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Abstract With reference to a baseline parametrization, we explore highly efficient,
fractional factorial designs for inference on the main effects and, perhaps, some inter-
actions. Our tools include approximate theory together with certain, carefully devised
discretization procedures. The robustness of these designs to possible model misspec-
ification is investigated using a minimaxity approach. Examples are given to demon-
strate that our technique works well even when the run size is quite small.

Keywords Binary design · Discretization · Minimaxity · Model misspecification ·
Nonorthogonality

1 Introduction

Design of optimal or efficient factorial fractions has received significant attention in
recent years; seeMukerjee andWu (2006),Wu andHamada (2009) andXu et al. (2009)
for surveys and further references. A vast majority of the existing work on fractional
factorial designs centers around the well-known orthogonal parametrization (Gupta
and Mukerjee 1989) where orthogonal arrays play a key role in the construction of
optimal fractions.

In recent years, however, a baseline parametrization has started gaining popularity
in factorial experiments. It has found use in microarray experiments (Yang and Speed
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2002) and can also arise naturally in many other situations whenever each factor has a
control or baseline level. FollowingKerr (2006), an example is given by a toxicological
study with binary factors, each representing the presence or absence of a toxin, where
the state of absence is a natural baseline level of each factor. Also, in agricultural or
industrial experiments, the currently used level of each factor can well constitute the
baseline level. Under baseline parametrization, optimal paired comparison designs
for full factorials have been studied by several authors in the context of microarray
experiments; see Banerjee and Mukerjee (2008) and Zhang and Mukerjee (2013), and
the references therein. As for designing efficient or optimal factorial fractions under
this parametrization, not much work has been reported so far beyond the results in
Mukerjee and Tang (2012) and Li et al. (2014) on the two-level case.

Indeed, the lack of orthogonality in baseline parametrization makes the combina-
torics for general fractional factorials extremely involved—for example, unlike what
happens in orthogonal parametrization, beyond two-level factorials, orthogonal arrays
cease to remain optimal for main effects even in the absence of interactions; see Muk-
erjee and Tang (2012). Given this difficulty, one naturally wonders if, pending the
development of perfect optimality results, it is possible to have designs with assured
high efficiency, say over 0.90 or 0.95, which would suffice in most applications. From
this perspective, we develop a technique for finding, under the baseline parametriza-
tion, designs which are highly efficient under a given model and, at the same time,
enjoy robustness to model misspecification. This is done via the approximate theory
which in a sense exploits the underlying nonorthogonality to our advantage and pro-
vides a benchmark for assuring the efficiency of exact designs. It is, however, seen that
discretization of the resulting optimal design measure via a commonly used rounding
off technique can have disastrous consequences. As a remedy, we propose certain
procedures that yield exact designs with high efficiency. We add that our approach to
robustness attempts to address an issue raised by Yin and Zhou (2015) who worked
with the orthogonal parametrization and stressed on the need for similar studies under
nonorthogonal parametrizations, like baseline.

Section 2 introduces the baseline parametrization and formulates the design objec-
tive with reference to a model which is kept quite flexible. It includes the baseline
effect, all main effects and perhaps some interactions. Then in Sect. 3, we show how
approximate theory, in conjunction with certain discretization procedures, can yield
highly efficient fractions of general factorials with an arbitrary number of levels for
each factor and arbitrary run size. The robustness of these designs to model misspec-
ification is explored in Sect. 4. Examples are given in Sect. 5 to demonstrate that our
approach works well even when the run size is quite small.

2 Baseline parametrization and design objective

2.1 Baseline parametrization

Consider anm1×· · ·×mn factorialwith n factors F1, . . . , Fn . For 1 ≤ i ≤ n, the levels
of Fi are coded as 0, 1, . . .,mi −1, where 0 is the control or baseline level. Thus there
are v = m1 . . .mn treatment combinations j1 . . . jn (0 ≤ ji ≤ mi −1,1 ≤ i ≤ n). Let
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Robust efficient factorial fractions 789

τ( j1 . . . jn) denote the treatment effect of the treatment combination j1 . . . jn . Then
the baseline parametrization for a full factorial model is given by

τ( j1 . . . jn) = �u1∈{0, j1} . . . �un∈{0, jn}θ(u1 . . . un), (1)

for every j1 . . . jn , where the sum on each ui is over ui ∈ {0, ji }, i.e., ui is fixed at
0 if ji = 0, while ui ranges over only 0 and ji if ji > 0. In (1), θ(0 . . . 0) is the
baseline effect, while θ(u1 . . . un) is a main or interaction effect parameter for every
u1 . . . un �= 0 . . . 0, depending on which ui ’s are nonzero. For instance, with a 32

factorial, (1) yields

τ(00) = θ(00), τ ( j10) = θ(00) + θ( j10) ( j1 = 1, 2),

τ (0 j2) = θ(00) + θ(0 j2) ( j2 = 1, 2),

τ ( j1 j2) = θ(00) + θ( j10) + θ(0 j2) + θ( j1 j2) ( j1, j2 = 1, 2), (2)

where θ(00) is the baseline effect, main effect F1 is represented by θ(10), θ(20),
main effect F2 is represented by θ(01), θ(02), and interaction F1F2 is represented
by θ(11), θ(12), θ(21), θ(22). It is easy to see that the parametrization (1) is
nonorthogonal—if the v equations (1) arising from the v treatment combinations are
written in matrix notation, then the columns of the coefficient matrix in the right-hand
side are not mutually orthogonal even when they correspond to different factorial
effects.

