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Abstract In this paper, we propose a flexible generalized semiparametric model for
repeated measurements by combining generalized partially linear single-index mod-
els with varying coefficient models. The proposed model is a useful analytic tool to
explore dynamic patterns which naturally exist in longitudinal data and also study pos-
sible nonlinear relationships between the response and covariates. We then employ
the quadratic inference function and develop an estimation procedure to estimate
unknown regression parameters and nonparametric functions. To select variables and
estimate parameters simultaneously, we further obtain penalized estimators. More-
over, we establish theoretical properties of the parametric and nonparametric estima-
tors. Both simulations and an empirical example are presented to illustrate the use of
the proposed model.
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1 Introduction

In the last three decades, advanced computing and telecommunication technologies
have enabled researchers to collect data effectively and accurately. Hence, it is not
surprising that the collected data can be complex and the analysis of such data is chal-
lenging. For example, in the regression context, the response variable can be discrete
with repeated measurements, the relationship between the mean of the response vari-
able and covariates can be nonlinear, and the coefficients of explanatory variables can
be dynamic. This motivates us to propose a model that can simultaneously account
for these characteristics.

To take into account discrete responses and nonlinearity, Carroll et al. (1997)
proposed generalized partially linear single-index models (GPLSIM). These mod-
els encompass several important models, e.g., single-index models (Brillinger 1983;
Horowitz 1998; Cui et al. 2011), generalized linear models (McCullagh and Nelder
1989), partially linear models (Speckman 1998; Härdle et al. 2000), generalized par-
tially linear models (Boente et al. 2006), and partially linear single-index models (Yu
and Ruppert 2002; Xia and Härdle 2006; Ma and Zhu 2013). The above references
mainly focus on parameter estimation. Recently, researchers have employed penalized
procedures (e.g., LASSO, Tibshirani 1996; SCAD, Fan and Li 2001) to simultane-
ously select variables and estimate parameters for those models (e.g., Xie and Huang
2009; Liang et al. 2010; Zhang et al. 2010; Zeng et al. 2012).

Although the GPLSIM has played an important role in data analysis, it does not
allow regression coefficients to be dynamic. To this end, Cleveland et al. (1991) and
Hastie and Tibshirani (1993) proposed varying coefficient models, which have been
applied in diverse fields, such as biological science, economics, finance, medicine, and
social science. Further extensions to broad models are developed; see, for example,
generalized varying coefficient models (Cai et al. 2000a), semi-varying coefficient
models (Zhang et al. 2002), survival models (Fan et al. 2006) and the newly proposed
varying index coefficient model (Ma and Song 2014). It is also noteworthy that an
analog to the varying coefficient structure has been studied in the field of time series
(e.g., see Chen and Tsay 1993; Cai et al. 2000b). An excellent review paper on varying
coefficient models can be found in Fan and Zhang (2008).

To better understand the performance of a response variable for each individual sub-
ject, a number of GPLSIMs as well as varying coefficient models have been extended
to take into account repeated measurements (or longitudinal data or clustered data).
Accordingly, various parameter estimation and model selection procedures are pro-
posed (e.g., see Lin and Ying 2001; Davis 2002; Diggle et al. 2002; Huang et al. 2002;
Wang 2003; Fan and Li 2004; Fan and Huang 2005; Lin and Carroll 2006; Wang
et al. 2008; Ma 2012; Xu and Zhu 2012). To obtain parameter estimation in repeated
measurements, one needs to incorporate the correlation structure. Among available
approaches, Qu and Li (2006) employed quadratic inference function (QIF) inQu et al.
(2000) to directly incorporate correlations into their varying coefficient models with-
out estimating nuisance parameters associated with correlations. Recently, Zhou and
Qu (2012) adopted the QIF approach to obtain estimation and selection of correlation
structure.
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Parameter estimation for a generalized semiparametric model 727

In this paper, we introduce a generalized semiparametric model for repeated mea-
surements by combining the GPLSIM with varying coefficient models. The proposed
model is a useful analytic tool to investigate dynamic patterns of slope functions
with some covariates such as time which naturally exist in longitudinal data as well
as to capture possible nonlinear relationships between the response and covariates.
Moreover, it contains many existing known parametric and nonparametric models
as special cases, and thus it can be used for different types of data. Since each of
GPLSIM and varying coefficient models has its own special feature, it is not sur-
prising that obtaining parameter estimators and their theoretical properties becomes
more challenging. For the sake of estimation, we first approximate the nonpara-
metric function and coefficient functions by their corresponding linear combina-
tions of spline basis functions. We then propose a profile QIF procedure to obtain
parameter estimates. It is worth noting that the profile procedure induces a sin-
gle objective function of the parameters, which allows us to consider the penaliza-
tion method for variable estimations and selections. The resulting penalized esti-
mators of the nonzero coefficients are asymptotically normal and have the oracle
property.

The rest of this paper is organized as follows. Section 2 introduces the model
structure and notation. Section 3 presents the estimation procedure and demonstrates
the consistency and asymptotic normality of parametric estimators as well as the
consistency of nonparametric estimators. Section 4 proposes penalized estimators
and shows their oracle properties. Simulation studies and an empirical example are
presented in Sect. 5. We conclude this article with discussions in Sect. 6, and technical
proofs are relegated in the Appendix.

2 A generalized semiparametric model

To introduce the generalized semiparametric model by unifying partially linear
single-index and varying coefficient models with repeated measurements, we denote
(Yi j , Xi j , Zi j , Ti j ) as the j-th repeated observation for the i-th subject (or experimental
unit) for 1 ≤ i ≤ n and 1 ≤ j ≤ mi , where Yi j is the response variable and it is inde-

pendent of other subjects, Xi j = (
Xi j,1, . . . , Xi j,p

)T and Zi j = (
Zi j,1, . . . , Zi j,d

)T

are p-dimensional and d-dimensional vectors of covariates, respectively, and Ti j rep-

resents a single predictor. Let Ci j =
(
XT
i j , Z

T
i j , Ti j

)T
be the collection of covariates

for the j-th observation of the i-th subject. We then consider the marginal model and
assume that E

(
Yi j
∣
∣Ci j

) = μi j , where the marginal meanμi j depends onCi j through
a knownmonotonic and differentiable link functionϑ . This leads to the predictor func-
tion

ηi j = ϑ(μi j ) = g
(
XT
i jβ
)

+
∑d1

l=1
αl
(
Ti j
)
Zi j,l +

∑d

l=d1+1
αl Zi j,l ,

j = 1, . . . ,mi , i = 1, . . . , n, (1)

where β = (β1, . . . , βp
)T is a p-dimensional index parameter, αl (·), l = 1, . . . , d1,

are unknown smooth functions, αl , l = d1 + 1, . . . , d, are coefficients, and g (·) is
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728 S. Ma et al.

an unknown differentiable function ofUi j (β) = XT
i jβ. For identifiability, we assume

that β belongs to the parameter space:

Θ = {β : ‖β‖ = 1, β1 > 0,β ∈ Rp} , (2)

where ‖·‖ denotes the Euclidean norm of any vector ζ = (ζ1, . . . , ζs)
T ∈ Rs such

that ‖ζ‖ = (|ζ1|2 + · · · + |ζs |2)1/2.
Model (1) contains many existing models as special cases. When αl

(
Ti j
) = αl for

1 ≤ l ≤ d1, αl are unknown constants, and mi = 1 for i = 1, . . . , n, it leads to a

generalized partially linear single-indexmodel (Carroll et al. 1997); when g
(
XT
i jβ
)

=
0, it yields a semiparametric varying coefficient partially linear model (Fan and Huang
2005); when p = 1 and αl

(
Ti j
) = αl for 1 ≤ l ≤ d1, it results to a generalized

partially linear model (Härdle et al. 2000); when g
(
XT
i jβ
)

= 0 and αl = 0 for l =
d1 + 1, . . . , d, it gives a generalized varying coefficient model (Hastie and Tibshirani
1993; Cai et al. 2000a). It is worth noting that model (1) is different from the varying
index coefficient model proposed by Ma and Song (2014), since the latter aims to
assess nonlinear interaction effects of index variables with other covariates on the
response in the cross-sectional data setting.

3 Parameter estimates

3.1 The approximation of predictor function

In this subsection, we approximate the unknown functions g (·) and αl (·) in (1) by
B-splines described as follows. Based on the given knots, we define the sets of q-th
order B-spline basis functions B1 (u) = {B1,J (u) : 1 ≤ J ≤ N + q}T and B2 (t) ={
B2,J (t) : 1 ≤ J ≤ N + q}T (see de Boor 2001), where N is the number of interior

knots with the distance between neighboring knots satisfying the conditions given in
Zhou et al. (1998). Then, the unknown function g in (1) can be approximated by a
linear combination of the B-spline functions such that g (u) ≈∑N+q

J=1 γJ,0B1,J (u) =
B1 (u)T γ 0 with a set of coefficients γ 0 = (

γ1,0, . . . , γN+q,0
)T. Analogously, αl (t)

in (1) can be approximated by αl (t) ≈ ∑N+q
J=1 γJ,l B2,J (t) = B2 (t)T γ l , where

γ l = (γ1,l , . . . , γN+q,l
)T. Accordingly, we obtain an approximation of the predictor

function ηi j , which is

η̃i j =
∑N+q

J=1
γJ,0B1,J

(
XT
i jβ
)

+
∑d1

l=1

∑N+q

J=1
γJ,l B2,J

(
Ti j
)
Zi j,l

+
∑d

l=d1+1
αl Zi j,l . (3)

From the above equation, we propose a two-step estimation procedure to estimate
parametric and nonparametric components in the following two subsections, respec-
tively.
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Parameter estimation for a generalized semiparametric model 729

3.2 The profile QIF estimators of parametric vectors

Let Yi = (Yi1, . . . ,Yimi

)T and μi (γ ,β,α) = (μi1 (γ ,β,α) , . . . , μimi (γ ,β,α)
)T.

Then, denote μ̃i (γ ,β,α) = (
μ̃i1 (γ ,β,α) , . . . , μ̃imi (γ ,β,α)

)T , where μ̃i j

(γ ,α,β) = ϑ−1
(
η̃i j
)
,α = (αd1+1, . . . , αd

)T is a d2 × 1 vector, γ =
(
γ T
0 , . . . , γ T

d1

)T

is a (1 + d1) Jn × 1 vector, and Jn = N + q. For given β and α, the quasi-likelihood
estimator of γ is the solution of the following estimating equations,

∑n

i=1
μ̃′
i (γ ,β,α)V−1

i (Yi − μ̃i (γ ,β,α)) = 0, (4)

where μ̃′
i (γ ,β,α) =

[(
μ̃′
i1, . . . , μ̃

′
imi

)]

(1+d1)Jn×mi
, μ̃′

i j = ∂μ̃i j/∂γ for j =
1, . . . ,mi , and Vi is the mi ×mi covariance matrix of Yi . Since Vi is often unknown
in practice, we adopt the approach in Liang and Zeger (1986) and assume that
Vi = A1/2

i Ri (ς)A1/2
i /φ, where Ri (ς) is the working correlation matrix of Yi , ς

is a vector of nuisance parameters, and Ai is an mi × mi diagonal matrix with the
marginal variance of Yi j as its j-th diagonal element. However, the working correla-
tion structure may be misspecified. Hence, we further apply the quadratic inference
function (QIF) in Qu et al. (2000) to efficiently incorporate the within-cluster corre-
lation structure. For the sake of simplicity, we assume that cluster sizes are equal, i.e.,
mi = m < ∞, and let R be a common working correlation matrix. When the cluster
sizes are unequal, our estimation procedure given below can be modified via the same
technique proposed by Xue et al. (2010). Following the QIF approach, the inverse of
R can be approximated by a linear combination of κ basis matrices, i.e.,

R−1 ≈ a1M1 + · · · + aκMκ , (5)

where M1 = I (the identity matrix) and Mk are known symmetric basis matrices for
1 ≤ k ≤ κ .

We next construct the QIF to obtain parameter estimators. To this end, consider the
estimating function of γ , for the given β and α:

φ̃n (γ ,β,α) = n−1
∑n

i=1
φ̃in (γ ,β,α) = {φ̃n,1 (γ ,β,α)T , . . . , φ̃n,κ (γ ,β,α)T

}T

= n−1

⎧
⎪⎪⎨

⎪⎪⎩

∑n
i=1Qi (β)T Δ̃i (γ ,β,α)A−1/2

i M1A
−1/2
i (Yi − μ̃i (γ ,β,α))

...
∑n

i=1Qi (β)T Δ̃i (γ ,β,α)A−1/2
i MκA

−1/2
i (Yi − μ̃i (γ ,β,α))

⎫
⎪⎪⎬

⎪⎪⎭
κ Jn(1+d1)×1

,

(6)

where Δ̃i (γ ,β,α) = diag (̃νi1 (γ ,β,α) , . . . , ν̃im (γ ,β,α)), ν̃i j (γ ,β,α) = ∂μ̃i j

(γ ,β,α)/∂η̃i j ,
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730 S. Ma et al.

Qi (β) = (Qi1 (β)T , . . . , Qimi (β)T
)T
, and

Qi j (β) =
[
B1
(
Ui j (β)

)T
,
{
B2
(
Ti j
)T

Zi j,l : 1 ≤ l ≤ d1
}]T

Jn(1+d1)×1
.

Then, define the QIF to be

Q̃n (γ ,β,α) = φ̃n (γ ,β,α)T C̃n (γ ,β,α)−1 φ̃n (γ ,β,α) , (7)

where C̃n (γ ,β,α) = n−2∑n
i=1 φ̃in (γ ,β,α) φ̃in (γ ,β,α)T. Accordingly, the QIF

estimator of γ is

γ̃ (β,α) =
[{

γ̃ 0 (β,α)T , . . . , γ̃ d1 (β,α)T
}T ]

= arg min
γ∈R(1+d1)Jn

Q̃n (γ ,β,α) .

