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Abstract We consider the problem of estimating an additive regression function in
an inverse regression model with a convolution type operator. A smooth backfitting
procedure is developed and asymptotic normality of the resulting estimator is estab-
lished. Compared to other methods for the estimation in additive models the new
approach neither requires observations on a regular grid nor the estimation of the joint
density of the predictor. It is also demonstrated by means of a simulation study that the
backfitting estimator outperforms the marginal integration method at least by a factor
of two with respect to the integrated mean squared error criterion. The methodology
is illustrated by a problem of live cell imaging in fluorescence microscopy.

Keywords Inverse regression · Additive models · Curse of dimensionality · Smooth
backfitting

1 Introduction

In this paper we consider the regression model

Yk = g(Xk) + εk k ∈ {1, . . . , N }, (1)

where ε1, . . . , εN are independent identically distributed random variables and
X1, . . . ,XN are independent identically distributed d-dimensional predictors with
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828 N. Bissantz et al.

components Xk = (Xk,1, . . . , Xk,d)
T (k = 1, . . . , N ). We assume that the function g

is related to a signal θ by a convolution type operator, that is

g(z) =
∫
Rd

ψ(z − t)θ(t)dt, (2)

where ψ : Rd → R is a known function with
∫
Rd ψ(t)dt = 1. The interest of the

experiment is the nonparametric estimation of the signal θ . Models of the type (1) and
(2),which are closely related to deconvolution (e.g. see Stefanski andCarroll 1990; Fan
1991), belong to the class of inverse regressionmodels and have important applications
in the recovery of images from astronomical telescopes or fluorescence microscopes
in biology. Deterministic inverse regression models have been considered for a long
time in the literature (Engl et al. 1996; Saitoh 1997). However, in the past decade
statistical inference in ill-posed problems has become a very active field of research
(see Bertero et al. 2009; Kaipio and Somersalo 2010 for a Bayesian approach andMair
and Ruymgaart 1996; Cavalier 2008; Bissantz et al. 2007 for nonparametric methods).

While most of these methods have been developed for models with a one-
dimensional predictor, nonparametric estimation in the multivariate setting is of prac-
tical importance because in many applications one has to deal with an at least two-
dimensional predictor. A typical example is image reconstruction since a picture is
a two-dimensional object. Also in addition to the spatial dimensions, the data might
depend on the time thus introducing a third component. For amultivariate predictor the
estimation of the signal θ in the inverse regression model (1) is a much harder problem
due to the curse of dimensionality. In direct regression usually qualitative assumptions
regarding the signal such as additivity or multiplicativity are made, which allow the
estimation of the regression function at reasonable rates (see Linton and Nielsen 1995;
Mammen et al. 1999; Carroll et al. 2002; Hengartner and Sperlich 2005; Nielsen and
Sperlich 2005). In the present paper we investigate the problem of estimating the signal
θ in the inverse regressionmodel with a convolution type operator under the additional
assumption of additivity, that is

θ(x) = θ0 + θ1(x1) + · · · + θd(xd), (3)

where x = (x1, . . . , xd)T . In a recent paper Hildebrandt et al. (2014) proposed an
estimator of the signal θ if observations are available on a regular grid in R

d . They
also considered the case of a random design and investigated the statistical properties
of a marginal integration type estimate with known density of the predictor. The
asymptotic analysis of both estimates is based on these rather restrictive assumptions
regarding the predictor X. A regular grid or explicit knowledge of the density of the
predictor X might not be available in all applications. Moreover, estimation of this
density in the marginal integration method cannot be performed at one-dimensional
rates (seeHildebrandt et al. 2014). In particular, it changes the asymptotic properties of
additive estimates such that the signal cannot be reconstructed with one-dimensional
nonparametric rates. In the present paper we consider the construction of an estimate
in the inverse additive regression model (3) with random design, which is applicable
under less restrictive assumptions in particular without knowledge of the density of the
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predictor. For this purpose we combine in Sect. 2 smooth backfitting (see Mammen
et al. 1999) with Fourier estimation methods in inverse regression models (see Diggle
and Hall 1993; Mair and Ruymgaart 1996). Besides several advantages of the smooth
backfitting approach observed in the literature in direct regressionmodels (see Nielsen
and Sperlich 2005), the backfitting methodology only requires the estimation of the
marginal densities of the predictor. As a consequence, the resulting estimate does
not suffer from the curse of dimensionality. Section 3 is devoted to the investigation
of the asymptotic properties of the new estimator, while we study the finite sample
properties by means of a simulation study in Sect. 4. In particular we demonstrate that
the smooth backfitting approach results in estimates with an at least two times smaller
integrated mean squared error than the marginal integration method. We also illustrate
the methodology analyzing data from live cell imaging in fluorescence microscopy.
Finally, all proofs and technical arguments are presented in Appendix.

2 Smooth backfitting in inverse regression

Note that the linearity of the convolution operator and assumption (3) imply that the
function g is also additive, and consequently the model (1) can be rewritten as

Yk = g0 + g1(Xk,1) + · · · + gd(Xk,d) + εk, (4)

where Xk = (Xk,1, . . . , Xk,d)
T and the functions g0, g1, . . . , gd in model (4) are

related to the components θ0, θ1, . . . , θd of the signal θ in model (3) by g0 = θ0,

g j (z j ) =
∫
R

ψ j (z j − t)θ j (t)dt j = 1, . . . , d. (5)

Here ψ j is the marginal of the convolution function ψ , that is

ψ j (t j ) =
∫
Rd−1

ψ(t)dt−j (6)

and t = (t1, . . . , td)T ∈ R
d , t−j = (t1, . . . , t j−1, t j+1, . . . , td)T ∈ R

d−1. The esti-
mation of the additive signal is now performed in several steps and combines Fourier
transform estimation methods for inverse regression models (see Diggle and Hall
1993; Mair and Ruymgaart 1996) with the smooth backfitting technique developed
for direct nonparametric regression models (see Mammen et al. 1999).

(1) We assume for amoment that the design density is known and denote by f j and Fj

the density and cumulative distribution function of the j th marginal distribution
of the random variable X. In a first step all explanatory variables are transformed
to the unit cube using the probability transformation in each component, that is

Zk, j = Fj (Xk, j ) j = 1, . . . , d; k = 1, . . . , N . (7)

This transformation is necessary because of two reasons. On the one hand, the
asymptotic analysis ofmethods based onFourier estimation requires (with positive
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probability) observations at points Xk with a norm ‖ Xk ‖ converging to infinity,
because one has to estimate the Fourier transform of the function g j on the real
axis. On the other hand, the asymptotic analysis of the smooth backfitting method
requires a distribution of the explanatory variables with a compact support.
In practice the unknown marginal distributions of the predictor are estimated by
standard methods and this estimation does not change the asymptotic properties
of the statistic. We refer to Remark 1 for more details.