We begin by considering a reduced version of (1) which includes the baseline effect
and a collection of possibly significant factorial effects, such as all main effects and
perhaps some interactions as well. The factorial effects kept in themodel constitute the
requirement set, denoted by R. Write θ0 for the baseline effect θ(0 . . . 0), and θ for the
vector of parameters representing the factorial effects in R. Interest lies in inference
on θ , while θ0 is a nuisance parameter. Let q be the dimension of θ . Thus in the 32

example, if R consists of main effects F1 and F2, then parameters representing F1F2
do not appear in the model. So, (2) reduces to τ( j1 j2) = θ(00) + θ( j10) + θ(0 j2)
for j1, j2 = 1, 2, but remains unchanged when j1 = 0 or j2 = 0. In this case,
θ = (θ(10), θ(20), θ(01), θ(02))T consists of the main effects parameters, with the
superscript T denoting transposition, and q = 4.

In order to streamline the presentation, we now label the v treatment combinations
1, . . . , v in the lexicographic order, e.g., in a 32 factorial, the lexicographic ordering
of the v = 9 treatment combinations is 00, 01, 02, 10, 11, 12, 20, 21, 22, and these
are labeled 1, 2, . . ., 9, respectively. More generally, in an m1 × · · · × mn factorial,
any treatment combination j1 . . . jn is labeled k where

k = μ1 j1 + · · · + μn jn + 1, (3)

and μi = v/(m1 . . .mi ), 1 ≤ i ≤ n. With k as above, we simply write τk for
τ( j1 . . . jn). Clearly, then for the model introduced above, τk = θ0 + zTk θ , where zk is
a known q×1 vector, 1 ≤ k ≤ v; e.g., in the 32 example, the treatment combinations 10
and 21 are labeled 4 and 8, respectively, and if R consists of the two main effects then,
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with θ as shown in the previous paragraph, z4 = (1, 0, 0, 0)T and z8 = (0, 1, 1, 0)T.
Let τ = (τ1, . . . , τv)

T. Then our model can be expressed as

τ = θ01v + Zθ, (4)

where 1v is the v × 1 vector of ones, and Z is the v × q matrix with rows zT1 , . . . , zTv .
In what follows, for any vector b = (b1, . . . , bl)T, with B = b1 + · · ·+ bl > 0, we

define

D(b) = diag(b1, . . . , bl), �(b) = diag(b1, . . . , bl) − B−1bbT. (5)

Also, for any positive integer l, we write 0l for the l × 1 vector of zeros, 1l for the
l × 1 vector of ones, and Il for the identity matrix of order l.

2.2 Design objective

Consider now an N -run design d, consisting, say, of treatment combinations labeled
k(1), . . . , k(N ) which are not necessarily distinct. Let Yd denote the N × 1 obser-
vational vector arising from d. Assume that the observational errors are uncorrelated
with a common variance σ 2. Then, corresponding to (4), we have the model

E(Yd) = θ01N + Zdθ, cov(Yd) = σ 2 IN , (6)

where Zd is the N × q matrix with rows zTk(1), . . . , z
T
k(N ). Let LN = IN − N−11N1TN .

Then under (6), the information matrix for the parametric vector θ of interest is given
by

Hd = ZT
d LN Zd . (7)

We consider only designs d which keep θ estimable, i.e., have a nonsingular Hd ; one
can check that the condition N ≥ q + 1 is necessary for this purpose. By (6), for such
a design d, we have

θ̂ = H−1
d ZT

d LNYd , covd(θ̂) = σ 2H−1
d , (8)

where θ̂ is the best linear unbiased estimator of θ .
We aim at finding a design d so as to minimize the average variance of the ele-

ments of θ̂ among all N -run designs (the issue of model robustness is taken up later).
By (8), this calls for minimizing tr(H−1

d ). So, we go by the A-criterion which is
justified here because interest lies in the parameters in θ as they stand, and not in
their linear functions; cf. Kerr (2012). As hinted in the introduction, this exact design
problem is combinatorially very complex, due to the nonorthogonality of the baseline
parametrization. Use of approximate theory, however, allows us to make considerable
progress.
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3 Approximate theory and discretization procedures

3.1 Approximate theory

Tomotivate the ideas, we consider an alternative expression for Hd . For 1 ≤ k ≤ v, let
the treatment combination labeled k appear rdk (≥ 0) times ind,where rd1+· · ·+rdv =
N . The design is called binary if each rdk is 0 or 1. Let rd = (rd1, . . . , rdv)

T. Then
from (5), (7) and the definition of Zd ,

Hd = ZT
d LN Zd = ZT�(rd)Z = NM(p(d)), (9)

where p(d) = N−1rd and M(p(d)) = ZT�(p(d))Z . The discreteness of rd induces
the same on p(d), but in order to employ the approximate theory we, for now, treat
the elements of p(d) as nonnegative continuous variables which add up to 1. Any such
p = (p1, . . . , pv)

T is called a design measure assigning masses p1, . . . , pv on the
treatment combinations 1, . . . , v. By (9), then the design problem reduces to finding
an optimal design measure which minimizes φ(p) over all possible p, where

φ(p) = tr{M(p)}−1, if M(p) is nonsingular,
= +∞, otherwise

(10)

with
M(p) = ZT�(p)Z . (11)

Due to elimination of the nuisance parameter θ0, the expression (11) for M(p) is not
linear in the elements of p. Lemmas 1 and 2 below show that still the basic ideas of
approximate theory continue to hold in our setup. The first of these establishes the
convexity of φ(p) and the second one characterizes p so as to minimize φ(p). Their
proofs appear in the Appendix.

