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Abstract For successive failure times of components in a technical system, a flexible
model based on sequential order statistics is proposed. Beyond the common assump-
tion of proportionality, this model allows for structural adjustments of the hazard rates
of the underlying lifetime distributions in situations, where failures have an impact on
the entire shape of the hazard rate of remaining components. The hazard rates may be
chosen, e.g., as strictly ordered bathtub curves. The general structure is analysed, and
maximum likelihood estimators are stated for both, unrestricted and order restricted
model parameters, as well as for parameters connected by a linear link function.
Several properties of the estimators are obtained. Utilizing the maximum likelihood
estimators, simultaneous confidence regions based on the Jeffreys–Kullback–Leibler
distance and the Hellinger distance are examined.

Keywords Sequential order statistic · Load sharing system · Proportional hazard
rate · Bathtub shape · Maximum likelihood estimation · Order restricted inference ·
Link function · Confidence region · Distance measure

1 Introduction

In technical systems consisting of several units, the failure of a component may have
an impact on the lifetimes of the surviving components. For describing the ordered

S. Bedbur · M. Burkschat · U. Kamps (B)
Institute of Statistics, RWTH Aachen University, 52056 Aachen, Germany
e-mail: udo.kamps@rwth-aachen.de

S. Bedbur
e-mail: stefan.bedbur@rwth-aachen.de

M. Burkschat
e-mail: marco.burkschat@rwth-aachen.de

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-015-0508-y&domain=pdf


640 S. Bedbur et al.

lifetimes of the components in such a system, sequential order statistics can be applied.
This model of ordered data allows for the description of failure situations, where, upon
a failure of some component, the remaining components are supposed to have a pos-
sibly different underlying lifetime distribution (see Kamps 1995a, b). If the different
lifetime distribution functions are denoted by F1, F2, . . ., then this leads to the inter-
pretation that, after the j th failure, the hazard rate of (remaining) components will
change from λ j to λ j+1, where λ j = f j/(1 − Fj ) denotes the hazard rate and f j the
density function of Fj , j = 1, 2, . . ..

In the literature on sequential order statistics, it is usually assumed that there exists
some common baseline hazard rate h with

λ j = ϑ j h, j = 1, 2, . . . ,

for positive constantsϑ1, ϑ2, . . . and, consequently, the hazard ratesλ j are proportional
to each other (cf., e.g., Cramer and Kamps 1996, 2001a, b; Belzunce et al. 2005; Hu
and Zhuang 2005; Beutner and Kamps 2009; Balakrishnan et al. 2008, 2010, 2011;
Bedbur 2010; Burkschat et al. 2010; Deshpande et al. 2010; Bedbur et al. 2012).
However, in practical applications, the failure of a unit may lead to a change in the
shape of the hazard rate. Consider, for instance, a bathtub shape of the hazard rate,
which may be encountered in the case of electronic products (see, e.g., Ch.3 Lai and
Xie 2006). If the load on a component increases, then we may expect not only a larger
hazard rate, but also that the flat part of the bathtub curve becomes shorter (cf. Fig.
1 in Gurgenci and Guan 2001 in the context of increasing duty levels of equipment).
Corresponding shape adjustments of the hazard rates are illustrated in Fig. 1 for bathtub
curves by utilizing a modifiedWeibull distribution of Lai et al. (2003) and in Fig. 2 for
increasing hazard rate curves of Gompertz distributions. Obviously, such differences
in the shape cannot be described by proportional hazard rates.