As a result, the QIF estimators of g (·), g′ (·) (the first derivative of g), and αl (·) are
g̃ (u;β,α) = B1 (u)T γ̃ 0 (β,α), α̃l (t;β,α) = B2 (t)T γ̃ l (β,α), and g̃′ (u;β,α) =
B ′
1 (u)T γ̃ 0 (β,α), respectively,where B ′

1 (u) is thefirst derivative of B1 (u). By replac-
ing g (·) and αl (·) with g̃ (·;β,α) and α̃l (·;β,α) in (3), we obtain

η̂i j (β,α) = g̃
(
XT
i jβ;β,α

)
+
∑d1

l=1
α̃l
(
Ti j ;β,α

)
Zi j,l +

∑d

l=d1+1
αl Zi j,l . (8)

Before estimating β and α, we use the assumptions of ||β|| = 1 and β1 > 0 in (2)
to reform the space of β given below, which ensures identifiability.

{((
1 −

∑p

s=2
β2
s

)1/2
, β2, . . . , βp

)T
:
∑p

s=2
β2
s < 1

}

.

Denote η̂i (β,α) = {̂ηi1 (β,α) , . . . , η̂im (β,α)}T and its gradient with respect to
(
βT−1,α

T
)T

by D̂i (β,α) = ∇η̂i (β,α) =
{

∂η̂i1(β,α)

∂
(
β T−1,α

T
)T , . . . ,

∂η̂im (β,α)

∂
(
βT−1,α

T
)T

}T

m×(p−1+d2)
,

where β−1 = (β2, . . . , βp
)T. Consider the profiled estimating function of (β,α),

ψ∗
n (β,α) = n−1

∑n

i=1
ψin (β,α) =

{
ψn,1 (β,α)T , . . . , ψn,κ (β,α)T

}T

= n−1

⎧
⎪⎨

⎪⎩

∑n
i=1 D̂

T
i (β,α)Δi (β,α)A−1/2

i M1A
−1/2
i (Yi − μ̂i (β,α))

...
∑n

i=1 D̂
T
i (β,α)Δi (β,α)A−1/2

i MκA
−1/2
i (Yi−μ̂i (β,α))

⎫
⎪⎬

⎪⎭
κ(p−1+d2)×1

,

where μ̂i (β,α) = {μ̂i1 (β,α) , . . . , μ̂im (β,α)}T, μ̂i j (β,α) = ϑ−1
{
η̂i j (β,α)

}
,

Δi (β,α) = Diag(̂νi j (β,α)), and ν̂i j (β,α) = ∂μ̂i j (β,α)/∂η̂i j . Then, the profiled
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Parameter estimation for a generalized semiparametric model 731

QIF estimator of
(
βT−1,α

T
)T

is

(
β̂
T
−1, α̂

T
)T = arg min

(β−1,α)
Q∗

n (β,α) ,

where

Q∗
n (β,α) = ψ∗

n (β,α)T Ψ ∗
n (β,α)−1 ψ∗

n (β,α) , (9)

and Ψ ∗
n (β,α) = n−2∑n

i=1 ψ∗
n (β,α)T ψ∗

n (β,α). Using the fact that β1 =√
1 − ∥∥β−1

∥∥2, we also obtain the estimator β̂1. The detailed procedure for computing

β̂ and α̂ is given in Sect. 4.2.
To study the asymptotic properties of the parametric estimators, we need to

introduce a few quantities evaluated at the true parameter values. To this end, let

β0 = (β0
1 ,β

0T−1

)T
and α0 be the true parameter vectors, β0−1 =

(
β0
2 , . . . , β

0
p

)T
, and

J0= ∂β0

∂β(1) given below be the Jacobian matrix of size p × (p − 1).

J0 =
(

−β0T−1/

√
1 − ∥∥β0−1

∥∥2

Ip−1

)

p×(p−1)

.

For 1 ≤ s ≤ p and 0 ≤ l ≤ d1, let ξ s,l = (ξs,1,l , . . . , ξs,N+q,l
)T be a Jn × 1 vector

of parameters. Let ξ s =
{(

ξTs,0, . . . , ξ
T
s,d1

)T}

(1+d1)Jn×1
. For 1 ≤ s ≤ p, we further

define

ωn,s
(
β0, α0, ξ s

)

= n−1
∑n

i=1

⎡

⎢
⎢⎢
⎣

Qi
(
β0)T ΔiΛ1Δi

{
Xi j,s − Qi

(
β0)T ξ s

}

...

Qi
(
β0)T ΔiΛκΔi

{
Xi j,s − Qi

(
β0)T ξ s

}

⎤

⎥⎥⎥
⎦

κ Jn(1+d1)×1

and

Ξn
(
β0,α0) = 1

n2

×
n∑

i=1

⎡

⎢⎢
⎣

Qi
(
β0)T ΔiΓ1,1ΔiQi

(
β0) · · · Qi

(
β0)T ΔiΓ1,κΔiQi

(
β0)

...
. . .

...

Qi
(
β0)T ΔiΓκ,1ΔiQi

(
β0) · · · Qi

(
β0)T ΔiΓκ,κΔiQi

(
β0)

⎤

⎥⎥
⎦

κ Jn(1+d1)×κ Jn(1+d1)

,

(10)
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732 S. Ma et al.

where Λk = A−1/2
i MkA

−1/2
i , Γk,k′ = ΛkViΛk′ for 1 ≤ k, k′ ≤ κ , and Δi , Vi , and

Λk are evaluated at (β0,α0). Then, we obtain the estimate of ξ s ,

ξ̂ s = argmin
ξ s∈R(1+d1)Jn

{
ωn,s

(
β0,α0, ξ s

)T
Ξn

(
β0,α0

)−1
ωn,s

(
β0,α0, ξ s

)}
.

(11)

In addition, replace Xi j,s and ξ s in ωn,s
(
β0,α0, ξ s

)
by Zi j,l and τ l , respectively,

which yields ωn,l
(
β0,α0, τ l

)
for d1 + 1 ≤ l ≤ d. Adapting (11), we obtain the

estimate τ̂ l .
Define X̂i j,s = Xi j,s − Qi j

(
β0)T ξ̂ s , X̂i j = (

X̂i j,1, . . . , X̂i j,p
)T
, Ẑi j,l = Zi j,l −

Qi j
(
β0)T τ̂ l , and Ẑ (2)

i j = (
Ẑi j,d1+1, . . . , Ẑi j,d

)T
. In Lemma 3 of Appendix, we

demonstrate that

∂η̂i j
(
β0,α0

)

∂
(
βT−1, αT

)T =
{
g̃′ (XT

i jβ
0;β0, α0

)
X̂T
i jJ

0, Ẑ (2)T
i j

}T {
1 + op (1)

}
.

Accordingly,

D̂i

(
β0,α0

)

=
[{

g̃′ (XT
i1β

0;β0,α0
)
X̂i1, . . . , g̃

′ (XT
imβ0;β0,α0

)
X̂im

}T

× J0,
(
Ẑ (2)
i1 , . . . , Ẑ (2)

im

)
T
]
{
1 + op (1)

}
.

Define Di j
(
β0,α0

) =
{
g′
(
XT
i jβ

0
)
X̂T
i jJ

0,Ẑ (2)T
i j

}T
,

ψ̇n

(
β0,α0

)
= E

⎧
⎪⎨

⎪⎩

DT
i Δi

(
β0,α0

)
Λ1Δi

(
β0,α0

)
Di

...

DT
i Δi

(
β0,α0

)
ΛκΔi

(
β0,α0

)
Di

⎫
⎪⎬

⎪⎭
and

Ψn

(
β0,α0

)

= E

⎧
⎪⎨

⎪⎩

DT
i Δi

(
β0,α0

)
Γ1,1Δi

(
β0,α0

)
Di · · · DT

i Δi
(
β0,α0

)
Γ1,κΔi

(
β0,α0

)
Di

...
. . .

...

DT
i Δi

(
β0,α0

)
Γκ,1Δi

(
β0,α0

)
Di · · · DT

i Δi
(
β0,α0

)
Γκ,κΔi

(
β0,α0

)
Di

⎫
⎪⎬

⎪⎭
,

whereDi = Di
(
β0,α0

) = (Di1
(
β0,α0

)
, . . . , Dim

(
β0,α0

))T
. Then, the asymptotic

properties of parametric estimators are given below.

Theorem 1 Assume that conditions (C1)–(C5) in the Appendix hold, N 4n−1 =
o (1) , and N−4r+2n = o (1) with r > 3/2 in condition (C2). Then, we have

123



Parameter estimation for a generalized semiparametric model 733

∥
∥∥∥
(
β̂
T
−1, α̂

T
)T − (β0T−1,α

0T
)T
∥
∥∥∥ = op (1) , and, as n → ∞,

√
n
(
Σ(1)

n

)1/2 ((
β̂
T
−1, α̂

T
)T −

(
β0T−1,α

0T
)T)→ N

(
0, Ip−1+d2

)
,

where Σ
(1)
n = ψ̇n

(
β0,α0

)T
Ψn
(
β0,α0

)
ψ̇n
(
β0,α0

)
and Ia denotes the identity

matrix with dimension a × a.

Let ϒ =
(
Jp×(p−1) 0p×d2
0d2×(p−1) Id2×d2

)
. The above theorem, together with the multi-

variate delta method, establishes the asymptotic normality of parametric estima-

tors,
√
nΣ

1/2
n

((
β̂
T
, α̂T
)T − (β0T,α0T

)T
)

→ N
(
0, Ip+d2

)
, as n → ∞, where

Σn = ϒΣ
(1)
n ϒT. It is also worth noting that the resulting estimators are not semipara-

metric efficient since we assume that the true correlation structure is unknown and the
working correlation may be misspecified.

3.3 The QIF estimator of nonparametric functions

After obtaining the parametric estimators
(
β̂
T
, α̂T
)T

, we replace
(
βT ,αT

) T
by

(
β̂
T
, α̂T
)T

in Q̃n (γ ,α,β) of (7). This allows us to find the estimator

γ̂ =
(
γ̂ T
0 , . . . , γ̂ T

d1

)T = arg min
γ∈R(1+d1)Jn

Q̃n
(
γ ,β̂, α̂

)
.

Accordingly, the estimators of nonparametric functions g (·) and αl (·) are ĝ (u) =
B1 (u)T γ̂ 0 and α̂l (t) = B2 (t)T γ̂ l , respectively. Next, we present the L2 conver-
gence rates of ĝ and α̂l . With a slight abuse of notation in using ‖·‖, let ‖φ‖ =
{∫

S φ (t)2 dt
}1/2

be the L2 norm of any square integrable real-valued function φ (t)
on its support S.

Theorem 2 Assume that N 4n−1 = o (1) and N−2−2r n = o (1) with r > 3/2
in condition (C2). Then, under conditions (C1)–(C5), we have ‖ĝ (·) − g (·)‖ =
Op
(√

N/n + N−r
)
and ‖α̂l (·) − αl (·)‖ = Op

(√
N/n + N−r

)
.

The optimal order requirements in the above theorem are achievedwhen the number
of interior knots N is chosen to be N � n1/(2r+1). As a result, the estimators ĝ
and α̂l of the nonparametric functions g and αl have the optimal convergence rate
Op
(
N−r/(2r+1)

)
.
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734 S. Ma et al.

4 Penalized QIF estimation

4.1 Penalized estimators

In data analysis, the true model is often unknown. Hence, researchers have employed
the penalized approach to simultaneously select relevant variables and estimate
unknown parameters for partially linear single-index models (see, e.g., Xie and Huang
2009; Liang et al. 2010) and varying coefficients models (see, e.g., Li and Liang 2008;
Wang et al. 2008; Wang and Xia 2009). This motivates us to propose a penalized QIF
method for the proposed generalized semiparametric model. Without loss of general-
ity, we assume that the correct model in (1) has the true regression coefficients β0 =
(
β0T

(1),β
0T
(2)

)T
and α0 =

(
α0T

(1),α
0T
(2)

)T
, where β0

(1) =
[

β0
1 ,

{(
β0

(1),−1

)

(p1−1)×1

}T]T

is the p1 × 1 vector of non-zeros, β0
(2) is the (p − p1) × 1 vector of zeros, α0

(1) is the

d20 × 1 vector of non-zeros, and α0
(2) is the (d2 − d20) × 1 vector of zeros. Their cor-

responding covariates are given as Xi j =
[{(

X (1)
i j

)

p1×1

}T
,

{(
X (2)
i j

)

(p−p1)×1

}T]T
,

Z (2)
i j =

[{(
Z (21)
i j

)

d20×1

}T
,

{(
Z (22)
i j

)

(d2−d20)×1

}T]T
.

To find the penalized parametric estimators, we propose the penalized QIF,

L∗
n (β,α) = 1

2
Q∗

n (β,α) + n
∑p

s=2
pλn1 (|βs |) + n

∑d

l=d1+1
pλn2 (|αl |) , (12)

where Q∗
n (β,α) is the unpenalized objective function defined in (9) and pλn (·) is a

penalty function with a regularization parameter λn . There are various penalty func-
tions available in the literature, such as the L1 and L2 penalties, which yield the
LASSO-type (Tibshirani 1996) and ridge-type estimators (Goldstein and Smith 1974),
respectively. Here, we consider the smoothly clipped absolute deviation (SCAD)
penalty proposed by Fan and Li (2001), whose first derivative is defined as

p′
λ (θ) = λ

{
I (θ ≤ λ) + (aλ − θ)+

(a − 1) λ
I (θ > λ)

}
,

where pλ (0) = 0, a = 3.7, and (t)+ = t I (t > 0). By minimizing L∗
n (β,α), we

obtain the penalized QIF estimators β̂
PQIF
−1 =

((
β̂
PQIF
(1),−1

)T
,
(
β̂
PQIF
(2)

)T)T
of β−1 =

((
β(1),−1

)T
,
(
β2
)T)T and α̂PQIF =

((
α̂
PQIF
(1)

)T
,
(
α̂

PQIF
(2)

)T)T
ofα =

(
αT

(1),α
T
(2)

)T
.