Lemma 1 For any design measures p and p̃ and any 0 < ε < 1,

(1 − ε)φ(p) + εφ( p̃) ≥ φ((1 − ε)p + ε p̃).

Lemma 2 A design measure p minimizes φ(p) if and only if M(p) is nonsingular
and

(zk − ZT p)T{M(p)}−1{M(p)}−1(zk − ZT p) ≤ tr{M(p)}−1, 1 ≤ k ≤ v.

Lemma 2 leads to a multiplicative algorithm for numerical determination of the
optimal design measure. It looks like that in Zhang and Mukerjee (2013) who con-
sidered paired comparison designs for full factorials, but is more elaborate than theirs
due to the nonlinearity of our M(p). The algorithm starts with the uniform measure
p[0] = (1/v, . . . , 1/v)T, and finds p[h] = (p[h]

1 , . . . , p[h]
v )T, h = 1, 2, . . . recursively

as
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p[h]
k = p[h−1]

k
(zk − ZT p[h−1])T{M(p[h−1]))}−1{M(p[h−1])}−1(zk − ZT p[h−1])

tr{M(p[h−1])}−1 ,

1 ≤ k ≤ v, (12)

till a design measure p[h], satisfying

(zk−ZT p[h])T{M(p[h])}−1{M(p[h])}−1(zk−ZT p[h])−tr{M(p[h])}−1 ≤ t, 1 ≤ k ≤ v, (13)

is obtained, where t (> 0) is a preassigned small quantity. If we denote the terminal
design measure meeting (13) by p̂ = ( p̂1, . . . , p̂v)

T, then arguments similar to those
in Silvey (1980, p. 35) and the proof of our Lemma 2 show that φ( p̂) ≤ φ̄ + t , where
φ̄ is the minimum of φ(p) over all possible p. We take t = 10−10. Then p̂ represents
the optimal design measure with accuracy up to nine places of decimals, Even at this
level of accuracy, the algorithm in (12) and (13) works quite fast. In all the examples
in Sect. 5 and many others, it terminates almost instantaneously.

In view of the foregoing discussion, for an N -run exact design d, it follows from
(9) and (10) that

tr(H−1
d ) ≥ s/N , (14)

where s = tr{M( p̂)}−1 − t , with t = 10−10. Thus a lower bound to the efficiency of
d under model (6) is obtained as

eff lb = s/{N tr(H−1
d )}. (15)

Of course, t is so small that its inclusion or otherwise in s has effectively no impact
on (15), as seen in our examples and many others. We remark that the bound (15),
relative to the optimal design measure, is typically unattainable in an exact setup. So,
it acts as a conservative benchmark and the actual efficiency of d among N -run exact
designs is often higher than this bound.

3.2 Discretization procedures

Approximate theory exploits to our advantage the two features of the baseline parame-
trization that hinder the development of exact optimality results, namely, nonorthog-
onality and lack of symmetry between the baseline and other levels of the factors.
Because of these features, much unlike what often happens under orthogonal parame-
trization, our optimal design measure p̂ turns out to be far from uniform. For instance,
in a 25×3 factorial, with the requirement set consisting of all main effects and interac-
tions F1 F6, F2 F6, if one finds z1, . . . , zv as in Sect. 2.1 and runs the algorithm in (12)
and (13), then one can check that the resulting p̂ assigns masses 0.0479, 0.0150 and
0.0057 to treatment combinations 000000, 110000 and 110011, respectively. This lack
of uniformity provides useful guidance to finding good exact designs—e.g., it is intu-
itively clear that an efficient exact design should include those treatment combinations
where the optimal design measure assigns greater masses.
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Notwithstanding the above, serious difficulties remain in translating the optimal
design measure p̂ = ( p̂1, . . . , p̂v)

T to efficient exact designs. Consider, for instance,
the common rounding off technique where, with a given run size N , one (i) multiplies
p̂1, . . . , p̂v by a positive constant c so chosen that the quantities c p̂1, . . . , c p̂v , when
rounded off to nearest integers, say r1, . . . , rv , add up to N (typically, one attempts
to find c by trial and error starting from c = N ) (ii) obtains an exact design d where
the treatment combination labeled k appears rk times, 1 ≤ k ≤ v, and (iii) hopes d
to be highly efficient with the belief that r1, . . . , rv are approximately proportional
to p̂1, . . . , p̂v . This often fails to work, especially for smaller run sizes which are of
practical interest from the viewpoint of experimental economy. First, there may not
exist any constant c such that the resulting r1, . . . , rv add up to N . Second, even when
such a c exists, the design d obtained as above may turn out to be of poor efficiency,
if not outright singular. Thus in the 25 × 3 example mentioned above, it is seen that
rounding off fails to produce a nonsingular exact design for any N ≤ 32.

For large N , or equivalently large c, on the other hand, the consequences of rounding
off are negligible compared to c, andhence roundingoffworkswell in producinghighly
efficient designs. This enables us to devise procedures for discretization of the optimal
design measure p̂ = ( p̂1, . . . , p̂v)

Tin such a manner that the resulting exact designs
retain high efficiency even for smaller N .

Procedure A

I. Consider a large c and round off c p̂1, . . . , c p̂v to nearest integers, say r1, . . . , rv .
If r1 + · · · + rv = N1, then start with an N1-run exact design d(N1), where the
treatment combination labeled k appears rk times, 1 ≤ k ≤ v. The constant c here
is chosen sufficiently large so as to ensure that d(N1) has very high efficiency, say
with eff lb ≥0.98, where eff lb is given by (15). Note that N1 can be much larger
than the target run size N and d(N1) can be non-binary.