(2) The transformation in Step (1) yields the representation

Yk = g0 + g∗
1(Zk,1) + · · · + g∗

d(Zk,d) + εk; k = 1, . . . , N , (8)

where the functions g∗
j are defined by g∗

j = g j ◦ F−1
j ( j = 1, . . . , d). We now

use the smooth backfitting algorithm (see Mammen et al. 1999) to estimate each
function g∗

j in (8) from the data (Z1,1, . . . , Z1,d ,Y1), · · · , (ZN ,1, . . . , ZN ,d ,YN ).
This algorithmdetermines estimates of the components g0, g∗

1 , . . . , g
∗
d recursively,

where ĝ0 = Y . = 1
N

∑N
k=1 Yk . For starting values ĝ∗(0)

1 , . . . , ĝ∗(0)
d we calculate

for r = 1, 2, . . . the estimators ĝ∗(r)
1 , . . . , ĝ∗(r)

d by the recursive relation

ĝ∗(r)
j (z j ) = ĝ∗

j (z j ) −
∑
k< j

∫
ĝ∗(r)
k (zk)

[
p̂ jk(z j , zk)

p̂ j (z j )
− p̂k,[ j+](zk)

]
dzk

−
∑
k> j

∫
g∗(r−1)
k (zk)

[
p̂ jk(z j , zk)

p̂ j (z j )
− p̂k,[ j+](zk)

]
dzk − g∗

0, j . (9)

Here

ĝ∗
j (z j ) =

∑N
k=1 L

(
Zk, j−z j

hB

)
Yk

∑N
k=1 L

(
Zk, j−z j

hB

) (10)

denotes the one-dimensional Nadaraya–Watson estimator of the j th component
(with kernel L and bandwidth hB), p̂ jk and p̂ j are the ( j, k)th and j th marginals
of the common kernel density estimator p̂ for the density p of the predictor
(Z1, . . . , Zd)

T , and we use the notation

p̂k,[ j+](zk) =
∫
p̂ jk(z j , zk)dz j

[ ∫
p̂ j (z j )dz j

]−1

g∗
0, j =

∫
ĝ∗
j (z j ) p̂ j (z j )dz j∫
p̂ j (z j )dz j

. (11)

(3) Estimators of the functions g j in (4) are now easily obtained by the transformation

ĝ j = ĝ∗(r0)
j ◦ Fj , (12)
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where ĝ∗(r0)
j denotes the estimator obtained after terminating the recursive relation

(9) at step r0 ( j = 1, . . . , d). In order to recover the signal θ j from ĝ j we now
introduce the random variables

Uk, j = Yk −
d∑

i=1
i �= j

ĝi (Xk,i ) − ĝ0 (13)

and use the data (X1, j ,U1, j ), . . . , (XN , j ,UN , j ) to estimate the j th component
θ j of the signal θ by Fourier transform estimation methods (see Diggle and Hall
1993 for example). For this purpose we note that the relation (5) implies for the
Fourier transforms �g j and �θ j of the functions g j and θ j the relation

�θ j = �g j

�ψ j

,

where

�ψ j (w) =
∫
R

ψ j (x)e
iwxdx

is the Fourier transform of the j th marginal of the convolution function. Now
the Fourier transform �g j (w) of the function g j is estimated by its empirical
counterpart

�̂g j (w) = 1

N

N∑
k=1

eiwXk, j
Uk, j

max{ f j (Xk, j ), f j (
1
aN

)} , (14)

where f j is the density of the j th marginal distribution and aN is a real-valued
sequence converging to 0 as N → ∞. The estimator of θ̂ j is now obtained from
a “smoothed” inversion of the Fourier transform, that is

θ̂ j (x j ) = 1

2π

∫
R

e−iwx j �K (hw)
�̂g j (w)

�ψ j (w)
dw, (15)

where �K is the Fourier transform of a kernel K and h is a bandwidth converging
to 0 with increasing sample size.

(4) Finally, the additive estimate of the signal θ is given by

θ̂ (x) = θ̂0 + θ̂1(x1) + · · · + θ̂d(xd), (16)

where θ̂0 = ĝ0 = Y . and θ̂ j is defined in (15) for j = 1, . . . , d.

Remark 1 (a) Note that we use the term max{ f j (Xk, j ), f j (
1
aN

)} in the denominator
of the estimate (14) instead of the more intuitive term f j (Xk, j ). This “truncation”
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avoids situations where the denominator becomes too small, which would yield
unstable estimates with a too large variance.

(b) In practical applications, knowledge of the marginal distributions might not be
available and in this case the transformation (7) can be achieved by

Ẑk, j = F̂ j (Xk, j ); j = 1, . . . , d; k = 1, . . . , N , (17)

where for j = 1, . . . , d

F̂ j (x) = 1

N + 1

N∑
k=1

I{Xk, j ≤ x} (18)

denotes the empirical distribution function of the j th components X1, j , . . . , XN , j .
Similarly, the density f j in (14) can be estimated by kernel density methods, that
is

f̂ j (x j ) = 1

Nhd, j

N∑
k=1

M

(
Xk, j − x j

hd, j

)
; j = 1, . . . , d, (19)

where M denotes a kernel and hd, j is a bandwidth proportional to N−1/5. We
note that the estimators F̂ j and f̂ j converge uniformly to Fj and f j at rates

(
log log N

N )1/2 and (
log N
Nhd, j

)1/2, respectively (see van der Vaart 1998; Giné and Guil-
lou 2002). The rates of convergence in inverse deconvolution problems are slower
and consequently the asymptotic properties of the estimates θ̂ j do not change if
f j and Fj are replaced by their empirical counterparts f̂ j and F̂ j defined in (17)
and (19), respectively.

3 Asymptotic properties

In this section we investigate the asymptotic properties of the estimators defined in
Sect. 2. In particular we establish weak convergence. For this purpose we require the
following assumptions:

(A1) The kernel L in the Nadaraya–Watson estimator ĝ∗
j in the backfitting recursion

(9) is symmetric, Lipschitz continuous and has compact support, say [−1, 1].
The bandwidth hB of this estimator is proportional to N−1/5.

(A2) E[|Y j |α] < ∞ for some α > 5
2 .

(A3) The functions g1, . . . , gd in model (4) are bounded and twice differentiable with
Lipschitz continuous second-order derivatives.

(A4) The Fourier transforms �ψ j of the marginals ψ j of the convolution function ψ

satisfy
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∫
R

|�K (w)|
|�ψ j (

w
h )|dw ≤ C1h

−β j ,

∫
R

|�K (w)|2
|�ψ j (

w
h )|2 dw ∼ C2h

−2β j ,

∣∣∣∣∣
1

h

∫ ∫
e−iw(x−x j )/h �K (w)

�ψ j (
w
h )

dw
f j (x)

max{ f j (x), f j (
1
aN

}dx
∣∣∣∣∣ = o

(
h−2β−1

)

uniformly with respect to x j for some constants β j > 0 ( j = 1, . . . , d) and
constants C1,C2,C3 > 0, where the constant C3 does not depend on x j .