To study asymptotic properties of penalized estimators, we follow the same

approach for obtaining X̂i j and Ẑ (2)
i j in Sect. 3 to get X̂ (1)

i j and Ẑ (21)
i j . LetD1i

(
β0

(1)

)
=
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(
D1,i1

(
β0

(1)

)
, . . . , D1,im

(
β0

(1)

))T
and Δ1i

(
β0

(1),α
0
(1)

)
= Diag(̂ν1,i j (β0

(1), α0
(1))),

where D1,i j

(
β0

(1)

)
=
{
g′
(
β0T

(1)X
(1)
i j

)
X̂ (1)T
i j J01, Ẑ

(21)T
i j

}T
, μ̂1,i j

(
β0

(1), α0
(1)

)
=

ϑ−1
{
η̂1,i j

(
β0

(1), α0
(1)

)}
, ν̂1,i j (β0

(1), α0
(1)) = ∂μ̂1,i j (β

0
(1), α0

(1))/∂η̂1,i j (β
0
(1), α0

(1)),

η̂1,i j (β
0
(1), α0

(1)) = g̃
(

β0T
(1)X

(1)
i j

)
+ ∑d1

l=1 α̃l
(
Ti j
)
Zi j,l + α0T

(1) Z
(21)
i j , and J01 =

⎛

⎝−β0T
(1),−1/

√

1 −
∥∥∥β0

(1),−1

∥∥∥
2

Id10−1

⎞

⎠. In addition, let ψ̇n1

(
β0

(1),α
0
(1)

)
andΨn1

(
β0

(1),α
0
(1)

)

be defined in the same manner as ψ̇n
(
β0,α0

)
and Ψn

(
β0,α0

)
in Sect. 3 by replacing

their Di
(
β0) and Δi

(
β0,α0

)
with D1i

(
β0

(1)

)
and Δ1i

(
β0

(1), α0
(1)

)
, respectively.

Then, we establish the following oracle properties of the penalized estimators.

Theorem 3 Assume that N 4n−1 = o (1) , N−4r+2n = o (1) with r > 3/2 in condi-
tion (C2), and the tuning parameters satisfy λn1 → 0, λn2 → 0, n1/2λn1 → ∞ and
n1/2λn2 → ∞. Then, under conditions (C1)–(C5), the penalized estimators satisfy:
(1) (sparsity) P

({(
β̂
PQIF
(2)

)T
,
(
α̂
PQIF
(2)

)T }T = 0

)

→ 1; and (2) (asymptotic

normality)

√
n
(
Σ

(1)
n1

)1/2
{{(

β̂
PQIF
(1),−1

)T
,
(
α̂
PQIF
(1)

)T}T−
(
β0T

(1),−1,α
0T
(1)

)T
}

→N
(
0, I(p1+d20−1)

)
,

where Σ
(1)
n1 = ψ̇n1

(
β0

(1),α
0
(1)

)T
Ψn1

(
β0

(1),α
0
(1)

)
ψ̇n1

(
β0

(1),α
0
(1)

)
.

Letϒ1 =
(
J01 p1×(p1−1) 0p1×d20

0d20×(p1−1) Id20×d20

)
. The above theorem, together with themultivariate

delta method, leads to the asymptotic normality of penalized parametric estimators,
√
nΣ

1/2
n1

({(
β̂
PQIF
(1)

)T
,
(
α̂

PQIF
(1)

)T}T −
(
β0T

(1),α
0T
(1)

)T
)

→ N
(
0, Ip1+d20

)
, asn →

∞, where Σn1 = ϒ1Σ
(1)
n1 ϒT

1 .
We next study the asymptotic properties of the penalized nonparametric estimators.

To this end, assume that αl (·) ≡ 0 for (d10 + 1) ≤ l ≤ d1 in the true model. By the
density assumption of Ti j in Condition (C1) of the Appendix, we obtain that α̃l (·) = 0

if and only if E
{
α̃l
(
Ti j
)2} = 0. In addition, αl (t) ≈ α̃l (t) = B2 (t)T γ l . This

motivates us to consider the empirical L2 norm as a metric, that is, ‖α̃l‖ = ∥∥γ l

∥
∥
Wn =

(
γ T
l Wnγ l

)1/2
, whereWn = n−1

T

∑n
i=1
∑m

j=1 B2
(
Ti j
)
B2
(
Ti j
)T and nT = nm. Using

thismetric and replacing (β,α) in Qn (γ ,β,α)by its
√
n consistent estimator (β̂

∗
, α̂∗)

(e.g., (β̂PQIF, α̂PQIF)), we adopt Wang et al.’s (2007) group-penalized approach and
propose the following penalized QIF for spline coefficients,

Ln (γ ) = 1

2
Qn

(
γ ,β̂

∗
, α̂∗)+ n

∑d1

l=1
pλn3

(∥∥γ l

∥∥
Wn

)
. (13)
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The resulting penalized estimator of γ is

γ̂ PQIF =
{(

γ̂
PQIF
l

)T
, 0 ≤ l ≤ d1

}T
= argmin

γ
(Ln ( γ )) .

Subsequently, we obtain the estimators of g (u) and αl (t), which are ĝPQIF (u) =
B1 (u)T γ̂

PQIF
0 and α̂

PQIF
l (t) = B2 (t)T γ̂

PQIF
l . Then, we demonstrate the following

asymptotic properties of nonparametric estimators.

Theorem 4 Assume that λn3 → 0 and λn3nr/(2r+1) → ∞ with r > 3/2 in condition
(C2). Then, under conditions (C1)–(C5), γ̂ PQIF satisfies (1) (sparsity) P(γ̂

PQIF
l =

0) → 1 for d10 + 1 ≤ l ≤ d1; and (2) (L2 rate of convergence)
∥∥ĝPQIF (·) − g (·)∥∥ =

Op
(
N−r/(2r+1)

)
and

∥∥∥α̂PQIF
l (·) − αl (·)

∥∥∥ = Op
(
N−r/(2r+1)

)
for 1 ≤ l ≤ d10, where

N � n1/(2r+1).

Theorem 4 indicates that, under some regularity conditions, the penalized QIF esti-
mator has the same optimal convergence rate as the unpenalized estimator. In addition,
the penalized procedure is able to correctly select relevant B-spline coefficients with
probability approaching 1.

4.2 Estimation algorithm

The algorithm for obtaining unpenalized estimators is a special case of the procedure
to calculate penalized estimators. Hence, we only focus on the penalized estimates.
To this end, we consider three possible scenarios: (i) β and α are penalized, while γ

is unpenalized; (ii) β and α are unpenalized, but γ is penalized; (iii) β, α, and γ are

penalized. In the first scenario, let
(
β̂
i
, α̂i
)
and γ̂ i be the i-th iterative estimators of

(β,α) and γ , respectively. For given
(
β̂
i
,̂αi
)
, we employ (7) to obtain the estimator

γ̂ i+1 of γ at the (i + 1) th step. That is,

γ̂ i+1 = γ̂ i − ¨̃Qn

(
γ̂ i ,β̂

i
,̂αi
)−1 ˙̃Qn

(
γ̂ i ,β̂

i
, α̂i
)

, (14)

where ˙̃Qn (γ ,β,α) = ∂ Q̃n (γ ,β,α) /∂γ and ¨̃Qn (γ ,β,α) = ∂2 Q̃n (γ ,β,α) /

∂γ ∂γ T.
Based on γ̂ i+1, we next obtain the (i + 1)-th iterative estimators of (β,α). To this

end, we use the fact that (β,α) is a function of γ and then denote Q∗
n (β, α) in (9) as

Q∗
n

(
β̂
i
,̂αi , γ̂ i+1

)
and its associated component D̂i (β,α) results to

D̂i

(
β̂
i
, α̂i , γ̂ i+1

)
=
[{

B ′
1

(
XT
i1β̂

i
)T

γ̂ i+1
0 X̂i1, . . . , B

′
1

(
XT
im β̂

i
)T

γ̂ i+1
0 X̂im

}T

× J0,
(
Ẑ (2)
i1 , . . . , Ẑ (2)

im

)
T

]

.
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For the sake of simplicity, let θ = (βT−1,α
T
)T
, and denote Q̇∗

n (β,α,γ̂ ) =
∂Q∗

n (β,α, γ̂ ) /∂θ and Q̈∗
n (β,α, γ̂ ) = ∂Q∗

n (β,α, γ̂ ) /∂θ∂θT.
To obtain the penalized estimate of θ , we adopt the approach of Fan and Li (2001)

and obtain the locally quadratic approximation of 2L∗
n

(
β i+1,αi+1,γ̂ i+1

)
in (12) as

follows:

Q∗
n

(
β̂
i
,̂αi , γ̂ i+1

)
+ Q̇∗

n

(
β̂
i
,̂αi , γ̂ i+1

)T (
θ i+1 − θ̂

i
)

+ 2−1
(
θ i+1 − θ̂

i
)T

Q̈∗
n

(
β̂
i
,̂αi , γ̂ i+1

) (
θ i+1 − θ̂

i
)T

+ 2n
∑p

s=2
pλn1

(∣∣∣β̂ i
s

∣∣∣
)
+n
(
β i+1

−1

)T
Φλn1

(
β̂
i
−1

)
β i+1

−1 −n
(
β̂
i
−1

)T
Φλn1

(
β̂
i
−1

)
β̂
i
−1

+ 2n
∑d

l=d1+1
pλn2

(∣∣
∣̂αi

l

∣∣
∣
)
+n
(

αi+1
)T

Φλn2

(
α̂i
)

αi+1−n
(
α̂i
)T

Φλn2

(
α̂i
)

α̂i ,

where

Φλn1

(
β−1

) = diag
{
p′
λn1

(|β2|) / |β2| , . . . , p′
λn1

(∣∣βp
∣∣) /
∣∣βp
∣∣} ,

Φλn2 (α) = diag
{
p′
λn2

(∣∣αd1+1
∣
∣) /
∣
∣αd1+1

∣
∣ , . . . , p′

λn2
(|αd |) / |αd |

}
.

Minimizing the above function with respect to θ i+1, we obtain that

θ̂
i+1 = θ̂

i −
{
Q̈∗
n

(
β̂
i
,̂αi ,γ̂ i+1

)
+ 2nΦ

(
θ̂
i
)}−1 {

Q̇∗
n

(
β̂
i
,̂αi , γ̂ i+1

)
+ 2nΦ

(
θ̂
i
)

θ̂
i
}

,

(15)

whereΦ (θ)=
(

Φλn1

(
β(1)
)
0(p−1)×d2

0d2×(p−1) Φλn2 (α)

)

. Subsequently, β̂ i+1
1 =

(
1 −

∥∥∥β̂
i+1
−1

∥∥∥
2
)1/2

.

If the i-th iterative penalized estimate β̂ i
s is close to zero (i.e., |β̂ i

s | < ε∗
1 for a small

threshold value ε∗
1 ), we set β̂ i+1

s = 0. The iteration is stopped at the (i + 1)th step

if
∥∥∥̂θ

i+1 − θ̂
i
∥∥∥ < δ∗

1 and
∥∥γ̂ i+1 − γ̂ i

∥∥ < δ∗
1 for a small threshold value δ∗

1 . Accord-

ingly, the penalized estimates of β and α are β̂
PQIF = β̂

i+1
and α̂PQIF = α̂i+1. It is

noteworthy that unpenalized QIF estimators β̂, α̂, and γ̂ can be obtained iteratively

from Eqs. (14) and (15) by setting Φ(̂θ
i
) = 0 in (15).

In the second scenario, we can show that the unpenalized QIF estimators β̂ and α̂

are
√
n-consistent. Hence, we use them to replace β̂

∗
and α̂∗ in Eq. (13), and then

employ the same techniques as those used for obtaining Eq. (15) to yield the penalized
estimator γ̂ PQIF,i+1 at the (i + 1) th step given below.

γ̂ PQIF,i+1 = γ̂ PQIF,i −
{
Q̈n

(
γ̂ PQIF,i ,β̂

QIF
, α̂QIF

)
+ 2nΦλn3

(
γ̂ PQIF,i

)}−1

×
{
Q̇n

(
γ̂ PQIF,i ,β̂

QIF
,̂α QIF

)
+ 2nΦλn3

(
γ̂ PQIF,i

)
γ̂ PQIF,i

}
, (16)
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where

Φλn3
(γ ) = diag

{
p′
λn3

(∥∥γ 1

∥∥
Wn

)
/
∥∥γ 1

∥∥
Wn , . . . , p′

λn3

(∥∥γ p

∥∥
Wn

)
/
∥∥γ p

∥∥
Wn

}
.

If the i-th iterative penalized estimator γ̂ PQIF,i is close to zero (i.e.,
∥∥γ̂ PQIF,i

∥∥
Wn < ε∗

2
for a small threshold value ε∗

2 ), we set γ̂ PQIF,i+1 = 0. The iteration stops when∥∥γ̂ PQIF,i+1 − γ̂ PQIF,i
∥∥ < δ∗

2 for a small threshold value δ∗
2 , which leads to γ̂ PQIF =

γ̂ PQIF,i+1.

In the third scenario, we are able to demonstrate that the penalized estimators, β̂
PQIF

and α̂PQIF, obtained from the first scenario are consistent. Thus, we substitute β̂
∗
and

α̂∗ in Eq. (13) with these estimators. Afterwards, we adopt the same procedure as

given in Eq. (16) by replacing its β̂
QIF

and α̂QIF with β̂
PQIF

and α̂PQIF, respectively,
to obtain γ̂ PQIF.