II. For i = 0, 1, . . . , N1 − N − 1, obtain an (N1 − i − 1)-run design d(N1 − i − 1)
from an (N1 − i)-run design d(N1 − i) as follows:
(a) Consider all possible deletions of one run from d(N1−i). Among the resulting

(N1 − i − 1)-run designs, let d* be the one with largest eff lb. If eff lb ≥0.95
for d*, then take d(N1 − i − 1) as d*.

(b) Else, consider all possible deletions of two runs from d(N1 − i) coupled with
all possible additions of one run from amongst the v treatment combinations.
Take d(N1−i−1) as the designwith the largest eff lb among all (N1−i−1)-run
designs so generated.

Thus for each i , in Step II, one first considers deletion of one run and only when this
fails to ensure efflb ≥ 0.95, passes on to deletion of two runs coupled with addition
of one run. Clearly, procedure A attempts to guard against efflb going below 0.95 at
any stage. Even if this is not always achieved, the final design d(N ), of run size N ,
typically has high efficiency, with eff lb ≥ 0.90, even when N is rather small. Several
examples in Sect. 5 illustrate this point. Our computations suggest that the Zhang and
Mukerjee (2013) approach, involving only deletion or only addition of runs, does not
oftenwork here in ensuring high efficiency for smaller N . This why, our procedureA is
different from theirs, keeping a provision for both deletion and addition, if necessary.
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Indeed, one may wonder about various modifications of A, such as deleting three runs
and adding two in Step II (b), but we find that these only increase the computational
burden significantly without entailing much gain in efficiency.

Since the initial design d(N1) in procedure A is often non-binary, the final output
d(N ) can also be so, especially when N is not too small. However, as seen in the next
section, non-binary designs are unlikely to be robust to model misspecification. So,
we also consider two variants of this procedure which always lead to binary designs
while aiming at high efficiency.

Procedure B1

I. Start with the full factorial design where each of the v treatment combinations
appears once. Set N1 = v, and call this design d(N1).

II. Same as in A with the only change that if possibility (b) arises then the added
run is so chosen that only binary designs are entertained. Note that starting with a
binary d(N1 − i), one necessarily gets a binary d(N1 − i − 1) if (a) arises.

We remark that as with procedure A, in Step II of procedure B1 too, for each i ,
one first considers deletion of one run and only when this fails to ensure efflb ≥ 0.95,
explores deletion of two runs along with addition of one run.

Procedure B2

I. Start with the full factorial design. Set N1 = v, and call this design d(N1).
II. For i = 0, 1, . . . , N1 − N − 1, consider all possible deletions of one run from

d(N1 − i). Take d(N1 − i − 1) as the design with the largest efflb among all
(N1 − i − 1)-run designs so generated.

While the optimal design measure p̂ has no role in Step I of B1 and B2, it does
influence the final outcome through the use of eff lb in Step II. Procedure B2 is very
fast since it involves only deletion. Hence there is no harm in trying it first and if one
is not happy with the eff lbvalue of the resulting d(N ), one can employ B1 which is
not much time consuming either. In fact, B2 can help in making B1 even faster. One
can employ B2 to quickly find an N1-run binary design d(N1), with eff lb ≥ 0.98, and
initiate B1 from this d(N1) rather than the full factorial. Typically, such N1is large, but
still smaller than v, and this may expedite B1 in some situations. Illustrative examples
follow in Sect. 5.

4 Robustness to model misspecification

With reference to the model (4), write X = [1v Z ]. LetC(X) denote the column space
of X and C⊥(X) the orthocomplement thereof in the v-dimensional Euclidean space.
The dimensions of C(X) and C⊥(X) are q + 1 and v − q − 1, respectively, since X
has full column rank, a fact which is not hard to see from a matrix representation of
the baseline parametrization; cf. Banerjee and Mukerjee (2008). Model (4) amounts
to assuming that τ ∈ C(X). In the absence of this model assumption, τ is any vector
in the v-dimensional Euclidean space and hence can be represented as

τ = θ01v + Zθ + Pξ, (16)
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where P is a v × (v − q − 1) matrix whose columns form an orthonormal basis of
C⊥(X) and ξ is a column vector of order v − q − 1. The choice of P is non-unique
but, as seen below, this does not affect our findings.

Corresponding to (16), the model (6) for an N -run exact design d gets modified to

E(Yd) = θ01N + Zdθ + Pdξ, cov(Yd) = σ 2 IN , (17)

where Pd is related to P exactly in the same way as Zd is related to Z . Under (17), θ̂
in (8) no longer remains unbiased for θ . It has now bias H−1

d ZT
d LN Pdξ and its mean

squared error matrix equals

MSEd(θ̂) = σ 2H−1
d + H−1

d ZT
d LN PdξξTPT

d LN Zd H
−1
d . (18)

A model robust efficient design aims at keeping tr{MSEd(θ̂)} small, a problem which
is complicated by the fact that ξ is unknown. To overcome this difficulty, in the spirit
of Mukerjee and Tang (2012), we adopt a Bayesian inspired approach without a very
explicit prior specification. Motivated by the hope that even if the assumed model (4)
is inadequate, it is not too far from the true model (16), we consider the class 
 of
priors π such that

λmax

{
Eπ (ξξT)

}
≤ δ2, (19)

where λmax stands for largest eigenvalue and Eπ denotes expectation with respect
to π . With a view to protecting against the worst scenario over all possible priors π

satisfying (19), we proceed to find a design d which keeps

ψd = max
π∈


Eπ [tr{MSEd(θ̂)}] (20)

small. Thisminimaxity approach is inspired byWilmut andZhou (2011), Lin andZhou
(2013) and Yin and Zhou (2015), who worked with the orthogonal parametrization.
However, although (19) has essentially the same motivation as the condition that they
imposed, it is not identical to theirs and seems to be more suited to the present context.
We return to this point later but, at this stage, remark that (19) is invariant of the
choice of P . To see this, note that if P̃ is another matrix with orthonormal columns
and the same column space as P , then Pξ = P̃ ξ̃ for some ξ̃ , and P = P̃K for some
orthogonal matrix K . Therefore, ξ̃ = K ξ and (19) is equivalent to its counterpart with
ξ changed to ξ̃ . Lemma 3, proved in the Appendix, helps in finding ψd explicitly.

