
Ann Inst Stat Math (2016) 68:805–825
DOI 10.1007/s10463-015-0511-3

Regression analysis of biased case–control data

Palash Ghosh · Anup Dewanji

Received: 4 September 2013 / Revised: 2 February 2015 / Published online: 17 March 2015
© The Institute of Statistical Mathematics, Tokyo 2015

Abstract The data obtained from case–control sampling may suffer from selection or
reporting bias, resulting in biased estimation of the parameter(s) of interest by standard
analysis of case–control data. In this work, the problem of this bias is dealt with by
introducing the concept of reporting probability. Then, considering a reference sample
from the source population, we obtain asymptotically unbiased estimate of the popu-
lation parameters by fitting a pseudo-likelihood, assuming the exposure distribution in
the population to be unknown and arbitrary. The proposed estimates of themodel para-
meters follow asymptotically a normal distribution and are semiparametrically fully
efficient. We motivate the need for such methodology by considering the analysis of
spontaneous adverse drug reaction (ADR) reports in presence of reporting bias.

Keywords Reporting bias · Response-selective sampling · Spontaneous reporting
database · Semiparametric estimation · Pseudo-likelihood

1 Introduction

Prentice and Pyke (1979) have proved that a prospective logistic regression model
can be used for the analysis of case–control data. Since then, substantial research
has been carried out in various modifications depending on practical requirements.
In this context, Hsieh et al. (1985), Scott and Wild (1997) and Lee et al. (2006) have
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considered augmentation of case and/or control data by different extent of information
to improve the overall efficiency in estimation of the parameter(s) of interest. All the
works, in this regard, have the basic assumption that the case and/or control samples
are representative of the corresponding source population. In many situations, this
assumptionmay not be true. Then, the existingmethodologies lead to biased estimates.
In this work, we develop methodologies to deal with such situations.

Breslow (1996) has discussed the limitations and the challenges in case–control
study including the problem of selection bias due to high rates of non-participation and
confounding leading to distortion of the response–exposure relationship. Prentice and
Breslow (1978) have dealt with the problem of selection bias by considering inclusion
probabilities for the individuals of the source population in the corresponding case
or control samples. They have assumed these probabilities to be independent of the
explanatory variables, resulting in the corresponding conditional likelihood being free
from those inclusion probabilities. There may, however, be situations when both case
and control samples suffer from selection bias the extent of which may depend on the
exposure and the case–control status as well. In fact, most of the hospital-based or
registry-based case–control studies are subject to selection bias,which is often ignored.
In pharmacovigilance studies, one objective is to detect alarming signal regarding
adverse drug reaction (ADR) from a drug of interest (Bate et al., 1998). Information
on drug-related ADRs can be found in spontaneous reporting (SR) databases, where
clinicians and/or health professionals report the suspected ADRs after the drug is in
the market. As the reporting of ADRs is not mandatory and sometimes the ADRs
may not be recognized easily, SR data represent a biased case–control sample of
the corresponding counterparts in the source population, defined by the collection of
individuals suffering from a particular disease (Ghosh and Dewanji 2011). Individuals
of the source population experiencing the ADR of interest are considered as case,
while those not experiencing the ADR of interest are considered to be members of the
control population. The controls in the SR database experience some other ADRs and
are, therefore, clearly subject to selection bias in addition to reporting bias. It is likely
that the extent of this selection/reporting bias in both case and control samples from
SR database depends on both exposure to the particular drug and case–control status.

This work addresses this problem of biased case–control sample with the help of
additional information from a reference sample. Lee et al. (2006) have considered the
use of reference sample augmented by a sample of cases only, assumed to represent the
population of cases without having any selection or reporting bias. Ghosh andDewanji
(2011) explicitly incorporate the reporting bias bymeans of some reporting parameters
to deal with biased case–control data with binary exposure with the help of a reference
sample while analyzing ADR data from SR database. The main objective of this paper
is to deal with this problem of reporting bias in the regression framework when the
exposure can be continuouswith only exposure information from the reference sample.
In what follows, we also consider multiple response categories, in which the term
‘case–control sampling’ may be replaced by ‘response-selective sampling’ (Lee and
Hirose 2010), or choice-based sampling (Cosslett 1981). In Sect. 2, we describe the
model along with the selection or reporting probabilities and discuss some existing
methods in the similar context. Section 3 considers semiparametric estimation of the
model parameters in the sense that the exposure distribution remains nonparametric. A
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special case of the proposed methodology is considered in Sect. 4. Section 5 presents a
simulation study to investigate the properties of the estimates, while Sect. 6 illustrates
the method through analysis of an example.

2 Modeling and likelihood

Consider a categorical random variable Y , representing the ADR status, having cate-
gories j = 0, . . . , J , the distribution of which depends on the vector of covariates X ,
amount of the drug and others, of dimension p ≥ 1 through a prospective model of
the form

P(Y = j |X = x) = p j (x,β), (1)

for j = 0, . . . , J , with
∑J

0 p j (x,β) = 1, whereβ is the corresponding vector of para-
meters. In response-selective sampling, the observation on X is obtained conditional
on the response Y . A particular individual from a response category in the source
population may be reported (selected) to the SR database with certain probability
depending even on X as given by the model

P(R = 1|Y = j, X = x) = μ j (x, γ ), say, (2)

where R is the binary random variable taking values 1 or 0 representing reporting to
the SR database or not and γ is the corresponding vector of parameters.

