
Ann Inst Stat Math (2016) 68:977–1000
DOI 10.1007/s10463-015-0519-8

Robust estimation of generalized partially linear model
for longitudinal data with dropouts

Guoyou Qin1 · Zhongyi Zhu2 · Wing K. Fung3

Received: 24 October 2013 / Revised: 28 September 2014 / Published online: 23 April 2015
© The Institute of Statistical Mathematics, Tokyo 2015

Abstract In this paper, we study the robust estimation of generalized partially linear
models (GPLMs) for longitudinal data with dropouts. We aim at achieving robustness
against outliers. To this end, a weighted likelihood method is first proposed to obtain
the robust estimation of the parameters involved in the dropoutmodel for describing the
missing process. Then, a robust inverse probability-weighted generalized estimating
equation is developed to achieve robust estimation of the mean model. To approxi-
mate the nonparametric function in the GPLM, a regression spline smoothing method
is adopted which can linearize the nonparametric function such that statistical infer-
ence can be conducted operationally as if a generalized linear model was used. The
asymptotic properties of the proposed estimator are established under some regularity
conditions, and simulation studies show the robustness of the proposed estimator. In
the end, the proposed method is applied to analyze a real data set.

Keywords Dropouts · Partially linear models · Regression splines · Robustness

1 Introduction

Longitudinal studies arise commonly in many research areas including medicine,
public health and social science. Usually, longitudinal studies are designed to collect
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data for each subject in the sample at different time, and incomplete data often arise
during the period of study due to various reasons. Sometimes, subjects may drop
out before the end of the follow-up. A simple idea to handle the missing data is
to exclude those observations and directly make analysis based on the remaining
complete data. However, this way can lead to invalid inference when the data are not
missing completely at random [see Little and Rubin (2002)].

There are extensive literatures on the approaches for dealing with incomplete
longitudinal data. The inverse probability-weighted generalized estimating equation
(IPW-GEE) proposed by Robins et al. (1995) is one of the popular methods which
can provide consistent estimators when the data are missing at random (MAR). This
approach is attractive and has been widely used since it does not require specifica-
tion of the joint distribution of the correlated longitudinal responses but only need
to specify the first two moments. However, to our knowledge, most of the existing
work focused on the generalized linear models (GLMs) while few devoted to the gen-
eralized partially linear models (GPLMs) with longitudinal incomplete data possibly
due to the complexity resulted from the nonparametric component in the GPLM. The
GPLM can be viewed as a combination of generalized linear models and fully non-
parametric models. It can be used to model nonnormally distributed response such as
binary and Poisson data, and allows to model the covariates nonparametrically when
the assumption of linearity may not be suitable. Due to its great flexibility, the GPLM
has attracted considerable attention in theoretical study and practical application. An
incomplete list of recent literatures on the GPLM with longitudinal data includes Qin
and Zhu (2009), Lian et al. (2014) and Chen and Zhou (2013). Particularly, based on
the IPW-GEE, Chen and Zhou (2013) studied the estimation of the GPLM for lon-
gitudinal data with dropouts by incorporating the population-level information. The
local linear approximation method is adopted to estimate the nonparametric function.

Generalized estimating equations (GEEs) are very popular and have been widely
used. However, it is well known that the GEE is sensitive to outliers in the data.
For the complete longitudinal data, there are substantial studies on the robust GEE
approaches (e.g., Cantoni andRonchetti 2001; Sinha 2004;He et al. 2005;Qin andZhu
2007). Compared with the robust methods for complete longitudinal data, the study on
robust approaches for incomplete longitudinal data received limited attention although
valuable. Recently, Yi and He (2009) studied median regression for longitudinal data
with dropouts through the IPW-GEE approach. Sinha (2012) discussed the robust
analysis of longitudinal data with missing responses based on likelihood methods.
However, these works are developed based on the linear models.

In this paper, we focus on robust estimation of the GPLM for longitudinal data with
dropouts based on the IPW-GEE method. First, we propose a weighted likelihood
function for the missing process to obtain the robust estimates of the probability of
observation whose inverse is incorporated into the GEE for the mean model to correct
the bias induced by the missingness. Then, to construct a robust GEE for the mean
model, we make use of a bounded score function of Pearson residuals to limit the
influence of outliers in the response, and adopt a function of the covariates to down
weight the impact of outliers in the covariates. Finally, we utilize the regression spline
to approximate the nonparametric function in the GPLM which is different from the
local linear method adopted in Chen and Zhou (2013). The regression spline is easy to
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Robust estimation of GPLM with dropouts 979

implement since it linearizes the nonparametric function as a linear combination of a
set of basis functions. Thus, any computational algorithm developed for the GLM can
be directly applied to the GPLM. However, the use of regression spline brings some
difficulties in establishing the asymptotic properties of the proposed estimator because
an infinite-dimensional problem has to be solved, which arises from the number of
knots increasing to infinity with the sample size. This is a significant difference with
other smoothing method such as kernel and local polynomial methods. Incorporating
all these techniques, we propose a robust IPW-GEE for the GPLM with dropouts.

The rest of this paper is organized as follows. The models and proposed method
are given in Sect. 2. Some regularity conditions and the asymptotic properties of the
proposed estimator are shown in Sect. 3. Simulation studies are conducted to inves-
tigate the performance of the proposed estimator in Sect. 4. In Sect. 5, the proposed
method is applied to a real data analysis for illustration. The technical details of the
proof are presented in the Appendix.

2 Model and proposed method

2.1 Mean model and dropout model

We consider a longitudinal study consisting of n subjects with m observations over
time for each subject. Let us denote {Yi j , Xi j , Ti j }, i = 1, . . . , n, j = 1, . . . ,m as the
observed data set. We model the longitudinal data using a GPLM and specify the first
two moments of the response yi j as E(Yi j ) = μ0,i j , var(Yi j ) = φv(μ0,i j ) where φ is
a scale parameter and v(·) is a known variance function. In this paper, we model the
marginal mean as:

η0,i j = g(μ0,i j ) = XT
i jβ0 + f0(Ti j ), (1)

where β0 is a p-dimensional vector of regression parameter, Xi j is the associated
p × 1 covariate vector, f0(·) is an unknown smoothing function and g(·) is a given
link function. Without loss of generality, we assume that Ti j are all scaled into the
interval [0, 1]. We are interested in estimation of β0 and f0. In the following, let
Yi = (Yi1, . . . ,Yim)T denote the response vector for the i th subject. We define Xi and
Ti in a similar fashion.

Following He et al. (2002), we approximate the nonparametric function through
regression spline. Let 0 = a0 < a1, . . . , akn < akn+1 = 1 be a partition of the
interval [0, 1]. Taking these {ai } as knots, we can get Nk = kn + l normalized B-
spline basis functions of order l, denoted by {B1(t), . . . , BNk (t)}. Then, let f0(t) be
approximated by d(t)Tα0 where d(t) = (B1(t), . . . , BNk (t))

T and α0 ∈ RNk is the
vector of spline coefficient. This linearizes regression model (1) so that our regression
problem becomes

η(θ0) = g(μ(θ0)) = XT
i jβ0 + dTi jα0 = DT

i jθ0, (2)

where Di j = (XT
i j , d

T
i j )

T , θ0 = (βT
0 , αT

0 )T is the combined regression parameters.
In this paper, we use cubic spline of order 4 and select the sample quantiles of {Ti j }
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as knots. The number of the internal knots kn is taken to be the integer part of F1/5
n

where Fn is the number of distinct values of {Ti j }. This choice is consistent with the
asymptotic results given in Sect. 3. As indicated in He et al. (2005), the regression
spline can provide good approximation with small number of knots. And this approach
linearizes the nonparametric function so that any algorithm designed for the linear
models can be directly applied to the partially linear models.