Lemma 3 (a) Let Vd = H−1
d ZT�(rd)�(rd)ZH

−1
d and W = {ZT�(1v)Z}−1. Then

H−1
d ZT

d LN Pd P
T
d LN Zd H

−1
d = Vd − W.

(b) The matrix Vd − H−1
d is nonnegative definite (nnd), and Vd = H−1

d if d is binary.

By (19), δ2 Iv−q−1 − Eπ (ξξT) is nnd for any π ∈ 
. Hence by (18), for any such
π ,

Eπ [tr{MSEd(θ̂)}] ≤ σ 2tr(H−1
d ) + δ2tr{H−1

d ZT
d LN Pd P

T
d LN Zd H

−1
d }, (21)
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and this upper bound is attained if Eπ (ξξT) = δ2 Iv−q−1 which also meets (19). Thus
ψd in (20) equals right-hand side of (21), and invoking Lemma 3(a), it follows that

ψd = σ 2tr(H−1
d ) + δ2{tr(Vd) − tr(W )}, (22)

which is invariant of the choice of P . By (14), (22) and Lemma 3(b),

ψd ≥ (σ 2 + δ2)tr(H−1
d ) − δ2tr(W ) ≥ (σ 2 + δ2)(s/N ) − δ2tr(W ), (23)

and the first inequality in (23) becomes an equality for binary designs. Thus, as our
computations also confirm, binary designs play amajor role in keepingψd small. From
(22) and (23), a lower bound to the efficiency of d, under possible model uncertainty
as considered here, is given by

eff lb(ρ) = (1 + ρ)(s/N ) − ρtr(W )

tr(H−1
d ) + ρ{tr(Vd) − tr(W )} , (24)

where ρ = δ2/σ 2, and Vd and W are as shown in Lemma 3. Note that W does not
depend on the design d. Just as the bound in (15), the one in (24) is a conservative
benchmark; the actual efficiency of d among N -run exact designs, in the present
setup, is often higher than this bound. The examples in the next section illustrate how
procedures A, B1 and B2 introduced earlier can yield designs with impressive values
of eff lb(ρ)even for relatively small run sizes.

We now compare our approach in some detail with that inWilmut and Zhou (2011),
Lin and Zhou (2013) and Yin and Zhou (2015), who explored binary designs under
orthogonal parametrization. Instead of assigning a prior on ξ , they studied minimaxity
under a condition which amounts to

ξTξ ≤ δ2 (25)

in our setup. By (18) and Lemma 3(a), the counterpart of ψd , under (25), is found to
be

ψ̃d = max
ξ : ξTξ≤δ2

tr{MSEd(θ̂)} = σ 2tr(H−1
d ) + δ2λmax(Vd − W ).

In contrast to what happens under an orthogonal parametrization, even with all factors
at two levels, the matrixW has a complex form in our setup and hence, unlike in (22),
no further splitting up of ψ̃d is possible due to nonlinearity of λmax in its arguments.
Moreover, due to lack of differentiability of λmax, even the approximate theory does
not help in finding a useful lower bound on ψ̃d . Thus, with condition (25), exhaustive
or near exhaustive search seems to be the only viable design strategy and, computa-
tionally, this may be quite formidable unless v and N are rather small. On the other
hand, our condition (19) serves essentially the same purpose as (25) but, aided by
approximate theory, keeps the computations manageable. Incidentally, a connection
between ψ̃d and ψd emerges if we rewrite (25) as λmax(ξξT) ≤ δ2, showing that
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ψ̃d = max Eπ [tr{MSEd(θ̂)}], where the maximum is over all degenerate priors meet-
ing (19). On the other hand, ourψd in (20) or (22) is the corresponding maximum over
the wider class all priors, degenerate or not, satisfying (19).

5 Examples

For ease in presentation, we show the examples in the form of tables. Tables 1, 2,
3, 4, 5, 6 and 7 exhibit how in a wide variety of situations, approximate theory, in
conjunction with procedures A, B1 and B2, yields efficient designs which are also
model robust, having eff lb and eff lb(ρ) values 0.90 or higher. Since eff lb and eff lb(ρ)

are only conservative lower bounds, the true efficiencies of these designs, among exact
designs with the same run size, should be even better.

Throughout, we take ρ = 1 and 5. The choice ρ = 1 is along the lines of Yin
and Zhou (2015), while the choice ρ = 5 sheds light on the robustness of the designs
when the departure from the assumed model is possibly even larger. Satisfyingly, our
computations show that in binary designs eff lb(ρ) falls off rather slowly with increase
in ρ. For non-binary designs, however, the fall is quite fast as anticipated from the
findings in the last section. Indeed, all the designs reported in Tables 1, 2, 3, 4, 5, 6
and 7 are binary.