In the present paper, we focus on estimation in the general model of sequential order
statistics without imposing proportional hazard rates. We assume that the hazard rates
λ j are given in the form

λ j = ϑ j h j , j = 1, 2, . . . ,

with unknown positive parameters ϑ1, ϑ2, . . . of interest, and pre-fixed, possibly dif-
ferent functions h1, h2, . . . . Due to the assumed increase of the load, the hazard rates
should be modelled as being ordered, i.e., λ j (t) ≤ λ j+1(t) for t > 0. Since the differ-
ence between the functions h1, h2, . . . may become arbitrarily small (see, e.g., Figs.
1, 3 as well as Sect. 3.2), the parameters ϑ1, ϑ2, . . . should also be assumed to be
increasingly ordered. Then, ordered functions h1, h2, . . . , i.e., h j (t) ≤ h j+1(t) for
t > 0, will guarantee ordered hazard rates λ j . The general shape of the hazard rate λ j ,
that is, of the function h j , may be known from previous experiments. In addition to the
bathtub hazard rate curves to be ordered (see, e.g., the practical example in Gurgenci
and Guan 2001) and the operating periods becoming shorter, the early failure period as
well as the wear-out period may be differently modelled such as being characterized
by a less steep decrease or a more steep increase, respectively (see, e.g., the hazard
rates given in Fig. 1). Alternatively, hazard rates may be desired that possess the same
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Inference in a model of successive failures 641

Fig. 1 Hazard rates of the modified Weibull distribution F(t) = 1 − exp[−tβ exp(δt)] by Lai et al. 2003
with β = 0.2 and (in increasing order of the curves) δ1 = 0.2, δ2 = 0.3, and δ3 = 0.4

Fig. 2 Hazard rates of the Gompertz distribution F(t) = 1 − exp[−(exp(δt) − 1)] with (in increasing
order of the curves) δ1 = 0.2, δ2 = 0.3, and δ3 = 0.4

limiting behaviour for large t (see, e.g., Fig. 3 for an example based on the Hjorth
distribution). For general motivations and reviews on bathtub-shaped hazard rates,
we refer to Chapter 33 in Johnson et al. (1995), to Chapter 3 in Lai and Xie (2006)
and to Chapter 4 in Marshall and Olkin (2007). For systems with a given number of
components there may be additional information available on the time period, when
the hazard rate of a contained component is usually nearly flat. However, the actual
stress levels ϑ1, ϑ2, . . . need to be estimated.

The remaining part of the article is organized as follows. In Sect. 2, we introduce the
model alongwith its exponential family structure and address further properties, which
turn out to be helpful in subsequent sections when dealing with statistical inference
for unknown parameters. Maximum likelihood estimation of the model parameters
ϑ1, ϑ2, . . . and related properties are shown in Sect. 3. In particular, estimation under
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Fig. 3 Hazard rates of the Hjorth distribution F(t) = 1 − (1 + βt)δ exp(−t2/2) with β = 5 and (in
increasing order of the curves) δ1 = 0.2, δ2 = 0.3, and δ3 = 0.4

simple order restriction is considered in Sect. 3.2. If the parameters are assumed to fulfil
a linear relationship, estimation of the remaining two unknown quantities of the link
function is subject matter of Sect. 3.3. Finally, in Sect. 4, we focus on simultaneous
confidence regions for the model parameters based on two distance measures, the
Jeffreys–Kullback–Leibler distance and the Hellinger distance.

2 Model and structural properties

Basedon absolutely continuous distribution functions F1, . . . , Fn satisfying F
−1
1 (1) ≤

... ≤ F−1
n (1) with corresponding density functions f1, . . . , fn , the joint density func-

tion of the first r (≤ n) sequential order statistics X∗
1,n, . . . , X

∗
r,n (SOSs) is represented

by
n!

(n − r)!
r∏

j=1

(
1 − Fj (x j )

1 − Fj (x j−1)

)n− j f j (x j )

1 − Fj (x j−1)
(1)

on the cone −∞ = x0 < x1 ≤ · · · ≤ xr . These SOSs form a Markov chain with
transition probabilities

P
(
X∗

j,n > t | X∗
j−1,n = s

)
=
(
1 − Fj (t)

1 − Fj (s)

)n− j+1

, t ≥ s, 2 ≤ j ≤ n (2)
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Inference in a model of successive failures 643

(cf. Kamps 1995a, b).
In the following, we focus on a particular representation of F1, . . . , Fn , namely

