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Abstract We propose new summary statistics for intensity-reweighted moment sta-
tionary marked point processes with particular emphasis on discrete marks. The new
statistics are based on the n-point correlation functions and reduce to cross J - and
D-functions when stationarity holds. We explore the relationships between the vari-
ous functions and discuss their explicit forms under specific model assumptions. We
derive ratio-unbiased minus sampling estimators for our statistics and illustrate their
use on a data set of wildfires.

Keywords Generating functional · Intensity-reweighted moment stationarity ·
J -function · Marked point process · Multivariate point process · Nearest neighbour
distance distribution function · n-point correlation function · Reduced Palm measure

1 Introduction

The analysis of amarked point pattern typically beginswith computing some summary
statistics which may be used to find specific structures in the data and suggest suitable
models (Chiu et al. 2013; Daley and Vere-Jones 2003, 2008; Gelfand et al. 2010; Illian
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et al. 2008; van Lieshout 2000). The choice of summary characteristic depends both
on the pattern at hand and on the feature or hypothesis of interest. Indeed, under the
working assumption of stationarity, for discrete marks, cross versions of the K - or
nearest neighbour distance distribution function may be appropriate (Diggle 2014);
for real-valued marks, the mark correlation functions of Penttinen and Stoyan (1989)
are widely used. Various types of J -functions (van Lieshout 2006; van Lieshout and
Baddeley 1999) offer useful alternatives.

Often, however, the assumption of homogeneity cannot be justified. In the unmarked
case, Baddeley et al. (2000) proposed an inhomogeneous extension of the K -function
for so-called second-order intensity-reweighted stationary point processes. Their ideas
were extended to spatio-temporal point processes in Gabriel and Diggle (2009),
Møller and Ghorbani (2012), whereas Cronie and van Lieshout (2015), van Lieshout
(2011) extended the J -function under the somewhat stronger assumption of intensity-
reweighted moment stationarity in space and time.

For non-stationary multivariate point processes, Møller and Waagepetersen (2004)
proposed an extension of the K -function under the assumption of second-order
intensity-reweighted stationarity. As we will indicate in this paper, this structure may
be extended to K -functions for general marked point processes.

Regarding J -functions, in vanLieshout (2011), the author noted that the ideas in that
paper could be combined with those in van Lieshout (2006) to define inhomogeneous
J -functions with respect to mark sets. In this paper we do so, and, as a by-product,
obtain a generalisation of the cross nearest neighbour distance distribution function.

The paper is structured as follows. In Sect. 2, we definemarked point processes with
locations in Euclidean spaces and give the necessary preliminaries. In Sects. 3.1 and
3.2, we define, respectively, cross D- and J -functions for inhomogeneous multivariate
point processes and propose generalisations to point processes with real-valuedmarks.
We show that D and J can be expressed in terms of the generating functional and
discuss the relationships between these statistics and the cross K -function. In Sect. 4,
we investigate the form of our statistics under various independence and marking
assumptions. We derive minus sampling estimators and discuss tests in Sect. 5, which
are applied to a data set on wildfires in New Brunswick, Canada, in Sect. 6. We finish
the paper with a summary.

2 Definitions and notations

Throughout this paper, we consider marked point processes Y in the sense of Def-
inition 6.4.1 in Daley and Vere-Jones (2003), with points in R

d equipped with the
Euclidean metric and Borel σ -algebra B(Rd). We write � for the Lebesgue measure
on B(Rd). By definition, the ground process Z obtained from Y by ignoring the marks
is a well-defined point process onR

d in its own right.We shall assume that Z is simple,
that is, almost surely does not contain multiple points.

We assume that the mark space M is Polish and equipped with a finite reference
measure ν on the Borel σ -algebra B(M). We denote by B(Rd × M) the Borel σ -
algebra on the product space R

d × M. In the special case that M is finite, Y can be
seen as a multivariate point process (Y1, . . . , Yk), where Yi contains the points marked
i ∈ M = {1, . . . , k}.
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Inhomogeneous marked point processes 907

2.1 Product densities

Recall that the intensity measure of a marked point process is defined on product sets
A = B × C ∈ B(Rd × M) by

�(A) = EY (A) = EY (B × C),

the expected number of points in B with marks in C . If � is locally finite as a set-
function, it can be extended to a measure on B(Rd ×M) (see e.g. Theorem A, p. 54,
in Halmos (1974)). In this paper, additionally, we assume that � admits a density λ

with respect to � × ν, which is referred to as the intensity function. In particular, for
a finite mark space, λ(z, i)ν(i) = λi (z) is the intensity function of Yi .

Since for fixed C , the measure �(· × C) is absolutely continuous with respect to
the intensity measure �g of the ground process,

�(B × C) =
∫

B
Mz(C)�g(dz). (1)

Here Mz(C) is the probability that the mark of a point at location z falls in C . The
members of the family {Mz : z ∈ R

d} of probability distributions on the Borel sets of
M are called mark distributions.

If Y is stationary, that is, if its distribution is invariant under translations of the
locations, �(B × C) = λνM (C)�(B) for some probability distribution νM on M,
which is known as the mark distribution. In this case, we may take ν = νM for the
reference measure on M so that � has constant intensity function λ with respect to
� × νM , and, moreover, λ is the intensity of the ground process.

Higher order ‘intensity functions’ or product densities can be defined as densities
ρ(n) of the factorial moment measures provided these exist, in which case they satisfy
the following nth order Campbell formula. For any measurable function f ≥ 0, the
sum of f over n-tuples of different points of Y is a random variable with expectation

E

⎡
⎣ ∑ �=

(z1,m1),...,(zn ,mn)∈Y

f ((z1, m1), . . . , (zn, mn))

⎤
⎦

=
∫

· · ·
∫

f ((z1, m1), . . . , (zn, mn)) ρ(n)((z1, m1), . . . , (zn, mn))

n∏
i=1

dzidν(mi )

(2)

(with the left hand side being infinite if and only if the right hand side is infinite). Note
that ρ(1) = λ, the intensity function. Also, n-point mark distributions Mz1,...,zn (C1 ×
· · · × Cn) can be defined analogously to the case n = 1. For further details, see
for example the textbook Chiu et al. (2013). Note that, by the absolute continuity
underlying the existence of ρ(n), there exist product densities ρ

(n)
g (z1, . . . , zn) for the

ground process and densities fz1,...,zn of Mz1,...,zn with respect to the n-fold product
of ν with itself such that
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Mz1,...,zn (C1 × · · · × Cn) =
∫

C1

· · ·
∫

Cn

fz1,...,zn (m1, . . . , mn)

n∏
i=1

dν(mi ).