In each table, we indicate the requirement set R and the value of q +1, the smallest
run size needed to keep the factorial effect parameters dictated by R estimable under
the assumed model. Designs are reported for eight consecutive values of N , close to
q + 1. We continue to write d(N ) to denote a design with run size N . In order to save
space, the treatment combinations in a design are listed by their labels following (3).
Moreover, if one design is similar to another, then we only mention how they differ.
Thus in Table 2, the design for N = 16 is described as d(15)+(52, 91)−4, to indicate
that it can be obtained from d(15) by adding the treatment combinations labeled 52
and 91 and deleting the treatment combination labeled 4.

In each table, after finding the optimal design measure via the algorithm in (12)
and (13), all three procedures A, B1 and B2 are applied for every N considered, and

Table 1 Robust efficient designs for a 26 factorial [R = {F1, . . . , F6} ∪ {Fi Fj : i = 1, 2, 3 and j =
4, 5, 6}, q + 1 = 16]
N d(N ) Procedure efflb efflb(1) efflb(5)

16 9, 12, 14, 15, 17, 20, 22, 23, 33, 36, 38, 39, 57, 60, 62, 63 B2 0.9411 0.9327 0.9256

17 d(16) + 1 B2 0.9512 0.9436 0.9371

18 d(17) + 49 B2 0.9426 0.9332 0.9250

19 d(18) + 6 B2 0.9393 0.9287 0.9194

20 d(19) + 4 B2 0.9411 0.9302 0.9204

21 d(20) + 7 B2 0.9482 0.9379 0.9285

22 d(21) + 41 B2 0.9606 0.9523 0.9444

23 d(22) + 25 B2 0.9790 0.9742 0.9695
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Table 2 Robust efficient designs for a 25 × 3 factorial [R = {F1, . . . , F6, F1F6, F2F6}, q + 1 = 12; A
initiated from d(304) with efflb = 0.9925; B1 initiated from the full factorial]

N d(N ) Procedure efflb efflb(1) efflb(5)

13 10, 13, 20, 24, 27, 29, 31, 51, 53, 55, 76, 92,
96

A 0.9129 0.9066 0.9019

14 d(13) + (40, 67) − 55 A 0.9303 0.9247 0.9205

15 d(14) + 4 A 0.9336 0.9279 0.9235

16 d(15) + (52, 91) − 4 A 0.9460 0.9409 0.9369

17 d(16) + (8, 17) − 20 A 0.9568 0.9524 0.9490

18 d(17) + (12, 88) − 76 A 0.9607 0.9564 0.9530

19 4, 13, 15, 17, 18, 19, 23, 26, 28, 33, 46, 50,
52, 57, 70, 76, 90, 91, 95

B2 0.9604 0.9558 0.9521

20 2, 4, 6, 7, 8, 19, 21, 34, 36, 37, 41, 44, 49,
60, 70, 71, 74, 79, 88, 90

B1 0.9609 0.9561 0.9522

Table 3 Robust efficient designs for a 22 × 32 × 4 factorial [R = {F1, . . . , F5}, q + 1 = 10; A initiated
from d(280) with efflb = 0.9957; B1 initiated from the full factorial]

N d(N ) Procedure efflb efflb(1) efflb(5)

14 8, 10, 13, 19, 28, 33, 39, 57, 66, 77, 86, 107,
109, 132

B1 0.9300 0.9265 0.9240

15 d(14) + 137 B1 0.9443 0.9413 0.9391

16 d(15) + (9, 25) − 33 B1 0.9486 0.9456 0.9434

17 d(16) + 112 B1 0.9573 0.9546 0.9526

18 3, 6, 24, 25, 33, 40, 43, 50, 53, 73, 82, 87,
89, 104, 109, 117, 134, 143

A 0.9602 0.9575 0.9556

19 d(18) + 124 A 0.9619 0.9592 0.9572

20 d(19) + 80 A 0.9626 0.9598 0.9577

21 8, 9, 13, 19, 25, 28, 38, 39, 47, 57, 66, 72,
77, 82, 86, 99, 107, 109, 112, 128, 137

B1 0.9587 0.9554 0.9530

we report the best design also indicating the corresponding procedure. Since none of
A, B1 and B2 is very computation intensive, we suggest that this be done in other
applications as well. In the tables, whenever procedure A or B1 is mentioned, we
indicate the initial designs that they start from.

For smaller N like the ones in the tables, procedure A often yields binary designs
and completes well with B1 even under model misspecification. Procedure B2 tends
to perform worse though there are exceptions as in Table 1. For N larger than those in
the tables, B1 and B2 yield designs with even higher eff lb and eff lb(ρ). Thus, in the
setup of Table 5 with N = 28, procedure B1, initiated from the full factorial, yields
a design with eff lb = 0.9608, eff lb(1) = 0.9584 and eff lb(5) = 0.9567, while in the
setup of Table 6 with N = 33, procedure B2 leads to a design with eff lb = 0.9713,
efflb(1) = 0.9682 and eff lb(5) = 0.9657. For such larger N , however, procedure A
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Table 4 Robust efficient designs for a 28 factorial [R = {F1, . . . , F8, F1F2, F1F3, F1F2F3}, q+1 = 12;
A initiated from d(288) with efflb = 0.9800; B1 initiated from the full factorial]

N d(N ) Procedure efflb efflb(1) efflb(5)

