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Abstract A class of tests for change-point detection designed to be particularly sen-
sitive to changes in the cross-sectional rank correlation of multivariate time series
is proposed. The derived procedures are based on several multivariate extensions of
Spearman’s rho. Two approaches to carry out the tests are studied: the first one is
based on resampling and the second one consists of estimating the asymptotic null
distribution. The asymptotic validity of both techniques is proved under the null for
strongly mixing observations. A procedure for estimating a key bandwidth parame-
ter involved in both approaches is proposed, making the derived tests parameter-free.
Their finite-sample behavior is investigated through Monte Carlo experiments. Practi-
cal recommendations are made and an illustration on trivariate financial data is finally
presented.
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1 Introduction

Let X1, ..., X, be amultivariate times series of d-dimensional observations and, for
anyi € {1,...,n},let F) denote the cumulative distribution function (c.d.f.) of X;.
We are interested in procedures for testing Hy : F(V' = ... = F™ against —Hj.

Notice that the aforementioned null hypothesis can be simply rewritten as

Hy : 3 F suchthat Xq,..., X,, have c.df. F. (D)

Such statistical procedures are commonly referred to as tests for change-point detec-
tion (see, e.g., Csorgd and Horvéth 1997, for an overview of possible approaches).
The majority of tests for Hy developed in the literature deal with the case d = 1. We
aim at developing nonparametric tests for multivariate time series that are particularly
sensitive to changes in the dependence among the components of the d-dimensional
observations. The availability of such tests seems to be of great practical importance
for the analysis of economic data, among others. In particular, assessing whether the
dependence among financial assets can be considered constant or not over a given time
period appears crucial for risk management, portfolio optimization and related statisti-
cal modeling (see, e.g., Wied et al. 2014; Dehling et al. 2014, and the references therein
for a more detailed discussion about the motivation for such statistical procedures).

The above context, rather naturally, suggests to address the informal notion of
dependence through that of copula (see, e.g., Nelsen 2006). Assume that Hy in (1)
holds and that, additionally, the common marginal c.d.f.s Fy, ..., Fgof X1,..., X,
are continuous. Then, from the work of Sklar (1959), the common multivariate c.d.f.
F of the observations can be written as

F(x) = C{Fi(x1), ..., Fs(xg)}, xeR?,

where the function C : [0, 119 — [0, 1] is the unique copula associated with F. It
follows that Hp can be rewritten as Hyp , N Ho ., where

Hom:3F, ..., Fgsuchthat Xy, ..., X, have marginal c.d.fs Fi,..., Fg, (2)
Hoy, :3C such that Xy, ..., X, have copula C. 3)

Several nonparametric tests designed to be particularly sensitive to certain alternatives
under Hy ,, N—Hy . were proposed in the literature. Tests for the constancy of Kendall’s
tau (which is a functional of C) were investigated by Gombay and Horvath (1999)
(see also, Gombay and Horvath 2002) and Quessy et al. (2013) in the case of serially
independent observations. A version of the previous tests adapted to a very general
class of bivariate time series was proposed by Dehling et al. (2014). Recent multivariate
alternatives are the tests studied in (Biicher et al. 2014, see also the references therein)
based on Cramér—von Mises functionals of the sequential empirical copula process.
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The aim of this work was to derive tests for the constancy of several multivari-
ate extensions of Spearman’s rho (which are also functionals of C) in multivariate
strongly mixing time series. A similar problem was recently tackled by Wied et al.
(2014). However, as the functional they considered does not exactly correspond to a
multivariate extension of Spearman’s rho (because of the way ranks are calculated), the
corresponding test turns out to have a rather low power. We remedy that situation by
computing ranks with respect to the relevant subsamples. From a theoretical perspec-
tive, as in Wied et al. (2014), no assumptions on the first order partial derivatives of the
copula are made. The latter is actually an advantage of the studied tests over that inves-
tigated in Biicher et al. (2014). An inconvenience with respect to the aforementioned
approach is however that, as all tests based on moments of copulas (such as Spearman’s
rho or Kendall’s tau), the derived tests will have no power, by construction, against
alternatives involving changes in the copula at a constant value of Spearman’s rho.

To carry out the tests, we propose two approaches for computing approximate p
values: the first one is based on resampling while the second one consists of esti-
mating the asymptotic null distribution. In addition, a procedure for estimating a key
bandwidth parameter involved in both approaches is proposed, making the derived
tests fully data-driven. The versions of the studied tests based on the estimation of the
asymptotic null distribution can be seen as alternatives to the test based on Kendall’s
tau recently proposed by Dehling et al. (2014).

The paper is organized as follows: The test statistics are defined in Sect. 2 and their
limiting null distribution is established under strong mixing. Section 3 presents two
approaches for computing approximate p values based, respectively, on bootstrapping
and on the estimation of an asymptotic variance. The fourth section partially reports
the results of Monte Carlo experiments involving bivariate and fourvariate time series
generated from autoregressive and GARCH-like models. The fifth section contains
practical recommendations and an illustration on trivariate financial data, while the
last section concludes.

In the rest of the paper, the arrow ‘~~’ denotes weak convergence in the sense of
Definition 1.3.3 in van der Vaart and Wellner (2000). Also, given a set T, £°°(T; R)
denotes the space of all bounded real-valued functions on 7" equipped with the uniform
metric. The proofs of the stated theoretical results are available in the online supple-
mentary material and the studied tests for change-point detection are implemented in
the package npcp (Kojadinovic 2014) for the R statistical system (R Development
Core Team 2014).

2 Test statistics
2.1 Multivariate extensions of Spearman’s rho and their estimation

Spearman’s rho is a very well-known measure of bivariate dependence (see, e.g.,
Nelsen 2006, Section 5.1 and the references therein). For a bivariate random vector
with continuous margins and copula C, it can be expressed as

p(C) = 12/ C(u)du —3 = 12/ ujurdC(u) — 3.
(0,112 (0,177
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932 I. Kojadinovic et al.

When the random vector of interest is d-dimensional with d > 2, the following three
possible extensions were proposed by Schmid and Schmidt (2007):

d+1 d
CO)=——— 12 Cu)du — 11,
p1(C) 2d—d—1< /[0,1]d (u)du ]

02(C) = p1(C),

d\ ! o
p3(C) = (2) > p(ct),

I<i<j<d

where C+/) is the bivariate margin obtained from C by keeping dimensions i and j,
and C is the survival function corresponding to C. It is well known that the latter can
be expressed in terms of C. To see this, let D = {1, ..., d} and, for any u € [0, l]d
and A C D, let u? be the vector of [0, 1]d such that u;f‘ =u; ifi € A and ul’.“ =1
otherwise. Then, for any u# < [0, l]d, Cu) = ZACD(—I)‘A‘C(uA). Other related
d-dimensional coefficients are considered in Quessy (2009).

Let us now discuss the estimation of the above theoretical quantities. Specifically,
we assume that we have at hand n copies X1, ..., X, of a d-dimensional random
vector X with copula C and continuous margins. Given an estimator of C, natural
estimators of p1(C), p2(C) and p3(C) can be obtained using the plug-in principle.
Restricting attention to a sample Xg, ..., X;, 1 < k <[ < n, for reasons that will
become clear in the next subsection, a natural estimator of C is given by

1 N J
Ck:l(u)——l_k_’_l%l(Ui §u), u €0, 114, 4)
1=
where |
il _ kil kil .
i _l—k+1(R“""’Rid)’ iefk,... 1}, 3)

with Rf]fl = Zi:k 1(X;; < X;;) the maximal rank of X;; among Xy;, ..., X;;. The
quantity given by (4) is commonly referred to as the empirical copula of Xy, ..., X
(see, e.g., Riischendorf 1976; Deheuvels 1981). Corresponding natural estimators
of the three aforementioned multivariate versions of Spearman’s rho are, therefore,
P1(Cr), p2(Cyy) and p3(Cry), respectively.