In particular, the intensity function of the ground process is given by λg(z) = ρ
(1)
g (z)

and λ(z, m) = fz(m)λg(z).
We will also need the related concept of n-point correlation functions ξn , n ≥ 1,

the intensity-reweighted densities of the factorial cumulant measures discussed in
Section 9.5 of Daley and Vere-Jones (2008). These permutation invariant measurable
functions are defined by the following recursive relation (see e.g. van Lieshout (2006),
White (1979)). Set ξ1 ≡ 1 and, for n ≥ 2,

n∑
k=1

∑
E1,...,Ek

k∏
j=1

ξ|E j |({(zi , mi ) : i ∈ E j }) = ρ(n)((z1, m1), . . . , (zn, mn))

λ(z1, m1) · · · λ(zn, mn)
, (3)

where
∑

E1,...,Ek
is a sum over all possible k-sized partitions {E1, . . . , Ek}, E j �= ∅,

of the set {1, . . . , n} and |E j | denotes the cardinality of E j . Note that for a Poisson
process, ξn ≡ 0 for all n ≥ 2.

2.2 Palm measures

Let Y be a simple marked point process whose intensity function exists. The summary
statistics in this paper are defined in terms of reduced Palm measures satisfying the
reduced Campbell–Mecke formula which states that, for any measurable function
f ≥ 0,

E

⎡
⎣ ∑

(z,m)∈Y

f ((z, m), Y\{(z, m)})
⎤
⎦ =

∫
Rd

∫
M

E
!(z,m) [ f ((z, m), Y )] λ(z, m) dzdν(m)

(4)

(with the left hand side being infinite if and only if the right hand side is infinite).
The probability measure P !(z,m) corresponding to E

!(z,m) can be interpreted as the
conditional probability of Y\{(z, m)} given that Y ({(z, m)}) = 1. For further details,
see Daley and Vere-Jones (2008).

A few remarks are in order. First, consider the special case that Y is stationary and
the reference measure on M is the mark distribution νM . In this case, it is possible
to define reduced Palm measures with respect to arbitrary mark sets. Specifically, for
C ∈ B(M) such that ν(C) = νM (C) > 0, set

P !z
C (R) = 1

ν(C)

∫
C

P !(z,m)(R) dν(m). (5)

Then, P !z
C does not depend on the choice of z ∈ R

d and is a probability measure
(Section 4.4.8 in Chiu et al. (2013)). It can be interpreted as the conditional distribution
of Y on the complement of {z} ×M, given that Y places a point at z with mark in C .
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Inhomogeneous marked point processes 909

As a second example, consider multivariate point processes (Y1, . . . , Yk) and let ν
be any finite measure on M = {1, . . . , k}. Now, we have a family of reduced Palm
measures P !(z,i) for i = 1, . . . , k andmay restrict ourselves to sets of the formC = {i}.
Then, (5) reads

P !z
C (R) = 1

ν(i)
ν(i)P !(z,i)(R) = P !(z,i)(R)

and does not depend on the specific choice of ν.
For non-finite mark spaces, the reference measure ν onMmay not correspond to a

well-defined mark distribution. One pragmatic approach is to take a finite partition of
the mark space,M = ∪k

i=1Mi , and proceed as in the multivariate case. An alternative
is to use (5) as definition for a ν-averaged reduced Palm distribution with respect to
C , bearing in mind that the definition does depend on the choice of ν.

2.3 Generating functionals

When product densities of all orders exist, the generating functional G(·),
which uniquely determines the distribution of Y (see e.g. Theorem 9.4.V, Daley
and Vere-Jones 2008), is defined as follows. For all mappings v = 1 − u such that
u : R

d × M → [0, 1] is measurable with bounded support, set

G(v) = G(1 − u) = E

⎡
⎣ ∏

(z,m)∈Y

v(z, m)

⎤
⎦ (6)

= 1 +
∞∑

n=1

(−1)n

n!
∫
Rd×M

· · ·
∫
Rd×M

ρ(n)((z1, m1), . . . , (zn, mn))

×
n∏

i=1

u(zi , mi ) dzidν(mi )

= exp

[ ∞∑
n=1

(−1)n

n!
∫
Rd×M

· · ·
∫
Rd×M

ξn((z1, m1), . . . , (zn, mn))

×
n∏

i=1

u(zi , mi )λ(zi , mi ) dzidν(mi )

]
.

By convention, log 0 = −∞ and an empty product equals 1. The last equalities hold
provided that the right hand sides converge (see e.g. p. 126, Chiu et al. 2013). Similarly,
for a ∈ R

d and C ∈ B(M), we may define the generating functional G !a
C with respect

to P !a
C (see the discussion around (5)) by

G !a
C (v) = 1

ν(C)

∫
C

E
!(a,b)

⎡
⎣ ∏

(z,m)∈Y

v(z, m)

⎤
⎦ dν(b). (7)
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3 Definition of summary statistics

3.1 Inhomogeneous cross D-function

In this section, we define cross D-functions formarked point processes in analogywith
the inhomogeneous nearest neighbour distance distribution function of van Lieshout
(2011).

Write

λ̄E = inf
z∈Rd ,m∈E

λ(z, m).

Throughoutwe assume thatY is a simplemarkedpoint processwhose product densities
of all orders exist and for which the ξn , n ≥ 2, are translation invariant in the sense
that

ξn((z1 + a, m1), . . . , (zn + a, mn)) = ξn((z1, m1), . . . , (zn, mn))

for all a ∈ R
d and � ⊗ ν-almost all (zi , mi ) ∈ R

d × M. If, moreover, λ̄ = λ̄M > 0,
then Y is said to be intensity-reweighted moment stationary (IRMS). This definition is
due to van Lieshout (2011). In the context of multivariate point processes, a variation
in which only ξ2 is required to be translation invariant can be found in Møller and
Waagepetersen (2004).

Clearly, if Y is stationary, it is also IRMS. Assuming that the intensities are
bounded away from zero, further examples include Poisson processes, multivariate
point processes with independent IRMS components (cf. Proposition 4.4 in Møller
andWaagepetersen (2004)) or intensity-reweightedmoment stationary point processes
that are independently marked (cf. (16)). Since the ξn are invariant under independent
thinning, further examples include such location or mark-dependent thinnings of sta-
tionary point processes. The special case of spatio-temporal point processes is treated
in detail in Cronie and van Lieshout (2015).

Definition 1 Let Y be IRMS and let C and E be Borel sets inMwith ν(C) and ν(E)

strictly positive. Write B(a, r) for the closed ball centred at a with radius r . Set

ua,E
r (z, m) = λ̄E1{(z, m) ∈ B(a, r) × E}

λ(z, m)
, a ∈ R

d , E ∈ B(M),

anddefine, for r ≥ 0, the inhomogeneous cross nearest neighbour distance distribution
function by

DC E
inhom(r) = 1 − G !0

C

(
1 − u0,E

r

)

= 1 − 1

ν(C)

∫
C

E
!(0,b)

⎡
⎣ ∏

(z,m)∈Y

(
1 − λ̄E1{(z, m) ∈ B(0, r) × E}

λ(z, m)

)⎤
⎦ dν(b). (8)
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Inhomogeneous marked point processes 911

We shall show in Theorem 1 below that the specific choice a = 0 in (8) is merely
a matter of convenience. Moreover, λ̄E may be replaced by smaller strictly positive
scalars.