Next, we will consider the model for the dropouts. The issue of dropouts may be
particularly acute in epidemiological cohort studies where interests lie in estimating
trends over time and where subjects are followed prospectively over several years. We
suppose that the covariates {Xi j , Ti j } can be completely observed while the response
{Yi j } can be missing. Assuming that the corresponding covariate Xi j is observed when
the response Yi j is missing due to dropouts may be not realistic for some real problems
and need to be improved in the future study. Let Ri j be 1 if Yi j is observed, and 0
otherwise. In this paper, we consider dropouts or monotone missing data pattern, i.e.,
Ri j = 0 indicates Rik = 0 for all k > j .Without loss of generality,we assume Ri1 = 1
for each subject. Furthermore, we consider a missing at random (MAR) mechanism
for the dropout process. Here, the MAR mechanism means that for given covariates,
the conditional distribution of the missing data indicator Ri = (Ri1, . . . , Rim)T ,
fRi (ri |Xi , Ti ,Yi ), only depends on the observed response components Y obs

i .
Let λi j = P(Ri j = 1|Ri, j−1 = 1, Xi ,Yi ), and πi j = P(Ri j = 1|Xi , Ti ,Yi ). It is

obvious that πi j = ∏ j
k=2 λik . We denote the response history up to (but not including)

time point j by Ỹi = {yi1, . . . , yi, j−1}. A common logistic regression model used in
modeling the dropout process is

ln
λi j

1 − λi j
= ZT

i jγ0, (3)

where Zi j is the vector consisting of the information of the covariates Xi , Ti and the
observed responses Ỹi , and γ0 is the q-vector of regression parameters. Let Li denote
the random dropout time for subject i , and li be its observed value, i = 1, . . . , n.
The likelihood function for this missing process can be defined as: Li (γ ) = (1 −
λili )

∏li−1
k=2 (λik), if li < m; otherwise, Li (γ ) = ∏m

k=2 λik , where λik is determined by
model (3). Then, the classical maximum likelihood method can be applied to obtain
the estimate of γ0.

2.2 The proposed method

It has been well recognized that the complete-case methods which exclude the missing
data and directly analyze the remaining completely observed data can lead to invalid
inference when data are not missing at random like the missingmechanism considered
here. To deal with the missingness, we consider to use the IPWmethod. As addressed
in Sect. 2.1, classical maximum likelihood method can be used to estimate γ0 and then
obtain the estimates of the probability of observation πi j whose inverse can be incor-
porated into the GEE to get the IPW-GEE. However, the maximum likelihood method
is sensitive to the possible outliers in the data, which means that the outliers may result
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in seriously biased estimates of γ0 and thus the πi j cannot be consistently estimated.
Therefore, we first propose a robust method for estimation of γ0. For the above logis-
tics model for dropout process (3), the outliers usually arise in the covariates Zi j which
generally involve Yi j and some components of Xi j and Ti j . Thus, we propose a robust
approach to downweight the impact of outliers in the covariates through a weighted

likelihood function which is defined as Li (γ ) = (1 − λili )
w

(DP)
ili

∏li−1
k=2 (λik)

w
(DP)
ik , if

li < m; otherwise, Li (γ ) = ∏m
k=2 λ

w
(DP)
ik

ik , where λik is determined by model (3) and

w
(DP)
ik = w(Z0

i j ) with Z0
i j being some components of Zi j which may be contami-

nated by outliers. The weights w
(DP)
ik are used to reduce the impact of outliers in the

covariates. Small weights will be assigned to the outliers, then the contribution of the
observations involving outliers to the likelihood function is reduced. Thus, the impact
of the outliers on the final estimates will be limited. The weighting function w(·) is a
function of Z0

i j which will be presented later. Then, the robust estimator γ̂ of γ can
be obtained by solving

Gγ,n(γ ) =
n∑

i=1

Gγ,i (γ ) = 0, (4)

where Gγ,i (γ ) = ∂ log Li (γ )/∂γ . Note that the covariates can also create large stan-
dardized residuals. However, using similar weighting method to control the outliers
in the residuals does not work since the residuals are functions of the responses which
will result in inconsistent estimate for the parameters in the dropout model. How to
further control the effect of outliers in the residuals on this likelihood function deserves
further studies in the future.

In the following, we construct a robust IPW-GEE for the mean model to deal
with both the missing response and the outliers. Specifically, we adopt the inverse
probability-weighted method to deal with the missingness, and make use of the
bounded score functions and weighting functions to reduce the impacts of outliers
in the response and covariates, respectively. Incorporating these techniques, we pro-
pose a robust IPW-GEE as:

Uθ,n =
n∑

i=1

Uθ,i =
n∑

i=1

{DiΔ
T
i (μi (θ))A−1/2

i (μi (θ))C−1
i (ρ)Ji (μi (θ), γ̂ )} = 0, (5)

where Di = (DT
i1, . . . , D

T
im)T , Δi (μi (θ)) = diag{μ̇i1(θ), . . . , μ̇im(θ)}, μ̇ denotes

the first derivative of μ(θ) evaluated at Diθ, Ai (μi (θ)) = φdiag{v(μi1(θ)), . . . ,

v(μim(θ))}, Ci (ρ) is a working correlation matrix with ρ which is a vector
of correlation parameters, Ji (μi (θ), γ̂ ) = Si (γ̂ )Wihi (μi (θ)) with Si (γ̂ ) =
diag{ Ri1

πi1(γ̂ )
, . . . ,

Rim
πim(γ̂ )

}which are used to correct the bias induced by themissingness,

Wi = diag{w(MR)
i1 , . . . , w

(MR)
im } are weighted matrices used to down weight the influ-

ence of outliers in the covariates of the mean regression model, w(MR)
i j = w(xi j ) with

the weighting function w(·) to be specified later, hi (μi (θ)) = ψ(A−1/2
i (μi (θ))(Yi −

μi (θ))) − EYi |Xi ,Ti ψ(A−1/2
i (μi (θ))(Yi − μi (θ))), ψ(·) is a bounded function used
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to limit the impact of the outliers in the response and chosen to be Huber func-
tion here which is ψ(x) = min{c,max{−c, x}}. The tuning constant c is usually
chosen to balance the estimation efficiency and robustness and normally selected
between 1 and 2. Specifically, if larger c is chosen, the corresponding robust estimator
would have more estimation efficiency, but weak robustness against outliers in the
residuals. Otherwise, the robust estimator would have better robustness, but lower
efficiency. According to our empirical experience and following He et al. (2005),
we choose c = 1.5. The proposed robust estimator shows desirable robustness.
Although the choice of different c will have some influence on the resulting esti-
mators, the conclusions of robustness for the corresponding estimators are consistent.
Wang et al. (2007) discuss this issue and we refer to this paper for more details on
this choice. Following Sinha (2004), the weighting function w(xi j ) is chosen to be

min
[
1, b0/((xi j − mx )

T S−1
x (xi j − mx ))

τ/2]
with τ ≥ 1 which is taken to be 1 in

the latter simulation studies and real data analysis, where b0 is chosen as the 95th
percentile of Chi-square distribution with degrees of freedom equal to the dimension
of xi j , and mx and Sx are some robust estimates of location and scale of xi j , such as
minimum volume ellipsoid (MVE) estimates of Rousseeuw and van Zomeren (1990).
Similar to the tuning parameter c in the Huber function, the choice of τ may also
influence the robustness and estimation efficiency of the resulting estimator. How to
choose a suitable τ is an interesting topic and deserves future study.