It is important to notice that we do not necessarily assume the observations to be
serially independent. Serial independence and continuity of the marginal distributions
together guarantee the absence of ties in the d component series. However, continu-
ity of the marginal distributions alone is not sufficient to guarantee the absence of
ties when the observations are serially dependent (see,e.g., Biicher and Segers 2014,
Example 4.2). This is the reason why maximal ranks are used in (5). The possible pres-
ence of ties in the component series makes the study of the tests under consideration
substantially more complicated.
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2.2 Change-point statistics

To derive tests for change-point detection particularly sensitive to changes in the
strength of the cross-sectional dependence, one natural possibility is to base these
tests on differences of Spearman’s rhos. By analogy with the classical approach to
change-point analysis (see, e.g., Csorgd and Horvédth 1997), one could for instance
consider the following three test statistics:

k(n —k) .
Spi = max ———=—|pi(Crx) — pi(Crgr:a)l, i €{1,2,3}, (6)
I<k<n—1 n3/
where C1.x and Cyy1., are the empirical copulas of the subsamples X1, ..., X} and
Xk+1, - ., Xy, respectively, defined analogously to (4). All three statistics above turn

out to be particular cases of a generic statistic which is the primary focus of this work.
Before we can define it, some additional notation is necessary.

Forany A C D = {l1,...,d}, let ¢4 be the map from £°° ([0, 1]d; R) to R defined
by

¢A<g>=/[0!udg(u/‘)du, g€t (10,11 R). )

Then, define the empirical process

Tn,A(S) = \/ﬁ)\n(os §) An(s, 1) {¢A(C1:Lnsj) - ¢A(CLnsJ+1:n)}a s €0, 1],

where A, (s, 1) = (lnt] — |ns])/nfor (s, t) € A = {(s,1) € [0, 112:s < t}, and with
the additional convention that Cy; = 0 whenever k > [. Simple calculations reveal
that T, » = 0. Next, consider the R2'~!_valued empirical process

Tn(s) = (Tp,(1y(8), T 2y(), ..., Tu,p(s)), s €0, 1]. (8)
Finally, given a function f : R2-1 R, define the generic change-point statistic

Sn.f = Supllf{Tn(S)}l = mmax [f{Tak/m)}. ©))

s€[0

We shall now verify that the statistics S, ;, i € {1, 2, 3}, given by (6) are particular
. . . . d
cases of S, s when f is linear, that is, when there exists a vector a € R2 -1 such
d . . .
that, for any x € R -1 fx) = a"x. As we continue, with some abuse of notation,
. d .
we index the components of vectors of R ~! by subsets of D of cardinality greater
. 2d_1 .
than 1, i.e., for any x € R , we write X = (x{1}, X2}, ..., xp). Then, we have
. d
Su,i = Sn, 1 € {1,2, 3}, where, for any x € R -1,

d+1)24 d+1)2
fi) = D i = D S i,
(ZE’%
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934 I. Kojadinovic et al.

24
f3x) = dd—1 Z XA.

ACD
[A]=2

Similar relationships hold for the statistics constructed from the additional coefficients
mentioned in Quessy (2009), though the corresponding functions f are not necessarily
linear anymore but only continuous.

Let us make a brief remark concerning the statistic S, ». Expressingitas S, s, above
is clearly not the most efficient way to compute it. To see this, forany 1 <k <[ <n,
define

!

- 1 A kil

Crat(w) = +— ZI(UI- > u), uel0 11,
i=k

~ k:l _
where the U; are defined in (5), and notice that, for any u < [0, 114, Cra (u) =
> acp(—DICry(u?), where Cy is defined in (4). Then, by definition of py,
k(n —k) _ _
Spp = Max —5— |p1(C1:6) = p1(Crr1:n)]| -
n

I<k<n—1

Under the assumption of no ties in the d component series, some additional simple
calculations reveal that the latter is actually nothing else than S, ; computed from the
sample — X1, ..., —X,.

We end this section by a discussion of the differences between S, 1 and the similar
statistic considered in Wied et al. (2014). Instead of basing their approach on the
empirical copula, these authors considered the alternative estimator of C defined, for
any | <k <[l <n,as

l

Crotn(@) = ﬁ 21 (0" <u), wero 1y, (10)
with the convention that Cy.; , = 0ifk > [. The apparently subtle yet crucial difference
between Cy; in (4) and Cy , above is that the scaled ranks are computed relative to the
complete sample X1, ..., X, for Ci.; », while, for Cy.;, they are computed relative
to the subsample X, ..., X;. As a consequence, the analogue of the statistic S, |
considered in Wied et al. (2014) is not really a maximally selected absolute difference
of sample Spearman’s rhos. From a practical perspective, as illustrated empirically
in Biicher et al. (2014), the use of Cy instead of C. , in a change-point detection
framework results in tests that are more powerful when the change in distribution in
only due to a change in the copula. We provide similar empirical evidence in Sect. 4:
tests based on S, 1 appear substantially more powerful than their analogues based
on (10) for alternatives involving a change of p (C) at constant margins. Reasons that
explain this improved efficiency are discussed in Biicher et al. (2014, Section 2).

2.3 Limiting null distribution under strong mixing

Let us first recall the notion of strongly mixing sequence. For a sequence of d-
dimensional random vectors (Y;);cz, the o-field generated by (Y;)q<i<p, a,b €
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Z U {—o0, +00}, is denoted by .7-'5 . The strong mixing coefficients corresponding to
the sequence (Y;);c7 are defined by

op = sup sup |[P(ANB) — P(A)P(B)|
PeL AeF?  BEF )
for strictly positive integer r. The sequence (Y;);c7 is said to be strongly mixing if
o —> 0asr — oo.
The limiting null distribution of the vector-valued empirical process T, defined
in (8) can be obtained by rewriting its components in terms of the processes

Sn.a(s, 1) = /nkn(s, ){a(Clus)+1:1n1) — Pa(C)},  (s,1) € A, (11)
for A € D, |A| > 1. Indeed, it is easy to verify that, under Hy defined in (1),

Tn,A(S) = )\n(s, 1)Sn,A(Os S) - )"n(os S)SH,A(Ss 1)’ NS [0’ 1] (12)

As we shall see below, the limiting null distribution of T,, is then a mere consequence
of the fact that the empirical processes S, 4o, A S D, |A| > 1, are asymptotically
equivalent to continuous functionals of the sequential empirical process

Lnt]

Bats, ) = —— S (QWisw-Cw), (s.rw)edx[011, (13)
i=|ns]+1

where Uy, ..., U, is the unobservable sample obtained from Xy, ..., X, by the
probability integral transforms U;; = F;(X;;),1 € {1,...,n}, j € D.

IfUy,...,U, is drawn from a strictly stationary sequence (U;);cz whose strong
mixing coefficients satisfy o, = O(r~%) with @ > 1, we have from Biicher (2014)
that B, (0, -, -) converges weakly in £°°([0, 1]d+1; R) to a tight centered Gaussian
process B¢, with covariance function cov{Bg.(s, u), Bl (¢, v)} = (s A t)kc(u, v),
(s, w), (¢,v) € [0, 171911, where

kc(u, v) = cov {BOC(I, u), Be(1, v)} = ZCOV{l(Uo <u),1(U; <v)}. 14
keZ

As a consequence of the continuous mapping theorem, B, ~» B¢ in £°(A x
[0, 11%; R), where

Be(s, t,u) = Bo(t, u) — Be(s, u), (s.t,u) € A x [0, 11, (15)

The following proposition, proved in Section A of the supplementary material, is the
key step for obtaining the limiting null distribution of the vector-valued process T,
defined in (8).

Proposition 1 Assume that X1, ..., X, is drawn from a strictly stationary sequence
(Xi)iez with continuous margins and whose strong mixing coefficients satisfy o, =
O™, a > 1. Then, forany A C D, |A| > 1,
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936 I. Kojadinovic et al.

sup [Sp,a(s, 1) — ¥, a{Bn(s, 1, )} = op(1), (16)
(s,1)eA

where Yrc 4 is a linear map from £%°([0, 119; R) to R defined by

Ve.a(g) = pale) — / ST a-weehdcw), g0, 1% R),
0.1 5e 1ean(j)
(17)
with ¢4 given in (7).

