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Abstract In this paper, we establish the limit of empirical spectral distributions
of quaternion sample covariance matrices. Motivated by Bai and Silverstein (Spec-
tral analysis of large dimensional random matrices, Springer, New York, 2010) and
Marčenko and Pastur (Matematicheskii Sb, 114:507–536, 1967), we can extend the
results of the real or complex sample covariance matrix to the quaternion case. Sup-
pose Xn = (x (n)

jk )p×n is a quaternion random matrix. For each n, the entries {x (n)
i j }

are independent random quaternion variables with a common mean μ and variance
σ 2 > 0. It is shown that the empirical spectral distribution of the quaternion sample
covariance matrix Sn = n−1XnX∗

n converges to the Marčenko–Pastur law as p → ∞,
n → ∞ and p/n → y ∈ (0,+∞).
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1 Introduction

In 1843, Hamilton described the hyper-complex number of rank 4, to which he gave
the name of quaternion (see Kuipers 1999). Research on the quaternion matrices can
be traced back to Wolf (1936). After a long blank period, people gradually discovered
that quaternions and quaternion matrices play important roles in quantum physics,
robot technology and artificial satellite attitude control, among other applications, see
Adler (1995) and Finkelstein et al. (1962). Consequently, studies on quaternions have
attracted considerable attention in recent years, see So et al. (1994), Zhang (1995),
Kanzieper (2002), Akemann (2005), and Akemann and Phillips (2013), among others.
In the following,we introduce the quaternion notation.Aquaternion can be represented
as a 2 × 2 complex matrix

x = a · e + b · i + c · j + d · k =
(

a + bi c + di
−c + di a − bi

)
, a, b, c, d ∈ R (1)

where i denotes the imaginary unit and the quaternion units can be represented as

e =
(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i
i 0

)
.

The conjugate of x is defined as

x̄ = a · e − b · i − c · j − d · k =
(

a − bi −c − di
c − di a + bi

)

and its norm as

‖x‖ =
√

a2 + b2 + c2 + d2.

More details can be found in Kuipers (1999), Zhang (1997), and Mehta (2004). Using
thematrix representation (1) of quaternions, ann×n quaternionmatrixX can be rewrit-
ten as a 2n × 2n complex matrix ψ(X), and so we can deal with quaternion matrices
as complex matrices for convenience. Denote S = 1

nXX
∗ and ψ(S) = 1

n ψ(X)ψ(X)∗.
It is known (see Zhang 1997) that the multiplicities of all the eigenvalues (obviously
they are all real) of ψ(S) are even. Taking one from each of the n pairs of eigenvalues
of ψ(S), the n values are defined to be the eigenvalues of S.

In addition, wide application of computer science has increased a thousand fold
in terms of computing speed and storage capability in the recent decades. Due to
the failure of the applications of many classical conclusions, we need a new the-
ory to analyze very large data sets with high dimensions. Luckily, the theory of
random matrices (RMT) might be a possible route for dealing with these prob-
lems. The sample covariance matrix is one of the most important random matri-
ces in RMT, which can be traced back to Wishart (1928). Marčenko and Pastur
(1967) proved that the empirical spectral distribution (ESD) of a large dimensional
complex sample covariance matrix tends to the Marčenko–Pastur (M–P) law. Since
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Convergence of ESD 767

then, several successive studies on large dimensional complex or real sample covari-
ance matrices have been completed. Here, the readers are referred to three books
Anderson et al. (2010), Bai and Silverstein (2010), and Mehta (2004) for more
details.

Under the normality assumption, there are three classic random matrix models:
Gaussian orthogonal ensemble (GOE), for which all entries of the matrix are real
normal random variables, Gaussian unitary ensemble (GUE), for which all entries of
the matrix are complex normal random variables, and Gaussian symplectic ensemble
(GSE), for which all entries of the matrix are normal quaternion random variables.
Benefiting from the density function of the ensemble and the joint density of the eigen-
values, the results have gotten their own style. If we remove the normality assumption,
the corresponding first two models have already had satisfactory results. For quater-
nion matrices, there are only a few references (see Yin and Bai 2014; Yin et al. 2013,
2014).

In this paper, we prove that the ESD of the quaternion sample covariance matrix
also converges to the M–P law. However, due to the multiplication of quaternions
is not commutative, when the entries of Xn are quaternion random variables, few
works on the spectral properties are found in the literature unless the random vari-
ables are normality distributed, because in this case the joint density of the eigen-
values is available. Thanks to the tool provided by Yin et al. (2013), it makes the
quaternion case possible. For the proof of this result, we first introduce two def-
initions about ESD and Stieltjes transform. Let A be a p × p Hermitian matrix
and denote its eigenvalues by s j , j = 1, 2, . . . , p. The ESD of A is defined
by

FA(x) = 1

p

p∑
j=1

I (s j ≤ x),

where I (D) is the indicator function of an event D and the Stieltjes transform of
FA(x) is given by

m(z) =
∫ +∞

−∞
1

x − z
dFA(x),

where z = u + υi ∈ C
+. Let g(x) and mg(x) denote the density function and the

Stieltjes transform of the M–P law, which are

g(x) =
{

1
2πxyσ 2

√
(b − x)(x − a), a ≤ x ≤ b;

0, otherwise,
(2)

and

mg(z) = σ 2(1 − y) − z +
√

(z − σ 2 − yσ 2)
2 − 4yσ 2

2yzσ 2 , (3)
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768 H. Li et al.

respectively, where a = σ 2(1 − √
y)2, b = σ 2(1 + √

y)2. Here, the constant y is the
limit of dimension p to sample size n ratio and σ 2 is the scale parameter. If y > 1,
G(x), the distribution function of g(x), has a point mass 1 − 1/y at the origin.

