 0.4. For τ = 0.6, a
comparison of the two classes of tests is not necessarily meaningful as the tests San,i
were often found to be way too liberal under strong cross-sectional dependence.

Empirical levels and power of the tests based on dependent multipliers/a variance
estimator of the form (32) Part of Table 3 reports the empirical levels of the test S̃n,1
whendependentmultiplier sequences satisfying (M1)–(M3) are used. These sequences
were generated using the “moving average approach” proposed initially in Bühlmann
(1993, Section 6.2) and revisited in Bücher and Kojadinovic (2014, Section 5.2).
A standard normal sequence was used for the required initial i.i.d. sequence. The
kernel function κ in that approach was chosen to be the Parzen kernel defined by
κP (x) = (1−6x2+6|x |3)1(|x | ≤ 1/2)+2(1−|x |)31(1/2 < |x | ≤ 1), x ∈ R, which
amounts to choosing the function ϕ in (M3) as x �→ (κP � κP )(2x)/(κP � κP )(0),
where ‘�’ denotes the convolution operator. The value of the bandwidth parameter �n
defined in (M2) was estimated using the data-driven procedure described in Sect. 3.3.
The same value of �n was used to carry out the test San,1 relying on a variance estimator
of the form (32).

From the first three vertical blocks of Table 3, we see that an increase in the degree
of serial dependence in (AR1) (controlled by γ ) appears to result in a small inflation of
the empirical levels of the test S̃n,1. As expected, the situation improves as n increases
from 100 to 400. For sequences generated using (GARCH), the empirical levels of
the test S̃n,1 appear always reasonably close to the 5 % nominal level. The test San,1
remains overall way too liberal when the cross-sectional dependence is high.

The last vertical block of Table 3 reports, for strongly serially dependent obser-
vations generated using (AR1), the empirical levels of the test S̃n,1 based on i.i.d.
multipliers, as well as those of the test San,1 based on an inappropriate variance esti-
mator of the form (31). As expected, both tests strongly fail to hold their level.

Table 4 partially reports the rejection percentages of the tests based on dependent
multipliers / a variance estimator of the form (32) for observations generated under
H0,m∩(¬H0,c) resulting froma change of the copula parameterwithin a copula family.
The rejection rates of the test San,1 should be considered with care when τ = 0.6 as that
test was found to be way too liberal under strong cross-sectional dependence. Despite
that issue, the test S̃n,1 appears almost alwaysmore powerful than the test San,1. Also, as
it could have been expected, the presence of strong serial dependence (γ = 0.5) leads
to lower rejection percentages when compared with serial independence (γ = 0).
Finally, comparing the results for the test S̃n,1 when γ = 0 with the analogue results
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Table 3 Percentage of rejection of H0 computed from 1000 samples of size n ∈ {100, 200, 400} when
C1 = C2 = C is either the bivariate Clayton (Cl), Gumbel–Hougaard (GH) or Frank (F) copula with a
Kendall’s tau of τ