From the work of Mokkadem (1988), we know that the strong mixing conditions
stated in the previous proposition (as well as those stated in the forthcoming proposi-
tions and corollaries) are for instance satisfied (with much to spare) when X1, ..., X,
is drawn from a stationary vector ARMA process with absolutely continuous innova-
tions. A similar conclusion holds for a large class of GARCH processes (see Lindner
2009, Section 5, and the references therein).

The next result, proved in Section B of the supplementary material, is a consequence
of the previous proposition and establishes the limiting null distribution of the generic
statistic Sy, r defined in (9) under strong mixing.

Corollary 2 Under the conditions of Proposition 1,

Ty ~ s = Te(s) = (Te,y(s), Teq2y(9), - .., Te,p(s)) (13)
in €2°([0, 11; R2'~1), where

Tc(s) = ¥c{Bc(0,s,-) —sBc(0, 1,9}, s €0, 1], (19)
with Be defined in (15) and yr¢ a map from £2([0, 11%; R) to R2'~! defined by

ve(@) = (Ve (@), Yo (@) - Yen(®),  gel™(0,11R).  (20)

241

As a consequence, for any f : R — R continuous,

Sn.p = sup [f{Ta()} ~ Sc,r = sup |f{Tc(s)},
s€l0,1] s€[0,1]

and, if f is additionally linear and aé,f = var[f o Yc{Bc(0, 1, )}] > 0, the weak

limit of ac_’lfSn,f is equal in distribution to supg¢o 17 U(s)|, where U is a standard
Brownian bridge on [0, 1].

3 Computation of approximate p values
Corollary 2 suggests two related ways to compute p values for the generic test statistic

Sy, r defined in (9). The first approach, based on resampling, consists of exploiting
the fact that, under Hy, T, defined in (8) is asymptotically equivalent to a continuous
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functional of the sequential empirical process B, defined in (13) and can be applied
as soon as f : R2‘~! — R is continuous. The second approach, restricted to the
situation when f is linear, is motivated by the last claim of Corollary 2. It consists of
estimating Ué . and thus the asymptotic null distribution of S, 7.

3.1 Approximate p values by bootstrapping

The first approach that we consider consists of bootstrapping the vector-valued empir-
ical process T}, defined in (8) using a bootstrap for the sequential empirical process B,,.
This way of proceeding actually allows us to consider not only linear but also continu-
ous functions f in (9). More specifically, we consider a multiplier bootstrap for B, in
the spirit of van der Vaart and Wellner (2000, Chapter 2.9) when observations are seri-
ally independent, or Biihlmann (1993, Section 3.3) when they are serially dependent.
In the latter case, we rely on the recent work of Biicher and Kojadinovic (2014).

The notion of multiplier sequence is central to this resampling technique. We say
that a sequence of random variables (&; )<z is an i.i.d. multiplier sequence if:

(MO) (& .n)iez is i.i.d., independent of X1, ..., X,, with distribution not chang-
ing with n, having mean 0, variance 1, and being such that fOOO{P(|§0,n| >
O}2dx < co.

We say thata sequence of random variables (§; ,); 7 is adependent multiplier sequence

if

(M1) the sequence (&; ,);cz is strictly stationary with E(§p ,) = 0, E(ég’n) =1l and
sup,~1 E(|€0,»|") < ooforallv > 1, and is independent of the available sample
X1, Xn

(M2) There exists a sequence £, — oo of strictly positive constants such that £, =
o(n) and the sequence (§; ,);cz is £,-dependent, i.e., & , is independent of
Eirnpforallh > £, andi € N.

(M3) There exists a function ¢ : R — [0, 1], symmetric around 0, continuous at
0, satisfying ¢(0) = 1 and ¢(x) = O for all |x| > 1 such that E(£ ,£5.,) =
o(h/ty,) forall h € Z.

The choice of the function ¢ and an approach to generate dependent multiplier
sequences is briefly discussed in Sect. 4. More details can be found in (Biicher and
Kojadinovic 2014, Section 5.2).

Let M be a large integer and let (Eifz)) /A (Si(,j,t,/l))iez be M independent copies
of the same multiplier sequence. Then, following Biicher and Kojadinovic (2014) and
Biicher et al. (2014), forany m € {1,..., M} and (s, t,u) € A x [0, l]d, let

Lnt]

= > g 10" =u) - cw}.

i=|ns]+1
1 Lnt]

NG

B (s, 1, ) =

SI

N - ~ |ns|+1:|nt]
By (s, 1, u) = (Si(,'::) - éfnms)J—H:LntJ) 1 (Ui = ”) 2h

i=|ns]+1

where Ekl is the arithmetic mean of é‘i(':) fori € {k,...,1}.
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938 I. Kojadinovic et al.

The following proposition is a consequence of Theorem 1 in Holmes et al. (2013),
Theorem 2.1 and the proof of Proposition 4.2 in Biicher and Kojadinovic (2014), as
well as the proof of Proposition 4.3 in Biicher et al. (2014). It suggests interpreting the
multiplier replicates I@%f,l), ol B;M) (resp. I?Bf,”, R ]E;M)) as “almost” independent
copies of B, as n increases.

Proposition 3 Assume that either

(1) the random vectors X1, ..., X, are i.i.d. with continuous margins and the
sequences (Ei(,iz))iez’ ceey (Eifil))iez are independent copies of a multiplier
sequence satisfying (MO0),

(ii) or the random vectors X1, ..., X, are drawn from a strictly stationary sequence

(X1)iez with continuous margins whose strong mixing coefficients satisfy o« =
O(r=%) for some a > 3 + 3d/2, and (%'i(,lz))iez’ (Ei(’f:[)),-ez are inde-
pendent copies of a dependent multiplier sequence satisfying (M1)—(M3) with
L, = O(n'?7%) for some 0 < & < 1/2.

Then,

(Bn,@gn,...,]ﬁagM)) - (]B%C,IB%(C”,...,IB%(CM)),

L BU0) o (Be,BY, .., BY")

in {°(A x [0, 114; R+ vwhere B¢ is given in (15) and ]B%(Cl), e IB%(CM) are inde-
pendent copies of Bc.

Starting from the quantities defined above, we shall now define appropriate mul-
tiplier replicates under Hy of T, defined in (8). From (12), we see that to do so, we
first need to define multiplier replicates of the processes S, 4, A € D, |A| > 1,
defined in (11). From (16) and Proposition 3, natural candidates would be the
processes (s, ) — wC,A{IB%f,””(s, t, )} or the processes (s, t) wC,A{I@SLm)(s, t, )},
m € {l,..., M}, where the map ¢ 4 is defined in (17). These, however, still
depend on the unknown copula C. The latter could be estimated either by Cy., or by
C|us)+1:nt]» Which led us to consider the following two computable versions instead:

SI(’:?I;(S’ t) = 1izfclzn’A {I@;M) (S7 t’ )} ’ SI(’ZZ(S’ t) = 1'yCLn.vJ-%-I:Ln/JsA {B;m)(s’ t, )}’

for (s, ) € A. The processes g;mz were found to lead to better behaved tests than the
S;mf{ in our Monte Carlo experiments, which is why, from now on, we focus solely on

the former. It is easy to verify that the g;mz can be rewritten as

Lnt]

&(m) (m)  z(m) A~ |ns|+1:|nt]
SﬂqA(s’ = % Z (Si,n - l$;:|_nsj—§—1:|_ntj) IC[n:J+1:Lntj>A (Ui )7
i=|ns]+1
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where, for any u € [0, 119,

Ie,a) = Yo a{lu <)}

:Ha—u,)—/[o ”dz [T a=wiw; <vpdcw). (@2

leA jeAleA\())

Next, by analogy with (12), foranym € {1,..., M}, A C D, |A] > 1, let

T () = dn(s. DS} (0, 8) = 2 (0, )8} 5. D). s €[0,1],

and let Tr,({”) be the corresponding version of T,, in (8). Finally, for some continuous
function f : R~ — R, let §") = sup,co 1) |/{T" (5)}] by analogy with (9).