Now, our main theorem can be described as follows.

Theorem 1 Let Xn =
(

x (n)
jk

)
, j = 1, . . . , p, k = 1, . . . , n. Suppose for each n,{

x (n)
jk

}
are independent quaternion random variables with a common mean μ and

variance σ 2. Assume that yn = p/n → y ∈ (0,∞) and for any constant η > 0,

1

np

∑
jk

E‖x (n)
jk ‖2 I

(
‖x (n)

jk ‖ > η
√

n
)

→ 0. (4)

Then, with probability one, the ESD of the sample covariance matrix Sn = 1
nXnX∗

n
converges to the M–P law in distribution which has density function (2) and a point
mass 1 − 1/y at the origin when y > 1. Here, superscript ∗ stands for the complex
conjugate transpose.

Remark 2 Without loss of generality, in the proof of Theorem 1, we assume that
σ 2 = 1. Furthermore, one can see that removing the common mean of the entries of
Xn does not alter the LSD of sample covariance matrices. In fact, let

Tn = 1

n
(Xn − EXn)(Xn − EXn)∗.

By Lemma 17, we have, for all large p,

‖FSn − FTn ‖K S ≤ 1

2p
rank(EXn) ≤ 1

p
→ 0

where ‖ f ‖K S = supx | f (x)|. Consequently, we assume that μ = 0.

The paper is organized as follows. In Sect. 2, the structure of the inverse of some
matrices about quaternions is established which is the key tool of proving Theorem 1.
Section 3 demonstrates the proof of the main theorem by two steps and in Sect. 4, we
outline some auxiliary lemmas that can be used in last section.

2 Preliminaries

We shall use Lemma 2.5 of Yin et al. (2013) to prove our main result in next section.
To keep this work self-contained, the lemma is now stated as follows.
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Definition 3 A matrix is of Type-I, if it has the following structure:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 a12 b12 · · · a1n b1n

0 t1 c12 d12 · · · c1n d1n

d12 −b12 t2 0 · · · a2n b2n

−c12 a12 0 t2 · · · c2n d2n
...

...
...

...
. . .

...
...

d1n −b1n d2n −b2n · · · tn 0
−c1n a1n −c2n a2n . . . 0 tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, all the entries are complex.

Definition 4 A matrix is of Type-II, if it has the following structure:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 a12 + c12i b12 + d12i · · · a1n + c1ni b1n + d1ni
0 t1 −b̄12 − d̄12i ā12 + c̄12i · · · −b̄1n − d̄1ni ā1n + c̄1ni

ā12 + c̄12i −b12 − d12i t2 0 · · · a2n + c2ni b2n + d2ni
b̄12 + d̄12i a12 + c12i 0 t2 · · · −b̄2n − d̄2ni ā2n + c̄2ni

...
...

...
...

. . .
...

...

ā1n + c̄1ni −b1n − d1ni ā2n + c̄2ni −b2n − d2ni · · · tn 0
b̄1n + d̄1ni a1n + c1ni b̄2n + d̄2ni a2n + c2ni . . . 0 tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, i = √−1 denotes the usual imaginary unit and all the other entries are complex
numbers.

Definition 5 A matrix is of Type-III, if it has the following structure:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 a12 b12 · · · a1n b1n

0 t1 −b̄12 ā12 · · · −b̄1n ā1n

ā12 −b12 t2 0 · · · a2n b2n

b̄12 a12 0 t2 · · · −b̄2n ā2n
...

...
...

...
. . .

...
...

ā1n −b1n ā2n −b2n · · · tn 0
b̄1n a1n b̄2n a2n . . . 0 tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, all the entries are complex.

Lemma 6 For all n ≥ 1, if a complex matrix �n is invertible and of Type-II, then
�−1

n is a Type-I matrix.

The following corollary is immediate.

Corollary 7 For all n ≥ 1, if a complex matrix �n is invertible and of Type-III, then
�−1

n is a Type-I matrix.
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3 Proof of Theorem 1

In this section, we present the proof in two steps. The first one is to truncate, centralize
and rescale the random variables {x (n)

i j }, then wemay assume the additional conditions
which are given in Remark 12. The other is the proof of the Theorem 1 under the
additional conditions. Throughout the remainder of this paper, a local constant C may
take different value at different place.

