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Abstract Competing risks data with missing cause of failure are analyzed under the
accelerated failure time model which is a popular semiparametric linear model in
survival analysis. The missing mechanism is assumed to be missing at random. The
inverse probability weighted and double robust techniques are used to modify the
rank-based estimating functions for competing risks data with complete observations
on cause of failure. Proper optimization technique is utilized to obtain the desired
estimators. The proposed algorithm overcomes the difficulty in solving the rank esti-
mating equations with discontinuous estimating functions. The asymptotic properties
of the proposed estimators are established. To implement the related inferences, a non-
parametric bootstrap approach as well as a score test is developed. Simulation studies
are carried out to assess the finite sample performance of the proposed method and
validate the theoretical findings. The new estimating procedure is illustrated with the
data from a bone marrow transplant study.

Keywords Bootstrap · Cause-specific hazard · Competing risks · Double robust ·
Inverse probability weighted · Missing at random · Rank estimator

1 Introduction

In survival analysis, individuals may fail from several different causes; such phe-
nomena are referred to as competing risks. Suppose that every individual possesses
a potential failure time for each competing risk, while the research interest lies only
on one of them. People usually only observe the minimal failure time as well as
the failure type. Also, in most cases the minimal failure times may subject to right
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censoring. For such competing risks data, cause-specific hazards have been widely
used to relate the covariates with the interested failure time (Prentice and Kalbfleisch
1978; Cox and Oakes 1984). It is well known that by assuming conditional inde-
pendence among different potential failure times, there is a one-to-one correspon-
dence between the cause-specific hazard and the potential failure time’s hazard. Under
this assumption, imposing regression models on the hazard of the interested failure
time is equivalent to introducing the model to its corresponding cause-specific hazard
function.

It has been pointed out in literature that in some clinical trials and bioassay exper-
iments, the cause of failure for some individuals might be unavailable to observe
because the documentation needed for cause type identification is lost, or the cause
type is difficult to determine, or the cause type detection is expensive to do for each
subject, etc. Under these circumstances, the data on cause of failure are subject to
missing. For analysis of competing risks data with missing cause of failure, assuming
only one cause of failure is of interest, some authors have proposed statistical methods
based on imposing various semiparametric regression models on the interested cause-
specific hazard function. For example, Goetghebeur and Ryan (1995), Lu and Tsiatis
(2001) and Hyun et al. (2012) used the most popular proportional hazards model.
Gao and Tsiatis (2005) studied linear transformation model. Lu and Liang (2008) dis-
cussed additive hazard model. Some closely related research are on semiparametric
regression analysis for right censored survival data with missing censoring indicators;
c.f., McKeague and Subramanian (1998), Gijbels et al. (2007), Liu and Wang (2010)
on Cox regression model, Zhou and Sun (2003), Song et al. (2010) on additive hazard
models, Wang and Dinse (2011) on linear regression model, etc.

Although hazard-based semiparametric models play a central role when model-
ing survival data, linear regression models still provide valuable alternatives. The
accelerated failure time (AFT) model is an attractive semiparametric linear model to
practitioners because of its simple structure and ease of interpretation. For estimat-
ing the regression coefficients of the AFT model with usual right censored survival
data, the rank-based estimating procedure has been widely studied by many authors,
such as Prentice (1978), Tsiatis (1990), Ying (1993), Lin et al. (1998), among many
others. The large sample properties, including the consistency and the asymptotic
normality, are established for the rank estimators. However, it is well known that the
rank estimating equations are difficult to solve numerically since the rank estimat-
ing functions are discontinuous in the regression parameters. Moreover, the limiting
variance–covariance matrix of the rank estimators is also hard to estimate. These
hamper the popularity of the AFT model. To overcome these difficulties, Jin et al.
(2003) developed an algorithm to obtain the rank estimators via linear programming
and an inference procedure based on the randomweighting technique. Compared with
right censored data, less attention has been paid to competing risks AFT model. With
complete observations on cause of failure, Kalbfleisch and Prentice (2002) briefly
mentioned imposing the AFT model on cause-specific hazards and applying the rank
estimation procedure, with no discussion on theoretical properties. More recently,
Lee and Lewbel (2009) explored the nonparametric identifiability of the competing
risks AFT models and applied a sieve maximum likelihood procedure to estimate
parameters.
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To the best of our knowledge, although statistical analysis for competing risks data
with missing cause of failure has been explored under various semiparametric sur-
vival models, no literature discussed the AFT model. In this paper, we propose an
AFT model to relate the interested cause-specific hazard and a set of covariates. To
deal with the missing cause of failure, modified rank estimating functions based on
the inverse probability weighted and double robust techniques are developed under
the missing at random (MAR) assumption. The two techniques, developed by Horvitz
and Thompson (1952) and Robins et al. (1994) respectively, are commonly used in
treating missing cause of failure or missing censoring information; c.f., Gao and Tsi-
atis (2005), Lu and Liang (2008), Song et al. (2010), Wang and Dinse (2011) and
Hyun et al. (2012). Similar to the rank estimation procedure with ordinary right cen-
sored data, the proposed modified rank estimating function is neither continuous nor
monotone in regression parameters.We develop an algorithm to transform the equation
solving problem to an optimization problem. The optimization can be implemented
reliably by some standard software packages. The asymptotic properties of the pro-
posed estimators are studied. For the inferences about the regression parameters, since
the proposed modified rank estimating function involves extra-estimators, the random
weighting approach developed by Jin et al. (2003) cannot be extended directly. There-
fore, we turn to a nonparametric bootstrapmethod for confidence intervals and propose
a score test for testing problems.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
notation, and describe the AFT model for competing risks data and the MAR assump-
tion for themissing cause of failure. In Sect. 3, we first develop a rank-based estimation
procedure for the AFT model with completely observed cause of failure. Then, the
modified rank estimating equations based on the inverse probability weighted and
double robust techniques are constructed respectively to account for missing cause of
failure. The asymptotic properties of the resulting estimators are discussed. A non-
parametric bootstrap approach and a score test are developed to implement infer-
ences. In Sect. 4, some simulation studies are conducted to assess the finite sam-
ple performances of the proposed estimators. Our method is applied to a real data
example in Sect. 5. Section 6 concludes. All technique details are summarized in the
“Appendix 7”.

2 Notation and model specification

Without loss of generality, we assume that each subject in the study may experience
only two causes of failure, which are labeled as 1 and 2. Use T̃1 and T̃2 to denote the
potential failure times for causes 1 and 2, respectively. Let T̃ = min{T̃1, T̃2} and Z be
a p × 1-dimensional covariate. Define the cause of failure indicator δ̃ = 1 if T̃ = T̃1
and δ̃ = 2 if T̃ = T̃2. For cause j , the cause-specific hazard function is defined as

λ̃∗
j (t |z) = lim

h↓0 h
−1P

(
t � T̃ < t + h, δ̃ = j | T̃ � t, Z = z

)
, j = 1, 2.