Interpreting the S’limf) as multiplier replicates of S, y under Hy, it is natural to compute

an approximate p value for the test as

M

1 v

1 (30 = Su.z): (23)
m=1

The null hypothesis is rejected if the estimated p value is smaller than the desired
significance level.

The following result, proved in Section C of the supplementary material, can be
combined with Proposition F.1 in Biicher and Kojadinovic (2014) to show that a test
based on S,  whose p value is computed as in (23) will hold its level asymptotically
as n — oo followed by M — oo.

Proposition 4 Under the conditions of Proposition 3, for any A C D, |A] > 1,
s(1 & 1
(S04 800 8 (Sca 8Dy 880)

in {£°(A; RZWMH vhere, for any (s,1) € A, Sc.a(s,t) = Yc.alBc(s,t, )} and

S(Cl) Ay e s S(CMX are independent copies of Sc a. As a consequence,

(Ta, B, T00) - (Te, T, . TE")

in {£°°([0, 17; ]de_l)}M“, where T¢ is given in (19) and Tg), ... ,Tém are inde-

. . . da_
pendent copies of Tc, and, for any continuous function f : R*~1 — R,

M

o1 & 1 M
(S0 80 300) > (. 57 520)

n, fr-

in RM+1 ywhere Sc.r = supsepo.17 | f{Tc ()} and Sg,)f’ A SéMf) are independent
copies of Sc, ¢.
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The finite-sample behavior of the tests under consideration based on the processes
Sﬁlm)‘ is not, however, completely satisfactory: the tests appear too liberal for multivari-
ate time series with strong cross-sectional dependence. This prompted us to try other

asymptotically equivalent versions of the S( ) . Under an additional assumption on the
partial derivatives of the copula, the genenc test statistic Sy, s defined in (9) can be
written under Hy as a functional of the two-sided sequential empirical copula process
studied in Biicher and Kojadinovic (2014), and could, therefore, be bootstrapped via
the multiplier processes defined in (4.4) of Biicher et al. (2014). Without imposing any
condition on the partial derivatives of the copula, the latter remark led us to consider,
instead of the processes

S .0 = ga [BI 5.1, )
_/[o 14 Z H (1 —v)B (s, 1, vUNAC g 12100 (0), (24)
jeAleA\{j}

the processes
8 a0 = ga B (5.1 )]

- /O oo LT =Bl ot 0)dChss i @), @5)

d
jeAleA\{j}

where, for any j € D, ]E%fzmb)n j is a linearly smoothed version of (s,?,u) +—>

Bgm)(s, t,u;) with u; the vector of [0, 1]" whose components are all equal to 1
except the jth one which is equal to u, and b,, a strictly positive sequence of constants
converging to 0. Specifically, for (s, 7, v) € A x [0, 1],

Lnt]
1
B (m) (m) [ Lsi+Lilne]
nb j(s t,v) = \/ﬁ z (‘E éLnsj+l:|_ntj)‘cb ( v)’

i=|ns]+1
where
Up NV —U_ AV
£bn(u1 U) = +—7 u,v e [Os 1]9
Uy —u—
withuy = (u+by,) Aland u_ = (u — b,) Vv 0. It is easy to verify that, for any

u € [0, 1], Ly, (u, -) differs from 1(u < -) only on the interval (u_, uy) on which it
linearly increases from O to 1.
Notice that (25) can be rewritten as

[nt]
(m) (m) (m) ~ |ns]+1:|nt]
" by A(s 1= ﬁ Z (é g[nsJ-Fl:[ntJ)Ibn Clns)+1:(nt) A (U ),
i=|ns]+1

where, for any u € [0, 119,
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Ty ca@) =[]0 —u) - /{0 L2 T = wi,wyepdca. @o

leA jeAleA\{j}

For any m € {1,..., M}, let ’]T‘,gm;n and 51(1”;)),, ¥ be the analogues of 'IVF,({”) and S',(lm}

respectively, defined from the processes sz’?b)n, 4 10 (25). The following result, proved in
Section C of the supplementary material, is then the analogue of Proposition 4 above.

Proposition 5 If b, = o(n~'/?), Proposition 4 holds with Sflmf)x replaced by S;mb)n A

T replaced by Ty and ") replaced by S} .

Finally, notice that it is possible to consider a version of the above construction in
which the smoothing sequence is by;;;|— |5 instead of b,,. We focused above only on
the latter approach as it led to better behaved tests in our Monte Carlo experiments.

3.2 Estimating the asymptotic null distribution

When the function f used in the definition of S, ¢ in (9) is linear, Corollary 2 gives
conditions under which, provided O’é)f = var[f o Yc{Bc (0, 1, -)}] > 0, the weak
limit of oc. lfSn, £ under Hy is equal in distribution to sup, o 17 [U(s)|. The distribution
of the latter random variable can be approximated very well (this aspect is discussed
in more detail in Sect. 4). To be able to estimate an asymptotic p value for S, r, it
thus remains to estimate the unknown variance aé’ Iz

Let E¢ and varg denote the expectation and variance, respectively, conditional on
the data. By analogy with the classical way of proceeding when estimating variances
using resampling procedures (see,e.g., Kiinsch 1989; Shao 2010), in our context, a
first natural estimator of the unknown variance under Hy is of the form

52c.p =vare [ £ ove [BI©.1,0}], @

where I@;m) is defined in (21). To simplify the notation, we shall drop the super-
script (m) in the rest of this section. The previous estimator is not computable as C is
unknown, which is why we will eventually consider the estimator 63 Cim f instead.

To obtain a more explicit expression of 6,%@ - first, let

TIe@) = (Ze,y@), Ieoy@), ..., Ie.p@)),  uel0,1]9, (28)

where Zc o, A € D, |A| > 1, is defined in (22). From the linearity of f o ¥c, we
then obtain that

&f,c,f = varg I% g(ém — &) f o Ic (0;’")]
e L) 5
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Using the fact that, from (22) and (28),

%gf"%(ﬁfm) Zf owc {1(01" <)} = fovern.

we obtain that
- 1
v ~ 1n
5oy = D BelEintin f {Te (01") — ve i)
=
~ 1:n

x<f{ze (07") = veim .
On the one hand, should the sequence (&; ,);c7 be an i.i.d. multiplier sequence, that
is, should it satisfy (MO), unsurprisingly, the above estimator simplifies to

n

52ey =22 [z (0") —vew)] (29)

i=1
On the other hand, if the multiplier sequence satisfies (M1)—(M3), one obtains
2 1 — i—j 1
nef =, Z ¢\ f {Ic (Ui ) - wc(Clzn)}
ij=1 n

xf |z (Uj) —ve(Crn}, (30)

which has the form of the HAC kernel estimator of de Jong and Davidson (2000).

Very naturally, once C has been replaced by C1.,,, we use the form in (29) (resp. (30))
for serially independent (resp. weakly dependent) observations. The following result,
proved in Section D of the supplementary material, establishes the consistency of
‘V’r%,cl,,,f under Hy.

Proposition 6 Assume that f : R2'~1 5 R in the definition of (9) is linear and that
either

(1) the random vectors X1, ..., X, are i.i.d. with continuous margins,

(ii) or the random vectors X1, ..., X, are drawn from a strictly stationary sequence
(X1)icz with continuous margins whose strong mixing coefficients satisfy o, =
O(r=?) for some a > 6, and £, = O(n'>~?) for some 0 < & < 1/2 such that,
additionally, ¢ defined in (M3) is twice continuously differentiable on [—1, 1] with
¢©"(0) # 0 and is Lipschitz continuous on R.