14 11, 22, 60, 92, 100, 125, 137, 152, 167, 186,
208, 209, 230, 251

A 0.9088 0.9063 0.9046

15 d(14) + (147, 160) − 152 A 0.9186 0.9162 0.9145

16 d(15) + (63, 96) − 92 A 0.9267 0.9244 0.9228

17 d(16) + (58, 89) − 60 A 0.9389 0.9369 0.9354

18 5, 20, 44, 49, 74, 83, 103, 118, 130, 137,
148, 159, 163, 190, 204, 213, 232, 249

B1 0.9508 0.9490 0.9477

19 d(18) + (6, 13) − 5 B1 0.9497 0.9477 0.9463

20 d(19) + (210, 215) − 213 B1 0.9530 0.9510 0.9497

21 d(20) + (134, 191) − 130 B1 0.9558 0.9539 0.9525

Table 5 Robust efficient designs for a 35 factorial [R = {F1, . . . , F5}, q + 1 = 11; A initiated from
d(306) with efflb = 0.9933; B1 initiated from the full factorial]

N d(N ) Procedure efflb efflb(1) efflb(5)

15 10, 23, 27, 31, 39, 61, 65, 83, 94, 125, 154,
165, 178, 208, 231

A 0.9107 0.9080 0.9062

16 d(15) + (141, 197) − 10 A 0.9203 0.9177 0.9159

17 d(16) + (114, 239) − 141 A 0.9298 0.9273 0.9256

18 d(17) + (136, 162) − 154 A 0.9362 0.9338 0.9321

19 8, 10, 13, 24, 35, 46, 57, 66, 99, 101, 112,
119, 139, 163, 165, 205, 213, 230, 241

B1 0.9378 0.9354 0.9337

20 d(18) + (7, 46, 66, 100) − (39, 231) A 0.9429 0.9405 0.9388

21 d(19) + (74, 106, 167, 207) − (66, 205) B1 0.9478 0.9455 0.9438

22 d(21) + (58, 138) − 139 B1 0.9512 0.9490 0.9473

Table 6 Robust efficient designs for a 24 × 3 × 4 factorial [R = {F1, . . . , F6, F5F6}, q + 1 = 16; B1
initiated from d(74) with efflb = 0.9973, as given by B2]

N d(N ) Procedure efflb efflb(1) efflb(5)

20 1, 24, 28, 29, 50, 63, 73, 93, 105, 123, 133,
134, 160, 161, 162, 163, 164, 166, 167, 180

B1 0.9204 0.9156 0.9121

21 d(20) + 34 B1 0.9151 0.9098 0.9059

22 d(21) + (85, 89) − 29 B1 0.9167 0.9112 0.9071

23 d(22) + (101, 157) − 85 B1 0.9218 0.9164 0.9123

24 d(23) + (117, 119) − 167 B1 0.9216 0.9159 0.9116

25 d(24) + (19, 175) − 163 B1 0.9250 0.9192 0.9149

26 d(25) + (54, 138) − 162 B1 0.9281 0.9223 0.9179

27 d(26) + (20, 176) − 164 B1 0.9323 0.9266 0.9223
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Table 7 Robust efficient designs for a 24 × 33 factorial [R = {F1, . . . , F7, F1F2, F1F3, F2F3, F1
F2F3}, q + 1 = 15; B1 initiated from d(98) with efflb = 0.9959, as given by B2]

N d(N ) Procedure efflb efflb(1) efflb(5)

20 6, 38, 52, 77, 90, 91, 124, 137, 159, 184, 192,
224, 237, 256, 271, 314, 342, 353, 389, 412

B1 0.9202 0.9184 0.9171

21 d(20) + (343, 356) − 353 B1 0.9271 0.9253 0.9240

22 d(21) + (13, 215) − 184 B1 0.9385 0.9369 0.9358

23 d(22) + (1, 175) − 13 B1 0.9416 0.9400 0.9389

24 d(23) + (247, 253) − 256 B1 0.9440 0.9424 0.9413

25 d(24) + (115, 121) − 124 B1 0.9461 0.9445 0.9433

26 d(25) + (49, 206) − 215 B1 0.9485 0.9468 0.9457

27 d(26) + (83, 99) − 90 B1 0.9521 0.9505 0.9494

often yields non-binary designs which are very efficient under the assumed model but
perform poorly under model misspecification.

The smallest N , say N0, in Tables 2, 3, 4, 5, 6 and 7 is a little larger than q + 1. For
q+1 ≤ N ≤ N0−1, in these examples none ofA, B1 or B2 yields designs having eff lb
and eff lb(ρ) values 0.90 or higher. However, since the bounds are conservative, this
does not necessarilymean that these procedures, especiallyAandB1, lead to inefficient
designs for such values of N . Simply, the bounds do not assure high efficiencies of
these designs and complete enumeration seems to be the only way of assessing their
efficiencies. This is again infeasible because v is quite large in these examples. To give
a flavor of what may actually happen when N is very close to q + 1 and the efficiency
bounds are not impressive, we discuss below a few situations where v is small and
hence complete enumeration is possible.

(a) 24 factorial, R = {F1, . . . , F4, F1F2, F3F4}, q + 1 = 7; N = 7, 8, 9, 10;
(b) 23 × 3 factorial; R = {F1, . . . , F4, F1F4, F2F4}, q + 1 = 10; N = 10, 11;
(c) 2 × 3 × 4 factorial; R = {F1, F2, F3, F2F3}, q + 1 = 13; N = 13, 14.

