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Abstract This paper derives the best equivariant estimator (BEE) of the regression
coefficients of a seemingly unrelated regression model with an elliptically symmetric
error. Equivariance with respect to the group of location and scale transformations is
considered. We assume that the correlation matrix of the error term is known. Since
the correlation matrix is a maximal invariant parameter under the group action, the
model treated in this paper is generated as exactly one orbit on the parameter space.
It is also shown that the BEE can be viewed as a generalized least squares estimator.

Keywords Equivariant estimator · Seemingly unrelated regression model ·
Group invariance · Maximal invariant · Generalized least squares estimator

1 Introduction

A seemingly unrelated regression (SUR) model is defined to be a set of p different
linear regression models with cross-correlation:

yi = X iβ i + εi with E [εi ] = 0, V[εi ] = σi i Im (i = 1, . . . , p) (1)
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706 H. Kurata, S. Matsuura

and

E
[
εiε

′
j

]
= σi j Im (i, j = 1, . . . , p),

where yi : m × 1, X i : m × ki is of rank ki ,β i : ki × 1 and εi : m × 1. The model
was originally formulated by Zellner (1962, 1963), and has been playing an essential
role especially in econometric and biometric data analyses. It can be expressed in a
compact form as

y = Xβ + ε with V[ε] = � ⊗ Im (2)

by setting n = mp, k = ∑p
i=1 ki ,� = (σi j ) ∈ S+

p ,

X =
⎛
⎜⎝

X1 0
. . .

0 X p

⎞
⎟⎠ = diag{X1, . . . , X p} : n × k,

y =
⎛
⎜⎝

y1
...

yp

⎞
⎟⎠ : n × 1, β =

⎛
⎜⎝

β1
...

β p

⎞
⎟⎠ : k × 1 and ε =

⎛
⎜⎝

ε1
...

ε p

⎞
⎟⎠ : n × 1,

where S+
p denotes the set of p × p positive definite matrices and ⊗ denotes the

Kronecker product of matrices.
In this paper, we consider the problem of estimating the coefficient vector β with

respect to the loss function

L
(
β̂, (β,�)

)
=
(
β̂ − β

)′
X ′ (�−1 ⊗ Im

)
X
(
β̂ − β

)
. (3)

Let Y = R
n be the sample space of y and �̃ = R

k × S+
p be the parameter space of

(β,�). The class of distributions of y is denoted by

P =
{
Pβ,� |(β,�) ∈ �̃

}
, (4)

where Pβ,� is a distribution on Y with density function (with respect to the Lebesgue
measure) of the form

f ( y|(β,�)) = |� ⊗ Im |−1/2 h
(
(y − Xβ)′

(
�−1 ⊗ Im

)
( y − Xβ)

)

for some h : [0,∞) → [0,∞). The function h does not depend on (β,�). Clearly, P
is a class of elliptically symmetric distributions of mean Xβ and variance–covariance
matrix � ⊗ Im . For fundamental properties of elliptically symmetric distributions,
see, for example, Chapter 1 of Muirhead (1982).
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Best equivariant estimator in an SUR model 707

We assume that the matrix � = (σi j ) is partially known. More specifically, the
correlation coefficients

ρi j = σi j/(σi iσ j j )
1/2 (1 ≤ i, j ≤ p) (5)

are all known. In other words,� is supposed to be the product of an unknown diagonal
matrix with positive diagonal elements and a known correlation matrix:

� = ��� with � = (ρi j ) and � = diag
{
σ
1/2
11 , . . . , σ

1/2
pp

}
: p × p. (6)

In most applications, � is fully unknown and the model is estimated by the method
of generalized least squares (GLS). The method has been one of central topics in
estimation of SUR models. Some of the development that have taken place so far are
summarized, for example, in the books by Srivastava and Giles (1987) and Kariya
and Kurata (2004). Papers by Kariya (1981), Bilodeau (1990), Kurata and Kariya
(1996) andKurata (1999) investigated the finite sample efficiency of some typical GLS
estimators (GLSEs) under normal or elliptical distributions. Liu (2002) and Ma and
Ye (2010) proposed new estimators based on the idea of covariance adjustment. Fang
et al. (1997) proved the minimaxity of the ordinary least squares estimator (OLSE)
under another loss function.

In the present model, a partial information on � is available, and hence we need to
take a different approach to incorporate the information into the estimation procedure.
Our approach here is based on the equivariance principle [e.g., Chapter 3 of Lehmann
and Casella (1998) and Eaton (1989)]. To state it precisely, let Gi = (0,∞) × R

ki

(i = 1, . . . , p) and consider the group G = G1 × · · · × Gp. The group G acts on the
spaces Y and �̃ via the group action

yi −→ ai yi + X i ci , (7)

β i −→ aiβ i + ci , σi j −→ aia jσi j (i, j = 1, . . . , p), (8)

respectively, where (ai , ci ) ∈ Gi (i = 1, . . . , p). It is easy to see that this action

leaves the class P invariant. An estimator β̂( y) =
(
β̂1( y)