P
Then, O’n Cimf O’C . As a consequence, the weak limit Ofan Cim fS,, 1 is equal in
dlstrlbunon 10 supsepo.1 [U(S)1-

As in the previous subsection, better behaved tests are obtained if (26) is used
instead of (22) in the above developments. Let
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T, c@) = (Zp,.c.03@), In, .3, ... I, c.o)),  u € [0, 114,

and let 6,12, by Cron. f be the corresponding estimator of aé Iz Proceeding as above, for
serially independent data, the appropriate form of &3 by Cron. f is

~ 1 . ~ 1 = 2
Ui»brr,clzn~f = ; z [f {Ihnﬁcl:n (Ul ) _Ihnvcl:n}] ’ (31)
i=1
= ~1:
where Zp, ¢, =n ' X" Iy, ¢, (U; "), while, for weakly dependent observations,
I - i—j 1
~2 - A ln =
Gn‘bn,C];n,f = ;l Z (P( ?, )f {Ibnvcl:n (Ul ) _Ibnscl:n}
i,j=1
A~ 1: —
Xf {Ibnsclzn (U] n) _Ibnyclzn}’ (32)

The following analogue of Proposition 6 is proved in Section D of the supplementary
material.

Proposition 7 If b, = o(n~'/?), Proposition 6 holds with &nz,cl.n, s replaced with

~2
O—nabnyclznsf'

3.3 Estimation of the bandwidth parameter £,,

When the available observations are weakly dependent, both the approaches based
on resampling presented in Sect. 3.1 and the one based on the estimation of the
asymptotic null distribution discussed in Sect. 3.2 require the choice of the bandwidth
parameter ¢,,.. The latter quantity appears in the definition of the dependent multiplier
sequences and, as mentioned in Biicher and Kojadinovic (2014), plays a role some-
how analogous to that of the block length in the block bootstrap. The value of ¢, is,
therefore, expected to have a crucial influence on the finite-sample performance of the
two versions of the test based on S,  described previously.

The aim of this subsection was to propose an estimator of £, in the spirit of that
investigated in Paparoditis and Politis (2001), Politis and White (2004) and Patton
et al. (2009), among others, for other resampling schemes. By analogy with (27), we
start from the non computable estimator of aé’ 7 defined by

02 . = vare[f o Yc{Ba(0, 1, )], (33)
where

_ 1 [nt] y
Bu(s.t.u)=—= D &a{l(U; <u)—C@)}, (s.t,u) € Ax [0, 1],
n
i=|ns]+1
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and (§; »);cz is a dependent multiplier sequence. Proceeding as for (27), it is easy to
verify that

1 n )
ol == D¢ (’ - J) FIZeWD) = Ye©) f{TeW) = ye(©)). (34)
ij=1 n

Under the conditions of Proposition 6 (ii) and from the fact that the random variables
| f oZc(U;)| are bounded by SUP .y 121 [ f(x)| < oo (since supyc(o 13 [Zc,a(u)]
< lforall A C D |A| > 1), we can proceed as in the proofs of Propositions 5.1 and

5.2 in Biicher and Kojadinovic (2014) (see also Lemmas 3.12 and 3.13 in Biihlmann
1993 and Proposition 2.1 in Shao 2010) to obtain that

r 14
E (onz’cﬁf) — aéf = +o (Z;z) and  var (a,lz’c’f) = ;"A +o(ly/n),
n

where I' = ¢”(0)/2 Z,fi_oo kZT(k) with (k) = cov{f o Zc(Uy), f oZc(Ug)}, and
A = 20’(4; 7 f_ll @(x)%dx. As a consequence, the mean squared error of O’nz’ C.f is

2 ¢ _
MSE (a,fﬁc)f) =+ A" 4o (e,, 4) +o(Ln/n). (35)
n

Differentiating the function x — I'>/x* + Ax/n and equating the derivative to zero,
we obtain that the value of ¢, that minimizes the mean square error of anz C.f is,

asymptotically,
1/5
o0 _ (ﬁ) / al/5
n - A .

To estimate £, it is necessary to estimate the infinite sum > vez KT (k) as well as
oé = > ez, T (k) through a pilot estimate. To do so, we adapt the approach described
in (Paparoditis and Politis 2001, page 1111) and (Politis and White 2004, Section 3) to
the current context (see also Patton et al. 2009). Let 7, (k) be the sample autocovariance

A~ 1: ~ 1:
at lag k computed from the sequence f o7y, c,, (U M, foIme]:n(Unn). Then,
we estimate I" and A by

L
Fu=¢"0)/2 D Mk/LIK T (k)
k=—L

and
L 2 1
A :2{ Z x(k/L)fn(k)} {/ go(x)zdx},
k=—L -1
respectively, where A(x) = [{2(1 — |x|)} VO] A 1, x € R, is the “flat top” (trapezoidal)

kernel of Politis and Romano (1995) and L is an integer estimated by adapting the
procedure described in (Politis and White 2004, Section 3.2). Let 9,, (k) be the sample
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autocorrelation at lag k estimated from f o7, c,., (lA]:'n), oo, folp, Cim (lA],ll'n). The
parameter L is then taken as the smallest integer k after which g,, (k) appears negligible.
The latter is determined automatically by means of the algorithm described in detail in
(Politis and White 2004, Section 3.2) . Our implementation is based on Matlab code by
A.J. Patton (available on his web page) and its R version by J. Racine and C. Parmeter.

4 Monte Carlo experiments

In the previous section, two ways to compute approximate p values for generic change-
point tests based on (9) were studied under the null. These asymptotic results do not,
however, guarantee that such tests will behave satisfactorily in finite-samples, which
is why additional numerical simulations are needed. In our experiments, we restricted
attention to the three statistics given in (6). For each statistic S,,;, i € {1, 2,3}, an
approximate p value was computed using either the resampling approach based on
the processes in (25), or the estimated asymptotic null distribution based on variance
estimators of the form (31) or (32). To distinguish between these two situations, we
shall talk about the test S',,,i and the test S,‘;’ ;» respectively, in the rest of the paper.

The experiments were carried out in the R statistical system using the copula
package (Hofertetal. 2013). The sequence b,, involved in both classes of tests was taken
equal to n~01. The only (asymptotically negligible) difference with the theoretical
developments presented in the previous sections is that the rescaled maximal ranks
in (5) were computed by dividing the ranks by / — k + 2 instead of [ — k + 1.

Data generating procedure Two multivariate time series models were used to generate
d-dimensional samples of size n in our Monte Carlo experiments: a simple autore-
gressive model of order one and a GARCH(1,1)-like model. Apart from d, n and
the parameters of the models, the other inputs of the procedure are a real ¢ € (0, 1)
determining the location of the possible change-point in the innovations, and two
d-dimensional copulas Cy and C,. The procedure used to generate a d-dimensional
sample X1, ..., X, then consists of

1. generating independent random vectors U;, i € {—100,...,0,...,n} such that
Ui,i € {—100,...,0,..., nt]} are i.i.d. from copula C and U;, i € {|nt] +
1,...,n}arei.id. from copula C»,

2. computing €; = (P~ (Uiy), ..., @ 1 (Uig)), where @ is the c.d.f. of the standard
normal distribution,

3. setting X _190 = €_100 and, for any j € D, computing recursively either

Xij =yXi1,j +e€ij, (ARI)
or
ol =wj+ ﬁjaiz—l,j +aj6i2—1,j and X;; = ojj€ij, (GARCH)

fori =-99,...,0,...,n.
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If the copulas C; and C; are chosen equal, the above procedure generates samples
under H defined in (1). Three possible values were considered for the parameter y
controlling the strength of the serial dependence in (AR1): O (serial independence),
0.25 (mild serial dependence), and 0.5 (strong serial dependence). Model (GARCH)
was only considered in the bivariate case, and following Biicher and Ruppert (2013),
with (w1, B1, o1) = (0.012,0.919, 0.072) and (w3, B2, a2) = (0.037,0.868, 0.115).
The latter values were estimated by Jondeau et al. (2007) from SP500 and DAX daily
logreturns, respectively.