We suppose that only the cause 1, i.e., T̃1, is of interest. Then, the cause-specific hazard
of interest is λ̃∗

1(t |z).
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An AFT model for the interested failure time T̃1 relates itself with the covariate Z
by assuming that

log T̃1 = β�Z + ε, (1)

where β is a p-dimensional regression parameter and ε is a random error with an
unspecified continuous distribution independent of Z . It is not difficult to derive that
under the model (1), the conditional hazard function of T̃1 given the covariate Z , i.e.,
limh↓0 h−1P(t � T̃1 < t + h | T̃1 � t, Z = z), equals to t−1λε

(
log t − β�z

)
, where

λε(t) is the hazard function of ε. Here, instead of modeling T̃1 directly, we impose the
following model on the interested cause-specific hazard λ̃∗

1(t |z):

λ̃∗
1(t |z) = 1

t
λ0

(
log t − β�z

)
, (2)

where β is a p-dimensional parameter of interest and λ0(t) is an unspecified hazard
function. We treat the model (2) as an AFT model for the cause-specific hazard of
interest.

When there exists right censoring, letC be the right censoring time. The observable
failure time, denoted by T , is the minimum of T̃ and C , i.e., T = min{T̃ ,C}. Define
the observable cause of failure indicator δ = I {T̃ � C}δ̃, where I {·} represents
the indicator function. It means that δ = δ̃ if T̃ is observed, while δ = 0 if T̃ is
censored. We assume that given Z , C is conditionally independent of (T̃ , δ̃). For
cause j , the observable cause-specific hazard function with censoring is defined to be
λ∗
j (t |z) = limh↓0 h−1P (t � T < t + h, δ = j | T � t, Z = z), j = 1, 2. Under the

conditional independence assumption ofC and (T̃ , δ̃), λ∗
j (t |z) = λ̃∗

j (t |z) for j = 1, 2.
As mentioned before, the cause of failure of a subject may be unknown and then

the specific value for δ is missing. A binary variable R is introduced to identify the
missingness of the failure cause. We set R = 1 if the value of δ is known and 0 if the
value of δ is missing. Similar to some existing literature, we assume that missing cause
does not occur for the censored subject, that is, R always takes 1 when δ = 0. To this
point, the observation can be summarized as {R, T, Z , A, Rδ}, where A represents
some auxiliary covariates that are not used in the model (2). For a sample consisting
of n subjects, the observed data {Ri , Ti , Zi , Ai , Riδi }, i = 1, . . . , n, are treated as
independent and identically distributed (i.i.d.) copies of {R, T, Z , A, Rδ}. For the
missing mechanism, we follow the assumption that the cause of failure is MAR, that
is,

P (R = 1 | δ, δ > 0, X) = P (R = 1 | δ > 0, X) = π(X), (3)

where X = (T, Z , A). Consequently, it is not difficult to see that P(R = 1 | δ, X) =
π(X)I {δ > 0} + I {δ = 0}.

Finallywe define some counting processes for further use. Let e(β) = log T−β�Z ,
N (β, t) = I {e(β) � t, δ = 1} andY (β, t) = I {e(β) � t}. For i = 1, . . . , n, let ei (β),
Ni (β, t) and Yi (β, t) be the i th copy of e(β), N (β, t) and Y (β, t), respectively.
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3 Estimation and inference procedures

3.1 Rank-based estimating equations for competing risks data

Let β0 be the true value of the regression coefficients β. We first consider the situation
where all the δi ’s are observable. It can be shown that under the proposed competing
risks AFT model (2) and the conditional independence of C and (T̃ , δ̃) given Z ,
Ni (β0, t) − ∫ t

−∞ Yi (β0, u)λ0(u)du is a zero-mean martingale process with respect to
certain appropriate filtration. Motivated by this fact, we propose the following joint
rank-based estimating equations for β0 and �0(t) = ∫ t

−∞ λ0(u)du:

n∑
i=1

∫ ∞

−∞
φ (β, t) Zi (dNi (β, t) − Yi (β, t)d�(t)) = 0, (4)

n∑
i=1

(dNi (β, t) − Yi (β, t)d�(t)) = 0, t ∈ R, (5)

where φ(β, t) is a possibly data-dependent weight function. Given β fixed, by solv-
ing (5) for d�(t), we obtain a solution d�̂β(t) = ∑n

i=1 dNi (β, t)/
∑n

i=1 Yi (β, t).
Replacing d�(t) in (4) by d�̂β(t), we obtain the following estimating equation for β0

Sφ(β) =
n∑

i=1

∫ ∞

−∞
φ (β, t)

(
Zi − Z̄(β, t)

)
dNi (β, t) = 0,

where Z̄(β, t) = ∑n
i=1 ZiYi (β, t)/

∑n
i=1 Yi (β, t). The solution, denoted by β̂φ , is

treated as a rank-based estimator for the regression parameter.
The idea of obtaining β̂φ is similar to that of the weighted log-rank estimator

for usual right censored survival data (see, for example, Tsiatis 1990; Ying 1993).
Using arguments similar to those in Ying (1993), it can be proved that under suitable
regularity conditions, β̂φ is consistent and

√
n(β̂φ − β0) converges in distribution

to a zero-mean normal random vector. However, since Sφ(β) is not continuous or
monotone in β, the estimating equation Sφ(β) = 0 is difficult to solve. Moreover,
the variance–covariance matrix of the limiting distribution of

√
n(β̂φ − β0) depends

on the derivative of λ0(t) and is not easy to estimate. Jin et al. (2003) found that the
rank estimator with the Gehan-type weight function can be obtained by minimizing
a convex objective function through a standard linear programming technique. The
rank estimators with other weight functions are then obtained iteratively by solving
a sequence of approximated monotone estimating equations. Each iteration can be
executed via linear programming. For inferences, instead of estimating the limiting
variance–covariance matrix directly, Jin et al. (2003) proposed a random weighting
technique. The methods developed by Jin et al. (2003) can be applied here directly to
obtain β̂φ and make inferences with competing risks data when the cause of failure is
observed.
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3.2 Inverse probability weighted estimating equations

When the cause of failure is missing, Sφ(β) is no longer available. We apply the
inverse probability weighted estimation method which is commonly used in missing
data problems. An estimator for the probability of a complete case,P(R = 1 | δ, X) =
π(X)I {δ > 0} + I {δ = 0}, is necessary. Here, we assume that π(X) is decided by a
parametric model π(X, γ ), where γ is an r -dimensional unknown parameter. Based
on the MAR assumption, γ can be estimated by the maximum likelihood estimator γ̂

which maximizes the likelihood function

n∏
i=1

π(Xi , γ )Ri I {δi>0} (1 − π(Xi , γ ))1−Ri

with respect to γ . Let π̃(δ, X, γ ) = π(X, γ )I {δ > 0} + I {δ = 0}. We propose the
following joint inverse probability weighted rank estimating equations

n∑
i=1

∫ ∞

−∞
φ(β, t)Zi

(
Ri

π̃(δi , Xi , γ̂ )
dNi (β, t) − Yi (β, t)d�(t)

)
= 0, (6)

n∑
i=1

(
Ri

π̃(δi , Xi , γ̂ )
dNi (β, t) − Yi (β, t)d�(t)

)
= 0, t ∈ R. (7)

The justification of the proposed joint estimating equations lies in the fact that
E[Ri Ni (β0, t)/π̃(δi , Xi , γ ) − ∫ t

−∞ Yi (β0, u)λ0(u)du] = 0 for all t ∈ R when γ

takes the true value. Again, by solving (7) for d�(t)with fixed β, we obtain a solution

d�̂IPW
β (t) =

∑n
i=1

Ri
π̃(δi ,Xi ,γ̂ )

dNi (β, t)
∑n

i=1 Yi (β, t)
.