To facilitate computations, we recommend using the unpenalized estimators as
initial estimators in the iterative equations, (14), (15), and (16). It is worth noting
that the tuning parameters are unknown in those equations, and we adapt Wang et al.’s
(2007) BIC criterion to choose the tuning parameters λn1, λn2 and λn3 in the penalized
QIF procedure. They are

BIC (λn1, λn2) = L∗
n

(
β̂ ,̂α
)+ log (n) × ( p̂1 − 1 + d̂21

)
and

BIC (λn3) = Ln (γ̂ ) + log (n) × {Jn
(
1 + d̂10

)}
,

where d̂21 and p̂1 are the number of nonzero components in α̂PQIF and β̂
PQIF

, and d̂10
is the number of nonzero estimated functions α̂

PQIF
l (·). Accordingly, (λ̂n1, λ̂n2

) =
argmin(λn1,λn2)BIC(λn1, λn2) and λ̂n3 = argminλn3BIC(λn3). In our numerical stud-
ies given below, we use cubic splines with q = 4 to estimate nonparametric functions.
In addition, the number of interior knots is set at N = [

n1/(2q+1)
] + 1, which is of

the optimal order and [a] denotes the greatest integer less than or equal to a. In the
empirical implementations, we use the minimal and maximal values of XT

i j β̂ and Ti j
as the two boundary points to generate B-spline basis functions B1,J (u) and B2,J (t),
respectively.

5 Numerical examples

5.1 Simulation studies

In this subsection, we conduct two Monte Carlo studies to evaluate the finite sample
performance of the proposed estimators. The first two example focus on scenario (i) β
and α are penalized, while γ used for computing nonparametric functions is unpenal-
ized. In contrast, the third example addresses scenario (ii) β and α are unpenalized,
but γ is penalized.
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Example 1 Within each cluster, the correlated binary responses Yi j are generated from
a marginal logit model,

logit P
(
Yi j = 1

∣
∣Xi j , Zi j , Ti j

) = g
(
XT
i jβ

0
)

+
∑2

l=1
αl
(
Ti j
)
Zi j,l +

∑6

l=3
α0
l Zi j,l , (17)

where g (U ) = 0.5 cos(2πU ), α1 (T ) = 0.1 cos(2πT ), α2 (T ) = 0.1 sin(2πT ),
β0 = 1√

22
(3, 3, 2, 0, 0, 0, 0)T , α0 = (

α3, α4,α5, α6
)T = (−0.5, 0, 0, 0.4)T, j =

1, . . . , 5, i = 1, . . . , n, and n = 200 and 500. We then use the algorithm in Emrich
and Piedmonte (1991) to generate correlated binary responses with an exchange-
able correlation structure and the correlation parameter is 0.3 within each cluster.
Furthermore, covariates Xi j = (Xi j,1 . . . , Xi j,7

)T are independently generated from

uniform[0, 1], Ti j are randomly simulated from uniform[0, 1], and
(
Zi j,1 . . . , Zi j,6

)T

are independently generated from N
(
0, 0.52

)
. To assess the robustness of covariance

setting, we consider three different working correlation structures: independent (IND),
exchangeable (EX), andAR(1), although the data are simulated from the exchangeable
setting.

To examine the selection performance of parametric components, we conduct 200
realizations and report the proportions of parameters correctly fitted (C), overfitted (O),
andunderfitted (U) aswell as the average of true positives (TP), i.e., the average number
of covariates being correctly selected from all possible candidates, and the average
number of false positives (FP), i.e., the average number of covariates being incorrectly
selected from all possible candidates. To evaluate the estimation accuracy, we compare
the SCAD-penalized QIF (PQIF) estimate with the ORACLE estimate obtained by
assuming that we know the zero components in β0 and α0. The assessment measure is

the median of squared errors (MSE) defined as the median of
∥∥∥β̂

PQIF
(k) − β0

∥∥∥
2
and the

median of
∥
∥∥α̂ PQIF

(k) − α0
∥
∥∥
2
in 200 realizations, where β̂

PQIF
(k) and α̂

PQIF
(k) are the PQIF

estimates of β0 and α0 calculated in the kth realization.

Tables 1 and 2 report variable selection and estimation results for β0 and α0,
respectively. Both tables show that the proportions of correctly fitted models increase
and the proportions of overfitted and underfitted models decrease when the sample
size becomes larger. In addition, the number of true positives is closer to the correct
number of nonzero parameters and the number of false positives decreases to zero, as
the sample size increases. Moreover, the difference between the PQIF and ORACLE
estimates measured by MSE becomes negligible as the sample size increases. The
above findings support the theoretical results. It is noteworthy that the three working
correlation structures yield similar performance, although EX is the correct structure.
This indicates that the PQIF estimators are robust even though the working correlation
is misspecified.

To evaluate the performance of the estimates of the nonparametric functions, we
next define the integrated squared error (ISE) of the estimated functions ĝ, α̂1 and α̂2,
given as
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Table 1 Variable selection and estimation results for β0 with the exchangeable (EX), AR(1), and inde-
pendent (IND) working correlation structures in Example 1

n Variable selection and parameter estimation

C O U TP FP PQIF ORACLE

EX 0.800 0.120 0.080 2.920 0.190 0.0209 0.0184

200 AR(1) 0.745 0.140 0.115 2.885 0.190 0.0231 0.0184

IND 0.720 0.175 0.105 2.895 0.265 0.0302 0.0182

EX 1.000 0.000 0.000 3.000 0.000 0.0062 0.0062

500 AR(1) 1.000 0.000 0.000 3.000 0.000 0.0062 0.0062

IND 0.995 0.005 0.000 3.000 0.005 0.0063 0.0063

The symbols C, O, and U denote the proportion of correct fitting, overfitting, and underfitting, respectively.
The TP and FP denote the average number of true positives and false positives, respectively. The columns
PQIF and ORACLE report the median of squared errors (MSEs) of the penalized and oracle estimates

Table 2 Variable selection and estimation results for α0 with the exchangeable (EX), AR(1), and indepen-
dent (IND) working correlation structures in Example 1

n Variable selection and parameter estimate

C O U TP FP PQIF ORACLE

EX 0.805 0.055 0.140 1.895 0.095 0.0285 0.0228

200 AR(1) 0.795 0.050 0.155 1.895 0.105 0.0291 0.0224

IND 0.765 0.090 0.145 1.920 0.160 0.0274 0.0224

EX 0.980 0.014 0.006 1.990 0.014 0.0103 0.0103

500 AR(1) 0.970 0.020 0.010 1.995 0.025 0.0107 0.0101

IND 0.955 0.020 0.025 1.985 0.030 0.0108 0.0105

The symbols C, O, and U denote the proportion of correct fitting, overfitting, and underfitting, respectively.
The TP and FP denote the average numbers of true positives and false positives, respectively. The columns
PQIF and ORACLE report the median of squared errors (MSEs) of the penalized and oracle estimates

ISE (ĝ) = (nm)−1
∑n

i=1

∑m

j=1

{
ĝ
(
XT
i j β̂

PQIF
)

− g
(
XT
i jβ

0
)}2

,

ISE (̂αl) = (nm)−1
∑n

i=1

∑m

j=1

{
α̂l
(
Ti j
)− αl

(
Ti j
)}2

, l = 1, 2.

When n = 200, the averages of the ISEs for ĝ, α̂1, and α̂2 across 200 realizations are
0.100, 0.207 and 0.215, respectively. As the sample size increases to 500, the corre-
sponding averages of the ISEs decrease to 0.02, 0.048 and 0.048, which corroborates
the theoretical results in Theorem 2.

Example 2 This example addresses the case where the covariates are correlated and
some are discrete. To this end, we generate the response observations usingmodel (17)
with the same true parameters, nonparametric functions, and distribution of variable
Ti j as those given in Example 1. In addition, the covariates

(
Zi j,1 . . . , Zi j,7

)T are sim-
ulated from amultivariate normal distribution with mean zero, marginal variance 0.52,
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Table 3 Variable selection and estimation results for β0 and α0 with the exchangeable (EX), AR(1), and
independent (IND) working correlation structures in Example 2

Variable selection and parameter estimation

C O U TP FP PQIF ORACLE

EX 0.975 0.002 0.023 2.973 0.009 0.0108 0.0104

β0 AR(1) 0.970 0.005 0.025 2.973 0.015 0.0136 0.0128

IND 0.960 0.015 0.025 2.973 0.045 0.0170 0.0155

EX 0.910 0.080 0.010 1.991 0.109 0.0132 0.0126

α0 AR(1) 0.905 0.085 0.010 1.986 0.120 0.0145 0.0137

IND 0.900 0.085 0.015 1.982 0.127 0.0168 0.0141

The symbols C, O, and U denote the proportion of correct fitting, overfitting, and underfitting, respectively.
The TP and FP denote the average number of true positives and false positives, respectively. The columns
PQIF and ORACLE report the median of squared errors (MSEs) of the penalized and oracle estimates

and AR(1) correlation matrix with autocorrelation coefficient 0.3, while the covariate
Zi j,8 is generated from Bernoulli(0.5). Moreover, the covariates

(
Xi j,1 . . . , Xi j,7

)T

are simulated from the same distribution as that of
(
Zi j,1 . . . , Zi j,7

)T. To assess the
robustness of estimates against the working correlation, we consider three different
working correlation structures: independent (IND), exchangeable (EX), and AR(1),
whereas the data are simulated from the exchangeable setting.

Table 3presents variable selection and estimation results forβ0 andα0 withn = 500
in 200 realizations. They indicate that the proportions of correctly fitted models are
closer to one and the proportions of overfitted and underfittedmodels are closer to zero.
In addition, the number of true positives is closer to the correct number of nonzero
parameters and the number of false positives is small. Moreover, the MSE values of
the PQIF and ORACLE estimates are similar, which confirms our theoretical results.

Example 3 In this example, within each cluster, the correlated binary responses Yi j
are generated from a marginal logit model,

logit P
(
Yi j =1

∣∣Xi j , Zi j , Ti j
)=g

(
XT
i jβ

0
)

+
∑5

l=1
αl
(
Ti j
)
Zi j,l +

∑7

l=6
α0
l Zi j,l ,

where g (U ) = 0.5 cos(2πU ), α1 (T ) = 0.7 cos(2πT ), α2 (T ) = 0.7 sin(2πT ),
αl (·) = 0 for 3 ≤ l ≤ 5, β0 = 1√

22
(3, 3, 2)T, α0 = (α6, α7)

T = (−0.5, 0.4)T,

j = 1, . . . , 5, i = 1, . . . , n, and n = 200 and 500. In addition, the binary responses are
generated from an exchangeable correlation structure with the correlation parameter
0.15.Moreover, covariates Xi j , Ti j and Zi j are independently simulated from the same
distributions as given in Example 1.

To assess the selection performance for varying coefficient components, we conduct
200 realizations. Table 4 reports the selection and estimation results for the varying
coefficients with covariates

(
Zi j,1, . . . , Zi j,5

)T. It shows that the proportions of correct
fittings are close to 1 (above 95%) for all the three correlation structures for n = 500,
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Table 4 Variable selection and estimation results for the varying coefficient functions αl (T ) with the
exchangeable (EX), AR(1), and independent (IND) working correlation structures in Example 3

n Variable selection and estimation

C O U TP FP

EX 0.525 0.280 0.195 1.809 0.418

200 AR(1) 0.510 0.290 0.200 1.785 0.425

IND 0.495 0.290 0.215 1.755 0.427

EX 0.955 0.010 0.035 1.955 0.010

500 AR(1) 0.945 0.000 0.055 1.945 0.000

IND 0.955 0.015 0.030 1.955 0.015

The symbols C, O, and U denote the proportion of correct fitting, overfitting, and underfitting, respectively.
The TP and FP denote the average of true positives and the average of false positives

while they are relatively low for n = 200 . The high proportion of correct fitting in the
large sample size corroborates themodel selection consistency established in Theorem
4. In addition, the number of true positives gets closer to 2, and the number of false
positives decreases to zero, as the sample size n increases.

In addition to varying coefficient components, we next study the performance of
parametric components. Table 5 shows the MSEs of the parameter estimates and the
empirical coverage probabilities of the 95% confidence intervals for the parametric
components. All three working correlation structures result in similar average MSE
values for both parameter estimates of β and α. Furthermore, theMSE values decrease
as n increases, which confirms the consistency property of the parameter estimates.
Moreover, the empirical coverage probabilities get closer to the nominal coverage
level of 95% as n increases, which corroborates the asymptotic normality of the
parameter estimators. Next, we assess the overall model fitting. To this end, we define
the model error (ME) as the average of the squared difference of the estimated and
true conditional means of Yi j . Figure 1 depicts the boxplots of the model errors by
comparing the PQIF and oracle (OR) estimates, where OR is computed by assuming
the true model is known a priori. It is not surprising that the model errors of the oracle
estimates are smaller than those of the PQIF estimates. As the sample size gets large,
however, the model errors of PQIF and OR are very similar. It is also noteworthy that
the model errors are small even though n = 200, which demonstrates the accuracy of
PQIF estimates.