Samples under Hop ,;, N (—Hp, ), where Hp , and Hp . are defined in (2) and (3),
respectively, were obtained by taking C; # C; and ¢ € {0.1, 0.25, 0.5}. Notice that
when y = 0 in (AR1), the latter are samples under Hy ,, N Hi ., where

Hj . :3distinct Cy and C, and ¢ € (0, 1) such that
X1, ..., X4 have copula Cy and X ;1) 41, ..., X, have copula C».

This is not the case anymore when y > 0 as the change in cross-sectional dependence
is then gradual by (AR1).

Other factors of the experiments Five copula families were considered (the Clayton,
the Gumbel-Hougaard, the Normal, the Frank, and the Student), the cross-sectional
dimensional d was taken in {2, 4}, and the values 50, 100, 200, 400, and 500 were used
for n. To estimate the power of the tests, 1000 samples were generated under each
combination of factors and all the tests were carried out at the 5 % significance level.

Computation of the test statistics and of the corresponding p values The data-
generating procedure above generates multivariate time series whose component series
do not contain ties with probability one. Consequently, as explained in Sect. 2.2, S, 2
is merely S, 1 computed from the sample —X7, ..., —X,. Furthermore, if d = 2,
it is easy to see that S, 1 = S,2 = S, 3. However, it can be verified that only the
approximate p values for the tests S‘ml and S’,,,g (resp. S,‘;’l and S,‘;’3) will be equal.
Indeed, the multiplier replicates based on the processes in (25) (resp. the variance
estimators of the form (31) or (32)) computed from X1, ..., X, do not coincide in
general with those computed from — X, ..., —X,,, even in dimension two.

From Proposition 7, we see that, to compute an asymptotic p value for the tests S,/ ;,
itis necessary to be able to compute the c.d.f. of the random variable sup;¢o 17 [U(s)].
The distribution of the latter random variable is known as the Kolmogorov distribu-
tion. As classically done in other contexts, we approach this distribution by that of
the statistic of the classical Kolmogorov—Smirnov goodness-of-fit test for a simple
hypothesis. Specifically, we use the function pkolmogorovlx given in the code of
the R function ks . test.

Empirical levels and power of the tests based on i.i.d. multipliers/a variance estimator
of the form (31) Table 1 gives the empirical levels of the tests when the observations
are serially independent. For the sake of brevity, the results are reported only for two
copula families. Overall, we find that the tests S’n,,’ with multiplier sequences satisfying
(MO) (here standard normal sequences) hold there level rather well both for d = 2 and
d = 4, and all the considered degrees of cross-sectional dependence. This is not the
case for the tests S n“ ; which frequently appear way too liberal when the cross-sectional
dependence is high.
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Table 1 Percentage of rejection of Hy computed from 1000 samples of size n € {50, 100, 200, 400}
generated with y = 0 in (AR1) and when C; = C = C is either the d-dimensional Clayton (Cl) or

Gumbel-Hougaard (GH) copula the bivariate margins of which have a Kendall’s tau of ¢

C n T d=2 d=14
Sn,l 511,2 SZ.I Sz’z gn,l Sn,2 Sn,3 S;;’] SS,Z 53,3
Cl 50 0.1 638 7.4 2.6 3.0 46 5.1 4.0 1.2 2.1 0.7
03 4.1 5.2 1.7 4.2 49 54 3.7 0.5 2.6 0.7
05 3.1 2.7 2.5 8.6 7.1 3.9 4.9 2.8 2.8 1.2
0.7 3.0 0.5 83 238 74 4.1 33 54 103 3.1
100 0.1 35 4.3 2.3 2.7 4.1 53 4.4 1.6 3.4 2.5
03 40 4.4 2.3 3.6 57 47 4.4 2.0 2.8 1.4
05 42 4.0 4.9 8.3 43 40 35 2.2 3.7 1.9
0.7 57 1.6 12.6  23.1 9.1 39 76 113 9.5 7.4
200 0.1 49 4.7 2.8 3.1 6.1 5.1 5.2 3.1 34 33
03 49 5.3 3.7 4.9 4.1 5.6 4.2 2.3 3.6 1.9
0.5 46 4.3 4.8 6.9 46 55 4.2 4.1 4.8 32
0.7 56 3.1 11.2 15.1 10.5 53 11.1 14.1 8.3 9.9
400 0.1 46 4.9 3.7 3.8 6.3 6.7 6.5 4.5 5.5 4.8
03 43 4.6 4.0 4.4 58 53 55 4.1 4.2 3.8
05 438 4.6 4.2 4.8 5.8 45 55 5.5 4.0 4.7
0.7 59 4.0 9.3 10.8 85 6.6 8.7 13.5 8.1 8.2
GH 50 0.1 6.7 6.3 34 2.3 58 53 4.7 24 0.8 2.5
03 41 39 35 2.1 59 6.0 53 1.8 0.7 3.1
05 3.1 34 6.9 34 4.6 49 4.0 3.0 2.5 6.5
0.7 20 1.8 15.5 10.7 34 62 2.0 6.2 42 10.3
100 0.1 52 5.1 2.7 2.5 43 48 4.1 2.5 1.5 2.1
03 59 5.3 5.2 39 6.1 6.7 6.7 3.1 1.9 4.5
05 37 3.7 6.6 5.1 53 48 53 3.6 3.4 6.4
0.7 1.3 2.3 16.9 13.8 45 70 2.7 8.6 9.0 142
200 0.1 52 52 3.8 3.5 4.8 43 4.5 33 2.6 3.1
03 52 5.1 4.7 39 6.0 6.5 5.3 4.7 33 43
05 45 4.5 5.2 4.7 42 39 4.0 3.2 3.6 39
07 22 3.7 12.8 10.8 46 7.0 4.9 6.6 9.0 109
400 0.1 64 6.1 4.8 4.7 5.1 5.7 4.3 4.0 3.1 3.1
03 47 4.6 4.1 3.8 46 53 5.6 3.7 3.6 4.4
05 33 33 35 3.0 43 51 4.5 39 4.5 4.7
0.7 46 5.8 10.1 9.9 53 7.1 5.9 6.3 9.5 10.4

The tests Sn’ ; are carried out with i.i.d. multiplier sequences, while the tests SZ ; use variance estimators
of the form (31)

Table 2 partially reports the percentages of rejection of the i.i.d. multiplier tests for
serially independent observations generated under Hy ,, N H . resulting from a change
of the copula parameter within a copula family. The columns CvM give the results of
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Table 2 Percentage of rejection of Hy computed from 1000 samples of size n € {50, 100, 200} generated
with y = 0in (AR1), 7 € {0.1,0.25, 0.5} and when Cy and C» are both d-dimensional normal (N) or Frank
(F) copulas such that the bivariate margins of Cy have a Kendall’s tau of 0.2 and those of C, a Kendall’s