Suppose in the SR database, there are n j individuals in the sample with Y = j
having the observed X values as x ji , for i = 1, . . . , n j , and j = 0, . . . , J . Note
that this observed biased data can be thought of as arising from a random prospective
sample of ADRs which are then reported or not with probability μ j (x, γ ). Also, let
g(x) denote the marginal density of x . Then, the retrospective likelihood for the SR
data is given by

J∏

j=0

n j∏

i=1

P(X = x ji |R = 1,Y = j) =
J∏

j=0

n j∏

i=1

μ j (x ji , γ )p j (x ji ,β)g(x ji )∫
μ j (x, γ )p j (x,β)g(x)dx

. (3)

If the reporting (selection) probabilities μ j (x, γ )s’ do not depend on the covariate
vector x , then (3) becomes the likelihood of response-selective sampling (see Lee
and Hirose 2010; Scott and Wild 1997). As noted in Ghosh and Dewanji (2011), and
is also evident from individual terms in (3), we have P(X = x |R = 1,Y = j) =
P(X = x |Y = j) in such case so that the reported (selected) sample in the SR
database can be taken as a representative sample from the corresponding population
counterpart in the context of response-selective sampling. It is to be noted that, even in
such situations without any selection or reporting bias, the model parameters are not
identifiable (Cosslett 1981), more so when such bias is present, unless some additional
information is utilized. As indicated in Cosslett (1981), Scott and Wild (1997) and
Lee et al. (2006), we consider only the exposure information from a reference sample
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of size nJ+1, say, drawn randomly from the source population, which augments with
the (J +1) response-selective samples for further analysis. This reference sample is a
randomprospective sample from the exposure distributionG(x), say, with density g(.).
In this work, we considerG(x) to be arbitrary and unspecified. Note that the likelihood
contribution corresponding to the reference sample is free of reporting probability term
μJ+1(xJ+1,i , γ ).

In practice, in the context of pharmacovigilance studies, this may be of great advan-
tage since information on drug use in the source population can be easily available
in a random sample from prescription database (Mann 1998), while information on
ADR status is difficult to obtain.

The combined log-likelihood of (J + 1) response-selective samples from the SR
database along with the reference sample from G(x) can be written as

l(φ,G) =
J∑

j=0

n j∑

i=1

log
μ j (x ji , γ )p j (x ji ,β)g(x ji )∫

μ j (x, γ )p j (x,β)g(x)dx
+

nJ+1∑

i=1

log{g(xi )}, (4)

where φ = (γ ,β) and xi , for i = 1, . . . , nJ+1, are the observed exposure values in
the reference sample. Following Gilbert et al. (1999), the likelihood (4) is a (J + 2)-
sample selection bias model (see eq. (2.2) of Gilbert et al. 1999) with J ≥ 1 and
the weight functions given by Wj (x,φ) = μ j (x, γ )p j (x,β), for j = 0, . . . , J , and
WJ+1 = 1, independent of the model parameters. Then, by Theorem 2 of Gilbert et al.
(1999), the model (that is, both φ and G) is identifiable if and only if Wj (x,φ) and
Wj (x,φ′), with φ �= φ′, are linearly independent as functions of x , for at least one
j = 0, . . . , J . Identifiability of the binary regression models with case-augmented
samples, considered by Lee et al. (2006) for example, follows from this Theorem. The
consequence of allowing selection or reporting bias through the reporting probabilities
μ j (., γ )’s of (2) is the focus of this work. With (J + 1) response-selective samples
subject to reportingbias and the reference sample, it is likely that there is at least one j ∈
{0, . . . , J } such that Wj (x,φ) and Wj (x,φ′), for φ �= φ′, are linearly independent.
When, however, μ j (x, γ ) is independent of x for all j , then Wj (x,φ) and Wj (x,φ′)
are not linearly independent with φ = (μ j ,β) and φ′ = (μ′

j ,β), where μ j �= μ′
j .

The model parameters are not identifiable in such case. However, as remarked before,
if the μ j ’s are not of interest, the regression parameters in β can be estimated from
the response-selective samples without the need of the reference sample; also, as is
evident from (3) and (4), the parameter β can be estimated using the method of Lee
et al. (2006) from the response-selective samples along with the reference sample. As
remarked in Sect. 1, however, the reporting probabilities μ j (x, γ )’s often depend on
both j and x .

Note that the log-likelihood (4) is a function of φ = (γ ,β), which is the para-
meter vector of interest, and of G(x), the exposure distribution, which is the infinite-
dimensional nuisance parameter. In particular, the β-component of φ is the quantity
of interest. Since estimation of G(x) is not of particular interest, one does not need
to carry out the maximum likelihood estimation procedure of Gilbert et al. (1999)
for joint estimation of φ and G(x). Instead, in order to estimate φ alone, a simpler
method adjusting for the unknown G(x) may be adopted. Nevertheless, as discussed
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in Sect. 3, the identifiability condition of Gilbert et al. (1999) still remains valid. In the
following section, we develop a semiparametric estimation procedure without making
any assumption regarding the functional forms of μ j (., γ ) and p j (.,β), and address
the identifiability issue for a specific form in Sect. 4.

Scott andWild (1997, 2001) and Lee et al. (2006) have considered similar problems
with arbitrary G(x) and binary classification (that is, J = 1) assuming no selection
or reporting bias and developed a pseudo-likelihood-based approach to obtain semi-
parametric maximum likelihood estimate of the regression parameters for different
data configurations (see also Wild 1991). Lee and Hirose (2010) have extended their
work for multiple classification and established semiparametric efficiency of the esti-
mates. However, in the presence of selection or reporting bias, these methods may
lead to biased estimates. On the other hand, incorporation of reporting probabilities,
as given by (2), in these works may lead to identifiability problem. For example, as
argued in Sect. 4, the method of Lee et al. (2006) based on case-augmented sample
will have identifiability problem if the reporting probabilities are included. Note that
the data configuration in the present work is also somewhat different from those of the
works mentioned above (see Sect. 3). Our estimation procedure is based on a differ-
ent pseudo-likelihood approach to alleviate the problem of some lack of information,
requiring only one offset parameter unlike that in Lee and Hirose (2010).