Fj (t) = 1 − exp
{−ϑ j H j (t)

}
, t ∈ (c, d) , 1 ≤ j ≤ n , (3)

where ϑ1, . . . , ϑn denote positive parameters, and Hj : (c, d) → (0,∞) are cumu-
lative hazard rates, i.e., increasing and absolutely continuous functions on (c, d),
0 ≤ c < d ≤ ∞, with one-sided limits Hj (c+) = 0 and Hj (d−) = ∞ for
1 ≤ j ≤ n (typically, (c, d) = (0,∞)). The corresponding hazard rates h j are
given by h j (t) = H ′

j (t), t ∈ (c, d). Then, the hazard rate of Fj turns out to be

λ j (t) = ϑ j h j (t), t ∈ (c, d) , 1 ≤ j ≤ n ,

allowing for modelling increasing stress of remaining components of a system beyond
the assumption of proportional hazard rates. The respective conditional hazard rate
associated with (2) is thus given by

(n − j + 1) λ j (t), 2 ≤ j ≤ n .

This can be interpreted such that the underlying failure rate successively changes from
λ j−1 to λ j immediately after failure j−1 has occurred (cf. Cramer andKamps 2001b).
Thus, upon each failure, the remaining components are supposed to operate under a
possibly different failure rate which, e.g., takes an increased load put on remaining
components or their partial damage into account. As a submodel, the proportional
hazard rates result by choosing the Hs identically. More precisely, the usual propor-
tional hazard rate model with absolutely continuous baseline distribution function F ,
respective density function f , and model parameters ϑ1, . . . , ϑn is obtained by setting
H1 = . . . = Hn = − log(1 − F) on the domain (c, d) = (F−1(0+), F−1(1)). In
this particular setting and due to the above interpretation, the SOSs form a model with
conditional proportional hazard rates, and

λ j (t) = ϑ j
f (t)

1 − F(t)
, 2 ≤ j ≤ n .

In Table 1, some distribution functions of the type (3), i.e., of the form F(t) =
1 − exp{−ϑH(t)}, are shown along with some properties. In particular, w.r.t. at least
one of their parameters, the hazard rates are ordered as required in our model (cf.
Sect. 1); increasing and decreasing shapes are denoted by ↗ and ↘, respectively.
Moreover, the shapes of hazard rates are described by increasing failure rate (IFR),
decreasing failure rate (DFR), bathtub shape (BT), and upside down bathtub shape
(UBT). For a survey on the Gompertz distribution in row 1 of Table 1, we refer to
Marshall and Olkin (2007), Chapter 10; distribution 2 is introduced and studied in Lai
et al. (2003); distribution 3 is a particular parametrization of a family of distributions
shown in Hjorth (1980) (see also Johnson et al. 1995, pp. 664, 645); for δ ≥ 2,
distribution 4 is an example of a family of distributions considered in Gaver and Acar
1979; for the Burr XII distribution (row 6)we also refer toMudholkar et al. (1996), and
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Table 2 Ordering F1 ≤a f F2 of distribution functions F1 and F2 as in Table 1

Distribution condition 1 2 3 4 5 6 7

δ1 ≥ δ2 δ1 ≥ δ2 δ1 ≤ δ2 β1 ≥ β2 β1 ≥ β2 β1 ≥ β2 δ1 ≥ δ2

if δ1 = δ2 ≥ 1

Nikulin and Haghighi (2006) in a different parametrization; for a particular case of the
generalized Weibull distribution in row 7 see Mudholkar et al. (1996), and for δ = 1
the distribution is also known as J -shaped beta.