Remark The IPW method only uses the observed measurements. It is just for brevity
and uniform expression to define (2.5) for all m measurements corresponding to m
time-points. In fact, the diagonal weight matrix Si (γ̂ ) = diag{ Ri1

πi1(γ̂ )
, . . . ,

Rim
πim(γ̂ )

} can
naturally identify the observedmeasurements andmissingmeasurements. Themissing
measurements are set to be zeros since their corresponding Ri j are zeros. Thus, the
missing measurements do not contribute to the estimating equation any more and only
the observed measurements are used for estimation.

The robust IPW-GEE (5) involves nuisance parameters φ and ρ which are also
required to be estimated. For the scale parameter φ, to achieve robust estimation
and avoid the influence of missingness, we estimate it through the median absolute
deviation based on the Pearson residuals of the first observation from each subject
êi1 = (Yi1 − μi1(DT

i1θ̂ )) and θ̂ is the current estimate of θ0. Since the first obser-
vation for the individuals is always observed and independent, the median absolute
deviation estimate based on these residuals is consistent for the error variance in a
Gaussian model. For the correlation parameters ρ, to correct the bias induced by the
missingness, we consider the bias-corrected robust Wang–Carey estimating equation
approach proposed in Qin et al. (2008) for estimation of the correlation parameter.
The basic idea of their method is to estimate the bias of estimates solved from biased
estimating equations and then correct the bias. Their method can be also applied to
our case since the general estimating equations developed for the complete data are
biased due to the missing data.

The procedure for estimation of θ0 is described as follows:

Step 1 Solving (4) to get the robust estimate of γ̂ , and then calculate the estimated
πi j (γ̂ ).
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Step 2
(a) Choose initial value θ(0), φ(0) and ρ(0) which can be obtained using the

complete-case robust method like He et al. (2005). Set i = 0.
(b) With initial value of θ(i), φ(i) and ρ(i), calculate

θ(i+1) = θ(i) −
[

n∑

i=1

∂

∂θ
Uθ,i |θ=θ(i)

]−1 n∑

i=1

Uθ,i |θ=θ(i) .

(c) With θ(i+1), calculate φ(i+1) and ρ(i+1) using the above addressed method.
Set i = i + 1.

Iterate (b) and (c) until convergence.

The solution of (5) is denoted as θ̂ = (β̂T , α̂T )T . Then, the estimators of the regression
coefficient and nonparametric function are β̂ and f̂0(t) = dT (t)α̂.

In this section, we not only propose a robust IPW-GEE for the mean regression
model but also develop a weighted likelihood method for the robust estimation of
the dropout model. With the guarantee of these robust approaches, we have finally
achieved robust estimation of theGPLM for longitudinal data with dropouts. The latter
simulation studies show the good performance of the proposed method in dealing with
both outliers and missingness.

3 Asymptotic properties

In this section, we will investigate the asymptotic properties of the proposed estimator.
To this end, we first give some regularity conditions. We use || · || to denote Euclidean
norm. Let ei = (A−1/2

i (μ0,i )(Yi −μ0,i )) be the standardized responses, and J0,i (ei ) =
Si (γ0)Wihi (ei ). Note that J0,i (ei ) is similar to Ji (μi (θ), γ ), but the former is evaluated
at the trueμ0,i and γ0 whereas the latter is atμi (θ) and γ . If the estimating Eq. (5) has
multiple solutions, only a sequence of consistent estimator θ̂ is considered. A sequence
of θ̂ is said to be consistent if both β̂ − β0 and supt |(dT (t)α̂ − f0(t))| converge to
zero in probability. The basic conditions we assumed are as follows:

(C.1) The parameter vector γ0 is an interior point of the parameter space Γ which is
a compact set.

(C.2) λi j (γ ) > c1 > 0 for all γ ∈ Γ , for some constant c1.
(C.3) 1

n
∂
∂γ

Gγ,n(γ0) and 1
n

∑n
i=1 Gγ,i (γ0)GT

γ,i (γ0) converges to �γ and Vγ , respec-
tively, in probability for some positive-definite matrix �γ and Vγ .

(C.4) The r th derivative of f0 is bounded for some r ≥ 2.
(C.5) The distinct values of {ti j } form a quasi-uniform sequence that grows dense on

[0, 1].
(C.6) There exists positive constant c2 such that 0 < c2 ≤ v(·) < ∞, v(·) and g−1(·)

have bounded second derivatives and third derivatives, respectively.

To establish the asymptotic normality for the estimator β̂, some conditions on
the covariates X and T are required. One complexity with the partial linear models
is from the dependence between X and T . To this purpose, we assume the following
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relationship asRice (1986): Xi jk = mk(Ti j )+�i jk, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p
where themk(·) are functionswith bounded r th derivatives and the�i jk are independent
random variables with mean 0 and are independent of ei j .

Let Λn denote as a N (= n × m) by p matrix whose lth column is �l = (�11l ,

. . . , �1ml , . . . , �nml)
T . For brevity,we denote Ai = Ai (μi (θ)),Δi = Δi (μi (θ)), Ji =

Ji (μi (θ), γ ) and Ci = Ci (ρ). We further denote M = (dT1 , . . . , dTn )T , X = (XT
1 ,

. . . , XT
n )T , Ω = diag{Ω1, . . . ,Ωn}, Ωi = ΔT

i A
−1/2
i C−1

i E{ ∂
∂μi

Ji }Δi , P = M(MT

ΩM)−1MTΩ , X∗ = (X∗T
1 , · · · , X∗T

n )T = (I − P)X , Qi = X∗T
i ΔT

i A
−1/2
i C−1

i Ji −
[∑n

i=1 X
∗T
i ΔT

i A
−1/2
i C−1

i
∂
∂γ

Ji (μi , γ )] ·[ ∂
∂γ

Gγ,n(γ )]−1Gγ,i (γ ) and the notations

Ω0,i represent Ωi evaluated at the true μ0,i and γ0. Notations Q0,i , A−1/2
0,i , Δ0,i

and X∗
0,i are defined in similar fashion. We further assume:

(C.7) For sufficiently large n, kn(MTΩ0M) is nonsingular, and the eigenvalues of
(kn/n)MTΩ0M are bounded away from zero and infinity in probability, where
Ω0 = diag{Ω0,1, . . . ,Ω0,n}.

(C.8) EΛn = 0 and supn
1
n E ||Λn||2 < ∞, and 1

n Kn → K , 1
n Bn → B in probability

for some positive definite matrix K and B, where Kn = ∑n
i=1 X

∗T
0,i Ω0,i X∗

0,i

and Bn = ∑n
i=1 Q0,i QT

0,i .

Conditions (C.1)–(C.3) are assumed to ensure the existence and asymptotic normal-
ity of γ̂ and Conditions (C.4)–(C.8) are usually assumed in the study of the asymptotic
normality of β̂ and convergence rate of f̂0 in the context of GPLM when regression
spline is utilized to approximate the nonparametric function; see He et al. (2005).