C n τ γ = 0 γ = 0.25 γ = 0.5 GARCH γ = 0.5/ind

S̃n,1 San,1 S̃n,1 San,1 S̃n,1 San,1 S̃n,1 San,1 S̃n,1 San,1

Cl 100 0.10 5.2 2.3 6.6 3.5 8.2 3.3 6.2 2.5 14.5 10.2

0.30 3.5 1.8 6.7 3.1 7.1 4.7 5.2 3.3 15.0 11.6

0.50 4.0 3.4 5.0 4.5 5.2 4.7 4.6 4.5 12.0 13.5

0.70 8.3 12.0 7.5 11.8 7.2 11.2 7.2 13.2 8.9 20.0

200 0.10 4.2 2.3 5.1 2.8 6.9 3.6 5.0 3.1 17.2 13.5

0.30 5.1 2.6 6.2 3.4 7.2 4.4 5.3 3.8 15.7 13.0

0.50 4.4 4.1 5.0 5.1 4.6 5.1 4.5 4.5 14.1 14.2

0.70 6.5 12.2 6.6 9.8 7.4 11.2 6.5 10.8 12.4 20.0

400 0.10 4.7 3.3 5.6 4.3 6.0 3.5 5.3 3.8 19.4 16.9

0.30 4.4 3.4 6.3 4.3 6.0 4.2 4.0 3.5 17.3 15.2

0.50 4.7 4.7 5.9 5.7 5.6 5.0 6.1 5.7 14.6 14.2

0.70 6.4 8.7 5.7 7.9 5.1 6.8 6.6 9.5 15.7 19.0

GH 100 0.10 4.8 2.5 5.1 2.0 7.7 2.7 5.6 2.8 15.3 11.2

0.30 5.0 3.7 5.9 4.4 7.5 4.5 4.9 2.9 15.0 14.2

0.50 4.5 6.7 4.3 7.1 6.3 7.9 4.9 6.9 10.7 15.7

0.70 3.5 16.0 4.3 18.9 5.1 18.9 3.7 16.2 4.5 25.4

200 0.10 6.4 3.9 5.6 3.7 7.3 3.9 5.8 3.8 18.2 14.1

0.30 6.0 5.1 6.4 4.6 6.7 4.6 5.4 4.5 19.1 16.4

0.50 5.1 4.9 6.0 6.4 6.9 8.0 3.7 4.9 15.6 17.2

0.70 3.8 14.4 2.8 13.0 4.4 12.4 3.5 12.2 10.0 25.4

400 0.10 5.0 4.0 5.8 4.8 6.3 5.1 5.2 3.9 18.5 16.3

0.30 4.1 3.0 5.1 4.3 6.3 4.6 4.9 4.1 18.5 17.2

0.50 3.2 3.6 5.0 6.3 7.9 7.5 4.9 4.7 16.7 17.2

0.70 5.2 9.8 3.8 8.7 5.4 10.6 3.8 8.2 14.5 22.4

F 100 0.10 5.5 2.1 5.3 2.3 10.6 4.2 5.0 2.4 15.2 10.2

0.30 4.4 2.2 5.9 3.9 7.7 4.1 6.4 4.7 13.3 10.3

0.50 4.0 7.6 4.0 6.0 5.4 7.1 4.2 6.7 12.8 18.0

0.70 5.2 29.3 4.8 26.5 5.4 18.1 5.4 23.9 5.9 28.5

200 0.10 4.0 2.1 6.0 3.9 8.3 4.5 5.1 2.9 17.5 13.4

0.30 5.0 3.9 5.7 4.1 7.1 3.9 5.3 3.4 17.0 14.5

0.50 4.8 6.2 4.5 5.7 6.9 7.1 4.4 5.6 15.0 17.3

0.70 3.2 19.9 4.0 17.5 4.6 13.4 4.9 20.1 8.9 25.1

400 0.10 4.1 3.1 6.0 4.4 6.0 4.0 4.5 3.0 18.0 14.8

0.30 5.5 4.6 6.7 5.6 5.9 4.2 5.2 4.3 14.7 12.5

0.50 4.6 4.7 4.7 5.0 4.0 3.8 4.8 5.5 15.7 16.5

0.70 5.3 13.2 4.5 12.3 6.2 9.9 5.7 13.2 14.2 21.7

In the first four vertical blocks of the table, the test S̃n,1 (resp. S
a
n,1) is carried out using dependent multiplier

sequences (resp. a variance estimator of the form (32)). In the last vertical block, i.i.d. multipliers and a
variance estimator of the form (31) are used instead
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Table 4 Percentage of rejection of H0 computed from 1000 samples of size n ∈ {100, 200} generated
with t ∈ {0.1, 0.25, 0.5} and when C1 and C2 are both bivariate Clayton (Cl), Gumbel–Hougaard (GH) or
normal (N) copulas with a Kendall’s tau of 0.2 for C1 and a Kendall’s tau of τ for C2