Clearly, the shapes of the particular underlying distribution functions F1, F2, . . .,
also determine the shapes of the hazard rates of SOSs. For example, we consider the
IFR property of SOSs. In Burkschat and Navarro (2011) and Torrado et al. (2012),
a corresponding condition is given, which can be expressed in terms of a notion of
relative ageing. We write F1 ≤a f F2 for distribution functions F1 and F2 of the
type (3) if the ratio λ1/λ2 of their hazard rates (or equivalently the ratio h1/h2) is
an increasing function on (c, d). For further information on this notion, see, e.g.,
Sengupta and Deshpande (1994) and Rowell and Siegrist (1998). In Burkschat and
Navarro (2011) and Torrado et al. (2012), it is shown that the r th SOS X∗

r,n has the
IFR property if F1 ≤a f F2 ≤a f . . . ≤a f Fr and Fr is IFR.

Table 2 illustrates that, upon choosing an appropriate parameter, we may find
F1 ≤a f F2 ≤a f . . . for distribution functions of the type (3). In the table, the relations
are summarized for F1 and F2 as in Table 1 with parameters ϑ1, β1, δ1 and ϑ2, β2, δ2,
respectively. In all cases, the respective other parameters (except for ϑ1 and ϑ2) are
assumed to be identical. Hence, as an example, the preceding result can be applied to
distributions 1, 2 (β ≥ 1), 3 (β2δ ≤ 1) and 7 (δ ≥ 1) in Table 1 to conclude that some
SOS possesses the IFR property. Related conditions such that SOSs have a decreasing
reversed hazard rate can be found in Burkschat and Torrado (2014). Moreover, further
results on stochastic orderings in the general setting of SOSs are given in Zhuang and
Hu (2007).

We now focus on the joint distribution of SOSs in the present situation. By inserting
formula (3) in (1), the joint density function of the first r SOSs X∗

1,n, . . . , X
∗
r,n based

on F1, . . . , Fn can be rewritten in the form

⎛

⎝
r∏

j=1

ϑ j

⎞

⎠ exp

⎧
⎨

⎩ϑ1 [−n H1(x1)] +
r∑

j=2

ϑ j
[−(n − j + 1) (Hj (x j ) − Hj (x j−1))

]
⎫
⎬

⎭

×
⎛

⎝ n!
(n − r)!

r∏

j=1

h j (x j )

⎞

⎠

on the support Xr = {(x1, . . . , xr ) ∈ (c, d)r : x1 ≤ . . . ≤ xr } which leads to the
short representation

fϑ (x) = exp
{
ϑ tT (x) − κ(ϑ)

}
b(x), x ∈ Xr , (4)
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646 S. Bedbur et al.

with vector T = (T1, . . . , Tr )t of statistics on Xr defined as

T1(x) = −n H1(x1) ,

Tj (x) = −(n − j + 1)
(
Hj (x j ) − Hj (x j−1)

)
, 2 ≤ j ≤ r ,

and mappings

b(x) = n!
(n − r)!

r∏

j=1

h j (x j ) , x = (x1, . . . , xr ) ∈ Xr ,

and

κ(ϑ) = −
r∑

j=1

log
(
ϑ j
)

, ϑ = (ϑ1, . . . , ϑr )
t ∈ R

r+ ≡ (0,∞)r . (5)

Here and in the following, superscript t on a vector or a matrix denotes its transpose.
In the context of the commonproportional hazard ratemodel, the exponential family

structure of the joint density function of the first r SOSs has been recognized in Bedbur
(2010) and Bedbur et al. (2012). It turns out that in the present more flexible model,
this structure appears again and useful inferential results are near at hand as we will
exemplarily demonstrate in Sect. 3 in the framework of point estimation of the ϑs.

For this purpose, we first state some fundamental results with respect to the recog-
nized exponential family structure.

Theorem 1 Let P = { fϑ μr : ϑ ∈ R
r+} be the exponential family of distributions

with densities as in (4), where μr denotes the r-dimensional Lebesgue measure on the
Borel sets of Xr . Then, we obtain the following properties:

1, P is full and regular.
2. The statistics T1, . . . , Tr onXr are independent, and −Tj is exponentially distrib-

uted with mean 1/ϑ j for 1 ≤ j ≤ r .
3. P is minimal and of full rank.
4. T is minimal sufficient and complete for P .