′, . . . , β̂ p( y)
′
)′

of β =
(
β ′
1, . . . ,β

′
p

)′
is called equivariant under G, if β̂( y) satisfies

β̂ i (a1 y1 + X1c1, . . . , ap yp + X pcp) = ai β̂ i ( y1, . . . , yp) + ci (i = 1, . . . , p)

(9)

for any y ∈ Y and (ai , ci ) ∈ Gi (i = 1, . . . , p). The action in (7) and (8) is expressed
in matrix form as

y −→ (A ⊗ Im) y + Xc and (β,�) −→ ( Ãβ + c, A�A′), (10)
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708 H. Kurata, S. Matsuura

where A = diag
{
a1, . . . , ap

} : p × p, Ã = diag
{
a1 Ik1 , . . . , ap Ikp

}
and c =(

c′1, . . . , c′p
)′ : k × 1. And also, the condition (9) is rewritten as

β̂((A ⊗ Im) y + Xc) = Ãβ̂( y) + c. (11)

If we write (7) and (8) (or 10) as

y → g y and (β,�) → g(β,�) ≡ (gβ, g�) with g ∈ G, (12)

the condition (9) is expressed as

β̂(g y) = gβ̂( y) for all y ∈ Y, g ∈ G. (13)

A statistic U ( y) is called invariant if it satisfies U (g y) = U ( y) for all g ∈ G and
y ∈ Y . If an invariant statistic U ( y) satisfies the following condition:

U ( y) = U ( y∗) ⇒ ∃g ∈ G such that y = g y∗, (14)

then it is called a maximal invariant. A maximal invariant parameter is defined in
exactly the same way: it is a function τ(β,�) on �̃ that is invariant under the action
of G and satisfies the condition described in (14) [with U and y replaced by τ and
(β,�), respectively].

Let β̂∗ be an equivariant estimator. If the risk function of β̂∗ is uniformly smaller
than or equal to that of any other equivariant estimator β̂, that is,

R
(
β̂∗, (β,�)

)
≤ R

(
β̂, (β,�)

)

holds uniformly for (β,�), then β̂∗ is called a best equivariant estimator (BEE) of

β, where R
(
β̂, (β,�)

)
≡ Eβ,�

[
L
(
β̂, (β,�)

)]
and Eβ,� denotes the expectation

with respect to Pβ,� . Since the maximum likelihood estimator (MLE) is equivariant
[see, for example, Theorem 3.2 of Eaton (1989)], the BEE is better than the MLE,
unless they coincide.

It is important to view the assumption of known correlation coefficients from the
group invariance theoretic standpoints. To do so, let Cp be the set of p × p positive
definite matrices whose diagonal elements are all ones (i.e., the set of correlation
matrices), and define

τ : �̃ −→ Cp : (β,�) −→ � with � = ���,

where� is decomposed as (6). Then, as can be easily seen, the mapping τ(β,�) = �

is a maximal invariant parameter under G. Hence our problem can be viewed as
that of equivariant estimation with a known maximal invariant parameter, where the
parameter space �̃ is reduced to
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Best equivariant estimator in an SUR model 709

� =
{
(β,�) ∈ �̃|τ(β,�) = �

}

with known � = (ρi j ). This means that the space � consists of exactly one orbit that
contains (0,�). A simple calculation shows that � = {(β,�) ∈ �̃ | β ∈ R

k,� =
(aia jρi j ), a1, . . . , ap > 0}.

In the literature,Kariya (1989) established ageneral theory of equivariant estimation
with a known maximal invariant parameter, where an ancillary statistic appears as a
maximal invariant statistic. The framework he gave enables us to treat various “curved”
models (such as a model with a known variational coefficient) in a unified way. See,
for example, Chapter 3 of Giri (1996). The present research is also descended from
Kariya’s pioneering work.

In general, the risk function of an equivariant estimator is constant on each orbit
in the parameter space [e.g., Theorem 6.3 of Eaton (1989)] which means that it is a
function of a maximal invariant parameter. Hence in our case, for each equivariant

estimator β̂, the risk function R
(
β̂, (β,�)

)
is constant on �. Thus, when evaluating

the risk function, we can let β be the zero vector and � be the (known) correlation
matrix �:

R
(
β̂, (β,�)

)
= Eβ,�

[
L
(
β̂, (β,�)

)]
= E0,�

[
L
(
β̂, (0,�)

)]

= E0,�

[
β̂

′
X ′ (�−1 ⊗ Im

)
Xβ̂

]
. (15)

This paper is organized as follows. In the next section,we derive amaximal invariant
statistic anddescribe the class of equivariant estimators. Section3 is devoted to deriving
a general expression of the BEE. The result is applied to a two-equation model with
normal error. In Sect. 4, the BEE is examined through the theory of GLS estimation.
A numerical example is also given.

2 Reduction by equivariance

In this section, a maximal invariant statistic is derived and a characterization of an
equivariant estimator is given.

To do so, let

bi = (
X ′
iX i

)−1 X ′
i yi and ei = yi − X i bi =

{
Im − X i

(
X ′
iX i

)−1 X ′
i

}
yi

be the ordinary least squares estimator (OLSE) and the residual vector calculated
equation-wise from the i th equation.