3.1 Truncation, centralization and rescaling

3.1.1 Truncation

Note that, condition (4) is equivalent to: for any η > 0,

lim
n→∞

1

η2np

∑
jk

E‖x (n)
jk ‖2 I

(
‖x (n)

jk ‖ > η
√

n
)

= 0. (5)

Applying Lemma 15, one can select a sequence ηn ↓ 0 such that (5) remains true
when η is replaced by ηn .

Lemma 8 Suppose that the assumptions of Theorem refth:1 hold. Truncate the
variables x (n)

jk at ηn
√

n, and denote the resulting variables by x̂ (n)
jk , i.e., x̂ (n)

jk =
x (n)

jk I (‖x (n)
jk ‖ ≤ ηn

√
n). Also denote

X̂n =
(

x̂ (n)
jk

)
and Ŝn = 1

n
X̂nX̂∗

n .

Then, with probability 1,

‖FSn − F Ŝn ‖K S → 0.

Proof Using Lemma 17, one has

‖FSn − F Ŝn ‖K S ≤ 1

2p
rank

(
1√
n
Xn − 1√

n
X̂n

)

≤ 1

2p

∑
jk

I
(
‖x (n)

jk ‖ > ηn
√

n
)
. (6)

Taking condition (5) into consideration, we get

E

⎛
⎝ 1

2p

∑
jk

I
(
‖x (n)

jk ‖ > ηn
√

n
)⎞⎠≤ 1

2η2nnp

∑
jk

E‖x (n)
jk ‖2 I

(
‖x (n)

jk ‖ > ηn
√

n
)
=o(1)
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and

Var

⎛
⎝ 1

2p

∑
jk

I
(
‖x (n)

jk ‖ > ηn
√

n
)⎞⎠

≤ 1

4η2n p2n

∑
jk

E‖x (n)
jk ‖2 I

(
‖x (n)

jk ‖ > ηn
√

n
)

= o

(
1

p

)
.

Then, by Bernstein’s inequality (see Lemma 18), for all small ε > 0 and large n, we
obtain

P

⎛
⎝ 1

2p

∑
jk

I
(
‖x (n)

jk ‖ > ηn
√

n
)

≥ ε

⎞
⎠ ≤ 2e−εp/2

which is summable. Combining (6), the above inequality with the Borel–Cantelli
lemma, it follows that

‖FSn − F Ŝn ‖K S
a.s.−→ 0.

This completes the proof of the lemma. ��

3.1.2 Centralization

Lemma 9 Suppose that the assumptions of Lemma 8 hold. Denote

x̃ (n)
jk = x̂ (n)

jk − Ex̂ (n)
jk , X̃n = (̃x (n)

jk ) and S̃n = 1

n
X̃nX̃∗

n .

Then, we obtain

L(F Ŝn , F S̃n ) = o(1),

where L(·, ·) denotes the Lévy distance.

Proof Using Lemma 16 and condition (5), we have

L4(F Ŝn , F S̃n ) ≤ 1

2p2
(
tr(̂Sn + S̃n)

) (
tr

(
1√
n
X̂n − 1√

n
X̃n

)(
1√
n
X̂n − 1√

n
X̃n

)∗)

= 1

2n2 p2

⎛
⎝∑

jk

(
‖x̂ (n)

jk ‖2 + ‖x̂ (n)
jk − Ex̂ (n)

jk ‖2
)⎞⎠

⎛
⎝∑

jk

‖Ex̂ (n)
jk ‖2

⎞
⎠

=
⎛
⎝ 1

np

∑
jk

(
‖x̂ (n)

jk ‖2+‖x̂ (n)
jk −Ex̂ (n)

jk ‖2
)⎞⎠

⎛
⎝ 1

2np

∑
jk

‖Ex̂ (n)
jk ‖2

⎞
⎠.

(7)
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To complete the proof of this lemma, we need to show that the first parentheses of the
right-hand side of (7) is almost surely bounded. Applying Lemma 22, one has

E

∣∣∣∣∣∣
1

np

∑
jk

(
‖x̂ (n)

jk ‖2 − E‖x̂ (n)
jk ‖2

)∣∣∣∣∣∣
4

≤ C

n4 p4

⎡
⎢⎣∑

jk

E‖x̂ (n)
jk ‖8 +

⎛
⎝∑

j,k

E‖x̂ (n)
jk ‖4

⎞
⎠

2
⎤
⎥⎦

≤ Cn−2
(
η6nn−1y−3

n + η4n y−2
n

)
.

This indicates by the Borel–Cantelli lemma

1

np

∑
jk

(
‖x̂ (n)

jk ‖2 − E‖x̂ (n)
jk ‖2

)
a.s.−→ 0.

Moreover, we can similarly obtain

1

np

∑
jk

(
‖x̂ (n)

jk − Ex̂ (n)
jk ‖2 − E‖x̂ (n)

jk − Ex̂ (n)
jk ‖2

)
a.s.−→ 0. (8)

Now, turning to (7), for all large n,

L4(F Ŝn , F S̃n )

≤
⎛
⎝ 1

np

∑
jk

(
E‖x̂ (n)

jk ‖2 + E‖x̂ (n)
jk − Ex̂ (n)

jk ‖2
)

+ oa.s.(1)

⎞
⎠
⎛
⎝ 1

2np

∑
jk

‖Ex̂ (n)
jk ‖2

⎞
⎠

≤ C

np

∑
jk

‖Ex̂ (n)
jk ‖2

≤ C

np

∑
jk

E‖x (n)
jk ‖2 I

(
‖x (n)

jk ‖ > ηn
√

n
)

→ 0.