3 Semiparametric estimation of model parameters

In order to find the maximum likelihood estimate of φ, we consider the profile log-
likelihood l p(φ) of φ obtained by maximizing the full log-likelihood (4) with respect
to the nuisance parameter G(x) for fixed φ. In this semiparametric framework, when
G(x) is completely unspecified, the nonparametric maximum likelihood estimate of
G(x) for fixed φ is discrete with all its mass concentrated on the observed exposure
values (Scott andWild 1997; Gilbert et al. 1999).We, therefore, work with the discrete
distribution of X taking values in {x01, . . . , x0K }, say, which is the set of all observed
distinct X values.

It is convenient to write A j as the set of all X values with Y = j , for j = 0, . . . , J ,
and AJ+1 as the set of X values in the reference sample. Also, let δi denote the
probability mass of X at x0i , for i = 1, . . . , K , with

∑K
i=1 δi = 1. Then, the log-

likelihood (4) can be written in terms δ = (δ1, . . . , δK ) as

l(φ, δ) =
J∑

j=0

⎡

⎣
∑

i∈A j

n ji log(μ j i p jiδi ) − n j log
K∑

k=1

μ jk p jkδk

⎤

⎦

+
∑

i∈AJ+1

nJ+1,i log δi , (5)

whereμ j i = μ j (x0i , γ ), p ji = p j (x0i ,β) and n ji is the frequency of x0i with Y = j ,
for j = 0, . . . , J + 1, with Y = J + 1 denoting the reference sample. The profile
log-likelihood l p(φ) can be obtained from (5) as l(φ, δ̂(φ)), where δ̂(φ) is the maxi-
mum likelihood estimate of δ for given φ. The semiparametric maximum likelihood
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estimate of φ that maximizes the log-likelihood l(φ,G) or l(φ, δ) can be obtained by
maximizing the profile log-likelihood l p(φ). As noted by Lee and Hirose (2010), this
profile log-likelihood depends on a vector of arbitrary parameters (ρ1, . . . , ρJ ), where
log{∫ μ j (x, γ )p j (x,β)g(x)dx/

∫
μ0(x, γ )p0(x,β)g(x)dx} = ρ j , for j = 1, . . . , J

(see also Scott andWild 2001). In this case, estimating all the parameters requires addi-
tional information on the population size in each response category. In our context,
however, such information is not available. Since β is the parameter of interest, we
suggest a dimension-reduction approach, where a single offset parameter ρ, indepen-
dent of j , is required instead of the arbitrary vector (ρ1, . . . , ρJ ) (see Appendix A).
Note that the argument related to this use of single parameter ρ is asymptotic and
justified in view of the underlying prospective mechanism of generating the n j ’s, as

remarked in the beginning of Sect. 2. The estimator φ̂ can be obtained as the solution
of the pseudo-log-likelihood equation ∂l∗(ψ)/∂ψ = 0, where ψ = (φ, ρ) and

l∗(ψ)=
J∑

j=0

∑

i∈A j

n ji log

(
eρ p∗

j i

1+∑J
l=0 e

ρ p∗
li

)

+
∑

i∈AJ+1

nJ+1,i log

(
1

1 + ∑J
l=0 e

ρ p∗
li

)

,

(6)

with p∗
j i = μ j i p ji and ρ being the scalar nuisance parameter. This l∗(ψ) is a

pseudo-log-likelihood, derived from the log-likelihood (5) using profile log-likelihood
approach. It can also be checked that the expression of ρ, given by (12) in appen-
dix, satisfies ∂l∗(ψ)/∂ρ = 0. See the Appendix A for details. This pseudo-log-
likelihood (6) may be treated as that of a prospective sample of size n = ∑J+1

j=0 n j

from a multinomial distribution with (J + 2) cells with the cell probabilities given
by eρ p∗

j i/(1 + ∑J
l=0 e

ρ p∗
li ), j = 0, . . . , J , and 1/(1 + ∑J

l=0 e
ρ p∗

li ), as function of

the exposure value x0i . The estimate ψ̂ = (φ̂, ρ̂) can be obtained by maximizing (6),
which can be carried out using some standard statistical packages. Note that the model
parameter ψ is non-identifiable from the likelihood (6), if and only if, for all x , there
exist two different values of ψ for which the quantity eρ p∗

j i evaluated at these two
values of ψ are equal, for all j = 0, 1, . . . , J . Therefore, if this equality is violated
for at least one j , ψ becomes identifiable from (6).

Note that, from the derivation in Appendix A, the offset parameter ρ can be
expressed in the form ρ = − log(nJ+1/N ), where N is the size of the source popula-
tion, which is unknown in our context. This has been verified in our simulation study
also. However, this leads to an alternative estimation procedure in case the size N of
the source population is known. For example, information on N can be obtained from
a prescription database or some hospital registry. In such case, ρ can be estimated
by − log(nJ+1/N ), which may be substituted in the pseudo-log-likelihood (6). This
requires one less parameter to be estimated. Our simulation study indicates that the
resulting estimate may be more efficient.

Following Lee et al. (2006) and usingmulti-sample representation ofHirose (2005),
the estimator φ̂, when suitably normalized, follows asymptotically a normal distrib-
ution under the standard regularity conditions. The asymptotic variance matrix of φ̂

is estimated by the corresponding partition of the inverse of the observed information
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matrix −∂2l∗(φ, ρ)/∂φ∂ρ evaluated at φ = φ̂, ρ = ρ̂ (see Appendix B, for a sketch
of the proof). The estimate φ̂ is also semiparametrically fully efficient in the sense that
the asymptotic variance matrix of φ̂ coincides with the corresponding semiparametric
efficiency bound B, say. See Appendix C for details.