Lemma 1 Let u = U ( y) be defined as

u = U ( y) =
(
u′
1, . . . , u

′
p

)′ : n × 1, (16)
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710 H. Kurata, S. Matsuura

where

ui =
{
ei/‖ei‖ (if ei = 0)
0 (if ei = 0)

(i = 1, . . . , p).

Then the statistic u = U ( y) is a maximal invariant under G.

Proof First we show the invariance of U , that is, U (g y) = U ( y) for any g ∈ G. The
statistic U ( y) depends on y only through ei s, and the action y → g y in (7) induces
the one

ei −→ ai ei (i = 1, . . . , p)

on the spaces of ei s. From this, the quantities ui s are invariant, and hence U ( y) is
invariant.

To see that it also satisfies (14), suppose u = U ( y) = U ( y∗) = u∗ for some
y, y∗ ∈ Y . Then for each i = 1, . . . , p, either of the following two equalities holds:

ei/‖ei‖ = e∗
i /‖e∗

i ‖ or ei = e∗
i = 0,

where e∗
i =

{
Im − X i

(
X ′
iX i

)−1 X ′
i

}
y∗
i and y∗

i is the i th subvector of y∗. For the
former case, we have ei = ai e∗

i with ai = ‖ei‖/‖e∗
i ‖, which in turn implies that

yi = ai y∗
i + X i ci for some ci ∈ R

ki . For the latter case, both yi = X i ci and
y∗
i = X i c∗i hold for some ci , c∗i ∈ R

ki . Hence we have yi = y∗
i + X i (ci − c∗i ). Thus,

in both cases, we see the existence of g ∈ G such that y = g y∗. Hence u = U ( y) is
a maximal invariant. ��

Since the sets Ni = { y ∈ R
n | ei = 0} are of Lebesgue measure zero, we have

u1 = e1/‖e1‖, . . . , up = ep/‖ep‖ a.e.

Hence, in what follows, we let the sample space be

Y = R
n − N with N = ∪p

i=1Ni (17)

without essential loss of generality, and correspondingly let the range of U be

U = {u = U ( y)| y ∈ Y}.

Next we derive a characterization of an equivariant estimator. Let

b = (
X ′X

)−1 X ′ y

be the OLSE calculated from the whole model, which is a collection of the equation-
wise OLSEs, that is b = (b′

1, . . . , b
′
p)

′. And also, let

R = R(e) = diag{‖e1‖Ik1 , . . . , ‖ep‖Ikp } : k × k. (18)
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Best equivariant estimator in an SUR model 711

Lemma 2 An estimator β̂ : Y → R
k is an equivariant estimator under G if and only

if there exists a measurable function d : U → R
k such that

β̂( y) = b + R(e)d(u). (19)

Proof Suppose that β̂( y) is equivariant. Then (11) holds. Substitute (ai , ci ) =(‖ei‖−1,−‖ei‖−1bi
) ∈ Gi into (9). Then we have

β̂ i
(
( y1 − X1b1)/‖e1‖, . . . , ( yp − X pbp)/‖ep‖

) = ‖ei‖−1β̂ i ( y) − ‖ei‖−1bi
(i = 1, . . . , p).

Hence we see that β̂ i ( y) must be of the form

β̂ i ( y) = bi + ‖ei‖ di (u1, . . . , up) for some di : U → R
ki (i = 1, . . . , p) (20)

on Y . Rewriting this in matrix form yields (19).
Conversely, an estimator β̂ of the above form clearly satisfies (9), which means that

the equality (19) gives a characterization of equivariant estimator of β. ��
Ifwe set d(u) = 0, then β̂( y) = b, whichmeans that the class of equivariant estimators
contains the OLSE. The BEE derived below dominates b unless they coincide.

3 Best equivariant estimator

This section is devoted to deriving a BEE of β. To do so, let

T = T (u) = (ti j ) : p × p with ti j = ti j (u) = E0,�[‖ei‖‖e j‖ | u] (21)

be the conditional expectation of ‖ei‖‖e j‖ given u, which is an ancillary statistic since
the maximal invariant parameter is known. Throughout this section, all expectations
are taken under P0,�, and hence we omit the suffix and write just E[·].

Also let

H = X ′ (�−1 ⊗ Im
)
X ∈ S+

k ,

S = H
(
X ′X

)−1 X ′
{
In − X

(
X ′ (�−1 ⊗ Im

)
X
)−1

X ′ (�−1 ⊗ Im
)}

= H
{(

X ′X
)−1 X ′ −

(
X ′ (�−1 ⊗ Im

)
X
)−1

X ′ (�−1 ⊗ Im
)}

: k × n, (22)

and decompose S into p2 blocks:

S = [Si j ] =
⎡
⎢⎣
S11 . . . S1p
...

...

Sp1 . . . Spp

⎤
⎥⎦ with Si j : ki × m.
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712 H. Kurata, S. Matsuura

For matrices A = (ai j ) and B = (bi j ) of the same size, A ◦ B denotes the Hadamard
(element-wise) product: A ◦ B = (ai j bi j ).