The proof of the lemma is complete. ��

3.1.3 Rescaling

Define

σ̃ 2
jk = E‖x̃ (n)

jk ‖2, ξ jk =
{

ζ jk, σ̃ 2
jk < 1/2

x̃ (n)
jk , σ̃ 2

jk ≥ 1/2
, � = 1√

n
(ξ jk), σ 2

jk = E‖ξ jk‖2,

where ζ jk is a bounded quaternion random variable with Eζ jk = 0, Varζ jk = 1 and
independent with all other variables.
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Lemma 10 Write

x̆ (n)
jk = σ−1

jk ξ jk, X̆n =
(

x̆ (n)
jk

)
, and S̆n = 1

n
X̆nX̆∗

n .

Under the conditions assumed in Lemma 9, we have

L
(

F S̆n , F S̃n
)

= o(1).

Proof (a): Our first goal is to show that

L
(

F S̃n, F��∗) a.s.−→ 0.

Let En be the set of pairs ( j, k) : σ̃ 2
jk < 1

2 and Nn = ∑
( j,k)∈En

I
(
σ̃ 2

jk < 1/2
)
be the

number of such pairs. Due to 1
np

∑
jk σ̃ 2

jk → 1, we conclude that Nn = o(np). Owing
to Lemma 16 and (8), we get

L4(F S̃n, F��∗
) ≤ 1

2p2
(tr(̃Sn +��))

(
tr

(
1√
n
X̃n −�

)(
1√
n
X̃n −�

)∗)

= 1

2n2 p2

⎛
⎝∑

jk

(
‖x̃ (n)

jk ‖2 + ‖ξ jk‖2
)⎞⎠

⎛
⎝∑

jk

‖ξ jk − x̃ (n)
jk ‖2

⎞
⎠

= 1

2n2 p2

⎛
⎝∑

jk

E
(
‖x̃ (n)

jk ‖2+‖ξ jk‖2
)
+oa.s.(1)

⎞
⎠
⎛
⎝∑

jk

‖ξ jk− x̃ (n)
jk ‖2

⎞
⎠

≤ C

np

∑
jk

‖ξ jk − x̃ (n)
jk ‖2 := C

np

K∑
h=1

uh (9)

where K = Nn and uh = ‖ξ jk − x̃ (n)
jk ‖2. Using the fact that for all l ≥ 1, l! ≥ (l/3)l ,

we have

E

(
1

np

K∑
h=1

uh

)m

= 1

nm pm

∑
m1+···+mK =m

m!
m1! . . . mK ! Eum1

1 . . . EumK
K

≤ 1

nm pm

m∑
l=1

∑
m1+···+ml=m

mt ≥1

m!
l!m1! . . . ml !

l∏
t=1

(
K∑

h=1

Eumt
h

)

≤ C
m∑

l=1

n−m p−mlm(l!)−1(2η2nn)m−l2l K l

≤ C
m∑

l=1

(
6K

np

)l (2η2nl

p

)m−l

≤ C

(
6K

np
+ 2η2nm

p

)m

.
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By selecting m = [log p] that implies 2η2nm
p → 0, and noticing 6K

np → 0, one obtains
for any fixed t, ε > 0,

E

(
1

εnp

K∑
h=1

uh

)m

≤ o
(

p−t) .

From the inequality above with t = 2 and (9), it follows that

L
(

F S̃n , F��∗) a.s.−→ 0.

(b): Our next goal is to show that

L
(

F S̆n , F��∗) a.s.−→ 0.

Applying Lemma 16, we have

L4(F S̆n , F��∗
) ≤ 1

2p2

(
tr
(
S̆n + ��

))(
tr

(
1√
n
X̆n − �

)(
1√
n
X̆n − �

)∗)

= 1

2n2 p2

⎛
⎝∑

jk

(
‖x̆ (n)

jk ‖2 + ‖ξ jk‖2
)⎞⎠

⎛
⎝∑

jk

‖ξ jk − x̆ (n)
jk ‖2

⎞
⎠

= 1

2n2 p2

⎛
⎝∑

jk

(
1 + σ−2

jk

)
E‖ξ jk‖2 + oa.s.(1)

⎞
⎠

×
⎛
⎝∑

jk

(
1 − σ−1

jk

)2 ‖ξ jk‖2
⎞
⎠

≤ C

np

∑
jk

(
1 − σ−1

jk

)2 ‖ξ jk‖2.