Replacing d�(t) in (6) by d�̂IPW
β (t), we get the following inverse probabilityweighted

rank estimating equation for β0

SIPWφ (β) =
n∑

i=1

Ri

π̃(δi , Xi , γ̂ )

∫ ∞

−∞
φ(β, t)

(
Zi − Z̄(β, t)

)
dNi (β, t) = 0. (8)

We propose to use the root of (8), denoted by β̂IPW
φ , to be the estimator of β0. We call

it weighted log-rank inverse probability weighted estimator.
Similar to Sφ(β), SIPWφ (β) is not componentwise continuous in β. We develop an

algorithm mimicking that of Jin et al. (2003) to get the proposed estimator. We start
withGehanweight which is given byφG (β, t) = n−1 ∑n

i=1 Yi (β, t). By some algebra,
it can be shown that Gehan inverse probability weighted estimating function SIPWφG

(β)

equals to
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1

n

n∑
i=1

n∑
j=1

Ri

π̃(δi , Xi , γ̂ )
I {δi = 1} (

Zi − Z j
)
I {ei (β) � e j (β)}.

It is not difficult to see that SIPWφG
(β) is the gradient in β of the following convex

function

L IPW
φG

(β) = 1

n

n∑
i=1

n∑
j=1

Ri

π̃(δi , Xi , γ̂ )
I {δi = 1} (

ei (β) − e j (β)
)−

,

where a− stands for |a|I {a < 0}. Consequently, the proposed β̂IPW
φG

can be obtained

by minimizing L IPW
φG

(β) with respect to β. The minimization can be implemented
by linear programming or some optimization packages in softwares without much
difficultly.

For a weight function different from φG (β, t), say φ(β, t), define ψ(β, t) =
φ(β, t)/φG (β, t). Instead of solving (8) directly, we consider the modified estimating
equation

S̃IPWφ (β) =
n∑

i=1

Ri

π̃(δi , Xi , γ̂ )

×
∫ ∞

−∞
ψ

(
β̂, t+(β−β̂)�Zi

)
φG (β, t)

(
Zi − Z̄(β, t)

)
dNi (β, t)=0,

(9)

where β̂ is a consistent estimator of β0. It is not difficult to see that solving (9) is
equivalent to minimizing the convex function

L̃ IPW
φ (β, β̂) = 1

n

n∑
i=1

n∑
j=1

Ri

π̃(δi , Xi , γ̂ )
ψ

(
β̂, ei (β̂)

)
I {δi = 1} (

ei (β) − e j (β)
)−

.

Based on this procedure, an iterative algorithm is developed as follows. First define
β̂(0) = β̂IPW

φG
. Then for each k � 1, let β̂(k) = argminβ L̃

IPW
φ (β, β̂(k−1)). If the sequence

β̂(k) converges to a limit as k → ∞, we will use β̂(k) as the proposed estimator β̂IPW
φ

when certain convergence criterion ismet. As pointed by Jin et al. (2003), if there exists
a limit for the sequence of β̂(k), the limit must satisfy (8). Based on the experience from
our simulation study and real data analysis, we find that β̂(k) converges as k increases
in almost all the cases.

3.3 Double robust estimating equations

Similar to Gao and Tsiatis (2005) and Lu and Liang (2008), a so-called double robust
technique developed by Robins et al. (1994) can be applied here to gain robustness
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against the model misspecification on π(X). Specifically, define ρ(X) = P(δ =
1 | δ > 0, X) and posit a parametric model for this conditional probability, that is,
assume ρ(X) = ρ(X, η) where η is an s-dimensional unknown parameter. Under the
MAR assumption (3), we have that

ρ(X) = P(δ = 1 | δ > 0, X) = P(δ = 1 | R = 1, δ > 0, X).

This implies that ρ(X) can be estimated from the complete cases with Ri = 1 and
δi > 0. Based on the imposed parametric model, a maximum likelihood estimator η̂

can be obtained by maximizing the likelihood

n∏
i=1

ρ(Xi , η)I {δi=1,Ri=1} (1 − ρ(Xi , η))I {δi=2,Ri=1}

with respect to η. Let Ñ (β, t) = I {e(β) � t, δ > 0} and Ñi (β, t) = I {ei (β) � t, δi >

0} for i = 1, . . . , n. We consider the following joint augmented inverse probability
weighted rank estimating equations

n∑
i=1

∫ ∞

−∞
φ(β, t)Zi

×
(
RidNi (β, t)

π̃(δi , Xi , γ̂ )
− Ri − π̃(δi , Xi , γ̂ )

π̃(δi , Xi , γ̂ )
ρ(Xi , η̂)dÑi (β, t) − Yi (β, t)d�(t)

)
= 0,

n∑
i=1

(
RidNi (β, t)

π̃(δi , Xi , γ̂ )
− Ri − π̃(δi , Xi , γ̂ )

π̃(δi , Xi , γ̂ )
ρ(Xi , η̂)dÑi (β, t) − Yi (β, t)d�(t)

)

= 0, t ∈ R.

The justification of the proposed joint estimating equations comes from Proposition
1 presented in Sect. 3.4. Similar calculation brings the augmented inverse probability
weighted rank estimating equation

SDRφ (β) =
n∑

i=1

∫ ∞

−∞
φ(β, t)

(
Zi − Z̄(β, t)

)

×
(
RidNi (β, t)

π̃(δi , Xi , γ̂ )
− Ri − π̃(δi , Xi , γ̂ )

π̃(δi , Xi , γ̂ )
ρ(Xi , η̂)dÑi (β, t)

)
= 0. (10)

Compared with SIPWφ (β), the additional term involving ρ(Xi , η̂) in SDRφ (β) is the aug-
mentation part which could bring robustness against misspecified π(Xi , γ ). Denote
the root of (10) by β̂DR

φ and we call it weighted log-rank double robust estimator. The
meaning of double robustness is discussed in more detail in Sect. 3.4.

Solving (10) is not easy since SDRφ (β) again is not continuous inβ.We still transform
this equation solving problem to an optimization problem and start with the Gehan
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weight function φG . By some careful calculation, we find that SDRφG
(β) is the gradient

in β of the following function

LDR
φG

(β)= 1

n

n∑
i=1

n∑
j=1

(
Ri I {δi =1}
π̃(δi , Xi , γ̂ )

− Ri −π̃ (δi , Xi , γ̂ )

π̃(δi , Xi , γ̂ )
ρ(Xi , η̂)

) (
ei (β)−e j (β)

)−
.