C n τ t γ = 0 γ = 0.5 GARCH

CvM S̃n,1 San,1 CvM S̃n,1 San,1 CvM S̃n,1 San,1

Cl 100 0.4 0.10 6.5 6.5 4.3 6.5 8.0 5.0 6.6 6.7 3.8

0.25 17.9 20.4 13.4 14.0 19.7 10.6 17.2 18.1 11.2

0.50 23.5 23.2 15.0 18.3 22.4 9.7 28.6 27.6 17.1

0.6 0.10 12.6 20.6 19.7 9.4 17.1 17.0 13.9 20.1 19.4

0.25 61.3 65.7 52.7 44.2 53.6 36.4 61.1 64.8 50.7

0.50 80.0 78.8 61.1 58.4 61.8 34.9 80.3 78.3 59.3

200 0.4 0.10 8.2 9.6 7.5 6.9 10.4 7.0 8.3 11.1 8.9

0.25 26.5 31.8 25.2 19.9 27.7 20.2 27.8 32.0 26.2

0.50 45.3 47.0 37.0 34.2 40.0 27.9 47.1 48.8 40.1

0.6 0.10 30.4 42.1 42.3 12.6 28.8 28.6 29.7 43.9 43.4

0.25 93.2 94.2 87.4 71.1 79.2 65.9 91.1 92.2 83.5

0.50 98.5 98.3 94.1 89.5 90.5 80.1 98.7 98.2 94.1

GH 100 0.4 0.10 5.3 8.0 7.1 5.0 8.2 7.1 6.3 7.6 6.9

0.25 12.4 17.1 12.1 11.6 18.6 11.1 14.9 18.6 14.9

0.50 22.5 25.2 16.9 18.2 24.2 14.0 26.0 27.7 19.9

0.6 0.10 10.4 18.5 26.1 7.7 19.4 25.7 10.2 19.9 26.6

0.25 53.3 63.1 54.7 41.2 58.0 43.7 55.0 63.8 52.4

0.50 78.1 80.4 67.4 62.7 69.5 46.1 76.0 76.3 63.1

200 0.4 0.10 7.0 10.5 10.0 7.1 11.4 9.9 6.9 10.2 9.0

0.25 25.2 31.9 27.7 19.1 30.9 22.8 24.6 32.3 26.7

0.50 43.0 48.3 42.1 31.4 39.3 30.0 43.2 49.1 41.3

0.6 0.10 25.9 42.7 47.2 13.0 30.1 34.0 23.5 43.4 46.3

0.25 89.0 92.9 86.3 72.1 83.5 70.0 88.9 94.5 85.0

0.50 98.3 98.5 95.9 89.6 92.0 83.4 98.4 98.7 93.6

N 100 0.4 0.10 6.1 7.8 6.2 6.9 10.2 7.8 6.1 7.0 5.5

0.25 14.4 19.3 14.7 13.7 19.2 13.2 14.7 17.8 13.3

0.50 25.6 27.7 19.4 17.5 24.1 12.5 25.2 28.7 19.2

0.6 0.10 10.6 27.1 32.0 8.2 19.7 23.7 10.2 19.3 24.7

0.25 61.5 70.1 61.3 46.0 62.3 44.8 58.4 69.2 59.3

0.50 82.6 85.1 72.3 64.9 71.3 44.9 79.0 82.0 65.7

200 0.4 0.10 8.0 10.8 9.2 5.9 12.6 9.2 7.0 9.3 8.9

0.25 27.7 37.4 33.2 20.4 31.0 24.7 26.8 35.1 30.7

0.50 47.0 51.5 43.6 33.2 41.7 30.7 43.0 49.5 41.3

0.6 0.10 27.1 47.3 49.6 14.5 35.6 39.2 28.8 48.3 51.8

0.25 91.5 96.5 88.4 72.3 85.2 71.0 90.7 96.1 85.7

0.50 98.8 99.7 96.3 91.7 95.5 83.6 99.1 99.3 94.8

The columns CvM give the results for the test studied in Bücher et al. (2014). The latter test and the test
S̃n,1 (resp. the test San,1) are (resp. is) carried out using dependent multiplier sequences (resp. a variance
estimator of the form (32))
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Table 5 Percentage of rejection of H0 computed from 1000 samples of size n = 500 generated with γ = 0
in (AR1) and when C1 and C2 are both either bivariate Student copulas with 1 d.f. (t1), with 3 d.f. (t3) or
with 5 d.f. (t5) with a Spearman’s rho of 0.4 for C1 and a Spearman’s rho of ρ for C2