4 A special case

A special case with J = 1 considers the biased case and control samples, corre-
sponding to j = 1 and 0, respectively, along with a reference sample from the source
population. As discussed in Sect. 1, this has application in pharmacovigilance studies
in which the objective is to investigate strength of association between the drug of
interest and the ADR of concern based on the SR database screened for those suffer-
ing from a particular disease for which the drug (exposure) is taken. The reference
sample corresponding to j = J + 1 = 2 is drawn randomly from the source popula-
tion consisting of individuals suffering from the particular disease. The case sample
( j = 1) consists of those in the SR database reporting the ADR of concern, while the
control sample ( j = 0) consists of those reporting other ADRs. Let us consider the
modeling as given by the commonly used logit forms

μ j (x, γ ) = eγ j+γ x

1 + eγ j+γ x , for j = 0, 1, (7)

and p1(x,β) = eα+βx

1 + eα+βx
, p0(x,β) = 1 − p1(x,β), (8)

where γ = (γ0, γ1, γ ) and β = (α, β) are the parameters of interest with φ = (γ ,β).
Note that the regression parameter γ in the reporting probability μ j (x, γ )’s is the
same for j = 0, 1, although the intercept parameters γ0 and γ1 are different.

As discussed in Sect. 2, the weight functions are given by

W0(x,φ) = eγ0+γ x

1 + eγ0+γ x
× 1

1 + eα+βx
,

and W1(x,φ) = eγ1+γ x

1 + eγ1+γ x
× eα+βx

1 + eα+βx
,

with W2(x,φ) = 1. It can be verified that these weight functions satisfy the identifia-
bility condition of Theorem 2 of Gilbert et al. (1999). Therefore, the model including
exposure distribution G(x) is identifiable from the likelihood (3) and (4). As argued
in Sect. 3, this also ensures identifiability of the model parameters φ from pseudo-log-
likelihood (6).

In this special case, the pseudo-log-likelihood (6) takes the form

l∗(ψ) =
1∑

j=0

∑

i∈A j

n ji [ρ + γ j + jα + (γ + jβ)x0i ]
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+
1∑

j=0

∑

i∈A j

n ji log[1 + exp(γ1− j + γ x0i )]

+
∑

i∈AJ+1

n ji log{[1 + exp(γ0 + γ x0i )][1 + exp(γ1 + γ x0i )]

×[1 + exp(α + βx0i )]}

−
2∑

j=0

∑

i∈A j

n ji log[1 + exp(γ1 + γ x0i ) + exp(α + βx0i )

+ exp(γ0 + α + (γ + β)x0i ) + (1 + eρ){exp(γ0 + γ x0i )

+ exp(γ0 + γ1 + 2γ x0i ) + exp(γ1 + α + (γ + β)x0i )

+ exp(γ0 + γ1 + α + (2γ + β)x0i )}]. (9)

This can be maximized using some numerical maximization procedure (for example,
optim in R). This is found to have better numerical stability than a software to analyze
multinomial logistic regression model as indicated by (6). In the next section, we
carry out a simulation study to investigate properties of the estimator in which the
data are generated from the model of this section and the pseudo-log-likelihood (9) is
maximized.

Note that, while incorporating reporting probabilities in the method of Lee et al.
(2006)with case-augmented sample by similarmodeling, onewill have no observation
corresponding to J = 0, a biased sample corresponding to J = 1 with W1(x, φ) as
given above and a reference sample corresponding to J = 2 with W2(x, φ) = 1.
Then, clearly, the model is not identifiable since the parameter sets (γ1, γ, α, β) and
(α, β, γ1, γ ) give the same pseudo log-likelihood (6).

5 Simulation

For the purpose of the simulation, the exposure distribution G(x) is assumed to be
exponential with mean 2. The case–control status of each individual is determined by
using (8) with α = −2.5 and β = 0.5. The SR database is constructed by applying
the reporting probability (7). We consider two sets of values for γ = (γ0, γ1, γ ) as
(−3.5,−4.5, 1.5) and (−3.5,−2.5, 1) to study the impact of reporting on the estimate
of β, the parameter of interest, based on the combined data using the proposed method
of Sect. 4 and only the SR database as well. These two choices of γ reflect the two
different scenarios in which the method based on only the SR database over- and
under-estimates β, respectively. A reference sample of size nJ+1 = n2 is drawn
from the source population with size N and the corresponding exposure values are
recorded. Though for the methodology described in Sect. 3, the source population
size is not required, but for the purpose of simulation, we need to specify the value
of N . We choose different values of n2 and N in such a way that the ratio n2/N
remains constant. This, for fixed set of reporting parameters (γ0, γ1, γ ), ensures that
n j/n tends to the respective constants in probability as n = n0 + n1 + n2 → ∞,
for j = 0, 1, 2. Here, we consider n2 = 200, 400 and 800 with corresponding N
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being 20000, 40000 and 80000. The exposure values of the cases and the controls in
the SR database along with those in the reference sample form a simulated dataset
which is used to construct the pseudo-log-likelihood (9). This is then maximized to
obtain the semiparametric maximum likelihood estimates of the model parameters.
The Optim procedure with BFGS method of the statistical software R has been used
for this purpose. The corresponding standard errors are also obtained and a check is
performed if the asymptotic 95% confidence intervals based on normal approximation
contain the corresponding true parameter values. The estimate β̂ is also obtained along
with its standard error based on only SR database ignoring reporting bias and using
the standard case–control analysis.

This process is repeated 5000 times. Since the objective is to investigate the rela-
tionship between exposure x and the response probability (8), the parameter of interest
is β. In Table 1, the average of the estimates of β over the 5000 simulations along with
its standard error in parentheses is presented. The average standard error (ASE) and
sample standard error (SSE) obtained by the standard deviation of the 5000 estimates
are found to be similar in each setting, as expected. The estimated coverage probabil-
ities (CP) for the asymptotic 95% confidence interval of β based on 5000 simulations
are also presented.