The Gehan weight double robust estimator can be obtained by minimizing LDR
φG

(β)

with respect to β. It should be pointed out that although LDR
φG

(β) has a similar form as

L IPW
φG

(β), the minimization of the former one could not be transformed to a linear pro-
gramming directly. Some well-designed optimization packages in various softwares
may be useful tominimize the function. In our numeric studies,we use the optimization
package ‘fminsearch’ in Matlab to implement the minimization. It works reasonably
well for moderate sample sizes. Finally, for arbitrary weight function φ, an iterative
algorithm similar to that developed in Sect. 3.2 can be obtained to get β̂DR

φ .

3.4 Large sample properties

In this subsection, we concentrate on discussing the asymptotic properties of β̂DR
φ . The

large sample properties of β̂IPW
φ can be obtained similarly. In the following discussion,

we assume the regularity conditions listed in the “Appendix 7” hold. Some more
notation are also needed. Define

M̃(t, β, γ, η,�) = RN (β, t)

π̃(δ, X, γ )
− R − π̃(δ, X, γ )

π̃(δ, X, γ )
ρ(X, η)Ñ (β, t)

−
∫ t

−∞
Y (β, u)d�(u),

and Aφ = E[∫ ∞
−∞ φ(t)Y (β0, t)(Z − z̄(t))⊗2λ̇0(t)dt], where φ(t) is the limit in proba-

bility of φ(β0, t), z̄(t) = E[ZY (β0, t)]/E[Y (β0, t)], a⊗2 means aa� for any column
vector a, and λ̇0 stands for the derivative of λ0. By introducing suitable regularity
conditions on the parametric models π(X, γ ) and ρ(X, η), one may show that γ̂ and
η̂ have limits no matter if the models hold for the data or not. Let γ ∗ and η∗ denote
the two limits. When the parametric models are correctly specified, the limits become
the true values of the corresponding parameters. Moreover, let Iγ and Sγ denote the
information matrix and the score vector for γ̂ evaluated at γ ∗, and Iη and Sη denote
the counterparts for η̂ evaluated at η∗, respectively.

The double robustness of β̂DR
φ means that if either π(X, γ ) or ρ(X, η) is cor-

rectly specified, β̂DR
φ is weakly consistent. This can be proved based on the following

proposition.

Proposition 1 If either the parametric model π(X, γ ) or ρ(X, η) is correctly speci-
fied, we have that E[M̃(t, β0, γ

∗, η∗,�0)] = 0 for all t ∈ R.
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The proof of Proposition 1 is given in the “Appendix 7”. By combining the result of
Proposition 1 and the arguments in Ying (1993) and Gao and Tsiatis (2005), one can
establish the weak consistency of the proposed estimator. We omit the details here.

The following proposition which is proved in the “Appendix 7” formally presents
the asymptotic distribution of the proposed estimator.

Proposition 2 Under the conditions listed in the “Appendix 7”, if either the paramet-
ric model π(X, γ ) or ρ(X, η) is correctly specified, we have that

√
n(β̂DR

φ − β0) is
asymptotically normally distributed with mean zero and variance–covariance matrix

A−1
φ E

[(∫ ∞

−∞
φ(t) (Z − z̄(t)) d M̃(t, β0, γ

∗, η∗,�0) − Bγ I
−1
γ Sγ − Bη I

−1
η Sη

)⊗2
]
A−1

φ ,

where Bγ and Bη are quantities given in the “Appendix 7”.

The double robustness is also reflected by Proposition 2 in the sense that β̂DR
φ is

asymptotically normal when either π(X, γ ) or ρ(X, η) is the right model.
Finally, the asymptotic distribution of β̂IPW

φ is given by the following proposition.

Proposition 3 Under the conditions listed in the “Appendix 7”, if the parametric
model π(X, γ ) is correctly specified, we have that

√
n(β̂IPW

φ − β0) is asymptotically
normally distributed with mean zero and variance–covariance matrix

A−1
φ E

[(∫ ∞

−∞
φ(t) (Z − z̄(t)) dM(t) − Cγ I

−1
γ Sγ

)⊗2
]
A−1

φ ,

where

M(t) = RN (β0, t)

π̃(δ, X, γ ∗)
−

∫ t

−∞
Y (β0, u)λ0(u)du,

and Cγ is a quantity given in the “Appendix 7”.

Note that the consistency and asymptotic normality of β̂IPW
φ depend on the correct

model specification for π(X).

3.5 Inference procedures

Based on the derived large properties, inferences can be made about the regression
coefficients. However, similar to the situation without missingness, the matrix Aφ

in the limiting variance–covariance matrix is not easy to estimate. As we have men-
tioned, when there is no missing failure indicators, Jin et al. (2003) proposed a random
weighting technique in which the objective function was perturbed by a positive ran-
dom variable withmean 1 and variance 1 formany times to get the perturbed estimates.
The perturbed estimates were shown to have the same asymptotic distributions as the
weighted log-rank estimators given the observed data. As a result the inference could
be implemented with the perturbed estimates.
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The random weighting procedure is easy to follow. However, the technique cannot
be applied in our case directly. One reason is that the proposed estimating function
SDRφ (β) in (10) contains estimators γ̂ and η̂. Thus, here we turn to a nonparametric
bootstrap method. Specifically, we sample data with sample size n from the empiri-
cal distribution of the original sample {Ri , Ti , Zi , Ai , Riδi }, i = 1, . . . , n. For each
resampled data, we calculate theweighted log-rank inverse probability estimator or the
weighted log-rank double robust estimator by our proposed algorithm. The resampling
procedure could be replicated for a large number (say, M) of times, and M estimates
for the regression parameter would be obtained. We use the empirical distribution of
the M resampled estimates to calculate the desired standard errors of the proposed
estimators and consequently carry out the inferences.

Naturally, the nonparametric bootstrap requires intensive computation. Thus, we
could consider turning to a score test especially for the global inference problem
H0 : β0 = b v.s. H1 : β0 
= b, where b ∈ R

p is a p-dimensional constant vector to
test for. To develop the test statistic, for each i = 1, . . . , n, define

gDRφ,i (β) =
∫ ∞

−∞
φ(β, t)

(
Zi − Z̄(β, t)

)
dM̃i (t, β, γ̂ , η̂, �̂DR

β )

− B̂γ (β) Î−1
γ Ŝγ,i − B̂η(β) Î−1

η Ŝη,i ,

where

M̃i (t, β, γ, η,�) = Ri Ni (β, t)

π̃(δi , Xi , γ )
− Ri − π̃(δi , Xi , γ )

π̃(δi , Xi , γ )
ρ(Xi , η)Ñi (β, t)

−
∫ t

−∞
Yi (β, u)d�(u),

�̂DR
β (t) =

∫ t

−∞

∑n
i=1

(
Ri

π̃(δi ,Xi ,γ̂ )
dNi (β, u) − Ri−π̃(δi ,Xi ,γ̂ )

π̃(δi ,Xi ,γ̂ )
ρ(Xi , η̂)dÑi (β, u)

)
∑n

i=1 Yi (β, u)
,

B̂γ (β) and B̂η(β) are the estimators obtained by substituting sample average for expec-
tation and (γ̂ , η̂, �̂DR

β ) for (γ ∗, η∗,�0) in Bγ and Bη, Îγ and Îη are the sample infor-

mation matrices, and Ŝγ,i and Ŝη,i are the sample score vectors for the i th observation
evaluated at (γ̂ , η̂). Define

V̂DR
φ (β) = 1

n

n∑
i=1

gDRφ,i (β)⊗2.