Under the regularity conditions (C.1)–(C.8), the asymptotic properties of the pro-
posed robust IPW estimator can be established. Specifically, Theorem 1 gives the
asymptotic normality of the robust estimator γ̂ . Theorem 2 shows the asymptotic
normality of the proposed estimator for regression coefficients β̂, and shows that the
proposed estimator of the nonparametric function can achieve the optimal rate of
convergence under the smoothing condition (C.4).

Theorem 1 Assume that Conditions (C.1)–(C.3) hold. Then

√
n(γ̂ − γ0) → N (0, �−1

γ Vγ �−1
γ ). (6)

Using the standard techniques, the conclusion of Theorem 1 can be easily obtained
and its proof is omitted here.

Theorem 2 Assume that Conditions (C.1)–(C.8) hold. If the number of knots kn ≈
n1/(2r+1), then

1

n

n∑

i=1

( f̂ (ti ) − f0(ti ))
2 = Op

(
n− 2r

2r+1

)
, (7)

and √
n(β̂ − β0) → N (0, K−1BK−1). (8)

The proof of Theorem 2 is given in the Appendix.
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Tomake statistical inference of the regression coefficients β0, the covariancematrix
of β̂ needs to be consistently estimated. Following Theorem 2 in Qin and Zhu (2007),
the covariance matrix can be consistently estimated by K̂−1 B̂ K̂−1 where

K̂ = 1

n

n∑

i=1

X∗T
i Ωi X

∗
i , (9)

B̂ = 1

n

n∑

i=1

Qi Q
T
i , (10)

where all the quantities involved are evaluated at θ̂ and γ̂ .

Remark The asymptotic properties of the robust estimator are only established under
the case of no contamination. For the proposed robust estimator, bounded score
function is used to reduce the impact of outliers in the response. Furthermore,
leverage-based weights are adopted to limit the influence of outliers in the covari-
ates. Therefore, the proposed robust estimator would be insensitive to small deviations
from the assumed model and useful to deal with the outliers, which are also demon-
strated by the simulation study. The asymptotic properties established on the assumed
model with no outliers and the insensitivity to small deviation from the model
assumptions are some desirable features which a robust procedure should achieve
(Huber 1981).

4 Simulation studies

To evaluate the performance of the proposedmethod, we conduct simulation studies in
this section. We compare the proposed robust inverse probability-weighted (R-IPW)
method with the robust complete-case (R-CC) method (He et al. 2005) as well as their
nonrobust version. The robust methods reduce their corresponding nonrobust versions
when w(x) = 1 and ψ(x) = x . We calculated the bias, standard error (SE), and
mean squared error (MSE) of β̂, as well as the integrated mean squared error (IMSE)
of f̂ (·) through Monte Carlo simulation in each study. Here, the IMSE is defined as∫
( f̂ (t) − f0(t))2dt .

Study 1 In this study, we consider a binary partial linear model with dropouts. The
marginal mean model is considered to be

ln(μi j/(1−μi j )) = Xi jβ0+0.5cos(πTi j ), i = 1, . . . , 400, m = 1, . . . , 6, (11)

where β0 = 0.5, Xi j and Ti j are independently drawn from uniform distributions
on (−0.8, 0.8) and (−0.5, 0.5), respectively, Ri (ρ) is the correlation matrix of Yi
considered to be first-order autoregressive (AR1) structure with correlation parameter
ρ = 0.6. The correlated binary data are generated using the method proposed in
Preisser et al. (2002). The working AR1 and working independence structures are
chosen for GEE.
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To investigate the case of missingness, the values of the indicators Ri j are generated
from the model

ln
λi j

1 − λi j
= γ0 + γ1Yi j−1 + γ2Xi j , (12)

where (γ0, γ1, γ2)
T is taken to be (1.5, 1,−1)T which leads to about 25%missingness.

To assess the robustness of the proposed method, we consider two ways to create
outliers in the data as follows:

C1: Twelve completely observed points are randomly selected. Their covariates Xi j

are replaced by Xi j + 2, but their response Yi j is set to be 1 regardless of their
original values before contamination.

C2: Twenty-four completely observed points are randomly selected. The contamina-
tion of the covariates and response is the same as that in C1.

We conduct 500 replications in each study. The number of internal knots is chosen to
be 4, the integer part of 24001/5.

As addressedpreviously, the bias-corrected robustWang–Carey estimating equation
approach proposed in Qin et al. (2008) is used by the proposed method to estimate
the correlation parameter. For the nonrobust CC method, we consider the following
commonly used estimator proposed in Diggle et al. (2002) to estimate the correlation
parameter ρ which is defined as:

ρ̂ =
2

[∑n
i=1 bi − {|(∑n

i=1 bi )
2 − (

∑n
i=1 ai )

2|}1/2
]

∑n
i=1 ai

,

where ai = 2
∑

1≤ j<k≤m ei j eik , bi = 2
∑m

j=1 e
2
i j − e2i1 − e2im , ei j = Ri j (Yi j−μ̂i j )

(φ̂v(μ̂i j ))
1/2 ,

i = 1, . . . , n, j = 1, . . . ,m. For the robust CCmethod, we consider its robust version
with ei j replaced by eRi j = ψ(ei j ) to estimate ρ and for the nonrobust IPW method,

we consider its IPW version with ei j replaced by eIPWi j = ei j
πi j (γ̂ )

.
Table 1 summarizes the simulation results for the mean model in Study 1. It can

be observed that the proposed robust IPW method shows its bias and efficiency gain
over the other three estimates in comparison. Specifically, the proposed robust IPW
method shows smaller bias, MSE and IMSE than the robust CC method in all the
cases. For example, in the case of no outliers, the bias of the estimate by the robust
CC method is 0.0588, but the estimate by the proposed robust IPW method is only
0.0203. Moreover, the MSE of the estimate for the regression parameter and IMSE of
the estimate for the nonparametric function are 0.0077 and 0.0191, respectively, by
the proposed robust IPW method, which are much smaller than 0.0102 and 0.0329 by
the robust CC method. Similar findings can be obtained in the case of contamination
where the proposed robust IPW method further shows its strength in dealing with
outliers and missing data.

Moreover, we consider the effects of working correlation on the compared estima-
tors. It is further demonstrated that the methods which ignore the correlation structures
among the observations within the same subject can lose estimation efficiency, and
this is more obvious in the estimation of the nonparametric function f0(·).
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Table 1 Simulation results for the mean model in Study 1