Remark To study the performance of the proposed estimation and selection methods
in scenario (iii), we generate data from the following model:

logit P
(
Yi j =1

∣
∣Xi j , Zi j , Ti j

)=g
(
XT
i jβ

0
)

+
∑5

l=1
αl
(
Ti j
)
Zi j,l +

∑9

l=6
α0
l Zi j,l ,

where β0 = 1√
22

(3, 3, 2, 0, 0, 0, 0)T, α0 = (α6, α7, α8, α9)
T = (−0.5, 0, 0, 0.4)T,

and αl (T ) are defined as Example 2 for 1 ≤ l ≤ 5. In addition, covariates Xi j , Ti j and
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Table 5 The average MSEs of the parameter estimates for β = (β1, β2, β3)
T and α = (α6, α7)

T and
the empirical coverage probabilities (CP) of the 95% confidence intervals for parameters (β1, β2, β3) and
(α6, α7) based on 200 realizations in Example 3

n MSE CP

β α β1 β2 β3 α6 α7

EX 0.0168 0.0267 0.855 0.865 0.835 0.915 0.935

200 AR(1) 0.0170 0.0269 0.855 0.825 0.865 0.915 0.925

IND 0.0171 0.0271 0.865 0.865 0.860 0.910 0.940

EX 0.0047 0.0073 0.955 0.935 0.925 0.920 0.940

500 AR(1) 0.0050 0.0078 0.955 0.920 0.920 0.915 0.945

IND 0.0051 0.0078 0.960 0.935 0.925 0.920 0.950

Fig. 1 Boxplots of the model
errors calculated from the PQIF
and oracle (OR) estimates with
the EX, AR(1) and IND working
correlation structures for
n = 200 (top panel) and
n = 500 (bottom panel)
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Zi j are independently simulated from the same distributions as given in Example 2,
and Yi j have the same correlation structure as given in Example 2. Since Monte Carlo
results show similar findings as those in Examples 1 and 2, we do not present them
here.

5.2 Empirical example

FollowingKlein et al. (1984), we consider a data set from theWisconsin epidemiologic
study of diabetic retinopathy (WESDR). The aim of this study is to investigate the
risk factors for diabetic retinopathy. The response is a binary variable indicating the
presence of diabetic retinopathy in each of two eyes from 720 individuals in the study.
In addition, the data set contains 13 risk factors including: eye refractive error, eye
intraocular pressure, age at diabetes diagnosis (years), duration of diabetes (years),
glycosylated hemoglobin level, systolic blood pressure, diastolic blood pressure, body
mass index , pulse rate (beats/30 s), sex (male=1, female=2), proteinuria (absent=0,
present=1), doses of insulin per day taken by the patient, and type of county of
residence (urban=1, rural=2).

Based on a preliminary fitting of the data to a logistic linear regression model, we
found that there exist significant interaction effects between the logarithm of diabetes’
duration, respectively,withglycosylated hemoglobin level, systolic blood pressure, and
diastolic blood pressure, where the logarithmic transformation of diabetes duration is
used to amend its right skewness. This motivates us to consider Zi j,1 = glycosylated
hemoglobin level, Zi j,2 = systolic bloodpressure, and Zi j,3 =diastolic bloodpressure
as the covariates associated with their corresponding varying coefficients αl

(
Ti j
)

(l = 1, 2, 3), where Ti j = logarithm of diabetes duration. We then assign the rest
of the continuous variables to be index covariates such that Xi j,1 = age at diagnosis
of diabetes , Xi j,2 = body mass index , Xi j,3 = eye refractive error, Xi j,4 = eye
intraocular pressure , and Xi j,5 = pulse rate. The remaining categorical variables,
Zi j,4 = sex, Zi j,5 = proteinuria, Zi j,6 = doses of insulin, and Zi j,7 = type of county
of residence, are used as the covariates in the linear part with constant coefficients. As
a result, we fit the data with the following equation,

ηi j = logit(μi j ) = g
(
Xi j,1β1 + · · · + Xi j,5β5

)

+
∑3

l=1
αl
(
Ti j
)
Zi j,l +

∑7

l=4
αl Zi j,l , (18)

where j = 1, 2, i = 1, . . . , 720. It is worth noting that we only consider IND and
EX correlation structures since there are two repeated measurements for each subject
and the results are the same for EX and AR(1) structures. In addition, all continuous
variables are centered and standardized for parameter estimation.

By applying the penalizedQIFmethod in Sect. 4.1, two index variables (Xi j,1 = age
at diabetes diagnosis and Xi j,2 = body mass index) and one linear variable (Zi j,5 =
proteinuria) are selected under the IND and EX working correlation structures. Table
6 presents the parameter estimates (EST) and their standard errors (SE) for the selected
variables. The resulting Wald test statistics show that these variables are significant
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Table 6 The PQIF estimates (EST) and their associated standard errors (SE) of regression coefficients for
the selected variables, respectively, under the IND and EX working correlation structures for the Wisconsin
epidemiologic study

β1 β2 α5

IND EST 0.303 0.953 0.307

SD 0.132 0.042 0.099

EX EST 0.447 0.894 0.311

SD 0.151 0.075 0.103

at the 5% level. Furthermore, the estimated coefficient of proteinuria (0.307 in IND
and 0.311 in EX) indicates that the presence of diabetic retinopathy is approximately
exp (0.31) = 1.35 times as frequent among proteinuria than among no-proteinuria,
after adjusting for the other variables in the model.

Next, we plot the estimated index functions ĝ (·) against the variables of age at
diabetes diagnosis and body mass index, respectively, by setting the rest of their cor-
responding index components to zero. Figure 2 depicts the estimated functions ĝ (·)
under the IND and EX working correlation structures. The function ĝ (·) displays a
quadratic pattern over the body mass index, which is consistent with the findings of
Barnhart and Williamson (1998) and Lian et al. (2013). For example, under the EX
structure, the value of ĝ (·) above 0 indicates that the presence of diabetic retinopa-
thy is higher when body mass index lies between 2.854 and 6.397 than in the tail
regions (i.e., 2.042 to 2.854 and 6.397 to 7.228). It is interesting to note that ĝ (·) also
exhibits a quadratic pattern across the variable of age at diabetes diagnosis, and the
value of ĝ (·) above 0 shows that the presence of diabetic retinopathy is higher when
age ranges between 5.1 and 25.1 than in the tail regions (i.e., 0.4 to 5.1 and 25.1 to
29.9). Accordingly, it is not surprising that the plot of ĝ (·) versus the index exhibits
a quadratic shape. In sum, the diabetic retinopathy risk is highest in this study among
people with middle values for body mass and middle values for age at diagnosis of
diabetes.

We finally present the graphs of the estimated varying coefficient functions α̂l (·)
(l = 1, 2, 3) against logarithm of diabetes duration under the EX structure. Since
the plots under the IND structure are similar to those under the EX structure, we omit
them. The varying coefficient functions in Fig. 3 exhibit strong nonlinear patterns.
Specifically, α̂1 (·) and α̂2 (·) indicate that coefficients are largest when the diabetes
duration is shortest, while α̂3 (·) has the largest coefficient around the middle values
of diabetes duration. Consequently, the associated coefficients for the variables gly-
cosylated hemoglobin level, systolic blood pressure, and diastolic blood pressure are
not constant across different durations.

6 Discussion

In this paper, we introduce a generalized semiparametric model emerging from gen-
eralized partially linear single-index models and varying coefficient models with
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Fig. 2 Plots of ĝ (·) against the variables body mass index and age at diabetes diagnosis, respectively,
under the IND and EX working correlation structures using the Wisconsin epidemiologic study

repeated measurements. For model estimation, we propose the profile QIF estima-
tor for the regression parameters and the QIF spline estimators for the index function
and varying coefficient functions. Formodel selections, penalized and group-penalized
estimation procedures are employed, respectively, for parametric and nonparametric
functions. In addition, asymptotic consistency is studied for the resulting estimators,
and asymptotic normality is further established for the parametric estimators for con-
ducting statistical inference such as Wald test. Moreover, we demonstrate the oracle
properties of the penalized estimators. Monte Carlo studies indicate that the proposed
estimators perform well.

In practice, there are a few possible approaches to fit the data with model (1). Based
on our limited experience, we propose the following procedures. First, place contin-
uous variables into the single-index component and put discrete variables into either
the varying coefficient component or the linear component. Second, for continuous
variables, plot the estimated mean of the response variable (or the estimated single-
index function) against each of them. If the plots of those variables do not depict
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Fig. 3 Plots of α̂l (·), l = 1, 2, 3, against the logarithm of diabetes duration under the EX working
correlation structure using the Wisconsin epidemiologic study

the nonlinear pattern, one can put them into either the varying coefficient component
or the linear component. Third, choose the varying coefficient index, which exhibits
possible interaction effects with those variables assigned in the varying coefficient
component.

To extend applications of the proposed generalized semiparametric model, we iden-
tify five future research topics. The first is to generalize the penalized quadratic infer-
ence function so that one is able to estimate and select the mean components and
correlation components, simultaneously. The second is to make inferences by testing
the parametric and nonparametric components. The third is to adapt the approach of
Stute andZhu (2005) and then develop a test for assessing the appropriateness ofmodel
(1). The fourth is to allow the nonparametric component to be a non-smooth function.
Finally, we propose applying the proposed model to the areas of quantile regression
and survival analysis. We believe that these efforts would broaden the usefulness of
the proposed model.
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Appendix

We begin this appendix by introducing necessary notations used in the following
proofs of theorems. For any positive numbers an and bn , let an � bn denote that
limn→∞ an/bn = c, where c is a positive constant, and let an ∼ bn denote that
limn→∞ an/bn = 1. In addition, let C (r) (S) = {φ ∣∣φ(r) ∈ C (S)

}
be the set of the r -

th order smooth functions φ on the support S. For any vector ζ = (ζ1, . . . , ζs)
T ∈ Rs ,

denote ‖ζ‖∞ = max (|ζ1| + · · · + |ζs |), and for any symmetric matrix A, denote
its Lr norm as ‖A‖r = maxζ∈Rs ,ζ �=0 ‖Aζ‖r ‖ζ‖−1

r . Moreover, for any matrix A =(
Ai j
)s,t
i=1, j=1, denote‖A‖∞ = max1≤i≤s

∑t
j=1

∣∣Ai j
∣∣ andA⊗2 = AAT.Todevelop the

theoretical results of the proposed estimators, we next present the following technical
conditions.

Regularity conditions

(C1) The density function fβTXi j

(
βTxi j

)
of random variable βTXi j is bounded away

from 0 on the support of βTXi j for β in a neighborhood of β0, and the density
function fTi j (t) of random variable Ti j is bounded away from 0 on the support
of Ti j .

(C2) The true functions g (u) and αl (t) satisfy g (u) ∈ C (r) (SU ) and αl (t)
∈ C (r) (ST ) for l = 1, . . . , d1 and given integer r > 3/2, where SU and ST

are the compact support sets of Ui j
(
β0) and Ti j , respectively. In addition, the

order of spline functions satisfies q ≥ r .
(C3) The eigenvalues of Mk , 1 ≤ k ≤ κ are bounded away from 0 and infinity. Let

Γ = (Γk,k′
)κ
k,k′=1 = (Γ j, j ′,k,k′

)m,κ

j, j ′=1,k,k′=1. For any 1 ≤ j ≤ m, and any given
vector a = (ak)κk=1 ∈ Rκ , there exist constants 0 < cΓ < CΓ < ∞, such that
cΓ

∑κ
k=1 a

2
k ≤∑κ

k,k′=1 akak′Γ j, j,k,k′ ≤ CΓ

∑κ
k=1 a

2
k .

(C4) The eigenvalues of E
(
(1, Z (1)T

i j )T(1, Z (1)T
i j )

∣∣Ui j (β
0) = u, Ti j = t

)
are uni-

formly bounded away from 0 and ∞ for all u∈SU and t ∈ ST , where
Z (1)
i j = (Zi j,1, . . . , Zi j,d1

)T.
(C5) The eigenvalues of ψ̇n

(
β0,α0

)
and Ψn

(
β0,α0

)
are bounded away from 0 and

infinity.

Conditions (C1) and (C2), which are given in Zhou et al. (1998), are typical assump-
tions in the nonparametric smoothing literature. Conditions (C3)–(C5) are needed for
the convergence rates of the parametric and nonparametric estimators as well as the
existence of asymptotic variances of the parametric estimators. It is worth noting that
Condition (C1) ensures that the density functions are bounded away from 0 in their
supports. In practice, we do not know the true support, and we may use minimum and
maximum as the bounded values of the support. In addition, the parameter estimators
and their asymptotic properties may not be valid in the case that Conditions (C2)–(C5)
are not satisfied.
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Proofs of Theorems 1 and 2

Before proving both theorems, we demonstrate the three lemmas given below.

Lemma 1 Under Conditions (C1) and (C4), for any a ∈ RJn , there exist constants
0 < c1 < C1 < ∞ such that for ∀β ∈ Θ and for sufficiently large n,

c1N
−1 ‖a‖2 ≤ aTE

{
Qi (β)T Qi (β)

}
a ≤ C1N

−1 ‖a‖2 , (19)

and

max
1≤J,J ′≤N+q

∣
∣∣n−1

∑n

i=1
B1,J (Ui (β))T B1,J ′ (Ui (β))

−E
{
B1,J (Ui (β))T B1,J ′ (Ui (β))

}∣∣∣

= Oa.s.

{√
(log n) / (nN )

}
,

max
1≤J,J ′≤N+q

∣
∣∣n−1

∑n

i=1
B2,J (Ti )

T B2,J ′ (Ti ) − E
{
B2,J (Ti )

T B2,J ′ (Ti )
}∣∣∣

= Oa.s.

{√
(log n) / (nN )

}
, (20)

where

BJ (Ui (β)) =
[{

B1,J (Ui1 (β)) , . . . , B1,J (Uim (β))
}T]

m×1
,

B2,J (Ti ) =
[{

B2,J (Ti1) , . . . , B2,J (Tim)
}T]

m×1
.