(A5) The Fourier transform �K of the kernel K is symmetric and supported on
the interval [−1, 1]. Additionally, there exists a constant b ∈ (0, 1] such that
�K (w) = 1 for all w ∈ [−b, b], b > 0, and |�K (w)| ≤ 1 for all w ∈ R.

(A6) The Fourier transforms �θ1 , . . . , �θd of the functions θ1, . . . , θd in the additive
model (3) satisfy

∫
R

|�θ j (w)||w|s−1dw < ∞ for some s > 1 and j = 1, . . . , d.

(A7) The functions g1, . . . , gd defined in model (5) satisfy

∫
R

|g j (z)||z|rdz < ∞ for j = 1, . . . , d

for some r > 0 such that ar−1
N = o(hβ j+s).

(A8) For each N ∈ N let X1, . . . ,XN denote independent identically distributed d-
dimensional random variables with marginal densities f1, . . . , fd (which may
depend on N ) such that f j (x) �= 0 for all x ∈ [− 1

aN
, 1
aN

]. We also assume

that F−1
j exists, where Fj is the distribution function of X1, j . Furthermore we

assume, that for sufficiently large N ∈ N

f j (x) ≥ f j

(
1

aN

)
whenever x ∈

[
− 1

aN
,
1

aN

]
,

for all j = 1, . . . , d.
(A9) If fi jk(ti , t j |tk) and fi j (ti |t j ) denote the densities of the conditional distribution

P
Xi ,X j |Xk and P

Xi |X j , respectively, we assume that there exist integrable func-
tions (with respect to theLebesguemeasure), sayUi jk : R2 → R , ηi j : R → R,
such that the inequalities

fi jk(ti , t j |tk) ≤ Ui jk(ti , t j ) ; fi j (ti |t j ) ≤ ηi j (ti )

are satisfied for all ti , t j , tk ∈ R.

Remark 2 Assumption (A1)–(A3) are required for the asymptotic analysis of the back-
fitting estimator, while (A4)–(A8) are used to analyse the Fourier estimation methods
used in the second step of the procedure. In order to demonstrate that these assump-
tions are satisfied in several cases of practical importance we consider exemplarily
Assumption (A4) and (A6).
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834 N. Bissantz et al.

(a) To illustrate Assumption (A4) the convolution function ψ and the kernel K are
chosen as

ψ j (x) = λ

2
e−λ|x |; K (x) = sin(x)

πx
,

respectively. Furthermore, we choose f j as density of a uniform distribution on the
interval [− 1

aN
, 1
aN

] and consider exemplarily thepoint x j = 0.Note that�K (w) =
I[−1,1](w). The integrals in (A4) are obtained by straightforward calculation, that
is

∫
R

|�K (w)|
|�ψ j (

w
h )|dw =

∫
[−1,1]

(
1 + w2

h2

)
dw = 2

3h2
+ 2

∫
R

|�K (w)|2
|�ψ j (

w
h )|2 dw =

∫
[−1,1]

(
1 + w2

h2

)2

dw = 2

5h4
+ 4

3h2
+ 2

1

h

∫
[−1/aN ,1/aN ]

∫
[−1,1]

e−iw(x−x∗
j )/h

�K (w)

�ψ j (
w
h )

dw
f j (x)

max{ f j (x), f j (
1
aN

)}dx

= 2

h

∫
[−1/aN ,1/aN ]

((h2(x2 − 2) + x2) sin( xh ) + 2hx cos( xh ))

hx3
dx

= −2aN cos( 1
aN h

) + 2a2Nh sin(
1

aN h
) + 2hSi( 1

aN h
)

h

and Si(x) denotes the sine-integral
∫ x
0

sin(y)
y dy. This shows that condition (A4)

is satisfied.
(b) In order to illustrate Assumption (A6) let Wm(R) denote the Sobolev space of

order m ∈ N; then the assumption θ j ∈ Ws(R) with s ∈ N\{1} implies condition
(A6). Conversely, if (A6) holds with s ∈ N\{1}, then θ j is (s − 1) times contin-
uously differentiable (see Folland 1984). In other words, (A6) is an assumption
regarding the smoothness of the components of the signal θ j ( j = 1, . . . , d).

Our main result, which is proved in the Appendix, establishes the weak conver-
gence of the estimator θ̂ j for the j th component of the additive signal in model (3).
Throughout this paper the symbol ⇒ denotes weak convergence.

Theorem 1 Consider the additive inverse regression model defined by (1)–(3). If
Assumptions (A1)–(A8) are satisfied and additionally the conditions

N 1/2hβ j+1/2 f j

(
1

aN

)1/2

→ ∞ (20)

N 1/2h3/2 f j

(
1

aN

)3

→ ∞, N 1/5hs+β j f j

(
1

aN

)
→ ∞ (21)
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Smooth backfitting in additive inverse regression 835

are fulfilled, then a standardized version of the estimator θ̂ j defined in (15) converges
weakly, that is

V−1/2
N , j

(
θ̂ j (x j ) − E[θ̂ j (x j )]

)
⇒ N (0, 1),

where

E[θ̂ j (x j )] = θ j (x j ) + o(hs−1),

and the normalizing sequence is given by

VN , j = 1

Nh2(2π)2

∫
R

∣∣∣∣∣
∫
R

e−iw(x j−y)/h �K (w)

�ψ j (
w
h )

dw

∣∣∣∣∣
2

(g2j (y) + σ 2) f j (y)

max{ f j (y), f j (
1
aN

)}2 dy

(22)

and satisfies

N 1/2hβ j+1/2 f j

(
1

aN

)1/2

≤ V−1/2
N , j ≤ N 1/2hβ j+1/2. (23)

As a consequence of Theorem 1 we obtain the weak convergence of the additive
estimate θ̂ of the signal θ .

Remark 3 If all components except one would be known, it follows from Theorem
3.1 in Hildebrandt et al. (2014) that this component can be estimated at a rate RN

satisfying

c1
N 1/2h1/2+β j

≤ Rn ≤ c2

N 1/2h1/2+β j f j (a
−1
N )

(with appropriate constants c1 and c2). Consequently, it follows from Theorem 1 that
the smooth backfitting operator θ̂ j defined in (15) has an oracle property and estimates
the j th component at the one-dimensional rate.

Corollary 1 Consider the inverse regressionmodel defined by (1)–(3) and assume that
the assumptions of Theorem 1 are satisfied for all j = 1, . . . , d. Then a standardized
version of the additive estimator θ̂ defined in (16) converges weakly, that is

V−1/2
N

(
θ̂ (x) − E[θ̂ (x)]

)
⇒ N (0, 1).