In the situations considered in (a)–(c) above, procedures A, B1 and B2 yield binary
designs but none of these has eff lb or eff lb(ρ) values 0.90 or higher. However, a
complete enumeration of binary designs shows that A and B1 produce designs with
smallest possible tr(H−1

d ) as well as smallest possible ψd for ρ= 1 and 5, in each of
these situations except the one in (a) with N = 9. In this last situation, both lead to a
design with true efficiencies 0.9796, 0.9734 and 0.9664, for ρ = 0, 1 and 5, respec-
tively, among all binary designs with the same run size; note that ρ = 0 corresponds to
the efficiency under assumed model. Thus A and B1 are capable of producing highly
efficient, if not optimal, exact designs even when this is not reflected in the values of
the corresponding efficiency bounds.

As mentioned earlier, our approach turns to advantage the two features of the base-
line parametrization that make the exact design problem hard, namely, nonorthog-
onality and lack of symmetry among factor levels. Because of these very features,
the optimal design measure becomes highly nonuniform and this helps us. Similar
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approach should be useful also in other situations which exhibit sufficient asymme-
try so as to entail such nonuniformity of the optimal design measure. We conclude
with the hope that the present work will generate interest in problems pertaining to
situations of this kind.

Appendix

Proof of Lemma 1 By (10), the lemma is obvious if either M(p) or M( p̃) is singular.
Suppose they are both nonsingular. Then by (5) and (11), on simplification,

M((1− ε)p+ ε p̃) = (1− ε)M(p)+ εM( p̃)+ ε(1− ε)ZT( p̃− p)( p̃− p)TZ . (26)

i.e., M((1− ε)p+ ε p̃) − {(1− ε)M(p) + εM( p̃)} is nnd. Since M(p) and M( p̃) are
both nonsingular, the result now follows from (10). 	


Proof of Lemma 2 We proceed along the lines of Silvey (1980, pp. 18–20), with more
elaborate arguments to cope with the nonlinearity of M(p) in the elements of p. Let
p̃ = ( p̃1, . . . , p̃v)

T and p be any design measures such that M(p) is nonsingular. The
lemma will follow arguing as in Silvey (1980) if we can show that

φ( p̃) − φ(p) ≥ lim
ε→0+{φ((1 − ε)p + ε p̃) − φ(p)}/ε, (27)

and

lim
ε→0+{φ((1 − ε)p + ε p̃) − φ(p)}/ε

= �v
k=1 p̃k[tr{M(p)}−1 − eTk {M(p)}−1{M(p)}−1ek], (28)

where ek = zk − ZT p, 1 ≤ k ≤ v. The truth of (27) is not hard to see from Lemma
1. It remains to prove (28). To that effect, observe that by (26), M((1− ε)p + ε p̃) =
(1 − ε)M(p) + εQ(ε), where

Q(ε) = M( p̃) + (1 − ε)ZT( p̃ − p)( p̃ − p)TZ

is nnd, for 0 < ε < 1. Write g = ZT( p̃ − p) and note that by (5) and (11),

M( p̃) = �v
k=1 p̃k(zk − ZT p̃)(zk − ZT p̃)T = �v

k=1 p̃k(ek − g)(ek − g)T.

Therefore, Q(ε) = U (ε)U (ε)T,whereU (ε) consists of the v+1 columns p̃1/2k (ek−g),
1 ≤ k ≤ v, and (1− ε)1/2g. Thus for 0 < ε < 1, the inverse of M((1− ε)p + ε p̃) is
given by
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(1 − ε)−1
[
{M(p)}−1 − η{M(p)}−1U (ε){Iv+1

+ηU (ε)T(M(p))−1U (ε)}−1U (ε)T{M(p)}−1
]
,

where η = ε/(1 − ε). Hence by (10), after some simplification, the left-hand side of
(28) equals

tr{M(p)}−1 − tr
[
{M(p)}−1U0U

T
0 {M(p)}−1

]
,

where U0 = limε→0+ U (ε). Since �v
k=1 p̃kek = g and, as a consequence, U0UT

0 =
�v

k=1 p̃keke
T
k , the truth of (28) is now evident. 	


Proof of Lemma 3 (a) Note the followings facts: (i)As in (9), ZT
d LN Pd = ZT�(rd)P .

(ii) If Xd = [1N Zd ], then LN Xd = [0N LN Zd ], so that as in (9), ZT�(rd)X =
ZT
d LN Xd = [0q Hd ], using (7); therefore, H−1

d ZT�(rd)X = [0q Iq ]. (iii) By
the definition of P , the matrix PPT is the orthogonal projector on C⊥(X), i.e.,
PPT = Iv − X (XTX)−1XT. By (i)–(iii),

H−1
d ZT

d LN Pd P
T
d LN Zd H

−1
d = H−1

d ZT�(rd)PPT�(rd)ZH
−1
d

= H−1
d ZT�(rd){Iv − X (XTX)−1XT}�(rd)ZH

−1
d

= Vd − [0q Iq ](XTX)−1[0q Iq ]T = Vd − W ∗,

where W ∗is the square submatrix of (XTX)−1 as given by its last q rows and
columns. Part (a) is now immediate, noting thatW ∗ = W , by (5) and the definition
of X .

(b) By (5), after some algebra,

�(rd)�(rd) − �(rd) = (Iv − N−1rd1
T
v ){D(rd)D(rd) − D(rd)}(Iv − N−11vr

T
d ),

(29)
which is nnd, because D(rd)D(rd) − D(rd) = diag(r2d1 − rd1, . . . , r2dv − rrv)
and each rdi is a nonnegative integer. Therefore, recalling (9), Vd − H−1

d =
H−1
d ZT{�(rd)�(rd) − �(rd)}ZH−1

d is nnd. If d is binary, then (29) vanishes,
and so Vd = H−1

d . 	
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