When Y is stationary and ν = νM , the mark distribution,

DC E
inhom(r) = 1 − 1

νM (C)

∫
C

E
!(0,b)

⎡
⎣ ∏

(z,m)∈Y

1{(z, m) /∈ B(0, r) × E}
⎤
⎦ dνM (b)

= P !0
C (Y ∩ B(0, r) × E �= ∅),

so that (8) reduces to the C-to-E nearest neighbour distance distribution function of
van Lieshout (2006) for marked point processes.

3.1.1 Multivariate point process

Consider a multivariate point process Y = (Y1, . . . , Yk) that is intensity-reweighted
moment stationary. Let C = {i} and E = { j} for i �= j ∈ {1, . . . , k}. Write λ̄ j =
inf z∈Rd λ j (z) and note that λ̄E/λ(z, j) is equal to λ̄ j/λ j (z). Therefore, (8) reduces to

Di j
inhom(r) = 1 − E

!(0,i)
⎡
⎣∏

z∈Y j

(
1 − λ̄ j

λ j (z)
1{z ∈ B(0, r)}

)⎤
⎦ (9)

which under the further assumption that Y is stationary is equal to

P !(0,i)(Y j ∩ B(0, r) �= ∅),

the classical cross nearest neighbour distance distribution function, see e.g. Chapter 21
in Gelfand et al. (2010). If Y is a Poisson process,

Di j
inhom(r) = 1 − exp

[−λ̄ j�(B(0, r))
]
.

Smaller values of Di j
inhom(r) suggest that there are fewer points of type j in the r -

neighbourhood, that is, inhibition; larger values indicate that points of type j are
attracted by those of type i at range r . In the case i = j , we obtain the inhomogeneous
D-function of Yi .

With C = {i} for some i ∈ {1, . . . , k} and E = M = {1, . . . , k}, (8) is equal to

Di•
inhom(r) = 1 − E

!(0,i)
⎡
⎣ ∏

(z,m)∈Y

(
1 − λ̄1{z ∈ B(0, r)}

λ(z, m)

)⎤
⎦ (10)

for r ≥ 0. Note that the function u0,M
r may depend on ν through λ(z, m). If we

give equal weight to each member ofM, however, λ̄/λ(z, m) = λ̃/λm(z) is uniquely
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defined in terms of the intensity functions of the components of Y and the minimal
marginal intensity λ̃ = inf{λi (z) : z ∈ R

d , i ∈ {1, . . . , k}}. If Y is stationary, Di•
inhom

is the classic i-to-any nearest neighbour distance distribution function.

3.2 Inhomogeneous cross J -functions

In this section, we define cross J -functions for marked point processes in analogy
with the inhomogeneous J -function of van Lieshout (2011). Throughout we assume
that Y is a simple intensity-reweighted moment stationary point process.

Definition 2 Let Y be IRMS and let C and E be Borel sets inMwith ν(C) and ν(E)

strictly positive. For r ≥ 0 and n ≥ 1, set

J C E
n (r) =

∫
C

∫
· · ·
∫

(B(0,r)×E)n
ξn+1((a, b), (z1 + a, m1), . . . , (zn + a, mn))

×dν(b)

n∏
i=1

dzidν(mi )

and define the inhomogeneous cross J -function by

J C E
inhom(r) = 1

ν(C)

(
ν(C) +

∞∑
n=1

(−λ̄E )n

n! J C E
n (r)

)
(11)

for all ranges r ≥ 0 for which the series is absolutely convergent.

Note that there is an implicit dependence on a ∈ R
d in J C E

n (r) and consequently
in J C E

inhom(r). However, the IRMS assumption implies that all J C E
n (r) (and therefore

J C E
inhom(r)) are �-almost everywhere constant. Furthermore, Cauchy’s root test implies

that whenever lim supn→∞
(
λ̄n

E |J C E
n (r)|/n!)1/n

< 1, (11) is absolutely convergent.
When Y is stationary and ν = νM , the mark distribution, (11) reduces to the cross

inhomogeneous J -function for marked point processes introduced in van Lieshout
(2006) since in that case λ̄E = λ̄M regardless of the choice of E . Finally, note that for
a Poisson process, ξn ≡ 0 for n ≥ 2, so JC E (r) ≡ 1. In general, the inhomogeneous
J -function is not commutative with respect to the mark sets C and E , C �= E .

Looking closer at Definition 2, we see that there is some resemblance between
J C E
inhom(r) and the cross inhomogeneous K -function of Definition 4.8 in Møller and

Waagepetersen (2004). Indeed, truncation of the series in (11) at n = 1 gives

J C E
inhom(r) − 1 ≈ − λ̄E

ν(C)

∫
C

∫
B(0,r)×E

[g((0, b), (z, m)) − 1] dν(b)dzdν(m)

= −λ̄Eν(E)
(

K C E
inhom(r) − �(B(0, r))

)
,

where

K C E
inhom(r) = 1

ν(C)ν(E)

∫
C

∫
B(0,r)×E

g((0, m1), (z, m2))dν(m1)dzdν(m2) (12)
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Inhomogeneous marked point processes 913

is the generalisation of the cross inhomogeneous K -function to our set-up.Note that the
inhomogeneous K -function defined by (12) requires translation invariance of the two-
point correlation function only, in which case Y is said to be second-order intensity-
reweighted stationary (SOIRS). Heuristically, JC E (r) < 1 suggests that points with
marks in E tend to cluster around points with marks in C at range r ≥ 0; JC E (r) > 1
indicates that points with marks in E avoid those with marks in C at range r ≥ 0. This
interpretation is confirmed by Theorem 1 below.

Definition 2 is hard to work with. A more natural representation can be given in
terms of the generating functional. In order to do so, define the inhomogeneous empty
space function of YE , the marked point process Y restricted to R

d × E , by

1 − F E
inhom(r) = G(1 − ua,E

r )

= E

⎡
⎣ ∏

(z,m)∈Y

(
1 − λ̄E1{(z, m) ∈ B(a, r) × E}

λ(z, m)

)⎤
⎦ (13)

with ua,E
r as in Definition 1. As for DC E

inhom, the definition does not depend on the
choice of origin a = 0 and λ̄E may be replaced by smaller strictly positive scalars. At
this point, it is important to stress that for E = M, F E

inhom is not necessarily equal to

Finhom, the empty space function of the ground process Z , since u0,M
r depends on the

marks both through the intensity function λ and the bound λ̄M.