β̂ f̂

BIAS SE ESE MSE IMSE

Working AR1 structure

NC

R-IPW 0.0203 0.0853 0.0851 0.0077 0.0191

R-CC 0.0588 0.0818 0.0831 0.0102 0.0329

NR-IPW 0.0201 0.0852 0.0854 0.0077 0.0183

NR-CC 0.0608 0.0823 0.0829 0.0105 0.0330

C1

R-IPW 0.0508 0.0898 0.0877 0.0106 0.0192

R-CC 0.0748 0.0833 0.0837 0.0125 0.0337

NR-IPW 0.0916 0.0857 0.0839 0.0157 0.0185

NR-CC 0.1016 0.0821 0.0806 0.0171 0.0342

C2

R-IPW 0.0818 0.0876 0.0884 0.0144 0.0195

R-CC 0.0929 0.0819 0.0841 0.0153 0.0341

NR-IPW 0.1400 0.0826 0.0815 0.0264 0.0185

NR-CC 0.1383 0.0794 0.0788 0.0254 0.0352

Working independence structure

NC

R-IPW 0.0173 0.1104 0.1128 0.0125 0.0408

R-CC 0.0640 0.1042 0.1083 0.0150 0.0576

NR-IPW 0.0180 0.1108 0.1128 0.0126 0.0411

NR-CC 0.0653 0.1046 0.1082 0.0152 0.0582

C1

R-IPW 0.0573 0.1074 0.1086 0.0148 0.0395

R-CC 0.0858 0.1021 0.1053 0.0178 0.0591

NR-IPW 0.0951 0.1051 0.1041 0.0201 0.0396

NR-CC 0.1115 0.1000 0.1018 0.0224 0.0610

C2

R-IPW 0.0904 0.1022 0.1055 0.0186 0.0381

R-CC 0.1067 0.0982 0.1030 0.0210 0.0597

NR-IPW 0.1475 0.0992 0.0987 0.0316 0.0385

NR-CC 0.1506 0.0950 0.0972 0.0317 0.0628

SE standard error, ESE estimated standard error obtained from the asymptotic theory, MSE mean squared
error, IMSE integrated MSE, NC no contamination, C1 and C2 refer to Contaminations 1 and 2, R-IPW the
robust IPW-GEE; R-CC robust complete case GEE, NR-IPW and NR-CC are the corresponding nonrobust
versions

We also calculate the estimated standard errors for the estimators of β̂0 using the
large sample approximation (8)–(10). The average estimated standard errors based on
500 replications are also provided in Table 1. It can be found that the empirical standard
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errors are close to the estimated ones, indicating that the large-sample estimate of the
variance for the proposed estimator is quite acceptable.

Table 3 presents the estimates of the parameters in the dropout model. It can be
observed that Contaminations C1 and C2 produce notable impacts on the estimation
of the parameters in the dropout model. And the proposed WML method shows its
robustness against these contaminations with smaller biases than the CML method.
Note that the results for WML and CML are identical under the case of no outliers.
The reason is that in this case, the weight w

(DP)
ik used to down weight the impact of

the outliers in the covariate is all 1 which indicates that there are no possible outliers
in the covariate generated from the model in Study 1.
Study 2We consider a normal partial linear model with dropouts. The marginal mean
model is taken as

μi j = XT
i jβ0 + 0.5sin(2Ti j ), i = 1, . . . , 400, j = 1, . . . , 6, (13)

whereβ0 = 0.5. The covariates are generated as follows: Xi j = ui j+b1,i j , Ti j = ui j+
b2,i j where ui j , b1,i j and b2,i j are independently drawn from a uniform distribution
on (−0.5, 0.5). The random error ei = (ei1, . . . , eim)T of the i th subject follows a
multivariate normal distributionwithmean zero and covariancematrix Ri (ρ)σ 2 where
Ri (ρ) is the correlation matrix, also chosen to be AR1 structure with ρ = 0.6, and σ 2

is taken to be 1.
The values of the indicators Ri j are generated from the model similar to model (12)

in Study 1 except that the parameter vector (γ0, γ1, γ2)
T is taken to be (3, 1,−1)T

which yields about 17 % missingness.
Similar to Study 1, two ways to create outliers are considered. The difference is

that here the selected observed points have their covariates Xi j replaced by Xi j − 1
and their response Yi j replaced by Yi j − 3.

The simulation results for the mean model in Study 2 are presented in Table 2. Sim-
ilar findings to Study 1 can be obtained. The proposed robust IPW method generally
outperforms the other three methods with smaller bias, MSE and IMSE.

Table 3 also gives the estimates of the parameters in the dropout model in Study
2. Similar to Study 1, the proposed WML method shows its robustness against these
contaminations.
Study 3We consider another normal partial linear model with different nonparametric
function from that in Study 2, which is taken as:

μi j = XT
i jβ0 − 0.5exp(Ti j ), i = 1, . . . , 200, j = 1, . . . , 6, (14)

where β0 = 1.2. The covariates are generated as follows: Xi j = ui j + b1,i j , Ti j =
ui j+b2,i j where b1,i j are generated fromnormal distributionwithmean 2 and standard
deviation 0.5, ui j , and b2,i j are independently drawn from a uniform distribution on
(−0.25, 0.25). The random error ei = (ei1, . . . , eim)T follows a multivariate normal
distribution with mean zero and covariance matrix Ri (ρ)σ 2 where Ri (ρ) is chosen to
be AR1 structure with ρ = 0.6 and σ 2 is taken to be 0.6.

The values of the indicators Ri j are generated from the same model as that in Study
2 which yields about 18 % missingness in this study.
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Table 2 Simulation results for
the mean model in Study 2

See Table 1

β̂ f̂

BIAS SE ESE MSE IMSE

Working AR1 structure

NC

R-IPW 0.0026 0.0463 0.0514 0.0021 0.0038

R-CC 0.0269 0.0441 0.0494 0.0027 0.0083

NR-IPW 0.0024 0.0466 0.0502 0.0022 0.0045

NR-CC 0.0262 0.0433 0.0480 0.0026 0.0097

C1

R-IPW 0.0521 0.0697 0.0625 0.0076 0.0028

R-CC 0.0946 0.0526 0.0537 0.0117 0.0065

NR-IPW 0.1128 0.0603 0.0626 0.0164 0.0037

NR-CC 0.1512 0.0509 0.0588 0.0255 0.0073

C2

R-IPW 0.1097 0.0730 0.0679 0.0174 0.0024

R-CC 0.1577 0.0533 0.0573 0.0277 0.0053

NR-IPW 0.2132 0.0600 0.0678 0.0490 0.0019

NR-CC 0.2544 0.0514 0.0643 0.0674 0.0060

Working independence structure

NC

R-IPW 0.0027 0.0632 0.0674 0.0040 0.0044

R-CC 0.0242 0.0595 0.0640 0.0041 0.0090

NR-IPW 0.0019 0.0630 0.0664 0.0040 0.0049

NR-CC 0.0235 0.0584 0.0627 0.0040 0.0101

C1

R-IPW 0.0586 0.0766 0.0720 0.0093 0.0044

R-CC 0.0867 0.0651 0.0663 0.0118 0.0077

NR-IPW 0.1153 0.0733 0.0742 0.0187 0.0061

NR-CC 0.1437 0.0645 0.0701 0.0248 0.0087

C2

R-IPW 0.1185 0.0765 0.0742 0.0199 0.0069

R-CC 0.1483 0.0651 0.0683 0.0262 0.0068

NR-IPW 0.2155 0.0713 0.0775 0.0515 0.0057

NR-CC 0.2460 0.0648 0.0738 0.0647 0.0075

Similar to Study 2, two ways to create outliers are considered. Twelve and twenty-
four completely observed points are randomly selected, respectively, and the selected
observed points have their covariates Xi j replaced by Xi j − 1 and their response Yi j
replaced by Yi j − 3.5.