Proof By Theorem 5.4.2 of DeVore and Lorentz (1993) and Condition (C1), we have
that, for sufficiently large n and for any α = (α1, . . . αJn )

T∈RJn , there exist constants
0 < c∗

1 < C∗
1 < ∞ and 0 < c∗

2 < C∗
2 < ∞ such that

c∗
1N

−1
∑Jn

J=1
α2
J ≤ E

{∑Jn

J=1
αJ B1,J (Ui j (β

0))

}2
≤ C∗

1N
−1
∑Jn

J=1
α2
J and

(21)

c∗
2N

−1
∑Jn

J=1
α2
J ≤ E

{∑Jn

J=1
αJ B2,J

(
Ti j
)
}2

≤ C∗
2N

−1
∑Jn

J=1
α2
J . (22)

In addition, Condition (C4) implies that, for any ϑ = (ϑ0, ϑ1, . . . ϑd1)
T∈Rd1+1, there

exist constants 0 < c∗
3 < C∗

3 < ∞ such that

c∗
3

∑d1

l=0
ϑ2
l ≤ E

{(
ϑ0 +

∑d1

l=1
ϑl Zi j,l)

2|Ui j (β
0
)

, Ti j

}
≤ C∗

3

∑d1

l=0
ϑ2
l . (23)
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Let a = (aJ,l : 1 ≤ J ≤ Jn, 0 ≤ l ≤ d1
)
. After algebraic simplification, we have

aTE
{
Qi
(
β0)T Qi

(
β0)
}
a

=
∑m

j=1
aTE

{
Qi j
(
β0) Qi j

(
β0)T

}
a

=
∑m

j=1
E

[{∑Jn

J=1
aJ,0B1,J (Ui j (β

0))

}
+
∑d1

l=1

{∑Jn

J=1
aJ,l B2,J

(
Ti j
)
}
Zi j,l

]2

≤
∑m

j=1
C∗
3

[

E

{∑Jn

J=1
aJ,0B1,J (Ui j (β

0))

}2
+
∑d1

l=1
E

{∑Jn

J=1
aJ,l B2,J

(
Ti j
)
}2]

≤
∑m

j=1
C∗
3

{
C∗
1N

−1
∑Jn

J=1
α2
J + C∗

1N
−1
∑d1

l=1

∑Jn

J=1
a2J,l

}
,

where the first inequality of the above equation follows from (23) and the second
inequality follows from (21) and (22). By letting C1 = mC∗

3C
∗
1 , we then obtain that

aTE
{
Qi

(
β0
)T

Qi

(
β0
)}

a ≤ C1N
−1 ‖a‖2 .

Applying a similar approach, we can show that

aTE
{
Qi

(
β0
)T

Qi

(
β0
)}

a ≥ c1N
−1 ‖a‖2 .

This completes the proof of (19), and the result of (20 ) can be obtained by Bernstein’s
inequality from Bosq (1998). ��
Lemma 2 Under Conditions (C1)–(C4), we have (1)

∣∣̃g
(
u,β0,α0

)− g (u)
∣∣ =

Op
(√

N/n + N−r
)
and

∣∣̃g′ (u, β0,α0
)− g′ (u)

∣∣ = Op

(√
N 3/n + N−r+1

)
uni-

formly in u ∈ SU ; and (2) |̃αl
(
t,β0,α0

) − αl (t) | = Op
(√

N/n + N−r
)
and

∣∣̃α′
l

(
t,β0,α0

)− α′
l (t)
∣∣ = Op

(√
N 3/n + N−r+1

)
uniformly in t ∈ ST , for 1 ≤

l ≤ d1.

Proof For the sake of simplicity and with a slight abuse of notations, we denote γ̃ =
(
γ̃ T
0 , . . . , γ̃ T

d1

)T = γ̃
(
β0,α0

)
, φ̃0

n =
{(

φ̃0
n,1

)T
, . . . ,

(
φ̃0
n,κ

)T
}T

= φ̃n
(
γ 0,β0,α0

)
,

and C̃0
n = C̃n

(
γ 0,β0,α0

)
. According to the result on page 149 of de Boor (2001),

for g and αl satisfying Condition (C2), there exists γ 0
l ∈ RJn such that

sup
u∈SU

∣∣∣g (u) − g0 (u)

∣∣∣ = O
(
N−r ) and sup

t∈ST

∣∣∣αl (t) − α0
l (t)

∣∣∣ = O
(
N−r ) , (24)

where g0 (u) = B1 (u)T γ 0
0 and α0

l (t) = B2 (t)T γ 0
l . Let γ 0 =

(
γ 0T
0 , . . . , γ 0T

d1

) T
,

and we then show that
∥∥γ̃ − γ 0

∥∥∞ = oa.s. (1). By the same arguments as given in
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Qu and Li (2006), we know that the global minimum for Q̃n
(
γ ,β0,α0

)
given in (7)

exists. As a result, we only need to demonstrate that the minimizer γ̃ remains inside
of Sγ 0 , where Sγ 0 is any neighborhood of γ 0.

Let

�̃n

(
γ ,β0,α0

)
=
∥∥∥∥n

−1
{
EC̃n

(
γ ,β0 ,α0

)}−1/2 {
E φ̃n

(
γ ,β0,α0

)}∥∥∥∥ ;

it is noteworthy that �̃n
(
γ ,β0,α0

)
is a continuous function in γ . By (19) and (24),

we have

∥∥∥
∥ECn

(
γ 0,β0 ,α0

)1/2∥∥∥
∥
2

� κ

∥∥∥
∥∥

[
E

{
Qi

(
β0
)T

Qi

(
β0
)}]1/2

∥∥∥
∥∥
2

� N−1/2

and
∥∥Eφn

(
γ ,β0,α0

)∥∥
2 = O(N−r−1/2). Therefore,

�n

(
γ ,β0,α0

)
≤
∥∥∥∥ECn

(
γ 0,β0,α0

)1/2∥∥∥∥

−1

2

∥∥∥Eφn

(
γ ,β0,α0

)∥∥∥
2

= O(N 1/2N−r−1/2) = o (1) .

Assume that γ̃ ∈ SC
γ 0 , where SC

γ 0 is complement of Sγ 0 . Then, there exists a constant
0 < C < ∞, such that

�̃n

(
γ̃ ,β0 ,α0

)
=
∥∥∥∥n

−1
{
EC̃n

(
γ̃ ,β0,α0

)}−1/2 {
E φ̃n

(
γ̃ ,β0,α0

)}∥∥∥∥ > C. (25)

Since γ̃ is the minimizer of Q̃n
(
γ ,β0,α0

)
, we have that

∥∥∥
∥n

−1C̃n

(
γ̃ ,β0,α0

)−1/2
φ̃n

(
γ̃ ,β0,α0

)∥∥∥
∥

≤
∥∥∥∥n

−1C̃n

(
γ 0,β0 ,α0

)−1/2
φ̃n

(
γ 0 ,β0,α0

)∥∥∥∥ .

By the strong law of large numbers, we further obtain

∥
∥∥∥n

−1C̃n

(
γ 0,β0,α0

)−1/2
φ̃n

(
γ 0,β0,α0

)∥∥∥∥

→
∥∥∥∥n

−1
(
EC̃0

n

)−1/2 (
E φ̃0

n

)∥∥∥∥ = o (1) ,

almost surely. Thus,
∥∥∥n−1C̃n

(
γ̃ ,β0,α0

)−1/2
φ̃n
(
γ̃ ,β0,α0

)∥∥∥ = o (1). Recall that

φ̃n

(
γ ,β0,α0

)
= n−1

∑n

i=1
φ̃in

(
γ ,β0,α0

)
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as given in (6). It is also worth noting that φ̃in
(
γ ,β0,α0

)
is a continuous function of

γ , and, for all γ ∈ SC
γ 0 , there exists 0 < C∗ < ∞ such that

∣∣∣
∣∣∣φ̃n

(
γ ,β0,α0

)∣∣∣
∣∣∣

≤ n−1{
∑n

i=1
φ̃in (γ ,β0,α0)Tφ̃in (γ ,β0,α0)}1/2

≤ C∗n−1(nκ Jn(1 + d1))
1/2.

Then, by the uniform law of large numbers, we have

sup
γ∈SC

γ 0

||φ̃n

(
γ ,β0,α0

)
− E φ̃n

(
γ ,β0,α0

)
|| = oa.s. (1) .

This, together with the continuous mapping theorem, leads to

∣∣∣
∣n

−1C̃n

(
γ̃ ,β0,α0

)−1/2
φ̃n

(
γ̃ ,β0,α0

)
− �̃n

(
γ̃ ,β0,α0

)∣∣∣
∣ = oa.s. (1) ,

which contradicts with (25). Consequently, γ̃ remains inside of S γ 0 .
Using the above result and the Taylor expansion, we have

γ̃ − γ 0=−
{
∂2 Q̃n

(
γ 0,β0,α0

)
/∂γ ∂γ T

}−1 {
∂ Q̃n

(
γ 0,β0,α0

)
/∂γ

} (
1+op (1)

)
.

Let

Ωn =
⎛

⎜
⎝

Ωn,1
...

Ωn,κ

⎞

⎟
⎠=n−1

∑n

i=1

⎡

⎢
⎢
⎣

Qi
(
β0)T ΔiΛ1ΔiQi

(
β0)

...

Qi
(
β0)T ΔiΛκΔiQi

(
β0)

⎤

⎥
⎥
⎦

κ Jn(1+d1)×Jn(1+d1)

and

Ξn = n−2

×
∑n

i=1

⎡

⎢
⎢
⎣

Qi
(
β0)T ΔiΓ1,1ΔiQi

(
β0) · · · Qi

(
β0)T ΔiΓ1,κΔiQi

(
β0)

...
. . .

...

Qi
(
β0)T ΔiΓκ,1ΔiQi

(
β0) · · · Qi

(
β0)T ΔiΓκ,κΔiQi

(
β0)

⎤

⎥
⎥
⎦

κ Jn(1+d1)×κ Jn(1+d1)

.

By (24) and theweak lawof large numbers,we haveCn
(
γ 0,β0,α0

)=Ξn
(
1+op (1)

)
.

Thus,

∂Qn

(
γ 0,β0, α0

)
/∂γ = 2

{
∂φn

(
γ 0,β0,α0

)T
/∂γ

}
Ξ−1

n φn

(
γ 0,β0,α0

)

× (1 + op (1)
) = −2ΩT

n Ξ−1
n φ0

n

(
1 + op (1)

)
and

∂2Qn

(
γ 0,β0,α0

)
/∂γ ∂γ T = 2ΩT

n Ξ−1
n Ωn

(
1 + op (1)

)
. (26)
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As a result,

γ̃ − γ 0 =
(
n−1ΩT

n Ξ−1
n Ωn

)−1 (
n−1ΩT

n Ξ−1
n φ0

n

) (
1 + op (1)

)
. (27)

By (19), (20) and Condition (C3), it can be shown that, with probability approaching
1, ‖nΞn‖2 � N−1 and sup1≤k≤κ

∥
∥Ωn,k

∥
∥
2 � N−1, and thus

∥
∥n−1Ξ−1

n

∥
∥
2 � N .

Moreover, by (19),

∥∥
∥E (Ωn)

T E (Ωn)

∥∥
∥
2

=
∥∥∥
∥∥

∑κ

k=1
E

{
Qi

(
β0
)T

ΔiΛkΔiQi

(
β0
)}⊗2

∥∥∥
∥∥
2

� κ

∥∥∥∥E
{
Qi

(
β0
)T

Qi

(
β0
)}∥∥∥∥

2

2
� N−2.

This, together with (20), implies that, with probability approaching 1,
∥∥ΩT

n Ωn
∥∥
2 �

N−2. Accordingly, with probability approaching 1,

∥∥∥n−1ΩT
n Ξ−1

n Ωn

∥∥∥
2

� N
∥∥∥ΩT

n Ωn

∥∥∥
2

� N−1 and

∥∥∥∥
(
n−1ΩT

n Ξ−1
n Ωn

)−1
∥∥∥∥
2

� N .

(28)

Next, let μi = (μi1, . . . , μim)T. By ( 6), φ0
n,k can be decomposed into φ0

n,k,e +φ0
n,k,μ,

where

φ0
n,k,e = n−1

∑n

i=1
Qi

(
β0
)T

Δ̃i

(
γ 0,β0,α0

)
Λk (Yi − μi ) ,

φ0
n,k,μ = n−1

∑n

i=1
Qi

(
β0
)T

Δ̃i

(
γ 0,β0,α0

)
Λk

{
μi − μ̃i

(
γ 0 ,β0,α0

)}
.

Denote φ0
n,e =

{(
φ0
n,1,e

)T
, . . . ,

(
φ0
n,κ,e

)T
} T

and φ0
n,μ =

{(
φ0
n,1,μ

)T
, . . . ,

(
φ0
n,κ,μ

)T}T
. Accordingly, γ̃ − γ 0 = (γ̃ e + γ̃ μ

) (
1 + op (1)

)
, where γ̃ e = (n−1ΩT

n

Ξ−1
n Ωn

)−1 (
n−1ΩT

n Ξ−1
n φ0

n,e

)
and γ̃ μ = (n−1ΩT

n Ξ−1
n Ωn

)−1 (
n−1ΩT

n Ξ−1
n φ0

n,μ

)
. Let

C =
(
C
T
i j , 1≤ j ≤m, 1≤ i ≤n

)T
. Then, for any vector a ∈RJn(1+d1) with ‖a‖ = 1,

E
(
aTγ̃ e

) = 0, and (28) leads to

E

{(
aTγ̃ e

)2 |C
}

� aT
(
ΩT

n Ξ−1
n Ωn

)−1
a � Nn−1.