Using the fact

E

⎛
⎝ C

np

∑
jk

(
1 − σ−1

jk

)2 ‖ξ jk‖2
⎞
⎠ = C

np

∑
jk

(
1 − σ jk

)2 ≤ C

np

∑
jk

(
1 − σ 2

jk

)

≤ Cη2n

η2nnp

∑
( j,k)/∈En

[
E‖x (n)

jk ‖2 I
(
‖x (n)

jk ‖≥ηn
√

n
)
+
(

E‖x (n)
jk ‖I

(
‖x (n)

jk ‖≥ηn
√

n
))2]

→ 0
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and Lemma 22, one gets

E

∣∣∣∣∣∣
C

np

∑
jk

(
1−σ−1

jk

)2 (‖ξ jk‖2−E‖ξ jk‖2
)∣∣∣∣∣∣

4

≤ C

n4 p4

⎡
⎢⎣∑

j,k

E‖x (n)
jk ‖8 I (‖x (n)

jk ‖≤ηn
√

n)+
⎛
⎝∑

j,k

E‖x (n)
jk ‖4 I

(
‖x (n)

jk ‖≤ηn
√

n
)⎞⎠

2
⎤
⎥⎦

≤ Cn−2
[
n−1η6n y−3

n + η4n y−2
n

]

which is summable. Together with the Borel–Cantelli lemma, it follows that

L
(

F S̆n , F��∗) a.s.−→ 0.

(c): Finally, from (a) and (b), we can easily get the lemma. ��
Combining the results of Lemmas 8, 9, and 10, we have the following remarks.

Remark 11 For brevity, we shall drop the superscript (n) from the variables. Also the
truncated and renormalized variables are still denoted by x jk .

Remark 12 Under the conditions assumed in Theorem 1, we can further assume that

(1) ‖x jk‖ ≤ ηn
√

n,
(2) E(x jk) = 0 and Var(x jk) = 1.

3.2 Completion of the proof

Denote

mn(z) = 1

2p
tr
(
Sn − zI2p

)−1
, (10)

where z = u + υi ∈ C
+.

3.2.1 Random part

First, we should show that

mn(z) − Emn(z)
a.s.−→ 0. (11)

Let π j denote the j th column of Xn , Sk
n = Sn − 1

n πkπ
∗
k and Ek(·) denote the

conditional expectation given {πk+1,πk+2, . . . ,π2n}. Then,

mn(z) − Emn(z) = 1

2p

2n∑
k=1

γk,
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where

γk = Ek−1tr
(
Sn − zI2p

)−1−Ek tr
(
Sn − zI2p

)−1

= (Ek−1 − Ek)

[
tr
(
Sn − zI2p

)−1 − tr
(
Sk

n − zI2p

)−1
]

.

1. When k = 2t − 1(t = 1, 2, . . . , n), due to (k + 1)th column is a function of the
kth column, we obtain

γk =Ek−1tr
(
Sn − zI2p

)−1−Ek tr
(
Sn − zI2p

)−1 = 0.

2. When k = 2t (t = 0, 1, . . . , n), together with the formula

(A + αβ∗)−1 = A−1 − A−1αβ∗A−1

1 + β∗A−1α
,

one finds

γk = (Ek−1 − Ek)

[
tr(Sn − zI2p)

−1 − tr
(
Sk

n − zI2p

)−1
]

= (Ek−1 − Ek)

1
n π∗

k

(
Sk

n − zI2p
)−2

πk

1 + 1
n π∗

k

(
Sk

n − zI2p
)−1

πk

.

Since ∣∣∣∣∣
1
n π∗

k

(
Sk

n − zI2p
)−2

πk

1 + 1
n π∗

k

(
Sk

n − zI2p
)−1

πk

∣∣∣∣∣

≤
1
n π∗

k

((
Sk

n − uI2p
)2 + υ2I2p

)−1
πk



(
1 + 1

n π∗
k(S

k
n − zI2p)

−1
πk

)

= 1

υ
,

we can easily get

|γk | ≤ 2

υ
.

Using Lemma 21, it follows that

E |mn (z) − Emn (z)|4 ≤ K4

(2p)4
E

(
2n∑

k=1

|γk |2
)2

≤ 4K4n2

p4v4
= O

(
n−2

)
.

Combining the Borel–Cantelli lemma with the Chebyshev inequality, we conclude

mn(z) − Emn(z)
a.s.−→ 0.
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3.2.2 Mean convergence

When σ 2 = 1, (3) turns into

m(z) = 1 − y − z +
√

(1 − z − y)2 − 4yz

2yz
. (12)

Next, we show that

Emn(z) → m(z).

By Lemma 20 and (10), one has

mn(z) = 1

2p

p∑
k=1

tr

(
1

n
φ′

k φ̄k − zI2 − 1

n2φ′
kX

∗
nk

(
1

n
XnkX∗

nk − zI2p−2

)−1

Xnk φ̄k

)−1

(13)

where Xnk is the matrix resulting from deleting the kth quaternion row of Xn , and
φ′

k is the vector obtained from the kth quaternion row of Xn . Here, superscript ′ only
stands for the transpose and φ′

k is a 1 × n quaternion matrix. Write

εk = 1

n
φ′

k φ̄k − zI2 − 1

n2φ′
kX

∗
nk

(
1

n
XnkX∗

nk − zI2p−2

)−1

Xnk φ̄k

− (1 − z − yn − ynzEmn(z))I2 (14)

and

δn = − 1

2p (1 − z − yn − ynzEmn(z))

×
p∑

k=1

E tr
{
εk((1 − z − yn − ynzEmn(z)) I2 + εk)

−1
}

(15)

where yn = p/n. This implies that

Emn(z) = 1

1 − z − yn − ynzEmn(z)
+ δn .