It can be shown that V̂DR
φ (β0) is a consistent estimator of

E

[(∫ ∞

−∞
φ(t) (Z − z̄(t)) dM̃(t, β0, γ

∗, η∗,�0) − Bγ I
−1
γ Sγ − Bη I

−1
η Sη

)⊗2
]
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which is the variance–covariance matrix of n−1/2SDRφ (β0). Define the score test statis-

tic n−1SDRφ (b)�V̂DR
φ (b)−1SDRφ (b). It is not difficult to see that under the assumptions

of Proposition 2, when H0 : β0 = b holds, the proposed test statistic converges in
distribution to a Chi-squared random variable with p degrees of freedom. The result
can be used to do the test as well as construct a score-based confidence region for β0.
Using the same idea, it is also easy to develop score test based on SIPWφ (β).

4 Simulation studies

Two sets of simulation studies are carried out to assess the finite sample performance
of the proposed estimators. In the first set of simulation, we consider two random
number generating schemes:

Scheme 1: We choose an AFT model with two covariates for T̃1, i.e., log T̃1 =
α1Z1+α2Z2+ε, where Z1 is generated from a Bernoulli distribution with success
probability 0.5, Z2 is generated from a uniform distribution on (0, 1), ε follows
the standard extreme value distribution and all the variables are independent with
each other. α1 and α2 are set to be 1 and −1, respectively. Given covariates, the
failure time of competing risk T̃2 is generated independently of T̃1, following a
Gompertz distribution with conditional hazard, denoted by λ2(t |Z1, Z2), equals
to λ exp(ξ0 + ξ1t) with λ = 1, ξ0 = −1.5 and ξ1 = 0.5. Note that when T̃1 and
T̃2 are conditionally independent, model (1) implies that (2) holds with β1 = α1
and β2 = α2. The censoring time C follows a uniform distribution on (0.5, 4).
The missing indicator R for cause of failure is generated from a logistic model
given by log[π(X)/(1 − π(X))] = γ0 + γ1T + γ2Z1 + γ3Z2, with γ0 = 1.5,
γ1 = −1, γ2 = −1 and γ3 = −1. Under the above settings, ρ(X) follows a
logistic model of the form log[ρ(X)/(1−ρ(X))] = −ξ0 − log λ− ξ1T −α1Z1 −
α2Z2. One would expect that about 66 % failures are from the cause of interest,
22 % are from the cause of competing risk and the remaining 12 % are censored
observations. Furthermore, among the failures, one would expect 52 % missing
cause of failure.
Scheme 2: Let T̃ = min{T̃1, T̃2} follows an AFT model with two covariates,
i.e., log T̃ = α1Z1 + α2Z2 + ε, where Z1 and Z2 follow the same distribution
as those in scheme 1, and ε follows the standard logistic distribution. We set
α1 = −0.5 and α2 = 1. Let P(δ̃ = 1 | T̃ , Z1, Z2) = 0.7. The scheme implies
that model (2) holds with β1 = α1 and β2 = α2. Also, under this scheme, T̃1 and
T̃2 can be correlated with each other given the covariates. The censoring time C
and the missing indicator R follow the same distribution as those in scheme 1.
The above settings result in ρ(X) = 0.7. One would expect about 54 % failures
from the cause of interest, 23 % from the cause of competing risk and 23 %
censoring. Among the observed failures, there are about 56 % missing cause of
failure.

The sample size n is chosen to be 200. For the weight function φ in SIPWφ (β)

and SDRφ (β), we choose the Gehan weight and log-rank weight φL (β, t) = 1. Thus,

we have four pairs of rank estimators (β̂IPW
φG ,1, β̂

IPW
φG ,2), (β̂DR

φG ,1, β̂
DR
φG ,2), (β̂IPW

φL ,1, β̂
IPW
φL ,2)
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Table 1 Simulation results of complete-case, inverse probability weighted and double robust rank-based
estimators with correctly specified parametric models

Method Weight (φ) Parameter Scheme 1 Scheme 2

Bias SD BSE CP Bias SD BSE CP

C-C Gehan β1 0.260 0.365 0.358 0.909 −0.005 0.421 0.430 0.952

β2 −0.064 0.571 0.550 0.942 0.801 0.734 0.757 0.847

Log-rank β1 0.374 0.344 0.336 0.789 −0.023 0.422 0.422 0.947

β2 −0.062 0.506 0.494 0.938 1.056 0.695 0.724 0.691

IPW Gehan β1 0.029 0.264 0.265 0.953 −0.005 0.288 0.299 0.955

β2 −0.036 0.454 0.455 0.953 0.061 0.507 0.550 0.964

Log-rank β1 0.050 0.272 0.272 0.952 −0.006 0.293 0.299 0.947

β2 −0.018 0.407 0.409 0.947 0.085 0.534 0.558 0.959

DR Gehan β1 0.034 0.255 0.259 0.952 −0.006 0.274 0.289 0.960

β2 −0.032 0.426 0.431 0.958 0.043 0.487 0.539 0.969

Log-rank β1 0.040 0.270 0.270 0.942 −0.008 0.268 0.275 0.959

β2 −0.014 0.402 0.403 0.939 0.032 0.480 0.509 0.963

C-C complete-case estimate, IPW inverse probability weighted estimate, DR double robust estimate, Bias
simulated bias of the estimates, SD simulated standard deviation of the estimates, BSE average of esti-
mated standard error using the bootstrap method, CP empirical coverage probabilities of 95 % Wald-type
confidence intervals based on bootstrap standard errors

and (β̂DR
φL ,1, β̂

DR
φL ,2). Besides the proposed rank estimators, we also calculate the naive

complete-case estimators which are only based on the observations with complete
cause of failure. In this set of simulation, we use the correct parametric models for
π(X) andρ(X) under both schemes.One thousand replications of the randomnumbers
are generated. For each replication, we resample from the generated data for 250 times
(i.e., M = 250) to obtain the bootstrap estimates for the standard errors. In Table 1,
for each estimator, we report the simulated biases, the simulated standard errors, the
averages of the bootstrap estimates for standard errors and the empirical coverage
probabilities of the 95 % Wald-type confidence interval.

Under both schemes, since the missing mechanism is MAR, the complete-case
estimators are biased in some cases. By contrast, the proposed rank estimators are
essentially unbiased in almost all the cases. The averages of the bootstrap estimates
for standard error are in general close to the simulated standard errors of the rank
estimators. The Wald-type confidence intervals based on the normal approximation
give out appropriate coverage rates.Moreover, the double robust estimators are slightly
more efficient than the inverse probability weighted ones.