Here

E[θ̂ (x)] = θ(x) + o(hs−1),
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836 N. Bissantz et al.

and the normalizing factor is given by VN = ∑d
j=1 VN , j +∑1≤k �=l≤d VN ,k,l , where

VN , j is defined in (22),

VN ,k,l = 1

Nh2(2π)2

∫
R

∫
R

e−iw(xk−y)/h �K (w)

�ψk (
w
h )

dw
∫
R

e−iw(xl−z)/h �K (w)

�ψl (
w
h )

dw

× (σ 2 + gk(y)gl(z)) fk,l(y, z)

max{ fk(y), fk(
1
aN

)}max{ fl(y), fl(
1
aN

)}d(y, z),

and fk,l denotes the joint density of the pair (Xk,1, Xl,1). Moreover, VN satisfies

N 1/2hβ j∗+1/2 f j∗
(

1

aN

)1/2

≤ V−1/2
N ≤ N 1/2hβ j∗+1/2,

where j∗ = argmin j h
β j f j (1/aN ).

Remark 4 It is worthwhile to mention that the results can be extended to dependent
data using additional technical arguments. For example, Hildebrandt et al. (2014)
investigated marginal integration estimators in an additive inverse regression model,
where the error process is m-dependent and similar results as presented in Theorem 1
and Corollary 1 of this paper can derived for the smooth backfitting estimator under
this assumption. The details are omitted for the sake of brevity.

Remark 5 It was pointed out by a referee that structured nonparametric (direct) regres-
sion techniques have recently found applications in estimating outstanding claims
in non-life insurance (the so-called reserving problem). More precisely, Martinez-
Miranda et al. (2013) considered the “single chain ladder” model and proposed a
continuous approach, which—roughly speaking—consists in an approximation by a
two-dimensional multiplicative density model and the corresponding estimation prob-
lem (see section 3.3 in this reference). Although this continuous approximation does
not contain a convolution, there exist other discrete non-life insurance models, where
convolution type structure may occur. For example, Martinez-Miranda et al. (2012)
investigated the ”double chain ladder” model with a convolution type structure, which
is similar to the one considered in this paper. A very interesting problem for future
research is the development of a continuous approach to the ”double chain ladder”
(which might also include covariates) and to use the new techniques of this paper to
develop modern statistical estimation tools.

4 Finite sample properties

4.1 Simulation study

In this section we briefly investigate the finite sample properties of the new backfitting
estimators by means of a small simulation study. We also compare the two estimators
obtained by the marginal integration method with the backfitting estimator proposed
in this paper, where the empirical distribution function F̂ j in (18) and the statistic (19)
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Smooth backfitting in additive inverse regression 837

are used for the estimation of the unknownmarginal distribution Fj and its density f j ,
respectively. All results are based on 500 simulation runs. For the sake of brevity we
concentrate on three models with a two-dimensional predictor and two distributions
for the predictor. To be precise, we consider the models

θ(x1, x2) = θ1(x1) + θ2(x2) = e−(x1−0.4)2 + e−(x2−0.1)2 , (24)

θ(x1, x2) = θ1(x1) + θ2(x2) = x1e
−|x1| + (1 + x22 )

−1, (25)

θ(x1, x2) = θ1(x1) + θ2(x2) = e−|x1| + (1 + x22 )
−1, (26)

and assume that the convolution function is given by

ψ(x1, x2) = 9

4
e−3(|x1|+|x2|). (27)

Note that the signals in (24) and (25) satisfy the assumptions posed in Sect. 3, while
this is not the case for the first component of the signal (26). For the distribution of
the explanatory variable we consider an independent and correlated case, that is

a uniform distribution on the square [1/aN , 1/aN ]2 (28)

a two-dimensional normal distribution with mean 0 and variance�=
(
1 1√

2
1√
2

1

)
.

(29)

The variance of the error distribution is given by σ 2 = 0.25 and for the sequence aN
we used 0.5. In the simulation the bandwidths are chosen in several (nested) steps.
At first the bandwidths hd, j in (19) are calculated minimizing the mean integrated
squared error of the density estimate. These bandwidths are used in the calculation
of the mean integrated squared error of the estimate ĝ j in (12), which is then mini-
mized with respect to the choice of hB . The final step consists of a calculation of the
bandwidth h minimizing the mean integrated squared error of the resulting inverse
Fourier transform (15). In practice, this procedure of the mean squared error requires
knowledge of the quantities f j , g j and for a concrete application we recommend least
squares leave-one-out cross-validation for each of these steps. We emphasize that this
procedure is computationally expensive because the estimation procedure consists of
three nested estimators. Therefore, it cannot be implemented in a simulation study,
where the estimate has to be calculated 500 times. However, in a concrete application
the estimator has only to be calculated once and works in reasonable time if N ≤ 501
and d ≤ 5. For larger sample sizes and larger dimensions a non-exhaustive cross
validation should be performed to save computational time.

In Fig. 1 we illustrate the effect of the sample size N = 51, 701 and N = 1001
on the quality of the estimates. For this purpose we choose the model (24) and the
design (28). The left and right panels correspond to the first and second components
of the additive function. The figures also contain the (pointwise) estimated 5- and
95 %-quantile curves to illustrate the variation of the estimators. We observe that
even for the small sample size N = 51 the estimates already reflect the structure
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Fig. 1 Simulated mean, 5 and 95% quantile of the backfitting estimate on the basis of 500 simulation runs,
where model is given by (24) and the design is given by (28).Upper panel N = 51.Middle panel N = 701
Lower panel N = 1001. Left part θ1; right part θ2.

of the additive components. With increasing sample size the quality of the estimates
improves substantially. For the sake of brevity we restrict ourselves to the sample size
N = 701 in the following discussion and an investigation of the impact of the design
on the quality of the estimates. In Figs. 2, 3 and 4we present the estimatedmean curves
for both components corresponding to model (24)–(26), respectively. Upper parts of
the tables show the results for independent components of the predictor, where the
case of correlated explanatory variables is displayed in the lower panels. We observe
that in models (24) and (25) both components are estimated with reasonable precision
(see Figs. 2, 3). The estimators are slightly more accurate under the assumption of an
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Fig. 2 Simulated mean, 5 and 95 % quantile of the backfitting estimate on the basis of 500 simulation
runs, where model is given by (24) and the design is given by (28) (upper panel) and (29) (lower panel).
Left part θ1; right part θ2

independent design where the differences are more substantial for the estimators of the
second component.We note that in the lower-right plot of the Fig. 3, the true function is
outside the limits of the simulation intervals. A possible explanation of this observation
is that correlation in the predictors produces a larger systematic bias in the estimates.
Problems of this type could be addressed by choosing slightly smaller bandwidths hB

and h in the estimate ĝ j and the inverse Fourier transform (15), respectively.
Model (26) has been included in the study to illustrate the properties of the estimates

in models which do not satisfy the assumptions made in Sect. 3. In this case the results
are displayed in Fig. 4 and the differences between the uncorrelated and correlated
case are even more visible. Here we observe that the first component is not estimated
accurately in a neighbourhood of the origin. Consequently, the resulting estimates of
the first component are biased in a neighbourhood of the origin. On the other hand,
the second component satisfies these assumptions and the right panels of Fig. 4 shows
that the second component can be estimated with similar precision as in model (24)
and (25).
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Fig. 3 Simulated mean, 5- and 95 % quantile of the backfitting estimate on the basis of 500 simulation
runs, where model is given by (25) and the design is given by (28) (upper panel) and (29) (lower panel).
Left part θ1; right part θ2