Theorem 3 Suppose that the distribution of y is in the class P . If the correlation
matrix � is known, then the estimator

β̂∗( y) = b + R(e)d∗(u) wi th d∗(u) = −D(u)−1F(u)u (23)

is a BEE of β, where

D = D(u) = X ′(�−1 ◦ T (u) ⊗ Im)X : k × k (24)

and

F = F(u) =
⎡
⎢⎣
t11(u)S11 . . . t1p(u)S1p

...
...

tp1(u)Sp1 . . . tpp(u)Spp

⎤
⎥⎦ : k × n. (25)

The BEE is unique on Y (and hence unique a.e. on R
n).

Proof Let β̂( y) = b + R(e)d(u) be an equivariant estimator. Substituting it for β̂ in
(15) yields

R
(
β̂, (β,�)

)
= E0,�[(b + Rd)′H(b + Rd)] with H = X ′ (�−1 ⊗ Im

)
X,

(26)

where d = d(u). Since the distribution of y is elliptically symmetric, the conditional
mean of b given e is obtained as

E[b|e] = (
X ′X

)−1 X ′
{
In − X

(
X ′ (�−1 ⊗ Im

)
X
)−1

X ′ (�−1 ⊗ Im
)}

e

≡ Be (say), (27)

which can be easily shown by using, for example, the matrix identity (36). Then, by
replacing b + Rd in (26) with (b − Be) + (Be + Rd) and conditioning on e, we
obtain

E
[
(b + Rd)′H(b + Rd)

] = E
[
(b − Be)′H(b − Be)

]

+E
[
(Be + Rd)′H(Be + Rd)

]
,

where the cross-terms vanish since

E
[
(b − Be)′H(Be + Rd)

] = E
[
E[(b − Be)′H(Be + Rd)|e]]

= E
[
(E[b|e] − Be)′H(Be + Rd)

]

= 0.
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Best equivariant estimator in an SUR model 713

Since the first term of the right hand side of the above equality does not depend on
d, it suffices to minimize the second term. Decompose d : k×1 as d = (d ′

1, . . . , d
′
p)

′
with di : ki ×1. Since the (i, j)th block of H in (22) is of the form ρi jX ′

iX j : ki × k j
with �−1 = (ρi j ), we obtain

E[d ′R′HRd] =
p∑

i, j=1

E
[
‖ei‖‖e j‖ρi j d ′

iX
′
iX j d j

]
=

p∑
i, j=1

E
[
ti j (u)ρi j d ′

iX
′
iX j d j

]

= E
[
d ′X ′ (�−1 ◦ T ⊗ Im

)
Xd

]
= E[d ′Dd], (28)

where the second equality is obtained by taking conditional expectation given u. Next
consider

E[d ′R′HBe] = E[d ′R′Se] =
p∑

i, j=1

E
[‖ei‖‖e j‖d ′

i Si ju j
]
,

where the first equality is due to S = HB and the second follows from e j = ‖e j‖u j .
By taking conditional expectation given u, we see that the above quantity is equal to

p∑
i, j=1

E
[
ti j (u)d ′

i Si ju j
] = E[d ′Fu]. (29)

Hence combining (28) and (29) yields

E
[
(Be + Rd)′H(Be + Rd)

]

= E
[
d ′Dd + d ′Fu + u′F′d + e′B′HBe

]

= E

[(
d + D−1Fu

)′
D
(
d + D−1Fu

)]
+ E

[
e′B′HBe − u′F′D−1Fu

]
,

and this quantity is minimized uniquely when d = −D−1Fu as long as D is nonsin-
gular.

The nonsingularity of D follows from awell-knownmatrix result: Theorem 5.2.1 of
Horn and Johnson (1991) states that if X is a positive definite matrix and Y is a positive
semidefinite matrix whose diagonal elements are all positive, then the Hadamard
product X◦Y is positive definite. To apply this result, let r = (‖e1‖, . . . , ‖ep‖)′ : p×1.
The matrix T (u) = (ti j (u)) is the second moment of the conditional distribution of r
given u:

T (u) = E[r r ′|u],

which is positive semidefinite. Since the vectors e1, . . . , ep are not null on the sam-
ple space Y , the quantities ‖ei‖s are positive on Y , which implies that tii (u) =
E[‖ei‖2|u] > 0 (i = 1, . . . , p). Thus viewing X = �−1 and Y = T , we see that
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714 H. Kurata, S. Matsuura

�−1◦T is positive definite. This implies that D in (24) is positive definite. This com-
pletes the proof. ��
Corollary 4 When � = I p, that is, the cross-correlations are all zero, the BEE
reduces to the OLSE b.