ρ t1 t3 t5

W S̃n,1 San,1 W S̃n,1 San,1 W S̃n,1 San,1

0.4 4.5 3.9 2.8 4.5 5.2 4.0 4.7 6.3 4.4

0.6 8.1 43.3 38.7 8.5 57.9 54.3 8.5 66.5 63.8

0.8 20.5 99.4 98.6 21.7 100.0 99.9 21.5 100.0 100.0

0.2 7.9 33.7 29.2 8.8 51.0 46.6 8.9 52.9 48.4

0.0 19.9 87.7 84.7 23.0 95.7 94.9 24.0 97.2 96.3

−0.2 41.8 99.7 99.6 49.5 100.0 100.0 51.5 100.0 100.0

−0.4 70.2 100.0 100.0 78.6 100.0 100.0 80.4 100.0 99.9

−0.6 91.7 100.0 99.9 95.8 100.0 100.0 96.6 100.0 100.0

The test S̃n,1 was carried out with dependent multiplier sequences, while the test San,1 used a variance
estimator of the form (32). The columns W contain the rejection rates of the similar test studied in Wied
et al. (2014). The results are taken from Table 1 in the latter reference

reported in Table 2 reveals that, rather naturally, the use of dependent multipliers in
the case of serially independent observations results in a small loss of power.

We end this section by a comparison of the tests S̃n,1 and San,1 with the similar test
studied in Wied et al. (2014). To do so, we reproduced one of the experiments carried
out in the latter reference. The results are reported in Table 5 and confirm that tests for
change-point detection based on (4) are potentially substantially more powerful than
tests based on (10).

5 Practical recommendations and illustration

Based on the experiments partially reported in the previous section, we recommend,
among the tests S̃n,i and San,i , the tests S̃n,i . Indeed, the tests San,i did not hold their
level well in the case of strong cross-sectional dependence. Furthermore, because of
their form, the tests San,i might suffer from some of the practical issues described in
Shao and Zhang (2010), and, in future research, it might be of interest to study a
self-normalization version of these as advocated in the latter reference.

The pros and cons of the tests S̃n,i compared with the test studied in Bücher et al.
(2014) are as follows: the tests S̃n,i seem more powerful for alternatives involving a
change in Spearman’s rho at constant margins; they are also substantially faster to
compute. Their main weakness is that, by construction, they have no power against
alternatives involving a change in the copula at a constant value of Spearman’s rho
and constant margins.

Among the tests S̃n,i , we recommend the test S̃n,3 merely because of its slightly
better finite-sample behavior in our simulations.

We end this section by a brief illustration of the studied tests on real financial
observations. Specifically, we consider a trivariate version of the data analyzed in
Dehling et al. (2014, Section 7). The observations consist of n = 990 daily logreturns
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computed from the DAX, the CAC 40 and the Standard and Poor 500 indices for the
years 2006–2009. An approximate p value of 0.045 was obtained for the test S̃n,3 with
dependent multipliers, providing some evidence against H0. It is, however, important
to bear in mind that it is only under the assumption that H0,m in (2) holds that it would
be fully justified to decide to reject H0,c in (3).

6 Conclusion

Tests for change-point detection based on the generic statistic Sn, f defined in (9)
were first studied theoretically. These tests, designed to be particularly sensitive to
changes in the cross-sectional dependence of multivariate time series, can be carried
out using either resampling based on multipliers, or by estimating the asymptotic null
distribution of Sn, f . Both approaches were shown to be asymptotically valid under
strong mixing and suitable conditions on the underlying function f . In addition, a
procedure for estimating a key bandwidth parameter involved in both techniques for
computing p values was suggested, making the tests fully data-driven. Next, their
finite-sample behavior was investigated by means of extensive simulations for three
particular choices of the function f resulting in the test statistics defined in (6) mea-
suring changes in the cross-sectional dependence in terms of multivariate extensions
of Spearman’s rho. Practical recommendations and an illustration were finally given.
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