Theorem 1 Let Y be as in Definition 2. Then, as a function of a ∈ R
d , each J C E

n (r)

is �-almost everywhere constant. Moreover, if the lim sup for n → ∞ of

(
(λ̄E )n

n!
∫

· · ·
∫

(B(0,r)×E)n

ρ(n)((z1, m1), . . . , (zn, mn))

λ(z1, m1) · · · λ(zn, mn)

n∏
i=1

dzidν(mi )

)1/n

is strictly less than 1, then, for almost all a ∈ R
d , the C-to-E inhomogeneous J -

function of Definition 2 satisfies

J C E
inhom(r) = 1 − DC E

inhom(r)

1 − F E
inhom(r)

for all r ≥ 0 for which F E
inhom(r) �= 1.

The proof is technical and relegated to an Appendix.

3.2.1 Multivariate point process

Consider a multivariate point process Y = (Y1, . . . , Yk) that is intensity-reweighted
moment stationary. By a suitable choice of mark set E , we obtain different types of
inhomogeneous J -functions.
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914 O. Cronie, M. N. M. van Lieshout

First, take C = {i} and E = { j} for i �= j ∈ {1, . . . , k}. Then, writing F j
inhom for

the inhomogeneous empty space function of Y j and recalling (9), the statistic (11) is
equal to

J i j
inhom(r) = 1 − Di j

inhom(r)

1 − F j
inhom(r)

(14)

and compares the distribution of intensity-reweighted distances from a point of type i
to the nearest one of type j to those from an arbitrarily chosen origin to Y j . Therefore,
it generalises the i-to- j cross J -function of van Lieshout and Baddeley (1999) for
stationary multivariate point processes.

Set C = {i} for some i ∈ {1, . . . , k} and E = M = {1, . . . , k}. Then, recalling
(10), the statistic (11) can be written as:

J i•
inhom(r) = 1 − Di•

inhom(r)

1 − FM
inhom(r)

(15)

and compares tails of the i-to-any nearest neighbour distance distribution and the
empty space function of Y . Note that if ν is proportional to the counting measure,
FM
inhom(r) can be expressed in terms of the intensity functions of the components and

the minimal marginal intensity (see the discussion following formula (10)). Hence,
J i•
inhom generalises the i-to-any J -function for stationary multivariate point processes

(van Lieshout and Baddeley 1999).

4 Independence and random labelling

In this section, we investigate the effect of various independence assumptions and
marking schemes on our summary statistics.

4.1 Independent marking mechanisms

Specific forms of marking are summarised in Definition 3 below, cf. Definition 6.4III
in Daley and Vere-Jones (2003).

Definition 3 A marked point process Y is called independently marked if, given the
ground process Z , the marks are independent random variables with a distribution that
depends only on the corresponding location. If, additionally, Mz does not depend on
the location, we say that Y has the random labelling property.

Proposition 1 Let C and E be Borel sets in M with ν(C), ν(E) > 0 and assume that
Y is independently marked.

(a) If Y is SOIRS, the ground process Z is also SOIRS and K C E
inhom(r) = K Z

inhom(r),
the inhomogeneous K -function of Z.

Let E
!0
Z denote the expectation under the Palm distribution of the ground process Z

and write u0
r (z) = λ̄g1{z ∈ B(0, r)}/λg(z), z ∈ R

d , cE = λ̄Eν(E)/λ̄g. Under the
assumptions of Theorem 1, when Y is independently marked, Z is IRMS and
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Inhomogeneous marked point processes 915

(b) F E
inhom(r) = 1 − G Z (1 − cE u0

r ),
(c) DC E

inhom(r) = 1 − G !0
Z (1 − cE u0

r ),
(d) J C E

inhom(r) = G !0
Z (1−cE u0

r )/G Z (1−cE u0
r ) for all r ≥ 0 for which the denominator

is non-zero.

If Y is randomly labelled with ν = νM , then cE = νM (E) and

FM
inhom(r) = F Z

inhom(r); DCM
inhom(r) = DZ

inhom(r); J CM
inhom(r) = J Z

inhom(r).

Proof Recall that

ρ(n)((z1, m1), . . . , (zn, mn)) = fz1,...,zn (m1, . . . , mn)ρ(n)
g (z1, . . . , zn).

Under the independent marking assumption,

fz1,...,zn (m1, . . . , mn) =
n∏

i=1

fzi (mi ). (16)

Therefore,

ξn((z1, m1), . . . , (zn, mn)) = ξ
g
n (z1, . . . , zn),

the n-point correlation function of the ground process, so that Z is (second order)
intensity-reweighted moment stationary whenever Y is so. Plugging (16) into (12)
yields K C E

inhom(r) = ∫B(0,r)
gg(0, z) dz, the inhomogeneous K -function of Z . Further-

more, under the assumption that the series expansion is absolutely convergent, by (6),
(13) reduces to

1 − F E
inhom(r) = 1 +

∞∑
n=1

(−λ̄E )n

n!
∫

(B(0,r)×E)n

ρ
(n)
g (z1, . . . , zn)

λg(z1) · · · λg(zn)

n∏
i=1

dzidν(mi )

= 1 +
∞∑

n=1

(−λ̄Eν(E))n

n!
∫

B(0,r)n

ρ
(n)
g (z1, . . . , zn)

λg(z1) · · · λg(zn)

∏
dzi .

Similarly,

1 − DC E
inhom(r) = 1 +

∞∑
n=1

(−λ̄Eν(E))n

n!
∫

B(0,r)n

ρ
(n+1)
g (0, z1, . . . , zn)

λg(0)λg(z1) · · · λg(zn)

∏
dzi .

We conclude that 1 − DC E
inhom(r) = G !0

Z (1 − λ̄Eν(E)1B(0,r)(·)/λg(·)) and 1 −
F E
inhom(r) = G Z (1 − λ̄Eν(E)1B(0,r)(·)/λg(·)).
Under random labelling, the right hand side of (16) is further simplified to∏n

i=1 f (mi ) for some probability density f that does not depend on location. If fur-
thermore ν = Mz = νM , the mark distribution, the density is one, i.e. f (mi ) ≡ 1.
Hence λ̄E = λ̄g and cE = νM (E). In particular, cM = 1. 
�

123



916 O. Cronie, M. N. M. van Lieshout

Proposition 1 generalises known results for stationary multivariate and marked
point processes, cf. respectively, Lemma 4 in van Lieshout and Baddeley (1999) and
Proposition 3.1 in van Lieshout (2006). Heuristically, since conditionally on the loca-
tions, the marks are assigned independently of one another, any interaction in Y is
due to interactions in the ground process Z . Note that the summary statistics do not
depend on the choice of C , but may depend on E through cE .