We use the proposed score test statistic based on SDRφ (β) for global testing of the
regression parameter vector. The Gehan weight and log-rank weight are considered.
It is easy to see that the test statistics should be calibrated by the quantiles of the
Chi-squared distribution with degrees of freedom 2. The nominal level is set to be
0.05. Five thousands replications of the random numbers are generated and the score
test statistic is quick to calculate. Under scheme 1, to test for H0 : β1 = 1, β2 = −1,
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Table 2 Simulation results of inverse probability weighted and double robust rank-based estimators with
misspecified parametric models

Weight (φ) Method IPW DR

Parameter Bias SD BSE CP Bias SD BSE CP

Case 1 Gehan β1 0.693 0.376 0.364 0.540 0.032 0.258 0.254 0.942

β2 0.312 0.579 0.455 0.905 −0.024 0.417 0.409 0.950

Log-rank β1 0.811 0.355 0.348 0.337 0.033 0.251 0.247 0.937

β2 0.294 0.532 0.517 0.899 −0.058 0.380 0.367 0.946

Case 2 Gehan β1 0.029 0.264 0.265 0.953 0.029 0.257 0.272 0.955

β2 −0.036 0.454 0.455 0.953 −0.035 0.442 0.457 0.956

Log-rank β1 0.050 0.272 0.272 0.952 0.041 0.282 0.265 0.949

β2 −0.018 0.407 0.409 0.947 −0.010 0.438 0.402 0.949

Case 3 Gehan β1 0.693 0.376 0.364 0.540 0.247 0.261 0.254 0.861

β2 0.312 0.579 0.455 0.905 0.112 0.437 0.428 0.923

Log-rank β1 0.811 0.355 0.348 0.337 0.239 0.230 0.228 0.838

β2 0.294 0.532 0.517 0.899 0.125 0.392 0.379 0.926

IPW inverse probability weighted estimate,DR double robust estimate, Bias simulated bias of the estimates,
SD simulated standard deviation of the estimates,BSE average of estimated standard error using the bootstrap
method. CP empirical coverage probabilities of 95 % Wald-type confidence intervals based on bootstrap
standard errors

the empirical size of the score test statistic with Gehan weight function is 0.057, and
0.08 with log-rank weight. Under scheme 2, to test for H0 : β1 = −0.5, β2 = 1, the
empirical size with Gehan weight is 0.061, and 0.075 with log-rank weight.

In the second set of simulation,we consider three caseswithmisspecifiedparametric
models, using the random number generating scheme 1. In case 1, we use a constant
to estimate π(X), which means that the parametric model for π(X) is incorrectly
specified. Meanwhile, the parametric model for ρ(X) is kept correctly specified. In
case 2, a constant is used to estimated ρ(X) and the model for π(X) is correctly
specified. In case 3 both π(X) and ρ(X) are estimated by constants, implying neither
model is correctly specified. The sample size is 200. One thousand replications of the
random numbers are generated. For each replication, we resample from the generated
sample for 250 times to obtain the bootstrap estimates for the standard errors. We
consider the inverse probability weighted and double robust rank estimators with the
Gehan and log-rank wight, respectively. The simulation results are summarized in
Table 2.

In cases 1 and 2 where one of the parametric models is correctly specified, we find
that the double robust rank estimators are unbiased and the bootstrap approach gives
out adequate coverage probabilities. However, in case 1 where π(X) is incorrectly
specified, the inverse probability weighted rank estimators are obviously biased. In
case 3, when both the models are misspecified, it is expectable that the two types of
the proposed rank estimators are biased. For our simulation settings, the bias for the
double robust rank estimators are relatively smaller. This observation is quite similar
to that mentioned in Gao and Tsiatis (2005).
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5 A real example

Here, we apply the proposed approach to a data set from a bone marrow transplant
study described by Sierra et al. (2002). The study involved 452 primary myelodyspla-
sia patients who received transplants from HLA-identical siblings and were registered
with the International Bone Marrow Transplant Registry. There were two compet-
ing risks in this study. One was treatment-related death defined as death in complete
remission and the other was relapse defined as recurrence of myelodysplasia. The for-
mer was the cause of interest. The age and the platelet before transplantation of each
patient were regarded as covariates. In our analysis, 408 patients with complete covari-
ate information obtained from the ‘timereg’ package for R are considered. Among
these patients, 161 died in complete remission, 87 relapsed and the rest were censored.
The covariate age is centered by its sample mean and the platelet is categorized into
two levels with 1 for more than 100×109 and 0 for less. Let T be the observed failure
time, δ the cause of failure (with 1 for death in remission, 2 for relapse and 0 for
censoring), and Za and Z p the centered age and the categorized platelet, respectively.

The causes of failure of all patients in the original data are known for each patient.
To illustrate our method, we artificially delete some causes of failure among those
δ = 1 or 2. Three missing mechanisms are considered. The first one is missing
completely at random (MCAR)withmissing probability 23%.The second one isMAR
with the missing probability following the logistic model log[π(X)/(1 − π(X))] =
0.5 + T − Za , where X = (T, Za, Z p). The third one is non-ignorable missing
(NMAR) with the logistic model log[π(X)/(1−π(X))] = 0.5+T − Za − I {δ = 1}.
The missing probability is around 23 % under MAR and around 26 % under NMAR.
We use the logistic models log[π(X, γ )/(1− π(X, γ ))] = γ0 + γ1T + γ2Za + γ3Z p

and log[ρ(X, η)/(1 − ρ(X, η))] = η0 + η1T + η2Za + η3Z p to estimate π(X) and
ρ(X), respectively. We fit the data under the AFT model (2) with two covariates Za

and Z p. Under each mechanism, we consider the complete-case, inverse probability
weighted and double robust estimators with Gehan and log-rank weights. We also
calculate the Gehan and log-rank estimators for the two regression coefficients with
full data for comparison. The results are summarized in Table 3.