Solving Emn(z) from the equation above, we get

Emn(z) = 1

2ynz

(
1 − z − yn + ynzδn ±

√
(1 − z − yn − ynzδn)2 − 4ynz

)
.
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As proved in the Eq. (3.17) of Bai (1993), we can assert that

Emn(z) = 1 − z − yn + ynzδn +√
(1 − z − yn − ynzδn)2 − 4ynz

2ynz
. (16)

Comparing (12) with (16), it suffices to show that

δn → 0.

For this purpose, we need the following two lemmas.

Lemma 13 Under the conditions of Remark 12, for any z = u + vi with v > 0 and
for any k = 1, . . . , p, we have

|E trεk | → 0. (17)

Proof By calculation, we have

|E trεk | =
∣∣∣∣∣−

1

n2 E trX∗
nk

(
1

n
XnkX∗

nk − zI2p−2

)−1

Xnk + 2yn + 2ynzEmn (z)

∣∣∣∣∣
=
∣∣∣∣∣−

1

n
E tr

(
1

n
XnkX∗

nk − zI2p−2

)−1 1

n
XnkX∗

nk + 2yn + 2ynzEmn (z)

∣∣∣∣∣
≤ 2

n
+ |z|

n

∣∣∣∣∣E
[
tr

(
1

n
XnX∗

n − zI2p

)−1

− tr

(
1

n
XnkX∗

nk − zI2p−2

)−1
]∣∣∣∣∣

≤ 2

n
+ 2|z|

nυ
→ 0

where the last inequality has used Lemma 19 twice. Then, the proof is complete. ��
Lemma 14 Under the conditions of Remark 12, for any z = u + vi with v > 0 and
any k = 1, . . . , p, we have

E |trε2k | → 0.

Proof Write the form of (Sn − zI2p)

⎛
⎜⎜⎜⎜⎜⎝

t1 0 a12 b12 · · ·
0 t1 −b̄12 ā12 · · ·

ā12 −b12 t2 0 · · ·
b̄12 a12 0 t2 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

.

By Corollary 7 and (13), we have 1
n φ′

k φ̄k − zI2− 1
n2

φ′
kX

∗
nkRkXnk φ̄k is a scalar matrix.

Let Rk = ( 1
nXnkX∗

nk − zI2p−2
)−1

. Denote by αk the first column of φk and by βk the
second column of φk , then combining (14) we have
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εk = θkI2 (18)

where

θk = 1

n
α′

k ᾱk − z − 1

n2α′
kX

∗
nkRkXnk ᾱk − (1 − z − yn − ynzEmn(z))

= 1

n
β ′

k β̄k − z − 1

n2β ′
kX

∗
nkRkXnk β̄k − (1 − z − yn − ynzEmn(z)).

Let Ẽ(·) denote the conditional expectation given {x jl , j = 1, . . . , p, l =
1, . . . , n; l �= k}, then we get

E |trε2k | = 1

2
E |trεk |2 ≤ 2

[
E |trεk − Ẽ trεk |2 + E |Ẽ trεk − E trεk |2 + |E trεk |2

]
.

(19)

According to the inequality above, we proceed to complete the estimation of E |trε2k |
by the following three steps.

(a) For the first term of the right-hand side of (19), denote T = (t jl) =
I2n − 1

nX
∗
nkRkXnk where t jl =

(
e jl f jl

h jl g jl

)
. Then, rewrite

trεk − Ẽ trεk = tr

(
1

n
φ′

k φ̄k − 1

n2φ′
kX

∗
nkRkXnk φ̄k

)
− tr

(
I2 − 1

n2X
∗
nkRkXnk

)

= 1

n
tr
(
φ′

kTφ̄k − T
)

= 1

n

⎛
⎝ n∑

j=1

tr(‖xk j‖2 − 1)t j j +
∑
j �=l

tr(x∗
kl xk j t jl)

⎞
⎠.

By elementary calculation, we obtain

Ẽ |trεk − Ẽ trεk |2

= 1

n2

( n∑
j=1

Ẽ |tr(‖xk j‖2 − 1)t j j |2 +
∑
j �=l

Ẽ
[
tr
(
x∗

kl xk j t jl
)
tr(x∗

k j xkl t
∗
jl)

+tr
(
x∗

kl xk j t jl
)
tr
(

x∗
kl xk j t

∗
l j

)])

≤ 1

n2

⎛
⎝ n∑

j=1

Ẽ(‖xk j‖2 − 1)2|e j j + g j j |2 + 2
∑
j �=l

Ẽ |tr(x∗
kl xk j t jl)|2

⎞
⎠

≤ C

n2

⎛
⎝η2nn

n∑
j=1

(|e j j |2 + |g j j |2) +
∑
j �=l

(|e jl |2 + | f jl |2 + |g jl |2 + |h jl |2)
⎞
⎠
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≤ Cη2n

n

n∑
j=1

(|e j j |2 + |g j j |2) + C

n2

∑
j,l

(|e jl |2 + | f jl |2 + |g jl |2 + |h jl |2)

≤ Cη2n

n
trTT∗ + C

n2 trTT
∗. (20)

For 1√
n
Xnk , there exists a (2p − 2) × q orthonormal matrix U and a 2n × q

orthonormal matrix V such that

1√
n
Xnk = Udiag(s1, . . . , sq)V∗

where s1, . . . , sq are the singular values of 1√
n
Xnk and q = min{(2p − 2), 2n}.