In this study, the estimation of the correlation parameter and dispersion parameter
is also investigated along with the mean model. The simulation results for the mean
model are presented in Table 4 and the results for the correlation and dispersion
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Table 3 The simulation results for the dropout model in Studies 1 and 2

γ0 = 1.5 γ1 = 1 γ2 = −1

BIAS SE MSE BIAS SE MSE BIAS SE MSE

Study 1

NC

WML 0.0083 0.1067 0.0115 −0.0055 0.1600 0.0256 0.0043 0.1828 0.0334

CML 0.0083 0.1067 0.0115 −0.0055 0.1600 0.0256 0.0043 0.1828 0.0334

C1

WML −0.0063 0.1030 0.0106 −0.0059 0.1603 0.0257 0.1381 0.1493 0.0414

CML −0.0085 0.1024 0.0106 −0.0067 0.1605 0.0258 0.2212 0.1384 0.0681

C2

WML −0.0141 0.1030 0.0108 −0.0134 0.1618 0.0264 0.2398 0.1340 0.0754

CML −0.0151 0.1025 0.0107 −0.0155 0.1622 0.0265 0.3618 0.1204 0.1454

γ0 = 3 γ1 = 1 γ2 = −1

BIAS SE MSE BIAS SE MSE BIAS SE MSE

Study 2

NC

WML 0.0166 0.1295 0.0170 0.0103 0.1042 0.0110 0.0032 0.2348 0.0551

CML 0.0168 0.1287 0.0168 0.0113 0.1018 0.0105 0.0026 0.2332 0.0544

C1

WML −0.0042 0.1285 0.0165 −0.0543 0.0996 0.0129 −0.0249 0.2428 0.0596

CML −0.0200 0.1263 0.0163 −0.0890 0.0973 0.0174 −0.0272 0.2412 0.0589

C2

WML −0.0247 0.1248 0.0162 −0.1087 0.0929 0.0205 −0.0352 0.2401 0.0589

CML −0.0478 0.1210 0.0169 −0.1638 0.0887 0.0347 −0.0381 0.2382 0.0582

γ0 = 3 γ1 = 1 γ2 = −1

BIAS SE MSE BIAS SE MSE BIAS SE MSE

Study 3

NC

WML −0.0050 0.5992 0.3591 0.0051 0.1383 0.0192 0.0082 0.2712 0.0736

CML −0.0046 0.5967 0.3561 0.0049 0.1386 0.0192 0.0081 0.2704 0.0732

C1

WML 0.3783 0.5850 0.4854 −0.2383 0.1045 0.0677 0.0015 0.2671 0.0714

CML 0.4193 0.5829 0.5157 −0.2649 0.1077 0.0818 0.0018 0.2660 0.0708

C2

WML 0.5897 0.5721 0.6751 −0.3659 0.0893 0.1419 −0.0019 0.2593 0.0672

CML 0.6379 0.5672 0.7286 −0.3956 0.0937 0.1653 −0.0021 0.2573 0.0662

WML weighted maximum likelihood method, CML classical maximum likelihood method
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Table 4 Simulation results for
the mean model in Study 3

See Table 1

β̂ f̂

BIAS SE ESE MSE IMSE

Working AR1 structure

NC

R-IPW 0.0056 0.0391 0.0388 0.0016 0.0027

R-CC 0.0269 0.0364 0.0376 0.0020 0.0044

NR-IPW 0.0055 0.0372 0.0372 0.0014 0.0027

NR-CC 0.0267 0.0344 0.0360 0.0019 0.0052

C1

R-IPW 0.0645 0.0441 0.0461 0.0061 0.0173

R-CC 0.0854 0.0389 0.0428 0.0088 0.0436

NR-IPW 0.1151 0.0414 0.0495 0.0150 0.0791

NR-CC 0.1359 0.0383 0.0484 0.0199 0.1163

C2

R-IPW 0.1178 0.0462 0.0498 0.0160 0.0689

R-CC 0.1397 0.0411 0.0469 0.0212 0.1026

NR-IPW 0.2052 0.0450 0.0555 0.0441 0.2065

NR-CC 0.2272 0.0413 0.0549 0.0533 0.2493

parameters are shown in Table 5. For the mean model, similar findings to previous
studies can be obtained. The proposed robust IPWmethod generally shows its gain of
bias and efficiency over the other three methods with smaller bias, MSE and IMSE.
For the estimation of correlation and dispersion parameters, the proposed estimators
also show their gain of bias and efficiency particularly in the case of outliers. For
example, in the case of outliers (C2), the bias and MSE of the proposed estimate
for the correlation parameter are −0.0124 and 0.0015, respectively, which are much
smaller than −0.0741 and 0.0066 by the robust CC method.

We also conduct additional simulation studies to investigate the performance of
the proposed estimator for the mean regression model in some case of nonmonotonic
missingness and similar findings to the case ofmonotonicmissingness can be observed
which are, therefore, omitted for brevity.

5 Application to a real data

We apply the proposed method to a real data set from a clinical trial study (Drake et al.
1998) for illustration. The purpose of this study is to assess an assertive community
treatment for patients with occurring severe mental illness and substance abuse dis-
order. This study involved 203 patients who were enrolled to be measured every half
year for a total of seven visits.

The outcome variable is the score for general quality of life (SQL). The interested
covariate variables include the Substance Abuse Treatment Scale (SATS), the Treat-
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Table 5 Simulation results for
the correlation parameter ρ and
dispersion parameter σ 2 in
Study 3

See Table 1

ρ = 0.6 σ 2 = 0.3

BIAS SE BIAS SE

NC

R-IPW 0.0229 0.0015 0.0004 0.0090

R-CC −0.0054 0.0013 −0.0025 0.0090

NR-IPW 0.0209 0.0029 0.0248 0.0051

NR-CC 0.0072 0.0013 0.0240 0.0050

C1

R-IPW 0.0107 0.0013 0.0205 0.0106

R-CC −0.0424 0.0030 0.0178 0.0100

NR-IPW −0.0525 0.0061 0.0945 0.0147

NR-CC −0.0658 0.0057 0.0934 0.0145

C2

R-IPW −0.0124 0.0015 0.0390 0.0117

R-CC −0.0741 0.0066 0.0410 0.0122

NR-IPW −0.0963 0.0118 0.1578 0.0327

NR-CC −0.1145 0.0144 0.1562 0.0320

ment (Trt) (1 if the patient is in the treatment group, 0 otherwise), Education (Edu) (1 if
the patient took higher school education or above, 0 otherwise), Diagnosis (Diag) (1 if
the patient had schizophrenia/schizoaffective disorder, 0 if the patient had bipolar dis-
order), gender and age. In our analysis, the standardized age [(Age (in year)−18)/45]
is used.

Usually, the relationship between the outcome and the covariate Age is nonlinear;
thus, we adopt the following partial linear model to fit the data set:

E[SQL|Age,SATS,Trt,Edu,Diag,Gender]
= f (Age) + β1 SATS + β2 Trt + β3 Edu + β4 Diag + β5 Gender, (15)

where f (·) is an unknown smooth function. We adopt a four-order regression spline
with one internal knot to approximate f (·).