From the results of the full data estimation, we find that both covariates have signif-
icant effect on the interested cause-specific hazard of death in remission, with the age
increasing the hazard while the higher platelet level decreasing the hazard, under both
weight functions. Under MCAR, all the three methods adjusting for missing cause
of failure have comparable performances. Under MAR, the complete-case estima-
tors are obviously biased with smaller absolute estimated values. By comparison, the
proposed inverse probability weighted and double robust estimators are quite close
to their full data counterparts. The estimated standard errors are a little larger than
those of the full data estimators because of missingness. Under NMAR, although the
assumption of our approach is violated, the proposed estimators still give out quite
robust performances in the sense that they are closer to the corresponding full data
estimators than the complete-case ones. Finally, it should be mentioned that Hyun
et al. (2012) analyzed the same data by assuming proportional hazards model for the
interested cause-specific hazard. We use the same missing mechanisms as theirs, and
our findings are similar to theirs.
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Table 3 Analysis results for the bone marrow transplant data

Missing Age Platelet

Mechanism Weight (φ) Method EST SE p Value EST SE p-Value

Full Gehan −0.883 0.174 <0.001 1.480 0.412 <0.001

Log-rank −1.082 0.202 <0.001 1.620 0.502 0.001

MCAR Gehan C-C −1.087 0.201 <0.001 1.521 0.440 <0.001

IPW −0.928 0.194 <0.001 1.495 0.417 <0.001

DR −0.926 0.188 <0.001 1.446 0.411 <0.001

Log-rank C-C −1.285 0.224 <0.001 1.562 0.584 0.007

IPW −1.127 0.223 <0.001 1.567 0.528 0.003

DR −1.124 0.214 <0.001 1.548 0.523 0.003

MAR Gehan C-C −0.774 0.194 <0.001 1.276 0.386 <0.001

IPW −0.896 0.199 <0.001 1.452 0.390 <0.001

DR −0.968 0.201 <0.001 1.521 0.412 <0.001

Log-rank C-C −0.939 0.222 <0.001 1.368 0.486 0.005

IPW −1.098 0.223 <0.001 1.609 0.467 <0.001

DR −1.150 0.214 <0.001 1.666 0.499 <0.001

NMAR Gehan C-C −0.661 0.186 <0.001 1.292 0.422 0.002

IPW −0.851 0.205 <0.001 1.590 0.413 <0.001

DR −0.940 0.199 <0.001 1.647 0.414 <0.001

Log-rank C-C −0.802 0.233 <0.001 1.361 0.522 0.009

IPW −1.027 0.231 <0.001 1.730 0.525 <0.001

DR −1.109 0.226 <0.001 1.779 0.468 <0.001

FullFull data estimation,EST estimate of regression coefficient,SE estimate of standard error,C-C complete-
case estimate, IPW inverse probability weighted estimate, DR double robust estimate

6 Concluding remarks

The AFT model provides an attractive alternative to hazard-based semiparametric
models for analyzing competing risks data. When the cause of failure is subject to
missing and the missing mechanism is MAR, we propose two modified rank-based
estimating equations with the inverse probability weighted and double robust tech-
nique to get estimators for the regression coefficients. Because the proposed estimating
functions are not continuous in the regression parameters, the problem of solving the
proposed estimating equations is transformed into proper optimization problem. The
desired estimators can be obtained by minimizing carefully designed objective func-
tions. Under mild conditions, the proposed estimators are shown to be consistent and
asymptotically normal. Especially, the double robust estimator may be still consistent
and asymptotically normal even when the missing probability is incorrectly modeled.
When developing inference procedures, to overcome the difficulty in directly esti-
mating the limiting variance–covariance matrix, a nonparametric bootstrap method
is devised to estimate the standard errors. We also develop a score test for global
inference about the regression parameters. Moreover, all the techniques developed
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can be extended to deal with the competing risks free right censored survival data with
missing censoring indicators under the MAR assumption.

For the missing data analysis problem, it is sometimes of interest to derive the
semiparametric efficient influence function for the parameter of interest via double
robust approach. It is well known that for the case of complete cause of failure, the
efficient influence function for the regression parameters under the AFT model can be
derived and depends on the derivative of λ0(t). When there is missing cause of failure,
deriving the efficient influence function needs further investigation.

7 Appendix

We first give out the formulas of Bγ , Bη and Cγ :

Bγ = E

[∫ ∞

−∞
φ(t) (Z − z(t))

Rπ̇γ (X, γ ∗)�

π(X, γ ∗)2
(
dN (β0, t) − ρ(X, η∗)dÑ (β0, t)

)]
,

Bη = E
[∫ ∞

−∞
φ(t) (Z − z(t))

R − π(X, γ ∗)
π(X, γ ∗)

ρ̇η(X, η∗)�dÑ (β0, t)

]

and

Cγ = E

[∫ ∞

−∞
φ(t) (Z − z(t))

Rπ̇γ (X, γ ∗)�

π(X, γ ∗)2
dN (β0, t)

]
,

where π̇γ (X, t) = ∂π(X, γ )/∂γ and ρ̇η(X, t) = ∂ρ(X, η)/∂η.
We assume the following conditions to prove the properties in Sect. 3.4:

C1. The covariates Z have bounded support.
C2. The density function corresponding toλ0(t), denoted by f (t), and its derivative
ḟ (t) are bounded and

∫
( ḟ (t)/ f (t))2 f (t)dt < ∞.

C3. The failure times T̃1, T̃2 and the censoring time C have uniformly bounded
densities.
C4. The weight function φ satisfies Condition 5 in Ying (1993).
C5. The maximum likelihood estimators γ̂ and η̂ satisfy

√
n‖γ̂ − γ ∗‖ = Op(1)

and
√
n‖η̂ − η∗‖ = Op(1), where ‖ · ‖ stands for the Euclidean norm.

C6. π(X, γ ) is uniformly bounded away from 0.

Conditions C1–C4 are similar to Condition 1–Condition 5 introduced by Ying
(1993). These conditions are sufficient to guarantee the consistency and asymptotic
normality for the weighted log-rank estimators without missing cause of failure. Con-
ditionC5will be satisfied if one imposes some regularity conditions on the parametric
models π(X, γ ) and ρ(X, η). The final condition is usually imposed to ensure that
there is no 0 quantity in the denominator of the proposed estimating functions.
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Proof of Proposition 1 Some algebra calculation yields that

M̃(t, β0, γ
∗, η∗,�0) =

(
N (t, β0) −

∫ t

−∞
Y (u, β0)d�0(u)

)

+
(
R−π(X, γ ∗)

π(X, γ ∗)

) (
I {δ=1}−ρ(X, η∗)

)
Ñ (β0, t). (11)

It is easy to see that N (t, β0) − ∫ t
−∞ Y (u, β0)d�0(u) is a zero mean martingale

process. When π(X, γ ) is correctly specified, we have that E[R | δ, X ] = π(X, γ ∗)
under MAR. Thus,

E
[(

R − π(X, γ ∗)
π(X, γ ∗)

) (
I {δ = 1} − ρ(X, η∗)

)
Ñ (β0, t)

∣∣∣ δ, X

]

= E[R|δ, X ] − π(X, γ ∗)
π(X, γ ∗)

(
I {δ = 1} − ρ(X, η∗)

)
Ñ (β0, t) = 0,

resulting in that the second term of the right-hand side in (11) has zero mean. On
the other hand, if ρ(Xi , η) is correctly specified, we have that E[I {δ = 1}|δ >

0, R1, X1] = ρ(X, η∗) under MAR. Thus,

E
[(

R − π(X, γ ∗)
π(X, γ ∗)

) (
I {δ = 1} − ρ(X, η∗)

)
Ñ (β0, t)

∣∣∣ R, X

]

=
(
R − π(X, γ ∗)

π(X, γ ∗)

)
Ñ (β0, t)E

[
(E[I {δ = 1}|δ > 0, R, X ]

−ρ(X, η∗)
)
I {δ = 1}|R, X

] = 0,

resulting in that the second term of the right-hand side in (11) has zero mean. Con-
sequently, if either π(X, γ ) or ρ(X, η) is correctly specified, the desired conclusion
follows. �

Proof of Proposition 2 The proofmainly consists of two parts. The first part is to prove
the asymptotic normality of n−1/2SDRφ (β0). The second part is to show the asymptotic
linearity, that is, for any sequence dn → 0,

sup
‖β−β0‖<dn

{
‖SDRφ (β) − SDRφ (β0) − Aφ(β − β0)‖/(√n + n‖β − β0‖)

}
= op(1).