Proof In this case, the matrix S in (22) is zero:

S = H
{(

X ′X
)−1 X ′ − (

X ′X
)−1 X ′} = 0 : k × n,

which implies F = 0 and hence d∗(u) = 0 in (23). ��
In applications, one needs to evaluate T = (ti j ) in β̂∗( y), which depends on the

specification of h in (4). The result below gives an explicit form of β̂∗( y) when
the model consists of two equations (p = 2) and the distribution of the error term
ε = (ε′

1, ε
′
2)

′ is the normal distribution Nn(0,� ⊗ Im).
In the theorem below, we need the following notation:

W = �−1 ⊗ Im −
(
�−1 ⊗ Im

)
X
{
X ′ (�−1 ⊗ Im

)
X
}−1

X ′ (�−1 ⊗ Im
)

≡
[
W11 W12
W21 W22

]
with Wi j : m × m,

and

vi j = e′
iWi j e j

‖ei‖‖e j‖ (i, j = 1, 2). (30)

Theorem 5 Let p = 2. Suppose that ε is distributed as the normal distribution
Nn(0,� ⊗ Im). Then the BEE β̂∗( y) of β is given by (23) with

T = (ti j (u)) = 1

K (0, 0)

(
K (2, 0) K (1, 1)
K (1, 1) K (0, 2)

)
, (31)

where

K (a, b) = 2(a+b+n−k)/2−2

v
(a+m−k1)/2
11 v

(b+m−k2)/2
22

∞∑
�=0

1

�!
(

− 2v12√
v11v22

)�

�

(
a + m − k1 + �

2

)

×�

(
b + m − k2 + �

2

)
. (32)

Proof We can set without loss of generality� = �. Choose arbitrarily anm×(m−ki )
matrix Zi satisfying Z′

iX i = 0 and Z′
i Zi = Im−ki (i = 1, 2), and define

Z = diag{Z1, Z2} : n × (n − k),
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Best equivariant estimator in an SUR model 715

where n = 2m, k = k1 + k2. Further, let zi = Z′
i yi : (m − ki ) × 1 (i = 1, 2) and

z = Z′ y = (z′1, z′2)′ : (n − k) × 1, (33)

which has a pdf and is distributed as Nn−k(0, Z′(� ⊗ Im)Z). The quantities z and e
are in one-to-one correspondence through

zi = Z′
i ei and ei = Zi zi . (34)

Similarly, ui = ei/‖ei‖ and zi/‖zi‖ correspond in one-to-one, since ‖ei‖ = ‖zi‖.
Let

� = {
Z′ (� ⊗ Im) Z

}−1 =
(

�11 �12
�21 �22

)
with �i j : (m − ki ) × (m − k j ).

Then it can be shown that vi j s in (30) are expressed as

vi j = z′i�i j z j
‖zi‖‖z j‖ (i, j = 1, 2). (35)

In fact, by using (34), we have

z′i�i j z j
‖zi‖‖z j‖ = e′

i Zi�i j Z′
j e j

‖ei‖‖e j‖ .

Here, the matrix Zi�i j Z′
j : m × m is the (i, j)th block of Z�Z′ =

Z
{
Z′(� ⊗ I)Z

}−1 Z′. This matrix is in turn equal toW in (30), since, in general, the
following matrix identity holds for any n × n positive definite matrix �:

�−1 = �−1X(X ′�−1X)−1X ′�−1 + Z(Z′�Z)−1Z′. (36)

In the sequel, we work on z in (33). Transform zi into (ri , θ i ) (i = 1, 2) through
the polar coordinate decomposition: ri = ‖zi‖ and

zi = ri

⎛
⎜⎜⎜⎜⎜⎝

cos θi1
sin θi1 cos θi2

...

sin θi1 sin θi2 . . . sin θi,m−ki−2 cos θi,m−ki−1
sin θi1 sin θi2 . . . sin θi,m−ki−2 sin θi,m−ki−1

⎞
⎟⎟⎟⎟⎟⎠

= ri pi (θ i ) (say),

where ri > 0, 0 < θi1, . . . , θi,m−ki−2 ≤ π, 0 < θi,m−ki−1 ≤ 2π . Then, as is well-
known [see, for example, Theorem 2.1.3 of Muirhead (1982)],

d z1d z2 = J1(θ1)J2(θ2)r
m−k1−1
1 rm−k2−1

2 dr1dr2dθ1dθ2

123



716 H. Kurata, S. Matsuura

with Ji (θ i ) = sinm−ki−2 θi1 sinm−ki−3 θi2 . . . sin θi,m−ki−2 (i = 1, 2). From this, the
joint pdf of (r1, r2, θ1, θ2) is obtained as

g̃(r1, r2, θ1, θ2)

= crm−k1−1
1 rm−k2−1

2 exp

(
−1

2
(r1 p1(θ1)

′, r2 p2(θ2)′)
(

�11 �12
�21 �22

)(
r1 p1(θ1)
r2 p2(θ2)

))

with c = (2π)−(n−k)/2|�|1/2 J1(θ1)J2(θ2). (37)

The quadratic form in the exponent is expressed as

r21 p1(θ1)
′�11 p1(θ1) + 2r1r2 p1(θ1)

′�12 p2(θ2) + r22 p2(θ2)
′�22 p2(θ2)

= r21v11 + 2r1r2v12 + r22v22 (since pi (θ i ) = zi/‖zi‖)
= r ′V r with r =

(
r1
r2

)
and V =

(
v11 v12
v21 v22

)
. (38)

Expand the factor exp(−r1r2v12) as

exp(−r1r2v12) =
∞∑

�=0

r�
1r

�
2
(−1)�v�

12

�! ,

which converges for all values of r1, r2 and v12. Hence

g̃(r1, r2, θ1, θ2)

= crm−k1−1
1 exp(−r21v211/2)r

m−k2−1
2 exp(−r22v22/2)

∞∑
�=0

r�
1r

�
2
(−1)�v�

12

�!