4.2 Cross summary statistics for independent components

Recall that we use the notation YC , C ∈ B(M), for the restriction of Y to R
d × C . If

YC and YE are independent, then the C-to-E cross J -function is identically 1. More
precisely, the following result holds.

Proposition 2 Consider two disjoint Borel sets C, E ⊆ M with ν(C) and ν(E)

strictly positive and assume that YC and YE are independent. Under the assumptions
of Theorem 1,

DC E
inhom(r) = F E

inhom(r)

so that J C E
inhom(r) ≡ 1 whenever well defined.

If Y is SOIRS, K C E
inhom(r) = ωdrd = �(B(0, r))whenever YC and YE are independent

by Proposition 4.4 in Møller and Waagepetersen (2004).

Proof By the Campbell formula (2), if YC and YE are independent, the product den-
sities factorise with respect to C and E , i.e.

ρ(nC +nE )((z1, m1), . . . , (znC , mnC ), (z̃1, m̃1), . . . , (z̃nE , m̃nE ))

= ρ(nC )((z1, m1), . . . , (znC , mnC )) ρ(nE )((z̃1, m̃1), . . . , (z̃nE , m̃nE ))

for almost all (zi , mi ) ∈ R
d × C and (z̃i , m̃i ) ∈ R

d × E . Then, by the proof of
Theorem 1,

G!0
C (1 − u0,E

r ) = 1 + 1

ν(C)

×
∞∑

n=1

(−λ̄E )n

n!
∫

C

∫
(B(0,r)×E)n

ρ(n+1)((0, b), (z1, m1), . . . , (zn, mn))

λ(0, b)λ(z1, m1) · · · λ(zn, mn)

×
n∏

i=1

dzidν(mi )dν(b).

The integrand factorises as:

λ(0, b)ρ(n)((z1, m1), . . . , (zn, mn))

λ(0, b)λ(z1, m1) · · · λ(zn, mn)
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Inhomogeneous marked point processes 917

so that G !0
C (1 − u0,E

r ) = G(1 − u0,E
r ). We conclude that DC E

inhom(r) = F E
inhom(r) and

J C E
inhom(r) ≡ 1. 
�
Propositions 2 and 3 (below) generalise well-known results for stationary multi-

variate point processes, cf. Diggle (2014), van Lieshout and Baddeley (1999). The
next result collects mixture formulae.

Proposition 3 Let C ⊆ M be a Borel set with 0 < ν(C) < ν(M). Set E = M\C
and assume that YC and YE are independent.

(a) If Y is SOIRS, K CM
inhom(r) = ν(E)

ν(M)
ωdrd + ν(C)

ν(M)
K YC
inhom(r), where K YC

inhom is the
inhomogeneous K -function of YC .

Write cA = λ̄/λ̄A for A ∈ B(M). Under the assumptions of Theorem 1,

(b) 1 − FM
inhom(r) = G

(
1 − cC u0,C

r

)
G
(
1 − cE u0,E

r

)
,

(c) 1 − DCM
inhom(r) = G !0

C

(
1 − ccu0,C

r

)
G
(
1 − cE u0,E

r

)
,

(d) J CM
inhom(r) = G !0

C

(
1 − cC u0,C

r

)
/G
(
1 − cC u0,C

r

)
for all r ≥ 0 for which the

denominator is non-zero.

Note that if we would have used the global infimum λ̄ in (8), (13) and Definition
2, the constants cC and cE would vanish and, e.g. J CM

inhom(r) ≡ J YC
inhom(r) whenever

defined.

Proof As in the proof of Proposition 2, g((0, m1), (z, m2)) = 1 if m1 ∈ C and
m2 ∈ M\C , so that

K CM
inhom(r) = 1

ν(C)ν(M)

∫
C

∫
B(0,r)×M

g((0, m1), (z, m2)) dν(m1)dzdν(m2)

= ν(M\C)

ν(M)
ωdrd + ν(C)

ν(M)
K CC
inhom(r).

Since Y = YC ∪ YM\C is the superposition of independent point processes,

1 − FM
inhom(r) = E

⎡
⎣ ∏

(z,m)∈Y

(
1 − λ̄1{(z, m) ∈ B(0, r) × M}

λ(z, m)

)⎤
⎦

= G

(
1 − λ̄

λ̄M\C
u0,M\C

r

)
G

(
1 − λ̄

λ̄C
u0,C

r

)
.

Furthermore, under each (conditional) distribution P !(0,b), b ∈ C , the points of YM\C
follow the distribution P , hence

DCM
inhom(r) = 1 −

∫
C

E
!(0,b)

⎡
⎣ ∏

(z,m)∈Y

(
1 − λ̄1{(z, m) ∈ B(0, r) × M}

λ(z, m)

)⎤
⎦ dν(b)

ν(C)

123



918 O. Cronie, M. N. M. van Lieshout

= 1 − E

⎡
⎣ ∏

(z,m)∈Y∩(B(0,r)×M\C)

(
1 − λ̄

λ(z, m)

)⎤
⎦

× 1

ν(C)

∫
C

E
!(0,b)

⎡
⎣ ∏

(z,m)∈Y∩(B(0,r)×C)

(
1 − λ̄

λ(z, m)

)⎤
⎦ dν(b)

= 1 − G

(
1 − λ̄

λ̄M\C
u0,M\C

r

)
G !0

C

(
1 − λ̄

λ̄C
u0,C

r

)
.


�
The propositions in this section help to choose an appropriate summary statistic. Since
a random labelling hypothesis is plausible in situations in which labels are allocated
conditionally on the point positions, Proposition 1 suggests to consider DCM

inhom −
DZ
inhom or J CM

inhom − J Z
inhom. In situations in which points and marks arise jointly so

that an unconditional analysis is called for, we prefer cross statistics J C E
inhom to assess

the independence or otherwise of YC and YE . An alternative in the bivariate case
E = M\C is the statistic J CM

inhom − J YC
inhom (cf. Proposition 3).

5 Statistical inference

Although defined on all of R
d , in practice, the ground process Z is observed only in

some compact spatial region W ⊆ R
d with boundary ∂W . To deal with edge effects,

we apply a minus sampling scheme (see e.g. Chiu et al. (2013) for further details).
The underlying idea is that when one is interested in the interactions up to range r ,
only observations in the eroded set

W�r = {z ∈ W : dRd (z, ∂W ) ≥ r}

are taken into account. For clarity of exposition, we assume that the intensity function
λ(z, m) is known. If this is not the case, an estimator λ̂ may be plugged in. We return
to this point in Sect. 7.

In Sect. 5.1, we derive estimators for our inhomogeneous D- and J -functions;
estimation of the cross K -function is discussed in Møller and Waagepetersen (2004).
Finally, Sect. 5.2 is devoted to non-parametric test statistics for the independence and
random labelling assumptions (cf. Sect. 4).