Then, we get

I2n − T =
(

1√
n
X∗

nk

)
Rk

(
1√
n
Xnk

)

=Vdiag

(
s21

s21 − z
, · · · ,

s2q
s2q − z

)
V∗

which implies that

T = Vdiag

(
−z

s21 − z
, · · · ,

−z

s2q − z

)
V∗.

Consequently, it follows that

trTT∗ =
q∑

j=1

|z|2
|s2j − z|2 ≤ 2n|z|2

υ2 . (21)

By (20) and (21), we obtain

E |trεk − Ẽ trεk |2 → 0. (22)

(b) Next, the second term of right-hand side of (19) is estimated. Note that

Ẽ trεk − E trεk = z

n
(E trRk − trRk) .

Using the martingale decomposition method, we have

E |Ẽ trεk − E trεk |2 = |z|2
n2 E |E trRk − trRk |2 ≤ 4|z|2

nυ2 → 0. (23)
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(c) Finally, combining (17), (19), (22), and (23), we conclude that

E |trε2k | → 0.

These indicate that we complete the proof of the lemma. ��

Now, we are in a position to show that

δn → 0.

By (15) and (18), we can write

δn = − 1

2p(1 − z − yn − ynzEmn(z))2

p∑
k=1

E trεk

+ 1

2p(1 − z − yn − ynzEmn(z))2

p∑
k=1

E
trε2k

(1 − z − yn − ynzEmn(z)) + θk
.

Note that


(1 − z − yn − ynzEmn(z)) < −υ,

which implies that

|1 − z − yn − ynzEmn(z)| > υ. (24)

By Lemma 13 and (24), we have

∣∣∣∣∣
1

2p(1 − z − yn − ynzEmn(z))2

p∑
k=1

E trεk

∣∣∣∣∣ ≤ 1

2pυ2

p∑
k=1

|E trεk | → 0. (25)

Together with Lemma 14, (24), and


(θk + (1 − z − yn − ynzEmn(z)))

= 

(
1

n
α′

k ᾱk − z − 1

n2α′
kX

∗
nk

(
1

n
XnkX∗

nk − zI2p−2

)−1

Xnk ᾱk

)

= −υ

⎛
⎝1 + α′

kX
∗
nk

[(
1

n
XnkX∗

nk − uI2p−2

)2

+ υ2I2p−2

]−1

Xnk ᾱk

⎞
⎠ < −υ
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one finds that

∣∣∣∣∣
1

2p(1 − z − yn − ynzEmn(z))2

p∑
k=1

E
trε2k

(1 − z − yn − ynzEmn(z)) + θk

∣∣∣∣∣
≤ 1

2pυ3

p∑
k=1

E |trε2k | → 0. (26)

Combining (25) with (26), we get

|δn| ≤
∣∣∣∣∣

1

2p (1 − z − yn − ynzEmn (z))2

p∑
k=1

E trεk

∣∣∣∣∣
+
∣∣∣∣∣

1

2p (1 − z − yn − ynzEmn (z))2

p∑
k=1

E
trε2k

(1 − z − yn − ynzEmn (z)) + θk

∣∣∣∣∣
→ 0.

So far, we have completed the proof of the mean convergence

Emn(z) → m (z).

3.2.3 Completion of the proof of Theorem 1

By Sects. 3.2.1 and 3.2.2, for any fixed z ∈ C
+, we have

mn (z)
a.s.−→ m (z).

To complete the proof Theorem 1, we need the last part of Chapter 2 of Bai and
Silverstein (2010). For the readers convenience, we repeat here. That is, for each
z ∈ C

+, there exists a null set Nz (i.e., P (Nz) = 0) such that

mn (z, w) → m (z) , for all w ∈ N c
z .

Now, let C
+
0 be a dense subset of C+ (e.g., all z of rational real and imaginary parts)

and let N = ⋃
z∈C+

0
Nz . Then,

mn (z, w) → m (z) , for all w ∈ N c and z ∈ C
+
0 .

Let C+
m = {z ∈ C

+ : 
z > 1/m, |z| ≤ m}. When z ∈ C
+
m , we have |mn (z) | ≤ m.

Applying Lemma 23, we have

mn (z, w) → m (z) , for all w ∈ N c and z ∈ C
+
m .

123



Convergence of ESD 783

Since the convergence above holds for every m, we conclude that

mn (z, w) → m (z) , for all w ∈ N c and z ∈ C
+.