tau of T
C n T t d=2 d=4
CvM 5',1'1 S‘n,z CvM Sn,l S‘nyz S‘nq3
N 50 0.4 0.10 5.6 6.0 5.6 5.9 7.9 7.9 8.3
0.25 9.1 8.7 8.9 12.2 17.3 18.9 19.5
0.50 13.4 12.6 12.6 24.3 25.1 27.6 28.2
0.6 0.10 9.0 8.7 8.9 7.1 20.7 21.7 22.4
0.25 323 34.7 32.6 45.6 66.3 67.0 69.9
0.50 46.7 42.7 41.6 76.1 78.0 77.5 80.8
100 0.4 0.10 5.7 7.8 7.6 7.6 11.2 12.2 12.3
0.25 14.9 19.7 19.1 27.0 353 37.2 43.0
0.50 25.9 28.9 29.2 54.5 54.6 53.5 59.6
0.6 0.10 14.6 22.7 234 26.1 47.5 51.1 58.8
0.25 60.0 68.6 69.0 90.3 94.9 94.8 97.6
0.50 81.9 84.8 84.2 98.8 98.4 99.0 99.5
200 0.4 0.10 9.1 11.7 12.3 13.2 18.2 17.9 23.3
0.25 26.5 36.7 36.9 58.9 64.9 67.1 75.5
0.50 47.7 54.2 53.7 83.4 83.5 83.3 88.9
0.6 0.10 34.5 57.7 58.0 63.1 87.3 87.8 93.8
0.25 92.6 96.5 96.7 100.0 100.0 100.0 100.0
0.50 99.1 99.5 99.5 100.0 100.0 100.0 100.0
F 50 0.4 0.10 6.9 5.7 6.2 4.5 7.8 9.0 8.4
0.25 10.8 9.7 10.0 12.9 17.9 19.7 19.9
0.50 15.1 13.6 13.6 24.7 30.2 31.1 29.1
0.6 0.10 11.1 10.6 11.3 7.3 233 29.7 24.8
0.25 33.1 32.7 31.9 423 67.2 70.2 69.5
0.50 50.9 46.1 46.2 78.3 81.9 82.3 85.5
100 0.4 0.10 6.1 7.0 7.4 6.5 9.2 13.6 11.9
0.25 16.5 18.2 18.7 26.5 38.8 46.8 49.6
0.50 26.4 28.6 28.3 48.9 52.7 58.3 61.6
0.6 0.10 17.7 27.3 27.2 22.7 55.3 63.9 68.6
0.25 66.5 73.6 74.0 91.9 97.7 98.2 99.5
0.50 86.2 87.3 87.5 99.3 98.8 99.4 99.8
200 0.4 0.10 10.2 15.7 15.6 12.5 19.7 25.3 27.1
0.25 343 41.3 41.5 53.6 64.4 76.2 78.8
0.50 50.7 54.3 54.4 83.2 83.9 90.4 93.2
0.6 0.10 39.0 64.7 65.6 60.3 88.0 92.2 96.4
0.25 95.4 98.3 98.3 99.9 100.0 100.0 100.0
0.50 99.5 99.8 99.8 100.0 100.0 100.0 100.0

The columns CvM give the results for the test studied in Biicher et al. (2014). All the tests were carried out

with i.i.d. multiplier sequences
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the i.i.d. multiplier test based on the maximally selected Cramér—von Mises statistic
studied in Biicher et al. (2014) (with multiplier replicates of the form (4.6) in the latter
reference) and implemented in the R package npcp. Overall, we find that the tests
S'n ; are more powerful than that studied in Biicher et al. (2014) for such scenarios,
especially when the change in the copula occurs early or late. Among the tests Sn is
we observed that the test Sn 3 (which coincides with the test S,, 1 in dimension two)
led frequently to slightly higher rejection rates, although this conclusion is based on
a limited number of simulation scenarios. The rejection rates of the tests S ; with a
variance estimator of the form (31) are not reported for the sake of brevity. They were
found to be slightly less powerful than the tests Sn,, when t = 0.4. For 7 = 0.6, a
comparison of the two classes of tests is not necessarily meaningful as the tests S,‘j’ ;
were often found to be way too liberal under strong cross-sectional dependence.

Empirical levels and power of the tests based on dependent multipliers/a variance
estimator of the form (32) Part of Table 3 reports the empirical levels of the test S‘m 1
when dependent multiplier sequences satisfying (M 1)—(M3) are used. These sequences
were generated using the “moving average approach” proposed initially in Biithlmann
(1993, Section 6.2) and revisited in Biicher and Kojadinovic (2014, Section 5.2).
A standard normal sequence was used for the required initial i.i.d. sequence. The
kernel function « in that approach was chosen to be the Parzen kernel defined by
kp(x) = (1—=6x%+6[x|>)1(|x| < 1/2)+2(1 —|x])?1(1/2 < |x| < 1),x € R, which
amounts to choosing the function ¢ in M3) as x — (kp * kp)(2x)/(kp * kp)(0),
where ‘x’ denotes the convolution operator. The value of the bandwidth parameter £,
defined in (M2) was estimated using the data-driven procedure described in Sect. 3.3.
The same value of £, was used to carry out the test S, | relying on a variance estimator
of the form (32).

From the first three vertical blocks of Table 3, we see that an increase in the degree
of serial dependence in (AR1) (controlled by y) appears to result in a small inflation of
the empirical levels of the test S‘n 1. As expected, the situation improves as n increases
from 100 to 400. For sequences generated using (GARCH), the empirical levels of
the test S’n,l appear always reasonably close to the 5 % nominal level. The test S,“l’1
remains overall way too liberal when the cross-sectional dependence is high.

The last vertical block of Table 3 reports, for strongly serially dependent obser-
vations generated using (AR1), the empirical levels of the test S‘n 1 based on i.i.d.
multipliers, as well as those of the test S, | based on an inappropriate variance esti-
mator of the form (31). As expected, both tests strongly fail to hold their level.

Table 4 partially reports the rejection percentages of the tests based on dependent
multipliers / a variance estimator of the form (32) for observations generated under
Hy ,,N(—Hp,) resulting from a change of the copula parameter within a copula family.
The rejection rates of the test S;] | should be considered with care when T = 0.6 as that
test was found to be way too hberal under strong cross-sectional dependence. Despite
that issue, the test S, .1 appears almost always more powerful than the test S“ . Also, as
it could have been expected the presence of strong serial dependence (y = 0 5) leads
to lower rejection percentages when compared with serial independence (y = 0).
Finally, comparing the results for the test 3,1,1 when y = 0 with the analogue results
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Table 3 Percentage of rejection of Hy computed from 1000 samples of size n € {100, 200, 400} when
C1 = Cy = C is either the bivariate Clayton (Cl), Gumbel-Hougaard (GH) or Frank (F) copula with a
Kendall’s tau of ©

C n T y=0 y =0.25 y =05 GARCH y = 0.5/ind

Sp1 o Set o Sy wl Spi Ser Spy Sw1 o Sy

Cl 100 0.10 5.2 23 6.6 3.5 8.2 33 6.2 25 145 102
030 35 1.8 6.7 3.1 7.1 4.7 5.2 33 150 116
050 4.0 34 5.0 4.5 5.2 4.7 4.6 45 120 135
070 83 120 75 11.8 72 112 72 132 89 200

200 0.10 4.2 23 51 2.8 6.9 3.6 5.0 3.1 172 135
030 5.1 26 62 3.4 7.2 4.4 53 3.8 157 13.0
050 44 41 50 5.1 4.6 5.1 4.5 45 141 142
070 6.5 122 6.6 9.8 74 112 6.5 108 124 200

400 0.10 4.7 33 56 4.3 6.0 3.5 53 3.8 194 169
030 44 34 63 4.3 6.0 4.2 4.0 35 173 152
050 4.7 47 59 5.7 5.6 5.0 6.1 57 146 142
070 64 87 5.7 7.9 5.1 6.8 6.6 9.5 157 190

GH 100 0.10 48 25 5.1 2.0 7.7 2.7 5.6 28 153 112
030 5.0 37 59 4.4 7.5 4.5 4.9 29 150 142
050 45 6.7 43 7.1 6.3 7.9 4.9 6.9 107 157
070 35 16.0 43 18.9 5.1 189 3.7 162 45 254

200 0.10 64 39 56 3.7 73 39 5.8 3.8 182 141
030 6.0 5.1 64 4.6 6.7 4.6 5.4 45 19.1 164
050 5.1 49 60 6.4 6.9 8.0 3.7 49 156 172
070 3.8 144 28 13.0 44 124 35 122 10.0 254

400 0.10 5.0 4.0 58 4.8 6.3 5.1 52 39 185 163
030 4.1 30 5.1 43 6.3 4.6 4.9 41 185 172
050 32 36 5.0 6.3 7.9 7.5 4.9 47 167 172
070 5.2 9.8 38 8.7 54 106 3.8 82 145 224

F 100 0.10 5.5 2.1 53 2.3 10.6 4.2 5.0 24 152 102
030 44 22 59 39 7.7 4.1 6.4 47 133 103
050 4.0 76 4.0 6.0 5.4 7.1 4.2 6.7 12.8 18.0
070 5.2 293 48 26.5 54 181 54 239 59 285