= c
∞∑

�=0

(−1)�v�
12

�! rm−k1+�−1
1 exp(−r21v211/2) r

m−k2+�−1
2 exp(−r22v22/2).

Thus for each fixed θ1 and θ2, and for a, b = 0, 1, 2, we have

∫ ∞

0

∫ ∞

0
ra1 r

b
2 g̃(r1, r2, θ1, θ2)dr1dr2

= c
∫ ∞

0

∫ ∞

0

∞∑
�=0

(−1)�v�
12

�! ra+m−k1+�−1
1 rb+m−k2+�−1

2

× exp(−r21v211/2) exp(−r22v22/2)dr1dr2 (39)

= c
∞∑

�=0

(−1)�v�
12

�!
∫ ∞

0

∫ ∞

0
ra+m−k1+�−1
1 rb+m−k2+�−1

2

× exp(−r21v211/2) exp(−r22v22/2)dr1dr2

= c
∞∑

�=0

(−1)�v�
12

�!
2(a+m−k1+�)/2−1

v
(a+m−k1+�)/2
11

2(b+m−k2+�)/2−1

v
(b+m−k2+�)/2
22

�

(
a + m − k1 + �

2

)
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×�

(
b + m − k2 + �

2

)
(40)

= c
2(a+b+n−k)/2−2

v
(a+m−k1)/2
11 v

(b+m−k2)/2
22

∞∑
�=0

1

�!
(

− 2v12√
v11v22

)�

�

(
a + m − k1 + �

2

)

×�

(
b + m − k2 + �

2

)

= cK (a, b).

Let us confirm that the above term-by-term integration is valid. Define a power series

P(x) =
∞∑

�=0

x�

�! r
a+m−k1+�−1
1 rb+m−k2+�−1

2 exp(−r21v211/2) exp(−r22v22/2).

Then clearly the series P(−v12) is the integrand in (39). Since P(−v12) ≤ P(|v12|)
holds, we can view P(|v12|) as a dominating function. The function P(|v12|) is a
nonnegative series and hence we can integrate it term by term (due to the monotone
convergence theorem). The resulting series is Q(2|v12/(v11v22)1/2|), where

Q(x) =
∞∑

�=0

x�

�! �

(
a + m − k1 + �

2

)
�

(
b + m − k2 + �

2

)
.

We have to show that Q
(
2
∣∣v12/(v11v22)1/2

∣∣) converges. A routine calculation
shows that the convergence radius of Q(x) is 2. Hence it suffices to see that∣∣v12/(v11v22)1/2

∣∣ < 1. Since V in (38) can be written as

V = U ′�U with U = diag{z1/‖z1‖, z2/‖z2‖} : (n − k) × 2

and U is of full rank on Y , the matrix V is positive definite. This guarantees
|v12/(v11v22)1/2| < 1 on Y , and thus the series Q(2|v12/(v11v22)1/2|) converges.
Hence by the dominating convergence theorem, the validity of the term-by-term inte-
gration is verified.

Since there exists a one-to-one correspondence between u = (u′
1, u

′
2)

′ and (θ1, θ2),
we have

t12(u) = E[‖e1‖‖e2‖|u] = E[r1r2|θ1, θ2]
=
∫∞
0

∫∞
0 r1r2g̃(r1, r2, θ1, θ2)dr1dr2∫∞

0

∫∞
0 g̃(r1, r2, θ1, θ2)dr1dr2

= K (1, 1)/K (0, 0),

where in the second equality, θ1, θ2 are chosen for given u. Similarly, t11(u) =
E[‖e1‖2|u] = K (2, 0)/K (0, 0) and t22(u) = E[‖e2‖2|u] = K (0, 2)/K (0, 0). Thus
we obtain (31). This completes the proof. ��
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718 H. Kurata, S. Matsuura

4 BEE as a generalized least squares estimator

In this section, the BEE β̂∗( y) is examined through the theory of GLS estimation.
Consider the SUR model (2). As is well known, when the matrix � is known (up

to a multiplicative constant), the Gauss–Markov estimator (GME)

b(�) =
(
X ′ (�−1 ⊗ Im

)
X
)−1

X ′ (�−1 ⊗ Im
)
y

is the best linear unbiased estimator of β. That is, for any linear unbiased estimator β̂,
the variance–covariance matrix of the GME is uniformly smaller than or equal to that
of β̂:

(
X ′ (�−1 ⊗ Im

)
X
)−1 = V[b(�)] ≤ V[β̂]

where the inequality is in terms of positive semidefiniteness. This result is known as
the Gauss–Markov theorem.

Suppose that the distribution of y belongs to the class P in (4). If the matrix � is
fully unknown, a typical estimator of β may be a generalized least squares estimator

(GLSE) b(�̂) =
(
X ′
(
�̂

−1 ⊗ Im
)
X
)−1

X ′
(
�̂

−1 ⊗ Im
)
y, which is the GME with

unknown � replaced with an estimator �̂. In most cases, �̂ is a function of the
residual vector e. Hence, in this section, we limit our consideration to such estimators,
say �̂ = �̂(e). Thus any GLSE b(�̂) is rewritten as

b(�̂) = C(e) y

by letting C(e) =
(
X ′
(
�̂

−1 ⊗ Im
)
X
)−1

X ′
(
�̂

−1 ⊗ Im
)
. The matrix C(e) is a

(random) left inverse of X , where a k × n matrix A is called a left inverse of X if
AX = Ik . Let L be the set of left inverses of X , and consider the following class of
estimators:

CGLSE =
{
β̂ = C(e) y | C : Rn → L

}
.