Proof 1. Let �∗ = {ϑ : 0 <
∫
Xr

exp{ϑ tT } b dμr < ∞} denote the natural para-
meter space of P . Evidently, Rr+ ⊆ �∗. Now, let ϑ ∈ [0,∞)r with ϑ j = 0 for (at
least) one index j ∈ {1, . . . , r}, and let j0 be maximal with that property. Then,
by denoting the one-dimensional Lebesgue measure by ν,

∫

(x j−1,d j )

exp
{
ϑ j Tj (x)

}
h j (x j ) dν(x j ) =

{
1

(n− j+1)ϑ j
, j0 < j ≤ r,

∞, j = j0 ,
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Inference in a model of successive failures 647

and applying Fubini’s theorem (for non-negative measurable functions) leads to

∫

Xr

exp
{
ϑ tT (x)

}
b(x) dμr (x)

= n!
(n − r)!

∫

Xr

r∏

j=1

[
exp{ϑ j Tj (x)} h j (x j )

]
dμr (x1, . . . , xr )

= n!
(n − j0)!

⎛

⎝
r∏

j= j0+1

1

ϑ j

⎞

⎠
∫

X j0−1

j0−1∏

j=1

[
exp{ϑ j Tj (x)} h j (x j )

]

×
(∫

(x j0−1,d j0 )

h j (x j0) dν(x j0)

)
dμ j0−1(x1, . . . , x j0−1)

= ∞.

Hence, ϑ /∈ �∗. As a consequence, every ϑ having some negative component
cannot be an element of �∗, since the natural parameter space of an exponential
family is always convex (see, e.g., Lemma 2.7.1 in Lehmann and Romano 2005).
Thus, �∗ = R

r+ is shown implying that P is full and, moreover, regular (since �∗
is open).

2. The statement follows directly from the fact that, by utilizing the exponential
family structure, the moment generating function of −T is obtained according to

Eϑ exp
{
zt (−T )

} = exp {κ(ϑ − z) − κ(ϑ)} =
r∏

j=1

(
1 − z j

ϑ j

)−1

,

for z = (z1, . . . , zr )t ∈ R
r with z j < ϑ j , 1 ≤ j ≤ r (see., e.g., Kotz et al. 2000,

p. 664; cf. Bedbur et al. 2012).
3. Statement (2) implies thatCovϑ (T ) = diag(1/ϑ2

1 , . . . , 1/ϑ2
r ) is positive definite.

Thus, the statistics T1, . . . , Tr do not satisfy a linear constraint, and it follows
that (the present representation of) P is minimal. Moreover, since the interior of
�∗ = R

r+ is not empty, P is of full rank.
4. The statement follows directly from (3) in combination with Corollary 1.6.16 and

Theorem 1.6.22 in Lehmann and Casella (1998).
�

As a preliminary work for the following sections, we briefly address the corre-
sponding properties related to the product case.

Let X (1), . . . , X (s) be a sample of independent randomvectorswith density function
(4), each. Then, the overall joint density function is given by

f (s)
ϑ

(
x̃(s)

)
= exp

{
ϑ tT (s)(x̃(s))−sκ(ϑ)

} s∏

i=1

b(x(i)), x̃(s)=
(
x(1), . . . , x(s)

)
∈ X s

r ,

(6)
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with vector T (s) = (T (s)
1 , . . . , T (s)

r )t of statistics on X s
r , which are given by

T (s)
j

(
x̃(s)

)
=

s∑

i=1

Tj

(
x(i)

)
, x̃(s) =

(
x(1), . . . , x(s)

)
∈ X s

r , 1 ≤ j ≤ r.