5.1 Estimation

LetY be an intensity-reweightedmoment stationarymarked point process and consider
the statistics

∑
(a,b)∈Y∩(W�r ×C)

1

λ(a, b)

⎡
⎣ ∏

(z,m)∈(Y\{(a,b)})∩(B(a,r)×E)

(
1 − λ̄E

λ(z, m)

)⎤
⎦ (17)
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Inhomogeneous marked point processes 919

and

1

|L ∩ W�r |
∑

l∈L∩W�r

⎡
⎣ ∏

(z,m)∈Y∩(B(l,r)×E)

(
1 − λ̄E

λ(z, m)

)⎤
⎦ , (18)

where L ⊆ W is some finite point grid. The following unbiasedness result holds.

Lemma 1 Suppose C, E ∈ B(M) have strictly positive ν-content. Then, under the
assumptions of Theorem 1, provided �(W�r ) > 0, (17) and (18) are unbiased estima-
tors of, respectively, �(W�r )ν(C)G !0

C (1 − u0,E
r ) and G(1 − u0,E

r ).

Proof By the Campbell–Mecke formula and Fubini’s theorem, the expectation of (17)
is equal to

∫
W�r

∫
C

E
!(a,b)

⎡
⎣ 1

λ(a, b)

∏
(z,m)∈Y

(
1 − λ̄E1{(z, m) ∈ B(a, r) × E}

λ(z, m)

)⎤
⎦

λ(a, b) dadν(b)

= �(W�r )

∫
C

E
!(0,b)

⎡
⎣ ∏

(z,m)∈Y

(
1 − λ̄E1{(z, m) ∈ B(0, r) × E}

λ(z, m)

)⎤
⎦ dν(b),

which can be written in generating functional terms as �(W�r )ν(C)G !0
C (1 − u0,E

r ).
The expectation of (18) is

1

|L ∩ W�r |
∑

l∈L∩W�r

G(1 − ul,E
r ).

Since the summands do not depend on l, the required unbiasedness follows. 
�

Lemma 1 implies that an estimator of G !0
C (1 − u0,E

r ) can be obtained from (17)
upon division by �(W�r )ν(C). For irregular windows, however, the volume of W�r

may be difficult to compute. To overcome this problem, we use the Hamilton principle
advocated in Stoyan and Stoyan (2000) and estimate �(W�r )ν(C) by

∑
(a,b)∈Y∩(W�r ×C)

1

λ(a, b)
.

The result is a ratio-unbiased estimator with the desirable property that it takes the
value one at r = 0. Simulations suggest that the Hamilton principle is also helpful in
reducing the sensitivity of the estimatorwith respect tomisspecification of the intensity
function λ. To define a non-parametric estimator for J C E

inhom(r), we use Theorem 1 and
plug in the estimators for the numerator and denominator discussed above, i.e.
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920 O. Cronie, M. N. M. van Lieshout

̂J C E
inhom(r) =

̂1 − DC E
inhom(r)

̂1 − F E
inhom(r)

=
⎛
⎝ ∑

(a,b)∈Y∩(W�r ×C)

1

λ(a, b)

⎞
⎠

−1

×
⎛
⎝ ∑

(a,b)∈Y∩(W�r ×C)

1

λ(a, b)

⎡
⎣ ∏

(z,m)∈(Y\{(a,b)})∩(B(a,r)×E)

(
1 − λ̄E

λ(z, m)

)⎤
⎦
⎞
⎠

/⎛⎝ 1

|L ∩ W�r |
∑

l∈L∩W�r

⎡
⎣ ∏

(z,m)∈Y∩(B(l,r)×E)

(
1 − λ̄E

λ(z, m)

)⎤
⎦
⎞
⎠ .

5.2 Hypothesis testing

In Sect. 4, we encountered two interaction hypotheses: random labelling and inde-
pendence. Such hypotheses are complex, depending as they do both on the marginal
distribution of the components of interest and the marking structure or interactions
between them. Nevertheless, it is possible to construct non-parametric Monte Carlo
tests by proper conditioning, see Besag and Diggle (1977), Lotwick and Silverman
(1982), Myllymaki et al. (2013) or Ripley (1977), based on a realisation of Y with
locations in some compact window W ⊆ R

d .
First consider the random labelling hypothesis of Definition 3. Since conditional on

the ground process Z ∩ W = {z1, . . . , zn}, the marks are independent and identically
distributed, aMonteCarlo testmay be based on randompermutations of the n observed
marks—in effect conditioning on the empirical mark distribution. Another approach
would be to sample the marks according to the mark distribution, but the latter is
typically unknown in practice.

In general, testing for independence is hard. For hyper-rectangular windows, a
Lotwick and Silverman (1982) type test can be constructed. Recall that when Y is
stationary, the key idea is to wrap Y onto a torus by identifying opposite sides of W ,
keepingYC ∩(W ×M)fixed and translatingYE ∩(W ×M) randomly over the torus (or
vice versa). Since the random translations leave the distribution of the E-component
unchanged, they can be used for testing. Note that this approach is conditional on the
marginal structures of the C-marked and E-marked patterns.

For inhomogeneous marked point processes, randomly translating YE may change
its distribution. To compensate, we also translate the intensity. More specifically, con-
sider the random measure

�Y =
∑

(z,m)∈Y

δ(z,m)

λ(z, m)
(19)

and let �Y
a be its translation over a ∈ R

d , that is,

�Y
a (A) = �Y (A−a) =

∑
(z,m)∈Y

1{(z + a, m) ∈ A}
λ(z, m)

=
∑

(z,m)∈(Y+a)

1{(z, m) ∈ A}
λ(z − a, m)

.
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Inhomogeneous marked point processes 921

Note that Y is translated over a and μ(z, m) = λ(z − a, m) is a translation of λ

over the spatial vector a. Moreover, if Y is intensity-reweighted moment stationary,
� is moment stationary. In other words, for any a, �a has the same factorial moment
measures as (19).

Proposition 4 Let the assumptions of Theorem 1 be satisfied and C, E be disjoint
Borel mark sets with strictly positive ν-measure. If YC and YE are independent and �

is stationary, then D̂C E
inhom, F̂ E

inhom and Ĵ C E
inhom can be expressed in terms of (�YC , �YE )

and their laws are invariant under translations of a component.

Proof For a ∈ R
d ,

∏
(z,m)∈Y

(
1 − λ̄E1{(z, m) ∈ B(a, r) × E}

λ(z, m)

)

= 1 +
∞∑

n=1

(−λ̄E )n

n!