We call the class CGLSE the class of GLSEs and call elements of CGLSE GLSEs.
In fact, the class CGLSE contains all the GLSEs defined above. Conversely, for each
β̂ = C(e) y ∈ CGLSE, there exists an n×n (random) positive definitematrix� = �(e)
depending only on e such that β̂ = (

X ′�−1X
)−1

X ′�−1 y [see Theorem3.2 ofKariya
and Toyooka (1985) or Proposition 2.3 of Kariya and Kurata (2004)].

For CGLSE, Kariya (1985) and Kariya and Toyooka (1985) obtained the following
fundamental results. They established the results under a quite mild distributional
condition, which we do not mention (since it is satisfied by our setting 4).

Proposition 6 (Kariya (1985) and Kariya and Toyooka (1985)) Let β̂ = C(e) y ∈
CGLSE.
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Best equivariant estimator in an SUR model 719

(i) If C(·) is an even function, i.e., C(x) = C(−x) for all x ∈ R
n, then β̂ = C(e) y ∈

CGLSE is unbiased as long as the expectation is finite.
(ii) If C(·) is continuous and scale invariant (i.e., C(ax) = C(x) for all a > 0 and

x ∈ R
n), then β̂ = C(e) y ∈ CGLSE has finite second moments.

(iii) The mean squared error matrix of β̂ = C(e) y ∈ CGLSE is bounded from below
by the variance–covariance matrix of the GME b(�):

(
X ′ (�−1 ⊗ Im

)
X
)−1 = V[b(�)] ≤ E

[(
β̂ − β

) (
β̂ − β

)′]
.

The BEE β̂∗ belongs to the class CGLSE, that is, the BEE is a GLSE. In fact, by
letting

R̃(e) = diag
{‖e1‖Im, . . . , ‖ep‖Im

} : n × n and M = In − X(X ′X)−1X ′

and using

u = u(e) =
⎛
⎜⎝

e1/‖e1‖
...

ep/‖ep‖

⎞
⎟⎠ = R̃(e)−1e = R̃(e)−1M y,

we have

β̂∗( y) = b − R(e)D(u)−1F(u)u

= b − R(e)D(u(e))−1F(u(e))u(e)

=
{(

X ′X
)−1 X ′ − R(e)D(u(e))−1F(u(e))R̃(e)−1M

}
y

= C∗(e) y (say),

where R(e) is defined in (18). The matrix C∗(e) clearly satisfies C∗(e)X = Ik , from
which β̂∗ ∈ CGLSE follows.

The BEE β̂∗ is unbiased. To see this, it suffices to show that C∗(e) is an even
function of e. The matrices R(e) and R̃(e) are clearly even functions of e. Since
the matrices D(u) and F(u) depends on e only through ti j (u)s in (21), we use the
following lemma:

Lemma 7 The quantities ti j (u) = E0,�
[‖ei‖‖e j‖|u

]
s, when they are viewed as func-

tions of e via u = u(e), are even functions of e for all i, j = 1, . . . , p. That is,
ti j (u(e)) = ti j (u(−e)).

Proof First we note that the distributions of −e and −u are the same as those of e and
u, respectively. Fix i, j arbitrarily, and let fi j (e) = ‖ei‖‖e j‖. Then fi j (e) is an even
function of e, and the quantity ti j (u) is expressed as

ti j (u) = E0,�[ fi j (e)|u].
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720 H. Kurata, S. Matsuura

Let P be the distribution of e on the Borel space (Rn,B), and let (U ,C,PU ) be the
probability space induced by u = u(e) from (Rn,B,P), wherePU (C) = P(u(e) ∈ C)

for C ∈ C.
Let Q be a measure defined on U as

Q(C) =
∫

{u(e)∈C}
fi j (e)P(de), C ∈ C.

Since the distribution of −e is the same as that of e, and since u = u(e) is an
odd function of e (i.e., u(−e) = −u(e)), we can see that the measure Q satisfies
Q(C) = Q(−C) for each C , where −C = {−u|u ∈ C}. In fact,

Q(−C) =
∫

{u(e)∈−C}
fi j (e)P(de) =

∫

{u(−e)∈C}
fi j (e)P(de)

=
∫

{u(x)∈C}
fi j (−x)P(dx) =

∫

{u(x)∈C}
fi j (x)P(dx)

= Q(C),

where the second equality follows since u(e) is odd in e, the third is obtained by
transforming e = −x and using the invariance of the distribution P, and the fourth
is due to fi j (−x) = fi j (x). The conditional expectation ti j (u) is, by definition,
measurable with respect to C and satisfies

Q(C) =
∫

C
ti j (u)PU (du) for any C ∈ C.