In order to compare the newmethod with themarginal integrationmethod proposed
in Hildebrandt et al. (2014), we finally display in Table 1 the simulated integrated
mean squared error of both estimators for the models (24) and (25) (model (26) is
not included in this comparison because it does not satisfy the assumptions made
in Sect. 3). We observe in the case of independent predictors that the backfitting
approach yields an improvement of 50 % with respect to the integrated mean squared
error criterion. Moreover, in the situation of dependent predictors as considered in
(29) the improvement is even more substantial and varies between a factor 3 and 4.
We expect that the advantages of the backfitting methodology are even larger with an
increasing dimension of the predictor X.

4.2 Data example

In this section we illustrate the application of the smooth backfitting estimator for
an inverse regression in a problem of live cell imaging in fluorescence microscopy.
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Fig. 4 Simulated mean, 5 and 95 % quantile of the backfitting estimate on the basis of 500 simulation
runs, where model is given by (26) and the design is given by (28) (upper panel) and (29) (lower panel).
Left part θ1; right part θ2

Table 1 Simulated mean
integrated squared error of the
smooth backfitting estimator θ̂ j
( j = 1, 2) proposed in this paper
and of the marginal estimator
θ̂MI
j proposed by Hildebrandt

et al. (2014)

Design model (28) (29)

(24) (25) (24) (25)

θ̂1 0.00179 0.00189 0.00500 0.00353

θ̂2 0.00154 0.00258 0.00488 0.00345

θ̂MI
1 0.00347 0.00365 0.02219 0.00934

θ̂MI
2 0.00311 0.00354 0.01917 0.01092

It is well known that images from optical microscopy do not show the true shape
of the object, but a (at least slightly) blurred image which can be described as the
convolution of the true image with the point spread function (PSF) of the microscope.
The PSF describes the imaging properties of the optical device, in particular due to
the diffraction of the beam at optical surfaces. Moreover, the image at our disposal is
acquired with a CCD (charge-coupled device).
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Fig. 5 First, middle and last timestep of the sequence of nine images taken over ≈ 1 min. Intracellular
tubular shaped membrane compartments were labelled with the red lipophilic fluorescent dye DiI

Figure 5 shows a time stack of livingHeLa cells which are stainedwith a fluorescent
dye. The dye DiI labels the intracellular lipid membranes in living cells and is, e.g.
used to monitor intracellular transport processes by fluorescence microscopy. For live-
cell imaging the HeLa-Cells (ATCC) cultured on coverslips were incubated with the
lipophilic carbocyan dye DiI (Molecular Probes). The living cells were then subjected
to fluorescence microscopy using a confocal laser scanning microscope (Leica TCS)
equipped with a HeNe-Laser. The samples were excited at 543 nm. Images were
processed using the supplied Leica Confocal Software. Finally, the number of pixels
per image is 512×512 = 262,144. The resulting image series consists of nine images
which were taken over ≈ 1 min and show the trafficking tubular membrane-coated
compartments in the cell which are part of the intracellular transport system. The first,
middle and last time step of the image sequence are shown in Fig. 5.

At our disposal is a sequence of 9 images of cells imaged by fluorescence
microscopy measured of 512 × 512 pixels each showing the same true object. In
addition to a small variability of the images due to ongoing processes in the living
cells, there is (may) be time-dependent contributions to the images from a general
decay in the overall brightness of the image to a decrease of luminosity of the fluo-
rophors on the one hand or temperature changes in the sample which cools down to
ambient temperature on the other hand, resulting in changing background noise levels
during the imaging.

We are interested in understanding such a general time-dependent contribution to
the image because a profound characterization of such general effects may enhance
the quality of the biological analysis substantially. If such general time-dependent
background effects are quantified by the presented method it might in a subsequent
step be possible to subtract these artificial effects from the image series in a way that,
e.g. enables the detection of small-scale events in the images that would otherwise
remain hidden.

For the biological analysis of the sample it is essential that the image is taken under
constant conditions throughout the complete time period, i.e. changes in the back-
ground fluorescence may impair later analysis of the image, especially with regard to
time-dependent processes. For this purpose we model the data in an additive frame-
work with an additive time-dependent component for the contribution to the general
image structure, that is
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Fig. 6 Left estimated signal f̂image, right estimated time-dependent contribution f̂ f
image

f (x1, x2, t) = fimage(x1, x2) + ftime(t).

Here fimage is the true shape of the image, which is only at very small scales changing
with time in shape (cf. Fig. 5 for a comparison of the first, middle and last time
step of the image sequence), and the function fimage is modelling a time-dependent
contribution to the image.

We apply the smooth backfitting methodology with a kernel density estimator with
a Gaussian kernel L (with bandwidth 0.2) and design points Xi j = (i, j, k) (1 ≤
i, j ≤ 512, 1 ≤ k ≤ 9). The PSF is estimated from the shape of a point-like test
object (bead, size = 200 nm) with shape

ψ(x1, x2) = λ

2
exp(−λ(|x1| + |x2|).

Figure 6 shows the resulting estimates f̂image and f̂image, respectively. Moreover,
ĝ0 = 76.0. From this figure (r.h.s.) we observe that the time-dependent component
is monotonically decreasing which can be probably attributed to an overall decrease
in fluorescence. To observe, e.g. intracellular transport processes in living cells the
transport compartments inside mammalian are labelled with a fluorescent dye and
then subjected to fluorescence microscopy to take a time series of images over several
minutes. In order to analyse the resulting image series it is important that the back-
ground conditions remain constant during the imaging period and that it is possible
to differ between biologically relevant changes over time and artificial changes due to
the experimental setup or the imaging device.