During the period of this study, some scheduled measurements were missing for
some patients, and the monotonic missing mechanism sometimes may not hold. For
illustration, we assume the dropouts occur when the first missingness appears during
the following six visits after the first baseline visit. Then, the total missing rate is about
15 %. Moreover, some observations in the data set missed both values of outcome
and covariate SATS (the proportion is less than 2.3 %). However, the discussion of
missingness in both the response and covariates is beyond the scope of this paper.
For simplicity, we use only the baseline values of SATS. Note that if the working
independence matrix is adopted, the missingness in both response and covariates will
not influence the implementation of the proposed method. However, if a correlated
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Table 6 Regression coefficient estimates in the analysis of the real data

R-IPW R-CC NR-IPW NR-CC

Working AR1 structure

Gender 0.2320 (0.1840) 0.2428 (0.1815) 0.2632 (0.1741) 0.2705 (0.1709)

Edu 0.0951 (0.1868) 0.0949 (0.1839) 0.1010 (0.1752) 0.0993 (0.1727)

Diag 0.1955 (0.1769) 0.2368 (0.1748) 0.1565 (0.1686) 0.1950 (0.1664)

SATS 0.1317 (0.0292) 0.1385 (0.0292) 0.1321 (0.0275) 0.1380 (0.0274)

Trt 0.0350 (0.1689) −0.0052 (0.1654) 0.0440 (0.1585) 0.0042 (0.1560)

Working independence structure

Gender 0.2090 (0.1846) 0.2190 (0.1812) 0.2419 (0.1738) 0.2490 (0.1706)

Edu 0.0961 (0.1892) 0.0987 (0.1863) 0.0970 (0.1763) 0.0986 (0.1740)

Diag 0.1875 (0.1819) 0.2135 (0.1786) 0.1593 (0.1722) 0.1863 (0.1694)

SATS 0.1171 (0.0321) 0.1226 (0.0314) 0.1193 (0.0299) 0.1249 (0.0294)

Trt 0.0456 (0.1720) 0.0132 (0.1686) 0.0608 (0.1604) 0.0283 (0.1577)

The figures in the parenthesis are standard errors

structure is used, e.g., the AR1 structure used here, the covariates are required to be
completely observed.

The dropout model taken in this analysis is

ln
λi j

1 − λi j
= γ0 + γ1SQLi j−1 + γ2SATSi j . (16)

Table 6 presents the results of estimates for the linear component of model (15)
and Fig. 1 shows the estimate of the nonparametric function f (·). From Fig. 1, an
obvious nonlinear relation between the outcome SQL and the covariate Age can be
observed. Although the mean of the outcome generally decreases with Age, the trend
varies among different intervals of the Age. An interesting feature is that the Age effect
appears to be constantwithin the interval of years (27, 36),while in the other part before
54 years old, SQL decreases with Age obviously. Particularly, the curves estimated
by the robust methods appear to drop faster than the nonrobust ones. For the estimates
of the regression coefficients, it is found that only the effect of SATS is significantly
positively relatedwith SQL at the 0.05 level by all themethods,which is also consistent
with the results based on the linear regression model in Wang et al. (2011). Although
the conclusions are consistent to each other, there exists some obvious numerical
differences among these methods. The robust-CCmethod which does not consider the
influence of missingness even gives negative estimate of the Trt effect. All of these
indicate the influence of possible outliers and missingness.

To explore possible outliers in the data set, we calculate the weights based on the
proposed method

�i j = w(xi j )ψ(ri )/ri , (17)
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Fig. 1 The estimated function f on standardized age

where ri = (Yi j −DT
i j θ̂ )/(vi (θ̂)φ̂)1/2,w(·) andψ are defined in Sect. 2. Small weights

indicate that the corresponding observations are possible outliers. There are totally 18
observations with weights less than 0.7.We investigate two observations with smallest
weights less than 0.5 which are from Patients 51 and 40. The interesting findings are
that both observations have small SQL values of 1.5 and 1, respectively, but have
very large SATS values of 8. These findings prompt us to pay more attention to these
patients and explore the possible reasons.

In summary, the GPLM enables us to gain insight into the relationship inherited
in the data, and the robust and inverse probability-weighted approaches are able to
provide more accurate and reliable results.

Appendix

Lemma 1 Under conditions (C.4) and (C.5), there exist α0 ∈ RNk depending on f0,
and a constant C4 depending only on l and C0 such that

sup
t∈[0,1]

| f0(t) − πT (t)α0| ≤ C4k
−r
n .

The proof of Lemma 1 follows easily from Theorem 12.7 in Schumaker (1981).
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Proof of Theorem 2 We first introduce some notations. Let

ξ(β, α) =
[

ξ1
ξ2

]

=
[
K 1/2
n (β − β0)

k−1/2
n Hn(α − α0) + k1/2n H−1

n MTΩ0X (β − β0)

]

,

and ξ̂ = (ξ̂ T1 , ξ̂ T2 )T = ξ(β̂, α̂), where H2
n = knMTΩ0M . Then, the robust-weighted

estimating equation can be expressed as:

Uξ,n(μ(ξ)) =
n∑

i=1

DiΔi (μi (ξ))A−1/2
i (μi (ξ))C−1

i Ji (μi (ξ), γ̂ ). (18)

We denote X̃i = K−1/2
n X∗

i , M̃i = k1/2n H−1
n di , Rni = dTi α0 − f0(ti ), and ζi =

X̃ T
i ξ1 + M̃T

i ξ2 + Rni , then ηi (θ) = DT
i θ = η0,i + ζi , i = 1, . . . , n, where η0,i =

XT
i β0 + f0(ti ). We further denote

N =
[
K 1/2
n −K−1/2

n XTΩ0M(MTΩ0M)−1

0 k−1/2
n H−1

n

]

.

Then, (18) can be written as:

Ψ (μ(ξ), γ̂ ) =
(

Ψ1(μ(ξ), γ̂ )

Ψ2(μ(ξ), γ̂ )

)

= NUξ (μ(ξ))

=
(∑n

i=1 K
−1/2
n X∗

i Δ
T
i (μi (ξ))A−1/2

i (μi (ξ))C−1
i Ji (μi (ξ), γ̂ )

∑n
i=1 k

1/2
n H−1

n diΔT
i (μi (ξ))A−1/2

i (μi (ξ))C−1
i Ji (μi (ξ), γ̂ )

)

=
n∑

i=1

D̃iΔ
T
i (μi (ξ))A−1/2

i (μi (ξ))C−1
i Ji (μi (ξ), γ̂ ), (19)

where D̃i = (X∗T
i K−1/2

n , πT
i H−1

n k1/2n )T .
Combining (C.7) and (C.8), both Eqs. (18) and (19) give the same root for ξ as our

estimator. We denote

�(ξ) =
(

�1(ξ)

�2(ξ)

)

=
(

ξ1
ξ2

)

+
n∑

i=1

{

D̃iΔ
T
0,i A

−1/2
0,i C−1

i J0,i

−
[

n∑

i=1

D̃iΔ
T
0,i A

−1/2
0,i C−1

i
∂

∂γ
J0,i

]

�−1
γ Gγ,i (γ0)

}

. (20)

123



996 G. Qin et al.

The zero ξ̃ of �(ξ),

ξ̃ =
(

ξ̃1

ξ̃2

)

= −
n∑

i=1

{

D̃iΔ
T
0,i A

−1/2
0,i C−1

i J0,i

+
[

n∑

i=1

D̃iΔ
T
0,i A

−1/2
0,i C−1

i
∂

∂γ
J0,i

]

�−1
γ Gγ,i (γ0)

}

. (21)

is not an estimator. In the following, we will show that the difference between ξ̃ and
ξ̂ is small.