Thus, by the weak law of large numbers,
∣∣aTγ̃ e

∣∣ = Op
(
N 1/2n−1/2

)
. Furthermore,

with probability approaching 1, there exists a constant 0 < C < ∞, such that

∣∣
∣aTγ̃ μ

∣∣
∣ ≤ C

∥∥∥
∥
(
n−1ΩT

n Ξ−1
n Ωn

)−1
∥∥∥
∥
2

∥∥
∥n−1Ξ−1

n

∥∥
∥
2

sup
1≤k≤κ

∥∥Ωn,k
∥∥
2

∥∥
∥E
{
Qi j

(
β0
)}∥∥
∥

O
(
N−r ) = O

(
N−r ) .
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The above results imply
∣
∣aT
(
γ̃ − γ 0

)∣∣ = Op
(
N 1/2n−1/2 + N−r

)
. This, in conjunc-

tion with (24), ensures that
∣∣̃g
(
u,β0,α0

)− g (u)
∣∣ = Op

(
N 1/2n−1/2 + N−r

)
uni-

formly for every u ∈ SU and
∣∣̃αl
(
t,β0,α0

)− αl (t)
∣∣ = Op

(
N 1/2n−1/2 + N−r

)

uniformly for every t ∈ ST .
To show the second part of the lemma, we employ the results on page 116 of de Boor

(2001) and obtain that g̃′ (u,β0,α0
) = B∗

1 (u)T D1γ̃ 0
(
β0,α0

)
and α̃′

l

(
t, β0,α0

) =
B∗
2 (t)T D1γ̃ l

(
β0,α0

)
,where B∗

1 (u) =
{
B∗
1,J (u) : 1 ≤ J ≤ N + q − 1

}T
is the (q−

1)-th orderB-spline basis, andD1=[(q−1)
{(−D, 0(Jn−1)

)+(0(Jn−1),D
)}]

(Jn−1)×Jn
,

D =diag
(
d1, . . . , dN+q−1

)
, dJ = (

ξq−1+J − ξJ
)−1 for 1 ≤ J ≤ N + q − 1,

and 0(Jn−1) is the (N − 1) dimensional vector with “0 ” elements, and B∗
2 (t) is

defined in the same way. It is easy to prove that ‖D1‖∞ = O (N ). Applying sim-
ilar techniques to those used in the proofs for g̃

(
u,β0,α0

)
and α̃l

(
t,β0,α0

)
, we

have that
∣∣̃g′ (u,β0 ,α0

)− g′ (u)
∣∣ = Op

(√
N 3/n + N−r+1

)
uniformly in u ∈ SU

and
∣∣̃α′

l

(
t,β0,α0

)− α′
l (t)
∣∣ = Op

(√
N 3/n + N−r+1

)
uniformly in t ∈ ST , for

1 ≤ l ≤ d1, which completes the proof. ��

Lemma 3 Under Conditions (C1)–(C4), we have that

∂η̂i j
(
β0, α0

)

∂
(
βT−1, αT

)T =
{
g̃′ (XT

i jβ
0,β0 , α0

)
X̂T
i jJ

0, Ẑ (2)T
i j

}T+Op

(
N−r+1 + N 3/2n−1/2

)
.

Proof By (8), we obtain

∂η̂i j
(
β0,α0

)

∂
(
βT−1,α

T
)T =

⎡

⎣
g̃′
(
XT
i jβ

0 ,β0,α0
)
X̂T
i jJ

0 + {Qi j (β)T
(
∂ γ̃ (β,α) /∂βT−1

)}T

Z (2)
i j +

{
Qi j (β)T

(
∂ γ̃ (β,α) /∂α

T
)}T

⎤

⎦ .

From (27), it can be shown that

Qi j

(
β0
)T (

∂ γ̃
(
β0,α0

)
/∂βT−1

)

= −Qi j

(
β0
)T (

n−1ΩT
n Ξ−1

n Ωn

)−1 (
n−1ΩT

n Ξ−1
n

)

×n−1
∑n

i=1
Qi

(
β0
)T

ΔiΛkΔi

{
g0′
(
Ui j

(
β0
))

Xi j , 1 ≤ j ≤ m
}T

J0

+Op

(
N 1/2n−1/2 + N−r

)

= −
{
Qi j

(
β0
)T

η̂s, 1 ≤ s ≤ p

}
J0 + Op

(
N 1/2n−1/2 + N−r

)
,
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where g0′
(
Ui j
(
β0)) = B ′

1

(
Ui j
(
β0))T γ 0

0 and

ζ̂ s =
(
n−1ΩT

n Ξ−1
n Ωn

)−1 (
n−1ΩT

n Ξ−1
n

)

× n−1
∑n

i=1
Qi

(
β0
)T

ΔiΛkΔi

{
g0′
(
Ui j

(
β0
))

Xi j,s, 1 ≤ j ≤ m
}T

.

Furthermore, by Lemma 2, we have that

Qi j

(
β0
)T

ζ̂ s = g̃′ (XT
i jβ

0,β0,α0
)
Qi j

(
β0
)T

ϑ̂s + Op

(
N−r+1 + N 3/2n−1/2

)
,

where

ϑ̂s =
(
n−1ΩT

n Ξ−1
n Ωn

)−1 (
n−1ΩT

n Ξ−1
n

)
n−1

∑n

i=1
Qi

(
β0
)T

ΔiΛkΔi Xi ·,s,
(29)

and Xi ·,s = {Xi j,s, 1 ≤ j ≤ m
}T. Thus,

Qi j

(
β0
)T (

∂ γ̃
(
β0,α0

)
/∂β

T

−1

)

= −g̃′ (XT
i jβ

0,β0,α0
){

Qi j

(
β0
)T

ϑ̂s : 1 ≤ s ≤ p

}
J0

+Op

(
N−r+1 + N 3/2n−1/2

)
.

Analogously, we can demonstrate that

Qi j

(
β0
)T (

∂ γ̃
(
β0,α0

)
/∂α

T
)

= −
{
Qi j

(
β0
)T

η̂l : d1 + 1 ≤ l ≤ d

}
+ Op

(
N−r+1 + N 3/2n−1/2

)
.

Accordingly,

∂η̂i j
(
β0,α0

)

∂
(
βT−1,α

T
)T =

{
g̃′ (XT

i jβ
0,β0 , α0

)
X̂T
i jJ

0, Ẑ (2)T
i j

}T + Op

(
N−r+1 + N 3/2n−1/2

)
,

which completes the proof. ��
Proof of Theorem 1 Let θ̂ =

(
β̂

T
−1, α̂

T
)T

and θ0 = (β0T−1,α
0T
)T
. Let S(θ0) be any

open set that includes θ0.We use the same technique given in the proofs of LemmaA.2
to show that θ̂ remains inside of S(θ0), so that ||̂θ − θ0|| = oa.s.(1). In the following,
we demonstrate the asymptotic normality of θ̂ . By the Taylor expansion, we have

θ̂ − θ0 = −
{
∂2Q∗

n

(
β0,α0

)
/∂θ∂θT

}−1 {
∂Q∗

n

(
β0, α0

)
/∂θ
} {

1 + op (1)
}
.
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Define ψ̇∗
n (β,α) =

{
ψ̇∗
n,1 (β,α) , . . . , ψ̇∗

n,κ (β,α)
}T

, where

ψ̇∗
n,k (β,α) = n−1

∑n

i=1
D̂T
i (β,α) Δi (β,α)ΛkΔi (β,α) D̂i (β,α) .

By the definition of Q∗
n

(
β0, α0

)
given in (9), it can be shown that

∂Q∗
n

(
β0,α0

)
/∂θ = −2ψ̇∗

n

(
β0,α0

)T
Ψ ∗
n

(
β0,α0

)−1
ψ∗
n

(
β0,α0

)
+ Op

(
n−1
)

and ∂2Q∗
n

(
β0,α0

)
/∂θ∂θT=2ψ̇∗

n

(
β0,α0

) T
Ψ ∗
n

(
β0,α0

)−1
ψ̇∗
n

(
β0,α0

)
+op (1) .

By Lemmas 2 and 3, we have that

ψ̇∗
n

(
β0,α0

)
= ψ̇n

(
β0,α0

)
+ Op

(
N 3/2n−1/2 + N−r+1

)
and (30)

nΨ ∗
n

(
β0,α0

)
= Ψn

(
β0,α0

)
+ Op

(
N 3/2n−1/2 + N−r+1

)
. (31)

The above results imply that

∂2Q∗
n

(
β0,α0

)
/∂θ∂θT = 2nψ̇n

(
β0,α0

)T
Ψn

(
β0,α0

)−1
ψ̇n

(
β0,α0

)
+ op (n) .

(32)

We next define ψn (β,α) = {ψn,1 (β,α)T , . . . , ψn,κ (β,α)T
}T
, where

ψn,k (β,α) = n−1
∑n

i=1
DT
i (β,α)Δi (β,α)ΛkΔi (β,α) (Yi − μi ) .

Then, for N 4n−1 = o (1), N−4r+2n = o (1)with r > 3/2, and 1 ≤ k ≤ κ , we employ
Lemma 2 and obtain

ψ∗
n,k

(
β0,α0

)
− ψn,k

(
β0,α0

)

= n−1
∑n

i=1

{
D̂T
i (β,α) − DT

i (β,α)
}

Δi (β,α) Λk (Yi − μ̂i ( β,α))

+ n−1
∑n

i=1
DT
i ( β,α)Δi (β,α) Λk (μi (β,α) − μ̂i (β,α))

= Op

(
N 3/2n−1/2 + N−r+1

)
Op

(
n−1/2 + N 1/2n−1/2 + N−r

)

+ Op

(
n−1/2

)
Op

(
N 1/2n−1/2 + N−r

)

= op
(
n−1/2

)
. (33)
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By (30), (31) and (33),

∂Q∗
n

(
β0,α0

)
/∂θ = −2nψ̇n

(
β0,α0

)T
Ψn

(
β0,α0

)−1
ψn

(
β0,α0

)
+ op

(
n1/2

)
.

(34)

This, together with (32), leads to

θ̂ − θ0 =
{
˜̇ψn

(
β0,α0

)T
Ψ̃n

(
β0,α0

)−1 ˜̇ψn

(
β0,α0

)}−1

×
{
˜̇ψn

(
β0,α0

)T
Ψ̃n

(
β0,α0

)−1
ψ̃n

(
β0,α0

)}
+ op

(
n−1/2

)
.

By the Lindeberg–Feller Central Limit Theorem and Condition (C5), we then obtain
the asymptotic normality of θ̂ − θ0 presented in Theorem 1. ��
Proof of Theorem 2Applying Lemma 2 and the fact that

∥∥
(
β̂
T
, α̂T
)T−(β0T,α0T

)T ∥∥

= Op
(
n−1/2

)
, we are able to prove this theorem straightforwardly. ��

Proof of Theorem 3

We consider the three steps given below to show the oracle properties of the PQIF
estimators.

Step I Find the convergence rate of

{(
β̂
PQIF
−1

)T
,
(
α̂PQIF

)T
}T

. Let β̃−1 = β0−1 +

n−1/2v−1 = (
β̃2, . . . , β̃p

)T
, β̃1 =

√
1 − ∥∥β̃−1

∥∥2, β̃ =
(
β̃1, β̃

T
−1

)T
, and α̃ =

α0 + n−1/2w = (
α̃d1+1, . . . , α̃d

)T, where v = (
v1, vT−1

)T = (v1, . . . , vp)
T,

w = (wd1+1, . . . , wd)
T, and ‖v‖2 = ‖w‖2 = C for some positive constant C .

Denote θ̃ =
(
β̃
T
−1, α̃

T
)T

, θ = (
βT−1,α

T
)T
, Q̇∗

n (β,α) = ∂Q∗
n (β,α) /∂θ , and

Q̈∗
n (β,α) = ∂2Q∗

n (β,α) /∂θ∂θT. Then,

Q∗
n

(
β̃, α̃

)− Q∗
n

(
β0,α0

)
=
(
θ̃ − θ0

)T
Q̇∗

n

(
β0,α0

)
+ 1

2

(
θ̃ − θ0

)T

× Q̈∗
n

(
β∗,α∗) (θ̃ − θ0

)
, (35)

for some
(
β∗T,α∗T)T that lies between

(
β0T,α0T

)T
and
(
β̃
T
, α̃T
)T

. By (32) and (34),

we have, with probability approaching 1,

(
θ̃ − θ0

)T
Q̈∗

n

(
β∗,α∗) (θ̃ − θ0

)

=
(
θ̃ − θ0

)T
Q̈∗

n

(
β0,α0

) (
θ̃ − θ0

)
+ O

(
C3n−1/2

)
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� 2n
(
θ̃ − θ0

)T
ψ̇n

(
β0,α0

)T
Ψn

(
β0,α0

)−1
ψ̇n

(
β0, α0

) (
θ̃ − θ0

)

+ o
(
C2
)

+ O
(
C3n−1/2

)

� C2 + O
(
C3n−1/2

)

and
(̃
θ − θ0

) T
Q̇∗

n

(
β0,α0

) = Op (C).

Next, let an = max2≤s≤p

{∣∣∣p′
λn1

(∣∣β0
s

∣∣)
∣∣∣ , β0

s �= 0
}
, bn = max2≤s≤p

{ ∣∣∣p′′
λn1

(∣∣β0
s

∣∣)
∣∣∣,

β0
s �= 0

}
, cn = maxd1+1≤l≤d

{∣∣
∣p′

λn2

(∣∣α0
l

∣∣)
∣∣
∣ , α0

l �= 0
}
, and dn = maxd1+1≤l≤d

{∣∣
∣p′′

λn2
(∣∣α0

l

∣∣)
∣
∣∣, α0

l �= 0
}
. Under the assumptions that λn1 → 0 and λn2 → 0, we have that

an = 0 and cn = 0. From the Taylor expansion and the Cauchy–Schwarz inequality,
as n → ∞, we further have that

−
{

n
p∑

s=2

pλn1

(∣∣β̃s
∣∣)− n

p∑

s=2

pλn1

(∣∣∣β0
s

∣∣∣
)}

−
⎧
⎨

⎩
n

d∑

l=d1+1

pλn2 (|̃αl |) − n
d∑

l=d1+1

pλn2

(∣∣
∣α0

l

∣∣
∣
)
⎫
⎬

⎭

≤ −n
p1∑

s=2

{
pλn1

(∣∣β̃s
∣∣)− pλn1

(∣∣∣β0
s

∣∣∣
)}

− n
d1+d20∑

l=d1+1

{
pλn2 (|̃αl |) − pλn2

(∣∣∣α0
l

∣∣∣
)}

≤ n
(
n−1/2√p1an ‖v−1‖2+n−1bn ‖v−1‖22+n−1/2

√
d20cn ‖w‖2 + n−1dn ‖w‖22

)

≤ C2 (bn + dn) . (36)

When bn → 0, dn → 0, and C is sufficiently large, the second term on the right-hand
side of (35) dominates its first term and (36). Accordingly, for any give ν > 0, there
exists a large constant C̃ such that,

P

{
inf
V12

L∗
n

(
β0 + n−1/2v, α0 + n−1/2w

)
> L∗

n

(
β0,α0

)}
≥ 1 − ν,

as n → ∞, where V12 =
{(
vT,wT

)T : ‖v‖ = C̃ and ‖w‖ = C̃
}
. Consequently, the

rate of convergence of

{(
β̂
PQIF
−1

)T
,
(
α̂PQIF

)T
}T

is Op
(
n−1/2

)
.