Appendix: Proof of Theorem 1

Let p denote the density of the transformed predictor (Z1,1, . . . , Z1,d)
T . It is shown in

Mammen et al. (1999) that the smooth backfitting algorithm (9) produces a sequence
of estimates (ĝ∗(r)

1 , . . . , ĝ∗(r)
d )r=0,1,... converging in L2(p) with geometric rate to a

vector (g1, . . . , gd) which satisfies the system of equations
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g j (z j ) = ĝ∗
j (z j ) −

∑
k �= j

∫
gk(zk)

[
p̂ jk(z j , zk)

p̂ j (z j )

− p̂k,[ j+](zk)
]
dzk − g∗

0, j j = 1, . . . , d, (30)

where g∗
0, j is defined in (11). Therefore, the asymptotic properties of the smooth

backfitting operator can be investigated replacing in (14) the random variables Uk, j

defined in (13) by their theoretical counterparts

Ũk, j = Yk −
d∑

i=1
i �= j

g̃i (Xk,i ) − ĝ0,

where g̃i (Xk,i ) = ḡi (Zk,i ) (i = 1, . . . d; k = 1, . . . , N ) and g̃i = ḡi ◦ F (i =
1, . . . , d). This yields the representation

Ũk, j =g j (Xk, j ) + εk +
d∑

i=1
i �= j

(gi (Xk,i ) − g̃i (Xk,i )) = g j (Xk, j ) + εk + Bj,k,N , (31)

where the last equality defines the random variables Bj,k,N in an obvious manner. The
results of Mammen et al. (1999) imply

Bj,k,N = Op(N
−1/5) (32)

uniformly with respect to j ∈ {1, . . . , d} and k ∈ {1, . . . , N }.
The assertion of Theorem 1 is now proved in four steps establishing the following

statements:

b
θ̂ j

(x j ) = E[θ̂ j (x j )] − θ j (x j ) = o(hs−1) (33)

Var(θ̂ j (x j )) = VN , j (1 + o(1)) (34)

Vn, j satisfies (23) (35)

|cuml(V
−1/2
N , j θ̂ j (x j ))| = o(1) for all l ≥ 3, (36)

where VN , j is the normalizing factor defined in (22) and cuml denotes the lth cumulant
(see Brillinger 2001).

Proof of (33): We first determine the expectation of the estimator θ̂ j observing that
the estimator θ̂ j is linear, i.e.

θ̂ j (x j ) =
N∑

k=1

w j,N (x j , Xk, j )Ũk, j , (37)
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where the weights w j,N (x j , Xk, j ) are defined by

w j,N (x j , Xk, j ) = 1

2πNh

∫
R

e−iw(x j−Xk, j )/h �K (w)

�ψ j (
w
h )

dw
1

max{ f j (Xk, j ), f j (
1
an

)} ,

(38)

and we have replaced the quantities Uk, j by Ũk, j as described at the beginning of the
proof. This representation gives

E[θ̂ j (x j )] = E1 + E2, (39)

where the terms E1 and E2 are defined by

E1 = E

[
N∑

k=1

g j (Xk, j )w j,N (x j , Xk, j )

]
, E2 = E

[
N∑

k=1

Bj,k,Nw j,N (x j , Xk, j )

]
.

(40)

Using the definition of Bj,k,N and (32) the term E2 can be estimated as follows:

|E2| ≤ E

⎡
⎢⎢⎣

N∑
k=1

d∑
i=1
i �= j

|gi (Xk,i ) − g̃i (Xk,i )|max
k

|w j,N (x j , Xk, j )|

⎤
⎥⎥⎦

≤ C

hβ j+1 f j (
1
aN

)
E

⎡
⎢⎢⎣

d∑
i=1
i �= j

|gi (Xk,i )− g̃i (Xk,i )|

⎤
⎥⎥⎦≤ C

N 1/5hβ j+1 f j (
1
aN

)
=o(hs−1),

(41)

where we used the representation (38) and Assumption (A4). The second inequality
in (41) follows from the fact that

E[|gi (Xk,i ) − g̃i (Xk,i )|] = O(N−1/5). (42)

In order to establish this statement note that gi (Xk,i ) − g̃i (Xk,i ) = OP (N−1/5) (uni-
formly with respect to k = 1, . . . , N ). The proof of the L1-convergence follows along
the lines of the proof of the stochastic convergence in Mammen et al. (1999). Here
one additionally shows in each step of the backfitting iteration stochastic convergence
and L1- convergence (see Hildebrandt 2013 for details).
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Similarly, we obtain from the definition of the weights w j,N (x j , Xk, j ) in (38) the
representation

E1 = 1

2πh

∫
R

g j (y)
∫
R

e−iw(x j−y)/h �K (w)

�ψ j (
w
h )

dw
f j (y)

max{ f j (y), f j (
1
aN

)}dy

= 1

2πh

∫
R

�g j

(w

h

)
e−iwx j /h �K (w)

�ψ j (
w
h )

dw

− 1

2πh

∫
R

g j (y)
∫
R

e−iw(x j−y)/h �K (w)

�ψ j (
w
h )

dw

(
1 − f j (y)

max{ f j (y), f j (
1
aN

)}

)
dy,

= θ j (x j ) − F1 − F2, (43)

where the terms F1 and F2 are defined by

F1 = 1

2πh

∫
R

�θ j

(w

h

)
e−iwx j /h (1 − �K (w)) dw,

F2 = 1

2πh

∫
R

g j (y)
∫
R

e−iw(x j−y)/h �K (w)

�ψ j (
w
h )

dw

(
1 − f j (y)

max{ f j (y), f j (
1
aN

)}

)
dy,

respectively. The term F1 can be estimated using Assumption (A6), that is

|F1| ≤ 1

2πh

∫
R

|�θ j

(w

h

)
|1 − �K (w)|dw ≤ 1

πh

∫
[−b,b]c

|�θ j

(w

h

)
|dw

≤ 1

π

∫
[−b/h,b/h]c

1

|y|s−1 |y|s−1|�θ j (y)|dy

≤ hs−1

bs−1π

∫
[−b/h,b/h]c

|y|s−1|�θ j (y)|dy = o(hs−1),

while the term F2 is estimated similarly, using Assumption (A4), (A7) and (A8) that
is

|F2|≤ 1

2πh

∫
R

|g j (y)|
∫
R

|�K (w)|
|�ψ j (

w
h )|dw

∣∣∣1 − f j (y)

max{ f j (y), f j (
1
aN

)}
∣∣∣dy

≤ 1

2πh

∫
([−1/aN ,1/aN ])c

|g j (y)|dy
∫
R

|�K (w)|
|�ψ j (

w
h )|dw = O

(
arN

h1+β j

)
= o(hs−1).

From these estimates and (43) we obtain E1 = θ j (x j ) + o
(
hs−1

)
, and the assertion

(33) now follows from the decomposition (39) and (41). �
Proof of (34): using standard results for cumulants (see Brillinger 2001) the variance
of the estimate θ̂ j can be calculated as

Var(θ̂ j (x j )) = S1 + S2 + S3 + 2S4 + 2S5 + 2S6, (44)
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where

S1 =
N∑

k=1

N∑
l=1

cum
(
εkw j,N (x j , Xk, j ), εlw j,N (x j , Xl, j )

)

S2 =
N∑

k=1

N∑
l=1

cum
(
g j (Xk, j )w j,N (x j , Xk, j ), g j (Xl, j )w j,N (x j , Xl, j )

)

S3 =
N∑

k=1

N∑
l=1

cum
(
Bj,k,Nw j,N (x j , Xk, j ), Bj,l,Nw j,N (x j , Xl, j )

)

S4 =
N∑

k=1

N∑
l=1

cum
(
εkw j,N (x j , Xk, j ), g j (Xl, j )w j,N (x j , Xl, j )

)

S5 =
N∑

k=1

N∑
l=1

cum
(
εkw j,N (x j , Xk, j ), Bj,l,Nw j,N (x j , Xl, j )

)

S6 =
N∑

k=1

N∑
l=1

cum
(
g j (Xk, j )w j,N (x j , Xk, j ), Bj,l,Nw j,N (x j , Xl, j )

)
.