Let a ∈ Rp+Nk , satisfying aT a = 1. We expand aTΨ (μ(ξ), γ̂ ) in a Taylor series
and have

aTΨ (μ(ξ), γ̂ ) = aTΨ (μ(η0 + ζ ), γ̂ )

=
n∑

i=1

aT D̃iΔ
T
i μi (η0 + ζ )A−1/2

i (μi (η0 + ζ ))C−1
i Ji (μi (η0 + ζ ), γ̂ )

=
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i C−1

i Ji (μ0,i , γ̂ )

+
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i C−1

i
∂

∂μi
Ji (μ0,i , γ̂ )Δ0,iζi

+
n∑

i=1

∂

∂μi
(aT D̃iΔ

T
0,i A

−1/2
0,i )C−1

i Ji (μ0,i , γ̂ )Δ0,iζi + R∗∗
n (μ∗, γ̂ )

=: A1 + A2 + A3 + A4, (22)

where R∗∗
n (μ∗, γ̂ ) = ∑n

i=1 R
∗∗
ni (μ

∗
i , γ̂ ) and R∗∗

ni (μ
∗
i , γ̂ ) = 1

2ζ
T
i ΔT

i
∂2

∂μiμ
T
i
(aT D̃iΔi

(μi )A
−1/2
i (μi )C

−1
i · Ji (μ∗, γ̂ ))Δiζi evaluated at μ∗

i = g−1(μ0,i + τiζi ) for i =
1, . . . , n with 0 < τi < 1.

We first consider A1, and expand A1 with respect to γ , then we have

A1 =
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i C−1

i J0,i

+
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i C−1

i
∂

∂γ
J0,i (γ̂ − γ0)

+1

2

n∑

i=1

(γ̂ − γ0)
T ∂

∂γ ∂γ T

[
aT D̃iΔ

T
0,i A

−1/2
0,i C−1

i Ji (μ0,i , γ
∗)

]
(γ̂ − γ0)

=: A1,1 + A1,2 + A1,3, (23)

where γ ∗ is the point on the line between γ̂ and γ0.
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For A1,2, by conditions (C.1)–(C.3), it is not difficult to obtain n1/2(γ̂ − γ0) =
−�−1

γ (n−1/2Gγ0,n) + op(1). Combining conditions (C.6) and (C.7), we have

A1,2 = −
[

n∑

i=1

aT D̃iΔ0,i A
−1/2
0,i C−1

i
∂

∂γ
J0,i

]

�−1
γ

n∑

i=1

Gγ,i + op(k
1/2
n ).

Note that ||γ̂ − γ0|| = Op(n−1/2), it is not difficult to show A1,3 = op(k
1/2
n ). Com-

bining all these results, we can get

A1 =
n∑

i=1

[

aT D̃iΔ
T
0,i A

−1/2
0,i C−1

i J0,i

−
{

n∑

i=1

aT D̃iΔ0,i A
−1/2
0,i C−1

i
∂

∂γ
J0,i

}

�−1Gγ,i

]

+ op(k
1/2
n ). (24)

Then, let us turn to consider A2. Similarly, applying Taylor expansion with respect to
γ we have

A2 =
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i

∂

∂μi
Ji (μ0,i , γ̂ )Δ0,iζi

=
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i

∂

∂μi
J0,iΔ0,iζi

+
n∑

i=1

∂

∂γ

[

aT D̃iΔ
T
0,i A

−1/2
0,i

∂

∂μi
Ji (μ0,i , γ

∗)Δ0,iζi

]

(γ̂ − γ0)

=
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i

∂

∂μi
J0,iΔ0,iζi

+
n∑

i=1

∂

∂γ

[

aT D̃iΔ
T
0,i A

−1/2
0,i

∂

∂μi
Ji (μ0,i , γ

∗)Δ0,i D̃iξ

]

(γ̂ − γ0)

+
n∑

i=1

∂

∂γ

[

aT D̃iΔ
T
0,i A

−1/2
0,i

∂

∂μi
Ji (μ0,i , γ

∗)Δ0,i Rni

]

(γ̂ − γ0)

=: A2,1 + A2,2 + A2,3, (25)

where γ ∗ is the point on the line between γ̂ and γ0.
According to conditions (C.6)–(C.8), the result that ||γ̂ − γ0|| = Op(n−1/2) and

Lemma 1, it can be obtained that A2,2 = Op(n−1/2kn||ξ ||) = op(||ξ ||) and A2,3 =
Op(k

1/2−r
n ). Then, we have

A2 =
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i

∂

∂μi
J0,iΔ0,iζi + op(||ξ ||) + op(k

1/2
n ). (26)
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By tedious and similar derivation, we can show

A3 =
n∑

i=1

∂

∂μi
(aT D̃iΔ

T
0,i A

−1/2
0,i )C−1

i J0,iΔ0,iζi + op(||ξ ||) + op(k
1/2
n ), (27)

and

A4 = R∗∗
n (μ∗, γ0) + op(||ξ ||) + op(k

1/2
n ) (28)

=
n∑

i=1

R∗
ni (μ

∗
i , γ0) + op(||ξ ||) + op(k

1/2
n ).

Combining (24) and (26)–(28), we have

aTΨ (μ(ξ), γ̂ ) = aTΨ (μ(η0 + ζ ), γ̂ )

=
n∑

i=1

[

aT D̃iΔ
T
0,i A

−1/2
0,i C−1

i J0,i

−
{

n∑

i=1

aT D̃iΔ0,i A
−1/2
0,i C−1

i
∂

∂γ
J0,i

}

�−1Gγ,i

]

+
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i

∂

∂μi
J0,iΔ0,iζi

+
n∑

i=1

∂

∂μi
(aT D̃iΔ

T
0,i A

−1/2
0,i )C−1

i J0,iΔ0,iζi

+R∗∗
n (μ∗, γ0) + op(||ξ ||) + op(k

1/2
n ). (29)

Then

aT (Ψ (μ(ξ), γ̂ ) − �(ξ)) =
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i

{
∂

∂μi
J0,i − E

∂

∂μi
J0,i

}

Δ0,iζi

+
n∑

i=1

aT D̃iΔ
T
0,i A

−1/2
0,i

{

E
∂

∂μi
J0,i

}

Δ0,iζi

+
n∑

i=1

∂

∂μi
(aT D̃iΔ

T
0,i A

−1/2
0,i )C−1

i J0,iΔ0,iζi

+R∗∗
n (μ∗, γ0) + op(||ξ ||) + op(k

1/2
n ). (30)

Then, using the same arguments as He et al. (2005), it can be shown that

sup
||ξ ||≤Lk1/2n

||Ψ (μ(ξ), γ̂ ) − �(ξ)|| = Op(k
1/2
n ), (31)

for sufficiently large constant L .
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By direct calculation,
E ||ξ̃ ||2 = O(kn). (32)

Then we have

sup
||ξ ||≤Lk1/2n

||Ψ (ξ) − ξ || ≤ sup
||ξ ||≤Lk1/2n

||Ψ (ξ) − �(ξ)|| + ||ξ̃ || = Op(k
1/2
n ), (33)

which indicates that sup||ξ ||≤Lk1/2n
||Ψ (ξ)− ξ || ≤ Lk1/2n in probability, for sufficiently

large L. Thus, Brouwer’s fixed point theorem guarantees that there exists a zero ξ̂ of
Ψ (ξ) with ||ξ̂ || = Op(k

1/2
n ) and hence the optimal convergence rate of the estimator

of the nonparametric function can be achieved. Applying the central limit theorem on
ξ̃1, the asymptotic normality of the estimator of β̂ can be established similarly. 
�
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