Step II Demonstrate the sparsity of

{(
β̂
PQIF
−1

)T
,
(
α̂PQIF

)T
}T

. Assume that β(1) =
{
β1,
(
β(1),−1

)T}T and α(1) satisfy
∥∥∥β(1) − β0

(1)

∥∥∥ = Op
(
n−1/2

)
and

∥∥∥α(1) − α0
(1)

∥∥∥ =
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Op
(
n−1/2

)
, respectively. We then show, with probability tending to 1, that

L∗
n

{(
β(1)
0

)
,

(
α(1)
0

)}
= min

C
L∗
n

{(
β(1)
β(2)

)
,

(
α(1)
α(2)

)}
, (37)

as n → ∞, where C =
{
( βT

(2),α
T
(2))

T : ∥∥β(2)

∥∥ ≤ C∗n−1/2 and
∥∥α(2)

∥∥ ≤ C∗n−1/2
}

and C∗ is a positive constant.
When βs �= 0, one has ∂L∗

n (β,α) /∂βs = ∂Q∗
n (β,α) /∂βs +np′

λn1
(|βs |) sgn (βs).

By (34), it can be shown that ∂Q∗
n (β,α) /∂βs = Op

(
n1/2

)
. Thus,

∂L∗
n (β,α) /∂βs = nλn1

{
λ−1
n1 n

−1/2 + λ−1
n1 p′

λn1
(|βs |) sgn (βs)

}
.

Using the fact that lim infn→∞ lim infβs→0+ λ−1
n1 p′

λn1
(|βs |) > 0 and n−1/2λ−1

n1 → 0,
we further obtain ∂L∗

n (β,α) /∂βs > 0 for βs > 0 and ∂L∗
n (β,α) /∂βs < 0 for

βs < 0. Analogously, we can demonstrate that ∂L∗
n (β,α) /∂αl > 0 for αl > 0 and

∂L∗
n (β, α) /∂αl < 0 for αl < 0. Consequently, the minimum of L∗

n (β,α) is attained
at β(2) = 0 and α(2) = 0, which proves (37). This, together with the result of Step

I, implies that, with probability tending to 1, β̂
PQIF
(2) = 0 and α̂

PQIF
(2) = 0, as n → ∞.

This completes the proof of part (i) in Theorem 3.

Step III Demonstrate the asymptotic normality of β̂
PQIF
(1),−1 and α̂

PQIF
(1) . Define

Rλn1 =
{
p′
λn1

(∣∣∣β0
2

∣∣∣
)
sgn
(
β0
2

)
, . . . , p′

λn1

(∣∣∣β0
p1

∣∣∣
)
sgn
(
β0
p1

)}T
,

Σλn1 = diag
{
p′′
λn1

(∣∣∣β0
2

∣∣∣
)

, . . . , p′′
λn1

(∣∣∣β0
p1

∣∣∣
)}

,

Rλn2 =
{
p′
λn2

(∣∣∣α0
d1+1

∣
∣∣
)
sgn
(
α0
d1+1

)
, . . . , p′

λn2

(∣∣∣α0
d1+d20

∣
∣∣
)
sgn
(
α0
d1+d20

)}T
, and

Σλn2 = diag
{
p′′
λn2

(∣∣∣α0
d1+1

∣∣∣
)

, . . . , p′′
λn2

(∣∣∣α0
d1+d20

∣∣∣
)}

. (38)

By (37), with probability tending to 1, β̂
PQIF
(1),−1 and α̂

PQIF
(1) are obtained by minimizing

L∗
n

(
β(1),α(1)

) = 1

2
Q∗

n

(
β(1),α(1)

)+ n
∑p1

s=2
pλn1 (|βs |) + n

∑d1+d20

l=d1+1
pλn2 (|αl |) ,

where Q∗
n

(
β(1), α(1)

)
is defined similar to Q∗

n (β,α) using their nonzero components.
We then have

0 =
⎛

⎜
⎝

∂L∗
n

(
β̂
PQIF
(1) ,̂α

PQIF
(1)

)
/∂β(1),−1

∂L∗
n

(
β̂
PQIF
(1) ,̂α

PQIF
(1)

)
/∂α(1)

⎞

⎟
⎠

= 1

2
Q̇∗

n

(
β̂
PQIF
(1) ,̂α

PQIF
(1)

)
+ n

(
Rλn1

Rλn2

)
+ nΣλ

⎛

⎝
β̂
PQIF
(1),−1 − β0

(1),−1

α̂
PQIF
(1) − α0

(1)

⎞

⎠+ Op (1) ,
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where Σλ =
(

Σλn1 0
0T Σλn2

)
. Subsequently, applying similar techniques to those used

the proof of Theorem 1, we obtain that

√
n
(
Σ

(1)
n1

)−1/2 (
Σ

(1)
n1 + Σλ

)
⎧
⎨

⎩

⎛

⎝
β̂
PQIF
(1),−1 − β0

(1),−1

α̂
PQIF
(1) − α0

(1)

⎞

⎠+
(
Σ

(1)
n1 + Σλ

)−1
(
Rλn1

Rλn2

)⎫⎬

⎭

→ N
(
0, I(p1+d20)

)
.

Finally, under the assumptions that λn1 → 0 and λn2 → 0, and the fact that
√
nΣλ =√

nRλn1 = √
nRλn2 = 0, we complete the proof of part (ii) in Theorem 3. ��

Proof of Theorem 4

Assume that the true parameters
(
β0,α0

)
in model (1) are known. Then, the resulting

penalized estimator of γ , γ̃ PQIF =
{(

γ̃
PQIF
l

)T
, 0 ≤ l ≤ d1 + 1

}T
, is obtained by

minimizing the following penalized QIF:

Ln (γ ) = 1

2
Qn

(
γ ,β0,α0

)
+ n

∑d1

l=1
pλn3

(∥∥γ l

∥∥) .

Define g̃PQIF (u) = B1 (u)T γ̃
PQIF
0 and α̃

PQIF
l (t) = B2 (t)T γ̃

PQIF
l . In the following,

we will show the convergence rate for g̃PQIF (·) and α̃
PQIF
l (·) as well as demonstrate

the sparsity of γ̃ PQIF.

Let γ̃ = γ 0 + �̃nv =
{(

γ̃ l

)T
, 0≤ l≤d1+1

}T
, where v={(vl)T , 0≤ l≤d1+1

}T
,

vl = (
v1,l , . . . , vN+q,l

)T, and ‖v‖ = C for some positive constant C . In addition,
let Q̇n

(
γ ,β0,α0

) = ∂Q∗
n (β,α) /∂γ and Q̈n

(
γ ,β0,α0

) = ∂2Q∗
n (β,α) /∂γ ∂γ T .

Then, we obtain

Qn

(
γ̃ ,β0,α0

)
− Qn

(
γ 0,β0,α0

)

=
(
γ̃ − γ 0

)T
Q̇n

(
γ 0,β0,α0

)
+ 1

2

(
γ̃ − γ 0

)T
Q̈n

(
γ ∗,β0,α0

) (
γ̃ − γ 0

)
,

(39)

where γ ∗ lies between γ̃ and γ 0. By ( 26) and (28), with probability approaching 1,

(
γ̃ − γ 0

)T
Q̈n

(
γ ∗,β0, α0

) (
γ̃ − γ 0

)
� 2

(
γ̃ − γ 0

)T
ΩT

n Ξ−1
n Ωn

(
γ̃ − γ 0

)

+ O
(
nC3�̃3

n

)

� C2�̃2
n

(
nN−1

)
+ nC3�̃3

n .
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Furthermore, by the weak law of large numbers and (24), there exist constants 0 <

C1 < ∞ and 0 < C2 < ∞ such that

(
γ̃ − γ 0

)T
Q̇n

(
γ 0,β0,α0

)
≤ C �̃n

∥∥∥Q̇n

(
γ 0,β0,α0

)∥∥∥

≤ 2CC1n�̃n

∥∥
∥φ0

n

∥∥
∥≤2CC1C2n�̃n

(
n−1/2+N−r−1/2

)
.

Accordingly, by the assumption N � n1/(2r+1) and taking �̃n = √
Nn−r/(2r+1), we

obtain, with probability approaching 1, that

(
γ̃ − γ 0

)T
Q̈n

(
γ ∗,β0,α0

) (
γ̃ − γ 0

)
� C2N

and
(
γ̃ − γ 0

)T
Q̇n
(
γ 0 ,β0,α0

) = O (CN ).

Next, let ãn = max1≤l≤d1

{∣∣∣p′
λn3

(∥∥γ 0
l

∥∥)
∣∣∣ , γ 0

l �= 0
}

and b̃n = max1≤l≤d1{∣∣
∣p′′

λn3

(∥∥γ 0
l

∥
∥)
∣∣
∣ , γ 0

l �= 0
}
. Under the assumptions that λn3 → 0, we have that ãn = 0.

By the Taylor expansion and the Cauchy–Schwarz inequality, as n → ∞, we further
have that

−
{
n
∑d1

l=1
pλn3

(∥∥γ̃ l

∥∥
Wn

)− n
∑d1

l=1
pλn3

(∥∥
∥γ 0

l

∥∥
∥
Wn

)}

≤ −n
∑d10

l=1

{
pλn3

(∥∥γ̃ l

∥∥
Wn

)− pλn3

(∥∥∥γ 0
l

∥∥∥
Wn

)}

≤ nb̃n
∑d10

l=1

∥∥∥γ̃ l − γ 0
l

∥∥∥
2

Wn
� nb̃nC

2�̃2
nN

−1 = C2b̃n N . (40)

When b̃n → 0 and C is sufficiently large, the second term on the right-hand side of
(39) dominates its first term and (40). Thus, for any given ν > 0, there exists a large
constant C such that,

P

{
inf
V

Ln

(
γ 0 + �̃nv

)
> Ln

(
γ 0
)}

≥ 1 − ν,

as n → ∞, where V = {v : ‖v‖ = C}. As a result, ∥∥γ̃ PQIF − γ 0
∥∥ = Op (�̃n), which

leads to

∥∥∥g̃PQIF (·) − g (·)
∥∥∥ � N−1/2

∥∥∥γ̃ PQIF
0 − γ 0

0

∥∥∥ = Op(N
−r/(2r+1))

and
∥∥∥α̃PQIF

l (·) − αl (·)
∥∥∥ � N−1/2

∥∥∥γ̃ PQIF
l − γ 0

l

∥∥∥ = Op
(
N−r/(2r+1)

)
.

Finally, let γ =
{(

γ T
(1)

)

(d10+1)×1
,
(
γ T

(2)

)

(d1−d10)×1

}T
. We then show that, with

probability tending to 1,
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Ln

{(
γ T

(1), γ
T
(2)

)T} = min
C

Ln

{(
γ T

(1), 0
T
)T}

,

as n → ∞, where C = {∥∥ γ (2)

∥∥ ≤ C∗�n
}
andC∗ is a positive constant.When

∥∥γ l

∥∥ �=
0, there exists a constant 0 < c < ∞ such that, with probability approaching 1,

∂Ln (γ ) /∂γ l = ∂Qn

(
γ ,β0, α0

)
/∂γ l + np′

λn3

(∥∥γ l

∥∥
Wn

) ∥∥γ l

∥∥−1
Wn Wnγ l

� ∂Qn

(
γ ,β0,α0

)
/∂γ l + cN−1np′

λn3

(∥∥γ l

∥∥
Wn

)
γ l

= ∂Qn

(
γ ,β0,α0

)
/∂γ l + cn2r/(2r+1) p′

λn3

(∥∥γ l

∥∥
Wn

)
γ l .

By (26), it can be shown that ∂Qn
(
γ ,β0,α0

)
/∂γ l = Op

(
nr/(2r+1)

)
. As a result,

∂Ln (γ ) /∂γ l = n2r/(2r+1)λn3

{
λ−1
n3 n

−r/(2r+1) + λ−1
n3 p′

λn3

(∥∥γ l

∥∥
Wn

)
γ l

}
.

Using the fact that λ−1
n3 n

−r/(2r+1) → 0 and lim infn→∞ lim inf‖γ l‖Wn→0+ λ−1
n3 p′

λn3(∥∥γ l

∥
∥
Wn

)
> 0, we further obtain ∂Ln (γ ) /∂γJ,l > 0 for γJ,l > 0 and

∂Ln (γ ) /∂γJ,l < 0 for γJ,l < 0. Consequently, the minimum of ∂Ln (γ ) is
attained at γ l = 0 for (d10 + 1) ≤ l ≤ d1. This implies, with probability tend-
ing to 1, γ̃

PQIF
l = 0 for (d10 + 1) ≤ l ≤ d1. Subsequently, using the fact that

∥∥∥
{ (

β̂
PQIF

)T
,
(
α̂PQIF

)T }T − (β0T,α0T
)T ∥∥∥ = Op

(
n−1/2

)
and those assumptions

given in Theorem 4, the above results of convergence rate and sparsity can be applied
to the penalized estimators γ̂ PQIF, ĝPQIF (·) , and α̂

PQIF
l (·). This completes the proof.

��
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