Depending on the value of γ as (−3.5,−4.5, 1.5) and (−3.5,−2.5, 1), the method
based on only the SR data over- and under-estimates the parameter β, respectively,
while the method based on combined data seems to produce unbiased estimate in
each setting. As expected, the standard error decreases with n2 and N . The esti-
mated coverage probabilities are also close to 0.95. All this gives evidence for con-
sistency and asymptotic normality for the estimate obtained by the proposed method
using combined data. When the source population size N is known, the parameter
ρ can be replaced by − log(n2/N ) in the pseudo-log-likelihood (9), as remarked in
Sect. 3, to reduce the number of parameters to be estimated. For this, we assume
N = 20000, 40000 and 80000 to be known in respective cases and carry out the
analysis with 5000 simulated datasets. The results are presented in Table 1, which are
similar in nature with slight improvement in efficiency as expected.

In case the coefficient γ in reporting probability (7) is zero making the reporting
probability independent of x , as discussed at the end of Sect. 2, identifiability condition
is violated. In other words, when data are obtained through the model with γ = 0,
or nearly zero, the proposed methodology may not give satisfactory result. However,
when the size N of the source population is known, one can replace ρ by− log(n2/N )

and the other parameters become identifiable from pseudo-log-likelihood (9) with
γ = 0. Nevertheless, since there is no reporting bias in such case, the parameter β

can be estimated using the standard case–control analysis from only the SR database
also. The results based on 5000 simulations are presented in Table 2.

6 An example

We illustrate the methodology developed in this paper through the analysis of a spon-
taneous reporting data from the adverse event reporting system (AERS)maintained by
the Food and Drug Administration (FDA) in the USA. The data contain those reported
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Table 2 Simulation results on the estimate of β, when γ = 0, using SR database alone, SR database
combined with the reference sample and known source population size N

nJ+1 = n2 N (γ0, γ1, γ ) SR data alone Combined data with known N
β̂ (SSE) β̂ (SSE, ASE, CP)

200 20000 0.500 (0.016) 0.500 (0.016, 0.016, 0.949)

400 40000 (−1, 0.4, 0) 0.500 (0.011) 0.500 (0.011, 0.011, 0.952)

800 80000 0.500 (0.008) 0.500 (0.008, 0.008, 0.949)

True value of β is 0.5. Corresponding standard errors are in parentheses
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Fig. 1 Dose distribution of the drug simvastatin among a 161 cases, b 850 controls, c reference sample of
size 4898

to AERS from all over the world between the time period 2006 to the first quarter of
2011. The source population consists of all the patients who are suffering from the
disease ‘blood cholesterol increased’ and using the drug simvastatin. Our objective is
to investigate the relationship among the doses of simvastatin with occurrence of the
ADR myalgia, better known as muscle pain. There are 1011 reports obtained from
AERS database during that period, among which 161 are suffering from the ADR
myalgia considered as cases and other 850 individuals having some other ADRs con-
sidered as controls. Both the case and the control samples suffer from reporting bias,
assumed to depend on doses of the drug due to spontaneous nature of reporting, as
discussed in Sect. 1. Figure 1a, b illustrates the dose distribution of the drug simvasta-
tin among the case and the control samples. It is clear that there is difference in dose
distribution among the two samples, based on the reported data to AERS database.
While the mode lies at 20 mg in the case sample, it is at 40 mg in the control sample.
The distribution in the source population may be different.

We consider the reporting and the prospective model of (7) and (8), respectively,
for this illustration. To apply the methodology, we need a reference sample having
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816 P. Ghosh, A. Dewanji

exposure information from the same source population. We do not have any such
reference sample from the corresponding source population of AERS database. For
the purpose of illustration, we consider a reference sample of size 4898, consisting
of patients taking simvastatin, from The Norwegian Prescription Database (see Hartz
et al. 2007)with the assumption that it represents the source population of this example.
Figure 1c gives the corresponding dose distribution which seems to be different from
those in the case and control samples in Fig. 1a, b.

Using likelihood (9), the estimated model parameter β̂ is −0.051 with correspond-
ing standard error 0.0046. While ignoring the reporting bias, analysis based on only
AERS database gives β̂ = −0.0054 with corresponding standard error 0.0047. There-
fore, it appears that the probability of the ADR myalgia decreases significantly with
higher doses of simvastatin,while ignoring the reporting biasmakes this effect insignif-
icant. This analysis indicates the importance of adjusting for reporting bias through
a reference sample. The results, however, should be interpreted with some caution
keeping in mind that the reference sample is assumed to be a representative of the
corresponding source population under study.

Appendix A: Pseudo-log-likelihood

The ‘pseudo-log-likelihood’ (6) is obtained from the log-likelihood (5). In order to
obtain the profile likelihood, as discussed inSect. 3, the log-likelihood (5) ismaximized
over δ for fixed φ. Introducing the Lagrange multiplier λ to take care of the constraint∑K

i=1 δi = 1 and equating the derivative of the log-likelihood (5) with respect to δi to
zero, we get

J∑

j=0

{
n ji

δi
− n jμ j i p ji

∑K
k=1 μ jk p jkδk

}

+ nJ+1,i

δi
+ λ = 0. (10)

Multiplying (10) by δi and summing over i , we have λ = −nJ+1. Using this value of
λ in (10), the expression for δi can be written as

δi = nJ+1,i + ∑J
j=0 n ji

n J+1

[

1 + ∑J
j=0

n j
n J+1

μ j i p ji
∑K

k=1 μ jk p jkδk

] · (11)

From (11), after setting an offset parameter ρ as

eρ = n j/

(

nJ+1

K∑

i=1

μ j i p jiδi

)