Hence we have for each C ∈ C,

∫

C
ti j (−u)PU (du) =

∫

−C
ti j (x)PU (dx) = Q(−C) = Q(C) =

∫

C
ti j (u)PU (du),

where the first equality follows by transforming x = −u and noting that the distribu-
tion PU of u is invariant under u → −u. This shows that

ti j (−u) = ti j (u),

which implies that ti j (u(−e)) = ti j (−u(e)) = ti j (u(e)), and hence ti j is an even
function of e. ��
Thus the matrices D(u(e)) and F(u(e)) are even functions of e, which in turn shows
that C∗(e) is also even in e. Hence, by using (i) of Proposition 6, we see that the BEE
β̂∗ is unbiased:

E[β̂∗] = β. (41)
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Next we show

C∗(ae) = C∗(e) for any a > 0. (42)

It is easy to see that the matrices R(e) and R̃(e) satisfy

R(ae) = aR(e) and R̃(ae) = a R̃(e) for any a > 0.

On the other hand, since u is scale invariant as a function of e (i.e., u(ae) = u(e)),
the matrices D(u) and F(u) satisfy

D(u(ae)) = D(u(e)) and F(u(ae)) = F(u(e)).

Thus we have (42). Hence by (ii) of Proposition 6, the BEE β̂∗ has finite second
moments. The efficiency of the BEE can be measured in terms of its variance–
covariance matrix V[β̂∗]. Applying (iii) of Proposition 6, we have a lower bound
for V[β̂∗]:

(
X ′ (� ⊗ Im) X

)−1 = V[b(�)] ≤ V
[
β̂∗
]

= E

[(
β̂∗ − β

) (
β̂∗ − β

)′]
. (43)

Summarizing the above conclusions (41), (42) and (43) yields

Theorem 8 The BEE β̂∗ is an unbiased GLSE with finite second moments, whose
variance–covariance matrix is bounded from below by that of the GME b(�).

Consider the following estimator of �:

�̂ = �̂(e) =
(
σ̂
1/2
i i σ̂

1/2
j j ρi j

)
with σ̂i i = σ̂i i (e) = e′

i ei/m. (44)

Then b(�̂) =
(
X ′
(
�̂

−1 ⊗ Im
)
X
)−1

X ′
(
�̂

−1 ⊗ Im
)
y with �̂ in (44) is a natural

estimator that corresponds to the structure of � in (6). It belongs to CGLSE , is unbi-
ased and has finite second moments. As can be easily seen, this estimator is also an
equivariant estimator. Hence we have the inequality

R
(
β̂∗, (β,�)

)
≤ R

(
b(�̂), (β,�)

)
.

It is also of interest to compare the two estimators in terms of their variance–covariance
matrices, which is left open.

We conclude this paper with a simple numerical example, in which the risks of the
BEE, the OLSE and twoGLSEs are compared. One of the two GLSEs is a GLSE b(�̂)

with �̂ = (e′
i e j/m), which does not use the information on the known correlation

coefficients. The other is a GLSE in (44). We call these two estimators GLSE1 and
GLSE2, respectively. The models treated are two-equation models (p = 2) with
m = 10, say Models 1 and 2. In Model 1, we set k1 = 2 and k2 = 3, that is,
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722 H. Kurata, S. Matsuura

X1 = (x11, x12) : 10 × 2 and X2 = (x21, x22, x23) : 10 × 3, where x11 and
x21 are vectors of all ones, and the other vectors x12, x22, x23 are chosen according
to the uniform distribution on the interval [−1, 1]. Model 2 is obtained by adding
several column vectors to Model 1: The model has X1 = (x11, x12, x13) : 10 × 3
and X2 = (x21, x22, . . . , x26) : 10 × 6, where x13, x25 and x26 are the squares of
x12, x22 and x23, respectively, and the elements of x24 are the products of those of
x22 and x23. The use of uniform distribution for X is due to Ando (2011) and Zellner
and Ando (2010).

The tables below illustrate the estimates of the risks (15) of the above four estimators
based on 1,000,000 replications. When ρ = 0, the OLSE, the BEE and GLSE2
coincide. For each estimator, its risk monotonically increases as ρ increases. On the
other hand, whatever ρ is, the BEE has the smallest risk among the four estimators.
The efficiency of the BEE relative to GLSE2 is higher in Model 2 than in Model 1.

Model 1 OLSE GLSE1 GLSE2 BEE

ρ = 0.0 4.995831 5.232456 4.995831 4.995831
ρ = 0.2 5.116554 5.255603 5.015679 5.01504
ρ = 0.4 5.528819 5.324513 5.060269 5.057798
ρ = 0.6 6.551833 5.49757 5.150907 5.141146
ρ = 0.8 9.948265 6.109094 5.401158 5.326356

Model 2 OLSE GLSE1 GLSE2 BEE

ρ = 0 9.003876 9.329488 9.003876 9.003876
ρ = 0.2 9.190073 9.402881 9.045734 9.036417
ρ = 0.4 9.854493 9.666779 9.19308 9.14603
ρ = 0.6 11.51532 10.33883 9.558842 9.386615
ρ = 0.8 16.94042 12.58923 10.79009 9.982628
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