(12)

We first prove the first part. Define
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S̃DRφ (β, γ, η) =
n∑

i=1

∫ ∞

−∞
φ(β, t)

(
Zi − Z̄(β, t)

)

×
(
RidNi (β, t)

π̃(δi , Xi , γ )
− Ri − π̃(δi , Xi , γ )

π̃(δi , Xi , γ )
ρ(Xi , η)dÑi (β, t)

)
.

Using arguments similar to those in the proof of Theorem 1 in Lin et al. (1998), we
can show that

1√
n
S̃DRφ (β0, γ

∗, η∗)= 1√
n

n∑
i=1

∫ ∞

−∞
φ(t) (Zi −z(t)) dM̃i (t, β0, γ

∗, η∗,�0) + op(1).

(13)

Taking partial derivative of S̃DRφ (β, γ, η) with respective to γ and η, we obtain that

∂ S̃DRφ (β, γ, η)

∂γ
=

n∑
i=1

∫ ∞

−∞
φ(β, t)

(
Zi − Z(β, t)

)

× Ri π̇γ (Xi , γ )�

π(Xi , γ )2

(
dNi (β, t) − ρ(Xi , η)dÑi (β, t)

)
,

and

∂ S̃DRφ (β, γ, η)

∂η
=

n∑
i=1

∫ ∞

−∞
φ(β, t)

(
Zi −Z(β, t)

) Ri −π(Xi , γ )

π(Xi , γ )
ρ̇η(Xi , η)�dÑi (β, t).

By the Law of Large Number, it is easy to see that n−1∂ S̃DRφ (β0, γ
∗, η∗)/∂γ and

n−1∂ S̃DRφ (β0, γ
∗, η∗)/∂η converge in probability to Bγ and Bη as n → ∞, respec-

tively.ByTaylor expansionof S̃DRφ (β0, γ̂ , η̂) aroundγ ∗ andη∗, andunder the condition
C5, we have that

S̃DRφ (β0, γ̂ , η̂) = S̃DRφ (β0, γ
∗, η∗) −

n∑
i=1

Bγ I
−1
γ Sγ,i −

n∑
i=1

Bη I
−1
η Sη,i + op(

√
n),

where Sγ,i and Sη,i are the i th score vector for γ̂ and η̂, respectively. By the definition
of S̃DRφ (β, γ, η) and (13), we can obtain that

1√
n
SDRφ (β0) = 1√

n

(
S̃DRφ (β0, γ

∗, η∗) −
n∑

i=1

Bγ I
−1
γ Sγ,i −

n∑
i=1

Bη I
−1
η Sη,i

)
+ op(1)

= 1√
n

n∑
i=1

(∫ ∞

−∞
φ(t) (Zi − z(t)) dM̃i (t, β0, γ

∗, η∗,�0)

−Bγ I
−1
γ Sγ,i − Bη I

−1
η Sη,i

)
+ op(1). (14)
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Note that when π(Xi , γ ) is correctly specified, Bη = 0 and E(Sγ,i ) = 0, and when
ρ(Xi , η) is correctly specified, Bγ = 0 and E(Sη,i ) = 0. Thus, if either π(Xi , γ )

or ρ(Xi , η) is correctly specified,
∫ ∞
−∞ φ(t)(Zi − z(t))dM̃i (t, β0, γ

∗, η∗,�0) −
Bγ I−1

γ Sγ,i − Bη I−1
η Sη,i has mean zero and variance–covariance matrix

E

[(∫ ∞

−∞
φ(t) (Z − z̄(t)) dM̃(t, β0, γ

∗, η∗,�0) − Bγ I
−1
γ Sγ − Bη I

−1
η Sη

)⊗2
]

.

(15)

Thus, by the multivariate central limit theorem, we can show that n−1/2SDRφ (β0) is
asymptotically normally distributed with mean zero and variance–covariance matrix
(15).

Next, for the asymptotic linearity (12), we can use arguments similar to those
in the proof of Theorem 1 in Ying (1993) and Theorem 2 in Lin et al. (1998).
Specifically, write SDRφ (β) − SDRφ (β0) as U (β) − U (β0) + D(β, β0, γ̂ , η̂), where

U (β) = ∑n
i=1

∫ ∞
−∞ φ(β, t)(Zi − Z̄(β, t))dNi (β, t) and

D(β, β0, γ̂ , η̂) =
n∑

i=1

[(
Ri − π(Xi , γ̂ )

π(Xi , γ̂ )

) (
I {δi = 1} − ρ(Xi , η̂)

)

×
(∫ ∞

−∞
φ(β, t)

(
Zi − Z̄(β, t)

)
dÑi (β, t)

−
∫ ∞

−∞
φ(β0, t)

(
Zi − Z̄(β0, t)

)
dÑi (β0, t)

)]
.

Note thatU (β)here has the same formas theU (β)defined inLin et al. (1998), and their
results show that sup‖β−β0‖<dn {‖U (β)−U (β0)−Aφ(β−β0)‖/(√n+n‖β−β0‖)} =
op(1). Meanwhile, under the condition C5, it is easy to see that

∥∥∥∥∥
n∑

i=1

(
Ri − π(Xi , γ̂ )

π(Xi , γ̂ )

) (
I {δi = 1} − ρ(Xi , η̂)

)
∥∥∥∥∥ = Op(

√
n).

Thus, using arguments similar to those in the proof of Theorem 1 in Ying (1993), one
can show that sup‖β−β0‖<dn {‖D(β, β0, γ̂ , η̂)‖}/(√n + n‖β − β0‖)} = op(1). The
asymptotic linearity (12) then follows by applying the triangle inequality.

Based on (12) and the consistency of β̂DR
φ , we can derive that

√
n

(
β̂DR

φ − β0

)
= −A−1

φ

1√
n
SDRφ (β0) + op(1).

Then combining (14) and the Slutsky theorem, the desired conclusion follows
immediately. �
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Proof of Proposition 3 Using almost the same arguments as those in the proof of
Proposition 2, we can derive that

−Aφ

√
n

(
β̂IPW

φ − β0

)
= 1√

n

n∑
i=1

(∫ ∞

−∞
φ(t) (Zi − z̄(t)) dMi (t) − Cγ I

−1
γ Sγ,i

)

+ op(1),

where

Mi (t) = Ri Ni (β0, t)

π̃(δi , Xi , γ ∗)
−

∫ t

−∞
Yi (β0, u)λ0(u)du.

Thus, the conclusion follows immediately. �
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