Applying Lemma 24, we conclude that

FSn w→ F, a.s.

4 Appendix

In this section, some results are listed which are used in the proof of the main theorem.

Lemma 15 Suppose for any η > 0
∑∞

n=1 f (η, n) < ∞, then we can select a slowly
decreasing sequence of constants ηn → 0 such that

∞∑
n=1

f (ηn, n) < ∞

where f is a nonnegative function.
Similarly, if f (η, n) → 0 for any fixed η > 0, then there exists a decreasing

sequence ηn → 0 such that f (ηn, n) → 0.

Proof Letting η = 1
m , one has

∑∞
n=1 f

( 1
m , n

)
< ∞.Moreover, there exists a increas-

ing sequence Nm such that
∑∞

n=Nm
f
( 1

m , n
) ≤ 1

2m . Define a sequence ηn = 1
m when

Nm ≤ n < Nm+1. We get

∞∑
n=1

f (ηn, n) =
∞∑

m=1

Nm+1−1∑
n=Nm

f

(
1

m
, n

)
≤

∞∑
m=1

∞∑
n=Nm

f

(
1

m
, n

)

≤
N1−1∑
n=1

f (1, n) +
∞∑

m=1

1

2m
< ∞.

This completes the proof of this lemma. ��
Lemma 16 (Corollary A.42 of Bai and Silverstein 2010) Let A and B be two p × n
matrices and denote the ESD of S = AA∗ and S̃ = BB∗ by FS and F S̃, respectively.
Then,

L4(FS, F S̃) ≤ 2

p2
(tr(AA∗ + BB∗))(tr[(A − B)(A − B)∗]),

where L(·, ·) denotes the Lévy distance, that is,

L(FS, F S̃) = inf{ε : FS (x − ε, y − ε) − ε ≤ F S̃ ≤ FS (x + ε, y + ε) + ε}.
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Lemma 17 (TheoremA.44 of Bai and Silverstein 2010)LetA andB be p×n complex
matrices. Then,

‖FAA∗ − FBB∗‖K S ≤ 1

p
rank (A − B).

Lemma 18 (Bernstein’s inequality) If τ 1, . . . , τ n are independent random variables
with means zero and uniformly bounded by b, then, for any ε > 0,

P

⎛
⎝
∣∣∣∣∣∣

n∑
j=1

τ j

∣∣∣∣∣∣ ≥ ε

⎞
⎠ ≤ 2exp

(
−ε2/

[
2(B2

n + bε)
])

where B2
n = E(τ 1 + · · · + τ n)

2.

Lemma 19 (see (A.1.12) of Bai and Silverstein 2010) Let z = u + iv, v > 0, and A
be an n × n Hermitian matrix. Denote by Ak the kth major sub-matrix of A of order
(n −1), to be the matrix resulting from deleting the kth row and column from A. Then,

|tr(A − zIn)
−1 − tr(Ak − zIn−1)

−1| ≤ 1

υ
.

Lemma 20 Suppose that the matrix 	 has the partition as given by

(
	11 	12
	21 	22

)
. If

	 and 	11 are nonsingular, then the inverse of 	 has the form

	−1 =
(

	−1
11 + 	−1

11 	12	
−1
22.1	21	

−1
11 −	−1

11 	12	
−1
22.1

−	−1
22.1	21	

−1
11 	−1

22.1

)

where 	22.1 = 	22 − 	21	
−1
11 	12.

Lemma 21 (Burkholder’s inequality) Let {Xk} be a complex martingale difference
sequence with respect to the increasing σ -field. Then, for p > 1,

E

∣∣∣∣∣
∑

k

Xk

∣∣∣∣∣
p

≤ K p E

(∑
k

|Xk |2
)p/2

.

Lemma 22 (Rosenthal’s inequality) Let Xi be independent with zero means, then we
have, for some constant Ck,

E

∣∣∣∣∣
∑

i

Xi

∣∣∣∣∣
2k

≤ Ck

⎛
⎝∑

i

E |Xi |2k +
(∑

i

E |Xi |2
)k
⎞
⎠.

Lemma 23 (Lemma 2.14 of Bai and Silverstein 2010) Let f1, f2, . . . be analytic in
D, a connected open set of C, satisfying | fn (z)| ≤ M for every n and z in D, and
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fn (z) converges as n → ∞ for each z in a subset of D having a limit point in D. Then,
there exists a function f analytic in D for which fn (z) → f (z) and f ′

n → f ′ (z) for
all z ∈ D. Moreover, on any set bounded by a contour interior to D, the convergence
is uniform and { f ′

n (z)} is uniformly bounded.

Lemma 24 (Theorem B.9 of Bai and Silverstein 2010) Assume that {Gn} is a
sequence of functions of bounded variation and Gn (−∞) = 0 for all n. Then,

lim
n→∞mGn (z) = m (z) ∀z ∈ D

where D ≡ {z ∈ C : 
z > 0} if and only if there is a function of bounded variation G
with G (−∞) = 0 and Stieltjes transform m (z) and such that Gn → G vaguely.
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