It is easy to see that S4 = 0 because of E[εk] = 0 and the independence of εk
and Xk . We will show that the first two terms S1 and S2 determine the variance and
that the terms S3, S5 and S6 are of smaller order. For a proof of the latter result we
concentrate on the sixth term because the results for the terms S3 and S5 can be treated
analogously.

As εk , εl , Xk, j and Xl, j are independent for k �= l the term S1 can be written as

Ncum
(
εkw j,N (x j , Xk, j ), εkw j,N (x j , Xk, j )

)
= Ncum

(
εk, εk

)
cum

(
w j,N (x j , Xk, j ), w j,N (x j , Xk, j )

)
+Ncum

(
εk, εk

)
cum

(
w j,N (x j , Xk, j )

)
cum

(
w j,N (x j , Xk, j )

)
,

where we used the product theorem for cumulants and E[εk] = 0. Now a straightfor-
ward calculation gives

S1 = σ 2

Nh2(2π)2

∫
R

∣∣∣
∫
R

e−iw(x j−y)/h �K (w)

�ψ j (
w
h )

dw
∣∣∣2 f j (y)

max{ f j (y), f j (
1
aN

)}2 dy

× (1 + o(1)).

The second summand in (45) can be calculated in the same way and we obtain

S2 = 1

Nh2(2π)2

∫
R

∣∣∣
∫
R

e−iw(x j−y)/h �K (w)

�ψ j (
w
h )

dw
∣∣∣2 g2j (y) f j (y)

max{ f j (y), f j (
1
aN

)}2 dy

× (1 + o(1)).
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In a last step we investigate the sixth summand of (45) (the other terms S3 and S5 are
treated in the same way). By the product theorem and the definition of the cumulants
we obtain for this term

S6 = −
∑
k �=l

d∑
i=1
i �= j

Cov
(
g j (Xk, j )w j,N (x j , Xk, j ), gi (F(Xl,i ))w j,N (x j , Xl, j

)

× (1 + o(1)),

where we used the definitions of Bj,l,N = ∑
i �= j (gi (Xl,i ) − g̃i (Xl,i )) and gi =

g̃i ◦ F−1
i . We introduce the weights

qmj (Xl,i ) = L
( Fj (Xm,i )−Fj (Xl,i )

hB

)
∑N

s=1 L
( Fj (Xs,i )−Fj (Xl,i )

hB

) l,m = 1, . . . , N ; i = 1, . . . , d,

denoted by

ĝ∗
i (Fi (Xl,i )) =

N∑
m=1

qmi (Xl,i )Ym l = 1, . . . , N ; i = 1, . . . , d (45)

theone-dimensionalNadaraya–Watson estimator from thedata Fi (X1,i ), . . . ,Fi (XN ,i )

evaluated at the point Fi (Xl,i ) and define

vmi (Xl,i , zm) = p̂im(Fi (Xl,i ), zm)

p̂i (Fi (Xl,i ))
− p̂m,[i+](zm) i,m = 1, . . . , d; l = 1, . . . , N

as the integrand in equation (30). This yields for the term S6 the decomposition

S6 = (B − A)(1 + o(1)), (46)

where the terms A and B are defined by

A =
∑
k �=l

d∑
i=1
i �= j

Cov

(
g j (Xk, j )w j,N (x j , Xk, j ), w j,N (x j , Xl, j )

N∑
m=1

qmi (Xl,i )Ym

)

and

B =
∑
k �=l

d∑
i=1
i �= j

d∑
m=1
m �=i

Cov
(
g j (Xk, j )w j,N (x j , Xk, j ),

×
∫

g̃m(zm)vmi (Xl,i , zm)dzm + g∗
0,i

)
w j,N (x j , Xl, j )

)
,
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respectively. We start with the estimation of the term A calculating each covariance
separately, that is

∣∣∣∣∣Cov
(
g j (Xk, j )w j,N (x j , Xk, j ), w j,N (x j , Xl, j )

N∑
m=1

qmi (Xl,i )Ym
)∣∣∣∣∣

≤ (H1 + H2
)
(1 + o(1)), (47)

where the terms H1 and H2 are defined by

H1 = 1

NhB

∣∣∣∣∣
d∑

r=1

E

[
g j (Xk, j )w j,N (x j , Xk, j )L

(
Fi (Xk,i ) − Fi (Xl,i )

hB

)

gr (Xk,r )w j,N (x j , Xl, j )

]∣∣∣∣∣

H2 = 1

NhB

∣∣∣∣∣E
[
g j (Xk, j )w j,N (x j , Xk, j )

]
E

[
L

(
Fi (Xk,i ) − Fi (Xl,i )

hB

)

×
d∑

r=1

gr (Xk,r )w j,N (x j , Xl, j )

]∣∣∣∣∣

and we used the fact that the kernel density estimate

1

NhB

∑
m

L

(
Fi (Xm,i ) − Fi (Xl,i )

hB

)
= p̂i (Fi (Xl,i ))

in the denominator of the Nadaraya–Watson estimate (45) converges uniformly to 1
as Fi (Xl,i ) is uniformly distributed on the interval [0, 1] (see Giné and Guillou 2002).
We first investigate the term H1 and obtain by a tedious calculation using assumption
(A4) and (A9)

H1 ≤ (1 + o(1))

N 3h2

∣∣∣
∫

R2

( ∫

R

g j (t j )
∫

R

e−iw(x j−t j )/h �K (w)

�ψ j

(
w
h

)dw

× f j (t j ) fir j (ti , tr |t j )
max{ f j (t j ), f j (1/aN )}dt j

)

×
∫

R

( ∫

R

e−iw(x j−s j )/h �K (w)

�(w/h)
dw

f j (s j ) fi j (ti |s j )
max{ f j (t j ), f j (1/aN )}ds j

)
g j (tr )dti dtr

∣∣∣

≤ C

N 3h2

∫

R2

∣∣∣
∫

R

e−iw(x j−t j )/h �K (w)

�ψ j (w/h)
dw

f j (t j )

max{ f j (t j ), f j (1/aN )}dt j
∣∣∣
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×
∣∣∣
∫

R

e−iw(x j−s j )/h �K (w)

�ψ j (w/h)
dw

f j (s j )

max{ f j (t j ), f j (1/aN )}ds j
∣∣∣

Uir j (ti , tr )ηi j (ti )dti dtr

= o
( 1

N 3h2β+1

)

uniformly with respect to k, l. A similar calculation yields

H2 ≤ 1

NhB

∣∣∣∣ E1

N
E

[
L

(
Fi (Xk,i ) − Fi (Xl,i )

hB

)

d∑
r=1

gr (Xk,r )w j,N (x j , Xl, j )

]∣∣∣∣∣ = o

(
1

N 3h2β+1

)

(uniformly with respect to k, l) where we use the estimate (40) in the first step. Conse-
quently, the term A in (47) can be bounded by A = o(1/Nh2β+1)A tedious calculation
using similar arguments yields for the term B = O(1/Nh2β+1) and by (46) the sum
S6 is of the same order. Moreover, it will be shown in the proof of (35) below that
this order is smaller than the order of the first two summands S1 and S2 in (45) which
gives

S6 = O
( 1

Nh2β+1

)
= o(S j ) j = 1, 2.