⎡
⎣ ∑ �=

(z1,m1),...,(zn ,mn)∈Y

n∏
i=1

1{(zi , mi ) ∈ B(a, r) × E}
λ(zi , mi )

⎤
⎦

by the local finiteness of Y and an inclusion–exclusion argument. The inner summand
is the nth order factorial power measure ξ

[n]
YE

of�YE evaluated at B(a, r)n . Hence (18)

is a function of �YE . Furthermore, as C and E are disjoint, (17) can be written as:

∫
W�r ×C

(
1 +

∞∑
n=1

(−λ̄E )n

n! ξ
[n]
YE

(B(a, r)n)

)
d�YC (a, m),

which is well-defined by the local finiteness of Y . Finally

∑
(z,m)∈Y∩(W�r ×C)

λ(z, m)−1 = �YC (W�r × C)

is a function of�YC only. Since (�YC , �
YE
a )

d= (�YC , �YE ) by the independence of YC

and YE and the invariance under translation of the law of �YE , the proof is complete.

�

6 Application

6.1 Data description

In this section, wewill apply our statistics to data which are presented in Turner (2009)
and available in the R package spatstat described in Baddeley and Turner (2005).
These data were collected by the New Brunswick Department of Natural Resources
and cleaned by Professor Turner. They contain records of wildfires which occurred in
New Brunswick, Canada, during the years 1987 through 2003; records for 1988 are
missing.
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922 O. Cronie, M. N. M. van Lieshout

More formally, the data {(zi , mi , ti )}n0
i=1 consist of n0 = 7108 recordings of spa-

tial locations zi of wildfires. Attached to each location are two marks: ti ∈ T =
{1987, 1989, . . . , 2003} gives the year of occurrence and mi indicates the fuel type.
There are four types, of which the dominant one is ‘forest’ (accounting for some 65%
of the fires). The other three types account for only about ten percent of the fires each.

Below, we will quantify interaction in a particular year (here 2000) using the data
in other years to estimate the intensity function. We restrict the study area to the
rectangular region W = [245.4663, 682.2945] × [301.0545, 838.6173], a subset of
NewBrunswick.Doing so,we obtain the data set {(zi , mi , ti )}n

i=1 containing n = 3267
records of which 147 occur in the year 2000. Since the number of fires occurring in
2000 and fuelled by, e.g. ‘dump’ is small, we use the mark spaceM = {forest, other}.
For further details, see Turner (2009).

6.2 Independence

To quantify the dependence between the various categories (cf. Proposition 2), we use
J C E
inhom in combination with the Lotwick–Silverman approach discussed in Sect. 5.2.
Following (Turner 2009, page 205), we assume that for any given year t ∈ T , the

intensity function is of the form

λ∗(z, m, t) = ct λ(z, m), (z, m) ∈ W × M, (20)

where ct > 0 is a year-dependent scaling of some overall intensity λ(z, m). Since the
mark set is finite, we take the product of Lebesgue and counting measure as reference
measure so that for fixed mark m, λ(z, m) = λm(z) is the overall intensity function of
wildfires with fuel type m.

From now on, focus on the year 2000. Since the Lotwick–Silverman approach is
basedon torus translations of oneof the component patterns aswell as its corresponding
intensity function, we use a torus edge correction for the intensity function. More
precisely, we estimate λm(z) by means of a Gaussian kernel estimator based on all
observations with mark m that do not fall in the year 2000. Regarding the bandwidth,
sincewe consider eachmark separately, we use the larger of the bandwidths considered
by Turner (2009) for the ground process Z , that is, σ = 66 which (approximately)
is the square root of the area of New Brunswick multiplied by 0.10. The results are
displayed in Fig. 1.

Recall that the summary statistics discussed in this paper assume that the ground
process is simple. As the data pattern {(zi , mi , 2000)} for the year 2000 contains
duplicated points, we choose to followTurner (2009) and discard them. In other words,
we delete all pairs (zi , mi , ti ) and (z j , m j , t j ) satisfying zi = z j and ti = t j = 2000.
This results in a marked point pattern with n2000 = 124 points (see Figure 2).

To estimate the year-dependent constant in (20),weuse amass preservationproperty
and equate

ĉ2000

∫
W

∑
m∈M

λ̂m(z) dz
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Fig. 1 Gaussian kernel estimator with bandwidth σ = 66 and torus edge correction calculated over all
years except 2000. Left forest fuelled fires. Right other fires

Fig. 2 Cleaned wildfire data for
the year 2000 (Turner 2009).
Type 1 fires are those fuelled by
‘forest’; type 2 fires are fuelled
by other materials

2

1

to n2000 to obtain ĉ2000 = 124/3120 ≈ 0.0397. As an aside, an alternative model
would be to replace the scaling in (20) by a mark dependent one. For m = ‘forest’,
this would lead to the value ĉ2000(m) ≈ 0.0414, which does not differ much from
ĉ2000.

Set C = {forest} and write E = M\C . To assess whether the point process YC

of forest fires occurring in 2000 is correlated with YE , we carry out the Lotwick–
Silverman scheme developed in Sect. 5.2 and plot envelopes of Ĵ C E

inhom as discussed in
Sect. 5.1 based on 99 independent random torus translations. The results are shown in
Fig. 3 and provide graphical evidence for positive correlation between the patterns YC
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Fig. 3 Estimated inhomogeneous cross J -function for the pattern displayed in Fig. 2 (black line) with
rank 5-envelopes (grey area) based on 99 independent translations of the pattern with fuel type ‘forest’
and their mean (dashed line). The plugged-in estimated intensity functions of the component patterns are
proportional to those in Fig. 1. Left Ĵ C E

inhom-function. Right Ĵ EC
inhom-function

and YE , since the estimated inhomogeneous cross J -functions lie mostly below the
grey envelope region. This could possibly be interpreted as sparks being transmitted
from, say, a forest fire to someplace further away,where the ignition takes place in some
other matter, e.g a field of grass. Furthermore, it may also be an indication that during
certain periods particular regions are more dry and thus more likely to provide fuel for
fires. However, since we do not have any specific temporal information connected to
each point in the data set, besides in which year a fire occurs, such conclusions should
be treated as speculative. A formal global test could be carried out (Myllymaki et al.
2013) but is computationally intensive.

7 Summary

In this paper, we defined cross D- and J -functions for inhomogeneous intensity-
reweighted moment stationary marked point processes and indicated how they could
be used to investigate various independence and marking assumptions. In practice, the
intensity function tends to be unknown and must be estimated. This is not a problem
when there are independent replicates or pseudo-replication in the form of covariates
(Guan 2008). Otherwise, pragmatic model assumptions must be made. For example,
in Sect. 6, we worked under the assumption that the spatial trend in a given year is
proportional to the long-term trend.When prior information about the data is available,
a parametric model may also be used.

Finally, it is important to realise that not all point processes on product spaces are
marked point processes, as the ground process need not be locally finite. An important
special class is formed by spatio-temporal point processes. This class is the focus of a
companion paper, Cronie and van Lieshout (2015), inwhichwe define inhomogeneous
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Inhomogeneous marked point processes 925

D- and J -functions directly by equipping the product space R
d × R with a suitable

metric.