, for j = 0, 1, . . . , J, (12)

we have δi = (nJ+1,i +∑J
j=0 n ji )/(nJ+1(1+∑J

j=0 e
ρμ j i p ji )), which is substituted

in (5) to get the pseudo-log-likelihood (6).Note that theρ in (12) satisfies ∂l∗(ψ)/∂ρ =
0, where l∗(ψ) is given by (6).
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To justify this offset parameter ρ being independent of j , consider n0/n j as a
consistent estimator of P(R = 1,Y = 0)/P(R = 1,Y = j) (Scott and Wild 1997)
so that

n0
n j

= P(R = 1,Y = 0)

P(R = 1,Y = j)
+ op(1), for j = 1, . . . , J. (13)

Note that n j/n tends to ω j in probability and n0/n j tends to ω0/ω j in probability as
n → ∞ with n = ∑J+1

l=0 nl , resulting in

ω0

ω j
= P(R = 1,Y = 0)

P(R = 1,Y = j)
,

which leads to

ω0

ωJ+1P(R = 1,Y = 0)
= ω j

ωJ+1P(R = 1,Y = j)
, for j = 1, . . . , J, (14)

the population counterpart of (12). The implicit dependence of ρ on φ, written as
ρ = ρ(φ), is clear from the above description.

Appendix B: Asymptotics

The asymptotic properties of the estimator ψ̂ = (φ̂, ρ̂) obtained by maximizing the
pseudo log-likelihood (6) are established by considering the multi-sample represen-
tation of Hirose (2005) and Lee et al. (2006). Let E j denote the expectation with
respect to the conditional distribution of exposure X , given Y = j , having density
f j (x,φ, g) = μ j (x, γ )p j (x,β)g(x)/π j with π j = ∫

μ j (x, γ )p j (x,β)g(x)dx , for
j = 0, . . . , J, and EJ+1 denote the expectation with respect to the unconditional
distribution of X having density f J+1(x,φ, g) = g(x).

As in Lee et al. (2006), the estimating equation from (6), the pseudo log-likelihood
equation, can be written as

∂l∗(ψ)

∂ψ
=

J+1∑

j=0

n j∑

i=1

∂ log Z j (x ji ,ψ)

∂ψ
= 0, (15)

where

Z j (x,ψ) =
(

eρμ j (x, γ )p j (x,β)

1 + ∑J
l=0 e

ρμl(x, γ )pl(x,β)

)

, for j = 0, . . . , J, and

Z J+1(x,ψ) =
(

1

1 + ∑J
l=0 e

ρμl(x, γ )pl(x,β)

)

.
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Note that x ji , for i = 1, . . . , n j , are independent random variables with common
density f j (x,φ, g), for j = 0, 1, . . . , J + 1, as mentioned above. Then, we have

E j

(
∂logZ j

∂ψ

)

=
∫

1

Z j

∂Z j

∂ψ

μ j (x, γ )p j (x,β)g(x)

π j
dx

=
∫ (

1 +
J∑

l=0

eρμl(x, γ )pl(x,β)

)
∂Z j

∂ψ

g(x)

eρπ j
dx

= 1

ω j
EX

[

ωJ+1

(

1 +
J∑

l=0

eρμl(X, γ )pl(X,β)

)
∂Z j

∂ψ

]

, (16)

for j = 0, 1, . . . , J , using (12) and (14). Similarly,

EJ+1

(
∂logZJ+1

∂ψ

)

= 1

ωJ+1
EX

[

ωJ+1

(

1 +
J∑

l=0

eρμl(X, γ )pl(X,β)

)
∂Z J+1

∂ψ

]

.

(17)

Hence,

J+1∑

j=0

ω j E j

[
∂logZ j

∂ψ

]

= 0, since
J+1∑

j=0

Z j = 1. (18)

Now, we use the results related to estimating function and asymptotic linear estima-
tor (see Hirose 2005, p 72–79). Here, the estimating function is ∂Z j (x,ψ)/∂ψ with

the corresponding asymptotic linear estimator ψ̂ . Then, the asymptotic distribution of√
n(ψ̂ − ψ) is multivariate normal (see Hirose 2005, p 67–79) with mean zero and

variance–covariance matrix given by

I (ψ)−1 I (ψ)−1, (19)

where

I (ψ) =
J+1∑

j=0

ω j E j

[

−∂2logZ j

∂ψ∂ψT

]

and

 =
J+1∑

j=0

ω j E j

[{
∂logZ j

∂ψ
− E j

(
∂logZ j

∂ψ

)}{
∂logZ j

∂ψ
− E j

(
∂logZ j

∂ψ

)}T
]

.

(20)

In our context, it can be shown that the variance–covariance matrix (19) has the form

I (ψ)−1 −
[
0 0
0T H

]

, (21)
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where H is a scalar element. The resulting variance–covariance matrix of
√
n(φ̂ − φ)

is [Iφφ − Iφρ I−1
ρρ Iρφ]−1, where I (ψ) is partitioned as

I (ψ) =
[
Iφφ Iφρ

I Tρφ Iρρ

]

. (22)

Note that nI (ψ) can be consistently estimated by −∂2l∗(ψ)/∂ψ∂ψT evaluated at
ψ = ψ̂ . From (20),  can be written as

J+1∑

j=0

ω j E j

[(
∂logZ j

∂ψ

)(
∂logZ j

∂ψ

)T
]

−
J+1∑

j=0

ω j E j

(
∂logZ j

∂ψ

)

E j

(
∂logZ j

∂ψ

)T

= I (ψ) −
J+1∑

j=0

ω j E j

(
∂logZ j

∂ψ

)

E j

(
∂logZ j

∂ψ

)T

. (23)

To establish (21), we need to show that the second term of (23) is (see Neuhaus et al.
2002)

I (ψ)

[
0 0
0T H

]

I (ψ). (24)

Note that,

E j

(
∂logZ j

∂ψ

)(
∂logZ j

∂ψ

)T

= 1

ω j
EX

[

ωJ+1

(

1 +
J∑

l=0

eρμl(X, γ )pl(X,β)