A similar calculation for the terms S3 and S5 finally yields

Var(θ̂ j (x j )) = 1

Nh2(2π)2

∫
R

∣∣∣
∫
R

e−iw(x j−y)/h �K (w)

�ψ j (
w
h )

dw
∣∣∣2

× (g2j (y) + σ 2) f j (y)

max{ f j (y), f j (
1
aN

)}2 dy × (1 + o(1)),

= VN , j (1 + o(1)),

which proves (34). �
Proof of (35): As g j is bounded for all j = 1, . . . , d and max{ f j (y), f j (

1
aN

)}2 ≥
f j (y) f j (

1
aN

) the term VN , j defined in (22) can be estimated as follows:

|VN , j | ≤ C

Nh(2π)2 f j (
1
aN

)

∫
R

∣∣∣∣∣
∫
R

e−iw(x j /h−y) �K (w)

�ψ j (
w
h )

dw

∣∣∣∣∣
2

dy

= C

Nh(2π)2 f j (
1
aN

)

∫
R

|�K (w)|2
|�ψ j (

w
h )|2 dw ,

where C is a constant and we used Parseval’s equality for the last identity (see
Kammler 2007). Now assumption (A4) yields the upper bound, that is |VN , j | ≤
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C/Nh1+2β j f j (
1
aN

). From the assumption f j (x)−1 ≥ C and again Parsevals equality

we also get the lower bound |VN , j | ≥ C/Nh1+2β j , which completes the proof of the
estimate (23). �
Proof of (36): Observing the representation (37) the lth cumulant of the estimate θ̂ j

can be estimated as follows:

|cuml(θ̂ j (x j ))| =
∣∣∣

N∑
k1,...,kl=1

cum
(
Ũk1, jw j,N (x j , Xk1, j ), . . . , Ũkl , jw j,N (x j , Xkl , j )

)∣∣∣
≤ G1 + G2,

where the terms G1 and G2 are defined by

G1 =
∣∣∣

N∑
k1,...,kl=1

cum
(
Ak1, jw j,N (x j , Xk1, j ), . . . , Akl , jw j,N (x j , Xkl , j )

)∣∣∣

G2 =
∣∣∣

N∑
k1,...,kl=1

l∑
s=1

(
l

s

)
cum

(
Bj,k1,Nw j,N (x j , Xk1, j ), . . . , Bj,ks ,Nw j,N (x j , Xks , j ),

Aks+1, jw j,N (x j , Xks+1, j ), . . . , Akl , jw j,N (x j , Xkl , j )
)∣∣∣,

and we introduce the notation Aki , j = g j (Xki , j ) + εki . Exemplarily, we investigate
the first term of this decomposition; the term G2 is treated similarly. As the random
variables Ak1, jw j,N (x j , Xk1, j ) and Ak2, jw j,N (x j , Xk2, j ) are independent for k1 �= k2
and identically distributed for k1 = k2, it follows that

G1 = N
∣∣∣cuml(Ak, jw j,N (x j , Xk, j ))

∣∣∣ ≤ N
l∑

s=0

(
l

s

) ∑
j∈{0,1}l

j1+···+ jl=s

∣∣∣

×
∑
ν

p∏
k=1

cum(Ai j , i j ∈ νk)

∣∣∣,

where we used the product theorem for cumulants (see Brillinger 2001) and the third
sum extends over all indecomposable partitions of the table

Ai1 Ai2
...

...

Ai1aaaa Ai2
Ai j
...

Ai j
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with Ai1 = ε1 (1 ≤ i ≤ s), Ai2 = w j,N (x j , X1, j ) (1 ≤ i ≤ s) and Ai j =
g j (X1, j )w j,N (x j , X1, j ) (s + 1 ≤ i ≤ l). In order to illustrate how to estimate this
expression we consider exemplarily the case l = 3, where G1 reduces to

G1 = N
3∑

s=0

(
3

s

) ∑
j∈{0,1}3

j1+···+ j3=s

∣∣∣∑
ν

p∏
k=1

cum(Ai j , i j ∈ νk)

∣∣∣.

As ε is independent of X1 and has mean 0 the partitions in G1 with s = 1 vanish. The
terms corresponding to s = 0, 2, 3 contain only quantities of the form

cum3(g j (X1, j )w j,N (x j , X1, j )),

σ 2cum
(
w j,N (x j , X1, j ), w j,N (x j , X1, j ), g j (X1, j )w j,N (x j , X1, j )

)
,

σ 2cum
(
w j,N (x j , X1, j )

)
cum

(
w j,N (x j , X1, j ), g j (X1, j )w j,N (x j , X1, j )

)
,

κ3cum
(
w j,N (x j , X1, j ), w j,N (x j , X1, j ), w j,N (x j , X1, j )

)
,

κ3cum
(
w j,N (x j , X1, j ), w j,N (x j , X1, j )

)
cum

(
w j,N (x j , X1, j )

)
,

κ3cum
(
w j,N (x j , X1, j )

)
cum

(
w j,N (x j , X1, j )

)
cum

(
w j,N (x∗, X1, j )

)
,

where κ3 denotes the third cumulant of ε1. As the inequality

E

[
|g j (X1, j )w j,N (x j , X1, j ))|br |w j,N (x j , X1, j ))|ar−br

]
≤ C

Nar har (β j+1) f j (
1
an

)ar

holds for 0 ≤ br ≤ ar all terms can be bounded by C/(N 3h3(β j+1) f j (
1
an

)3). This
yields

N 3/2h3β j+3/2G1 ≤ CN 3/2+1h3β j+3/2 1

N 3h3(β j+1) f j (
1
an

)3
= o(1),

where we used the conditions on the bandwidth in the last step. Similar calculations
for the general case show

Nl/2hlβ j+l/2G1 = O

⎛
⎝
(
Nl/2−1hl/2 f j

(
1

aN

)l)−1
⎞
⎠ = o(1),

whenever l ≥ 3. The term G2 can be calculated in the same way, where for example,
one additionally has to use the estimate Cov(Bj,k,N , εl) = O(1/N ) uniformly with
respect to all j = 1, . . . , d, and k, l = 1, . . . , N , which follows from the definition of
the backfitting estimator. �
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