Appendix: Proof of Theorem 1

Consider the function ua,E
r of Definition 1 and let SE

r = B(0, r) × E . Then, the
expansion (6) implies

G(1 − ua,E
r ) = 1 +

∞∑
n=1

(−1)n

n!
∫
Rd×M

· · ·
∫
Rd×M

n∏
i=1

λ̄E1{(zi , mi ) ∈ a + SE
r }

λ(zi , mi )

×ρ(n)((z1, m1), . . . , (zn, mn))

n∏
i=1

dzidν(mi )

= 1 +
∞∑

n=1

(−λ̄E )n

n!
∫
(a+SE

r )n

ρ(n)((z1, m1), . . . , (zn, mn))

λ(z1, m1) · · · λ(zn, mn)

n∏
i=1

dzidν(mi ),

which is absolutely convergent by assumption and does not depend on the choice of
a by the IRMS-assumption on Y . Furthermore, for any a ∈ R

d ,

G !a
C (1 − ua,E

r ) = 1

ν(C)

∫
C

E
!(a,b)

⎡
⎣ ∏

(z,m)∈Y

(
1 − λ̄E1{(z, m) ∈ a + SE

r }
λ(z, m)

)⎤
⎦ dν(b)

= 1 +
∞∑

n=1

(−λ̄E )n

n!
∫

C
E

!(a,b)

×
⎡
⎣ ∑�=

(z1,m1),...,(zn ,mn)∈Y

n∏
i=1

1{(zi , mi ) ∈ a + SE
r }

λ(zi , mi )

⎤
⎦ dν(b)

ν(C)

by the local finiteness of Y and an inclusion–exclusion argument.
Next, we show that for any bounded B ∈ B(Rd),

∫
B

⎧⎨
⎩
∫

C
E

!(a,b)

⎡
⎣ ∑�=

(z1,m1),...,(zn ,mn)∈Y

n∏
i=1

1{(zi , mi ) ∈ a + SE
r }

λ(zi , mi )

⎤
⎦ dν(b)

⎫⎬
⎭ da =

=
∫

B

⎧⎨
⎩
∫

C

(∫
(SE

r )n

ρ(n+1)((0, b), (z1, m1), . . . , (zn, mn))

λ(0, b)λ(z1, m1) · · · λ(zn, mn)

n∏
i=1

dzidν(mi )

)
dν(b)

⎫⎬
⎭ da

so that the integrands in between the curly brackets are �-almost everywhere equal and
consequently the integrand on the left hand side is constant as a function of a ∈ R

d .
To do so, define
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gB
r ((a, b), ϕ) = 1{(a, b) ∈ B × C}

λ(a, b)

∑�=

(z1,m1),...,(zn ,mn)∈ϕ

n∏
i=1

1{(zi , mi ) ∈ a + SE
r }

λ(zi , mi )
,

which is non-negative and measurable. By rewriting the expression for gB
r ((a, b), Y\

{(a, b)}), (2) and the translation invariance of the ξn , we obtain

E

⎡
⎣ ∑

(a,b)∈Y

gB
r ((a, b), Y\{(a, b)})

⎤
⎦

= E

⎡
⎣ ∑�=

(a,b),(z1,m1),...,(zn ,mn)∈Y

1{(a, b) ∈ B × C}
λ(a, b)

n∏
i=1

1{(zi , mi ) ∈ a + SE
r }

λ(zi , mi )

⎤
⎦

=
∫

B

∫
C

(∫
(SE

r )n

ρ(n+1)((0, b), (z1, m1), . . . , (zn, mn))

λ(0, b)λ(z1, m1) · · · λ(zn, mn)

n∏
i=1

dzidν(mi )

)
dadν(b).

At the same time, the reduced Campbell–Mecke formula (4) implies that

E

⎡
⎣ ∑

(a,b)∈Y

gB
r ((a, b), Y\{(a, b)})

⎤
⎦

=
∫

B

∫
C

E
!(a,b)

⎡
⎣ ∑�=

(z1,m1),...,(zn ,mn)∈Y

n∏
i=1

1{(zi , mi ) ∈ a + SE
r }

λ(zi , mi )

⎤
⎦ dadν(b)

and the required equality of the two expressions follows. Hence, for �-almost all
a ∈ R

d , provided the series is absolutely convergent,

G !a
C (1 − ua,E

r ) = 1 + 1

ν(C)

∞∑
n=1

(−λ̄E )n

n!
∫

C

(∫
SE

r

· · ·
∫

SE
r

ρ(n+1)((0, b), (z1, m1), . . . , (zn, mn))

λ(0, b)λ(z1, m1) · · · λ(zn, mn)

n∏
i=1

dzidν(mi )

)
dν(b)

= 1 + 1

ν(C)

∞∑
n=1

(−λ̄E )n

n!
∫

C

(∫
SE

r

· · ·
∫

SE
r

n+1∑
k=1

∑
E1,...,Ek

k∏
j=1

ξ|E j |({(zi , mi ) : i ∈ E j })
n+1∏
i=2

dzidν(mi )

)
dν(b),

where (z1, m1) ≡ (0, b). By splitting this expression into terms based on whether the
index sets E j contain the index 1 (i.e. on whether ξ|E j | includes (z1, m1) ≡ (0, b)),

under the convention that
∑0

k=1 = 1, we obtain
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G !a
C (1 − ua,E

r ) = 1 + 1

ν(C)

∞∑
n=1

(−λ̄E )n

n!
∑

�∈Pn

J C E|�| (r)

×
n−|�|∑
k=1

∑
E1,...,Ek �=∅ disjoint
∪k

j=1E j ={1,...,n}\�

k∏
j=1

I|E j |,

In =
∫

SE
r

· · ·
∫

SE
r

ξn((z1, m1), . . . , (zn, mn))

n∏
i=1

dzidν(mi ),

where J C E
0 (r) ≡ ν(C), | · | denotes cardinality and Pn the power set of {1, . . . , n}.

Finally, by noting that the expansion contains terms of the form J C E
k I m1

l1
· · · I mn

ln
mul-

tiplied by a scalar and basic combinatorial arguments, we conclude that

G !a
C (1 − ua,E

r ) = 1

ν(C)

(
ν(C) +

∞∑
n=1

(−λ̄E )n

n! J C E
n (r)

)

×

⎛
⎜⎜⎜⎜⎝1 +

∞∑
l=1

(−λ̄E )l

l!
l∑

k=1

∑
E1,...,Ek �=∅ disjoint
∪k

j=1E j ={1,...,l}

k∏
j=1

I|E j |

⎞
⎟⎟⎟⎟⎠

= J C E
inhom(r) G

(
1 − u0,E

r

)
.

The right hand side is absolutely convergent as a product of absolutely convergent
terms; therefore, so is the series expansion for G !a

C (1 − ua,E
r ). 
�
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