200 0.10 4.0 2.1 6.0 39 8.3 4.5 5.1 29 175 134
030 5.0 39 5.7 4.1 7.1 39 53 34 17.0 145
050 4.8 62 45 5.7 6.9 7.1 4.4 56 150 173
070 3.2 19.9 4.0 17.5 4.6 134 49 20.1 89 251

400 0.10 4.1 3.1 6.0 4.4 6.0 4.0 4.5 3.0 18.0 148
030 55 46 6.7 5.6 59 4.2 5.2 43 147 125
050 4.6 4.7 47 5.0 4.0 3.8 4.8 5.5 157 165
070 53 132 45 12.3 6.2 9.9 57 132 142 217

In the first four vertical blocks of the table, the test S‘n, 1 (resp. S;l’ 1) is carried out using dependent multiplier
sequences (resp. a variance estimator of the form (32)). In the last vertical block, i.i.d. multipliers and a
variance estimator of the form (31) are used instead
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Table 4 Percentage of rejection of Hy computed from 1000 samples of size n € {100, 200} generated
with ¢ € {0.1, 0.25, 0.5} and when C1 and C; are both bivariate Clayton (Cl), Gumbel-Hougaard (GH) or
normal (N) copulas with a Kendall’s tau of 0.2 for Cy and a Kendall’s tau of t for Cp

C n T t y =0 y =05 GARCH
VM S, S4, CWM S, SY CWM S, ¢
Cl 100 04 010 65 65 43 65 80 50 66 6.7 3.8
025 179 204 134 140 197 106 172 181 112
050 235 232 150 183 224 97 286 276 171
06 010 126 206 197 94 171 170 139 201 194
025 613 657 527 442 536 364 61.1 648 507
050 80.0 788 61.1 584 61.8 349 803 783 593
200 04 010 82 96 75 69 104 7.0 83 111 8.9
025 265 31.8 252 199 277 202 278 320 262
050 453  47.0 37.0 342 40.0 279 47.1 488  40.1
0.6 0.10 304 421 423 12,6 288 286 297 439 434
025 932 942 874 71.1 792 659 91.1 922 835
050 985 983 941 895 905 80.1 987 982 941
GH 100 04 010 53 80 71 50 82 71 63 76 69
025 124 171 121 11,6 186 11.1 149 186 149
050 225 252 169 182 242 140 260 277 199
06 010 104 185 26.1 77 194 257 102 199 266
025 533 631 547 412 580 437 550 63.8 524
050 78.1 804 674 627 695 461 760 763  63.1
200 04 010 7.0 105 100 7.1 114 99 69 102 9.0
025 252 319 277 191 309 228 246 323 267
050 43.0 483 421 314 393 300 432 491 413
0.6 010 259 427 472 13.0 30.1 340 235 434 463
025 89.0 929 863 721 8.5 700 889 945 850
050 983 985 959 896 920 834 984 987 936
N 100 04 010 6.1 78 62 69 102 78 6.1 70 55
025 144 193 147 137 192 132 147 178 133
050 256 277 194 175 241 125 252 287 192
06 010 106 27.1 320 82 197 237 102 193 247
025 61,5 70.1 613 460 623 448 584 692 593
050 826 851 723 649 713 449 790 8.0 657
200 04 010 80 108 92 59 126 92 70 93 89
025 277 374 332 204 310 247 268 351 307
050 47.0 51,5 436 332 417 307 43.0 495 413
06 010 27.1 473 496 145 356 392 288 483 518
025 915 965 884 723 82 710 907 961 857
050 988 997 963 91.7 955 836 99.1 993 948

The columns CvM give the results for the test studied in Biicher et al. (2014). The latter test and the test
Sp,1 (resp. the test S,“Z 1) are (resp. is) carried out using dependent multiplier sequences (resp. a variance
estimator of the form (32))
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Table 5 Percentage of rejection of Hy computed from 1000 samples of size n = 500 generated with y = 0
in (AR1) and when C| and C are both either bivariate Student copulas with 1 d.f. (¢1), with 3 d.f. (3) or
with 5 d.f. (t5) with a Spearman’s rho of 0.4 for C| and a Spearman’s rho of p for Cp

o ) 3 Is
W gn,l SZ,] W gn,l SZ,] W gn,l SZ.I

04 4.5 39 2.8 4.5 5.2 4.0 4.7 6.3 4.4
0.6 8.1 433 38.7 8.5 57.9 54.3 8.5 66.5 63.8
0.8 20.5 99.4 98.6 21.7 100.0 99.9 21.5 100.0 100.0
0.2 7.9 33.7 29.2 8.8 51.0 46.6 8.9 52.9 48.4
0.0 19.9 87.7 84.7 23.0 95.7 94.9 24.0 97.2 96.3
—-0.2 41.8 99.7 99.6 49.5 100.0 100.0 51.5 100.0 100.0
—-0.4 70.2 100.0 100.0 78.6 100.0 100.0 80.4 100.0 99.9
—0.6 91.7 100.0 99.9 95.8 100.0 100.0 96.6 100.0 100.0

The test S,,, 1 was carried out with dependent multiplier sequences, while the test S;l’ | used a variance
estimator of the form (32). The columns W contain the rejection rates of the similar test studied in Wied
et al. (2014). The results are taken from Table 1 in the latter reference

reported in Table 2 reveals that, rather naturally, the use of dependent multipliers in
the case of serially independent observations results in a small loss of power.

We end this section by a comparison of the tests S',,J and S9 .1 with the similar test
studied in Wied et al. (2014). To do so, we reproduced one of the experiments carried
out in the latter reference. The results are reported in Table 5 and confirm that tests for
change-point detection based on (4) are potentially substantially more powerful than
tests based on (10).

5 Practical recommendations and illustration

Based on the experiments partially reported in the previous section, we recommend,
among the tests S’n,i and Sfm., the tests S’n,i. Indeed, the tests SZJ. did not hold their
level well in the case of strong cross-sectional dependence. Furthermore, because of
their form, the tests S; ; might suffer from some of the practical issues described in
Shao and Zhang (2010) and, in future research, it might be of interest to study a
self-normalization version of these as advocated in the latter reference.

The pros and cons of the tests S',,’,- compared with the test studied in Biicher et al.
(2014) are as follows: the tests S’n,,- seem more powerful for alternatives involving a
change in Spearman’s rho at constant margins; they are also substantially faster to
compute. Their main weakness is that, by construction, they have no power against
alternatives involving a change in the copula at a constant value of Spearman’s rho
and constant marglns

Among the tests Sn i, we recommend the test Sn 3 merely because of its slightly
better finite-sample behavior in our simulations.

We end this section by a brief illustration of the studied tests on real financial
observations. Specifically, we consider a trivariate version of the data analyzed in
Dehling et al. (2014, Section 7). The observations consist of n = 990 daily logreturns
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computed from the DAX, the CAC 40 and the Standard and Poor 500 indices for the
years 2006-2009. An approximate p value of 0.045 was obtained for the test S‘nﬁ with
dependent multipliers, providing some evidence against Hy. It is, however, important
to bear in mind that it is only under the assumption that Hy ,, in (2) holds that it would
be fully justified to decide to reject Hp . in (3).

6 Conclusion

Tests for change-point detection based on the generic statistic S, s defined in (9)
were first studied theoretically. These tests, designed to be particularly sensitive to
changes in the cross-sectional dependence of multivariate time series, can be carried
out using either resampling based on multipliers, or by estimating the asymptotic null
distribution of S, r. Both approaches were shown to be asymptotically valid under
strong mixing and suitable conditions on the underlying function f. In addition, a
procedure for estimating a key bandwidth parameter involved in both techniques for
computing p values was suggested, making the tests fully data-driven. Next, their
finite-sample behavior was investigated by means of extensive simulations for three
particular choices of the function f resulting in the test statistics defined in (6) mea-
suring changes in the cross-sectional dependence in terms of multivariate extensions
of Spearman’s rho. Practical recommendations and an illustration were finally given.
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