)
1

Z j

∂Z j

∂ψ

∂Z j

∂ψT

]

, (25)

for j = 0, . . . , J + 1. Using (16) and (17), the second term of (23) becomes

J+1∑

j=0

1

ω j
EX

[

ωJ+1T (X)
∂Z j

∂ψ

]

EX

[

ωJ+1T (X)
∂Z j

∂ψ

]

. (26)

Using (25), the information matrix can be written as

I (ψ) =
J+1∑

j=0

EX

[

ωJ+1T (X)
1

Z j

∂Z j

∂ψ

∂Z j

∂ψT

]

= EX

⎡

⎣ωJ+1T (X)

J+1∑

j=0

1

Z j

∂Z j

∂ψ

∂Z j

∂ψT

⎤

⎦ . (27)
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Now,

Iφφ = EX

⎡

⎣ωJ+1T (X)

J+1∑

j=0

1

Z j

∂Z j

∂φ

∂Z j

∂φT

⎤

⎦

Iρφ = EX

⎡

⎣ωJ+1T (X)

J+1∑

j=0

1

Z j

∂Z j

∂ρ

∂Z j

∂φT

⎤

⎦

= EX

⎡

⎣ωJ+1T (X)

⎧
⎨

⎩

J∑

j=0

Z J+1
∂Z j

∂φT
− (1 − Z J+1)

∂Z J+1

∂φT

⎫
⎬

⎭

⎤

⎦

= EX

[

ωJ+1T (X)

{

−Z J+1
∂Z J+1

∂φT
− (1 − Z J+1)

∂Z J+1

∂φT

}]

= −EX

[

ωJ+1T (X)
∂Z J+1

∂φT

]

Iρρ = EX

⎡

⎣ωJ+1T (X)

⎧
⎨

⎩

J∑

j=0

Z j Z
2
J+1 + Z J+1(1 − Z J+1)

2

⎫
⎬

⎭

⎤

⎦

= EX

[
ωJ+1T (X)

{
(1 − Z J+1)Z

2
J+1 + Z J+1(1 − Z J+1)

2
}]

= −EX

[

ωJ+1T (X)
∂Z J+1

∂ρ

]

,

using the results,

∂Z j

∂ρ
= Z j Z J+1, for j = 0, 1, . . . , J, and

∂Z J+1

∂ρ
= −Z J+1(1 − Z J+1).

(28)

Since the last column of I (ψ) is −EX [ωJ+1T (X)
∂Z J+1

∂ψ
], it can be checked that (see

Neuhaus et al. 2002)

− I (ψ)−1EX

[

ωJ+1T (X)
∂Z J+1

∂ψ

]

=
[

0
1

]

. (29)

Note that,
∑J+1

j=0 Z j = 1 implies

J∑

j=0

EX

[

ωJ+1T (X)
∂Z j

∂ψ

]

= −EX

[

ωJ+1T (X)
∂Z J+1

∂ψ

]

,
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where T (X) = (1 + ∑J
l=0 e

ρμl(X, γ )pl(X,β)). Now, we claim that

EX

[

ωJ+1T (X)
∂Z j

∂ψ

]

= −τ j (ψ)EX

[

ωJ+1T (X)
∂Z J+1

∂ψ

]

, (30)

where
∑J

j=0 τ j (ψ) = 1. Using (29) and (30), we have

I (ψ)−1EX

[

ωJ+1T (X)
∂Z j

∂ψ

]

= τ j (ψ)

[
0
1

]

. (31)

From (29) and (31),

J+1∑

j=0

1

ω j
I (ψ)−1EX

[

ωJ+1T (X)
∂Z j

∂ψ

]

EX

[

ωJ+1T (X)
∂Z j

∂ψT

]

I (ψ)−1

=
⎛

⎝ 1

ωJ+1
+

J∑

j=0

τ j (ψ)

⎞

⎠
[

0 0
0 1

]

.

Hence, using (23), (21) is established.

Appendix C: Semiparametric efficiency

Following Bickel et al. (1993), the asymptotic variance matrix for a regular asymptoti-
cally linear (RAL) estimate φ̂ of φ satisfies V (φ̂) ≥ B, where B is the semiparametric
efficiency bound. Lee and Hirose (2010) have obtained this bound B for the semipara-
metric maximum likelihood estimate of parameters in general regression model when
data are collected under response-selective sampling scheme. In order to apply their
results in our context, let us consider the “population expected likelihood” (see also
Newey 1990; Lee et al. 2006) as given by

J+1∑

j=0

ω j E j [logf j (X,φ, g)], (32)

where E j is the expectation with respect to the conditional distribution of exposure
X , given Y = j , having density f j (x,φ, g) = μ j (x, γ )p j (x,β)g(x)/π j with π j =∫

μ j (x, γ )p j (x,β)g(x)dx , for j = 0, . . . , J and EJ+1 is the expectationwith respect
to the unconditional distribution of X having density f J+1(x,φ, g) = g(x), where
g(x) is the density corresponding to the exposure distribution G(x) of X . Then, the
efficient scores are given by

S j = ∂logf j (x,φ, ĝ(φ))

∂φ

∣
∣
∣
∣
φ=φ0

, j = 0, 1, . . . , J + 1, (33)
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where ĝ(φ) is the maximizer of (32), for fixed φ. Then, the corresponding efficiency
bound B is given by

B−1 =
J+1∑

j=0

ω j E j (S j S
T
j ). (34)

To show that the asymptotic variance matrix of φ̂ is equal to the semiparametric
efficiency bound, we need to show that

B−1 = Iφφ − Iφρ I
−1
ρρ Iρφ . (35)