Consequently, denoting by μs
r = ⊗s

i=1μr the s-fold product measure of μr , the

family P(s) = { f (s)
ϑ μs

r : ϑ ∈ R
r+} of joint distributions of X(1), . . . , X (s) forms a

multivariate exponential family in ϑ1, . . . , ϑr and statistics T
(s)
1 , . . . , T (s)

r . Replacing
T by T (s) and P by P(s), it is seen that Theorem 1 remains valid with the only
difference that, for 1 ≤ j ≤ r , the statistic−T (s)

j ∼ 	(s, 1/ϑ j ) now follows a gamma
distribution with density function

ϑ s
j

(s − 1)! u
s−1 exp

{−ϑ j u
}
, u > 0. (7)

Remark 1 The abovemodel with non-proportional hazard ratesmay also be applied as
a particular step-stress scheme within accelerated life testing (cf. Bagdonavičius and
Nikulin 2002). Such schemes are applied for testing highly reliable products, where
too few or even no failures would occur under normal operating conditions (cf., e.g.,
Balakrishnan 2009 and the references therein). The proportional hazard rates case
with F1 = F2 = . . . is studied in Balakrishnan et al. (2012). In a multiple sample
setup, a number of s (possibly type-II right censored) lifetime tests are run with n
items put on test in experiment i, 1 ≤ i ≤ s. Then, immediately after every failure
in experiment i , the underlying level of stress is increased to cause earlier failures;
in sample i , r ≤ n failures are supposed to be observed, 1 ≤ i ≤ s. An increasing
stress level may be implemented by choosing the underlying distribution function
Fj+1 after failure j in the i th sample such that its hazard rate h j+1 (strictly) exceeds
h j , i.e. h j+1(t) ≥ (>) h j (t) for all t > 0, and assuming additionally ϑ j+1 ≥ ϑ j .
Families of distributions with this property are shown in Table 1. For a model in the
multiple samples case by means of common order statistics, we refer to Kateri et al.
(2009, 2010).

3 Point estimation

When applying the model of SOSs with distribution functions according to (3), the
model parametersϑ1, ϑ2, . . . and/or the functions H1, H2, . . .will usually be unknown
and have to be estimated based on data as in (6).

Throughout this section, the functions H1, . . . , Hr are supposed to be known (e.g.,
specified based on some previous experiment or prior information about the shapes of
the corresponding hazard rates), and we assume that the uncertainty of the model is
totally captured within the vector ϑ = (ϑ1, . . . , ϑr )

t of unknown model parameters.
Starting from sample situation (6), point estimators of ϑ with desirable properties are
presented, where optimality properties are also obtained.
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3.1 Unrestricted maximum likelihood estimation

First, point estimation without imposing any further conditions on the relationship
of the ϑs or the hs is considered. The results are essentially based on the structural
findings of Sect. 2, and are summarized in the following theorem.

Theorem 2 Let sample situation (6) be given with pre-fixed functions H1, . . . , Hr .
Then, we find:

1. ϑ̂
(s) = (ϑ̂

(s)
1 , . . . , ϑ̂

(s)
r )t with ϑ̂

(s)
j = −s/T (s)

j , 1 ≤ j ≤ r , is the unique max-

imum likelihood estimator (MLE) of ϑ . The univariate estimators ϑ̂
(s)
1 , . . . , ϑ̂

(s)
r

are jointly independent, and ϑ̂
(s)
j has an inverse gamma distribution with density

function

(sϑ j )
s

(s − 1)!
(
1

u

)s+1

exp

{
− sϑ j

u

}
, u > 0, for 1 ≤ j ≤ r.

2. −(s − 1)/T (s)
j is the uniformly minimum variance unbiased estimator of ϑ j for

1 ≤ j ≤ r and s > 2.
3. The vector (1/ϑ̂(s)

1 , . . . , 1/ϑ̂(s)
r )t of reciprocals of the univariate MLEs estimates

(1/ϑ1, . . . , 1/ϑr )
t efficiently, i.e., its covariance matrix is minimum in the sense of

the Löwner ordering among all unbiased estimators of (1/ϑ1, . . . , 1/ϑr )
t based

on X(1), . . . , X (s).