From (32), the expected log-likelihood

J∑

j=0

ω j

∫

{log(μ j (x, γ )p j (x,β)) + log(g(x))}μ j (x, γ0)p j (x,β0)g0(x)dx

π0
j

+ωJ+1

∫

{log(g(x))}g0(x)dx −
J∑

j=0

ω j logπ j , (36)

where π0
j = ∫

μ j (x, γ0)p j (x,β0)g0(x)dx . Considering the terms which involve
g(x), (36) can be written as

ωJ+1

∫

log(g(x)) p̃(x)g0(x)dx −
J∑

j=0

ω j logπ j ,

where p̃(x) = 1 +
J∑

j=0

ω j

ωJ+1

μ j (x, γ0)p j (x,β0)

π0
j

. (37)

Now, we need to find ĝ which maximizes (37). Consider the class of distribution of
X to be discrete with finite support {x1, . . . , xM }. Suppose a general member g(·) of
this class has mass gi at xi . Note that the true distribution g0(·) is a member of this
class having mass g0(xi ), say, at xi . Then, (37) can be written along with Lagrange
multiplier λ to take care of the constraint

∑M
i=1 gi = 1, as

ωJ+1

M∑

i=1

log(gi ) p̃(xi )g0(xi ) −
J∑

j=0

ω j logπ j (g) + λ

(
M∑

i=1

gi − 1

)

, (38)

where π j (g) = ∑M
i=1 μ j i p ji gi . Differentiating (38) with respect to gi , we have

ωJ+1
p̃(xi )g0(xi )

gi
−

J∑

j=0

ω j
μ j (xi , γ )p j (xi ,β))

π j (g)
+ λ = 0. (39)
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Multiplying (39) by gi and summing over i give λ = −ωJ+1. Putting the value of λ

in (39), we get the estimate of gi as

ĝi = p̃(xi )g0(xi )

1 + ∑J
j=0

ω j
π j (g)ωJ+1

μ j (xi , γ )p j (xi ,β))
. (40)

In case of general g, not having finite support, the maximizer of (37) is of the form

ĝ(x;φ, ρ) = p̃(x)g0(x)

1 + ∑J
j=0

ω j
π j (ρ)ωJ+1

μ j (x, γ )p j (x,β)
(41)

(seeLee andHirose2010;Lee et al. 2006),whereπ j (ρ) satisfies eρ =ω j/(π j (ρ)ωJ+1)

(see (14)) for j = 0, 1 . . . , J and ρ = ρ(φ) is the solution of the equations

∫

μ j (x, γ )p j (x,β)ĝ(x;φ, ρ)dx = π j (ρ), or, equivalently,

∫ {
eρμ j (x, γ )p j (x,β)

1 + ∑J
j=0 e

ρμ j (x, γ )p j (x,β)

}

p̃(x)g0(x)dx = ω j

ωJ+1
, (42)

for j = 0, 1, . . . , J . Putting the value of ĝ in the densities f j (x,φ, g), for j =
0, 1, . . . , J , we have

logf j (x,φ, ĝ) = log

{
eρ(φ)μ j (x, γ )p j (x,β)

1 + ∑J
j=0 e

ρ(φ)μ j (x, γ )p j (x,β)

}

+ c j

= log{q j (x,φ, ρ(φ))} + c j (43)

and

logf J+1(x,φ, ĝ) = log

{
1

1 + ∑J
j=0 e

ρ(φ)μ j (x, γ )p j (x,β)

}

+ cJ+1

= log

⎧
⎨

⎩
1 −

J∑

j=0

q j (x,φ, ρ(φ))

⎫
⎬

⎭
+ cJ+1, (44)

where c j ’s are constants with respect to ψ = (ρ,φ). Using (33), the efficient scores
are given as

S j = ∂

∂φ
log{q j (x,φ, ρ(φ))}, for j = 0, 1, . . . , J + 1, (45)
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where qJ+1(x,φ, ρ(φ)) = 1 − ∑J
j=0 q j (x,φ, ρ(φ)) and all the derivatives are eval-

uated at φ = φ0. Applying chain rule,

S j = ∂

∂φ
log{q j (x,φ, ρ(φ))} +

{
∂ρ(φ)

∂φ

}T
∂

∂ρ
log{q j (x,φ, ρ(φ))}. (46)

Note that the information matrix (See Lee et al. 2006) is given by

I (ψ) = I (ρ,φ) =
J+1∑

j=0

ω j E j

{(
∂

∂ψ
logq j

)(
∂

∂ψ
logq j

)T
}

. (47)

From (34) and (46), we get

B−1 = Iφφ +
{

∂ρ(φ)

∂φ

}T

Iρφ + Iφρ

{
∂ρ(φ)

∂φ

}

+
{

∂ρ(φ)

∂φ

}T

Iρρ

{
∂ρ(φ)

∂φ

}

. (48)

Differentiating (42) under the integral sign

∫
∂q j

∂φ
p̃g dx +

{
∂ρ(φ)

∂φ

}T ∫
∂q j

∂ρ
p̃g dx = 0, j = 0, 1, . . . , J. (49)

It can be easily checked that

∂q j

∂ρ
= q j

⎛

⎝1 −
J∑

j=0

q j

⎞

⎠ ;−∂2 log q j

∂ρ2 =
J∑

j=0

∂q j

∂ρ

and − ∂

∂φ

{
∂ log q j

∂ρ

}

=
J∑

j=0

∂q j

∂φ
. (50)

Now, using (47) and (50),

Iρρ = ωJ+1

∫ J∑

j=0

∂q j

∂ρ
p̃g dx and Iρφ = ωJ+1

∫ J∑

j=0

∂q j

∂φ
p̃g dx . (51)

Summing over j = 0, 1, . . . , J in (49) and using (50)

∂ρ(φ)

∂φ
= −I−1

ρρ Iρφ . (52)

From (34), (48) and (52)

B−1 = Iφφ − Iφρ I
−1
ρρ Iρφ . (53)

This establish the efficiency bound of the semiparametric procedure.
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