4. The sequence ϑ̂
(s)
, s ∈ N, is asymptotically unbiased (Eϑ (ϑ̂

(s)
) → ϑ , s → ∞),

strongly consistent (ϑ̂
(s) → ϑ almost sure, s → ∞), and asymptotically efficient

(
√
s(ϑ̂

(s) −ϑ) converges in distribution to a multivariate normal distribution with
mean zero and covariance matrix diag(ϑ2

1 , . . . , ϑ2
r ) which is the inverse of the

Fisher information matrix of P at ϑ).

Proof By means of the form (6) of the overall joint density function and the expo-
nential family properties as shown in Theorem 1 in Sect. 2, it turns out that, although
considering a more general model, we arrive at the same mathematical structure as in
Bedbur et al. (2012) in the context of SOSs with conditional proportional hazard rates.
Hence, substituting α j by ϑ j , � by κ , h by b, . . ., we can follow respective arguments
therein to obtain the above statements. �

3.2 Maximum likelihood estimation under simple order restrictions

As has been indicated in Sect. 1, one may assume that the hazard rates are ordered,
i.e., λ1(t) ≤ . . . ≤ λr (t) for t ∈ (c, d), and take this information into account
when estimating the ϑs. If the functions h1, . . . , hr become arbitrarily close, e.g.,
if h j+1(t)/h j (t) → 1 for t tending to a boundary point of the domain of H and
1 ≤ j ≤ r−1, then themodel parametersϑ1, . . . , ϑr have to be estimated under simple
ascending order. An example thereof is themodifiedWeibull casewith Hj (t) = tβeδ j t ,
t > 0, and parameters β ∈ (0, 1), 0 < δ1 < . . . < δr , where h j+1(t)/h j (t) → 1
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650 S. Bedbur et al.

for t → 0+ (see row 2 in Table 1; Fig. 1). Another example is provided by the
Hjorth case with Hj (t) = t2/2 + δ j log(1 + βt), t > 0, and parameters β > 0,
1/β2 < δ1 < . . . < δr , where h j+1(t)/h j (t) → 1 for t → ∞ (see row 3 in Table 1;
Fig. 3).

Theorem 3 shows the MLE of ϑ with respect to the constraint ϑ1 ≤ · · · ≤ ϑr .

Theorem 3 Let sample situation (6) be given with pre-fixed functions H1, . . . , Hr .
Then, we find:

1. The MLE of ϑ under the simple order restriction ϑ1 ≤ . . . ≤ ϑr uniquely exists

and is given by ϑ̃
(s) = (ϑ̃

(s)
1 , . . . , ϑ̃

(s)
r )t with components

ϑ̃
(s)
j = min

j≤w≤r
max
1≤v≤ j

w − v + 1
∑w

k=v 1/ϑ̂
(s)
k

, 1 ≤ j ≤ r.

2. ϑ̃
(s)
, s ∈ N, is strongly consistent provided that ϑ1 ≤ . . . ≤ ϑr .

Proof 1. Using representations (5) and (6), the strict convexity of κ ensures that
there exists at most one MLE of ϑ within the convex set � = {ϑ ∈ �∗ : ϑ1 ≤
. . . ≤ ϑr }. We introduce the bijective endofunction g on � in virtue of g(ϑ) =
(1/ϑr , . . . , 1/ϑ1)

t . Then, following the same arguments as in the proof of Theorem

3.1.(1) in Balakrishnan et al. (2008), the MLE g̃(ϑ)
(s) = (g̃(ϑ)

(s)
1 , . . . , g̃(ϑ)

(s)
r )t

of g(ϑ) within � is given by

g̃(ϑ)
(s)
j = max

1≤l≤ j
min
j≤t≤r

∑t
k=l 1/ϑ̂

(s)
r−k+1

t − l + 1
, 1 ≤ j ≤ r.

Hence, the MLE ϑ̃
(s) = (ϑ̃

(s)
1 , . . . , ϑ̃

(s)
r )t of ϑ within � exists and turns out to

have the components

ϑ̃
(s)
j = 1

g̃(ϑ)
(s)
r− j+1

= min
1≤l≤r− j+1

max
r− j+1≤t≤r

t − l + 1
∑t

k=l 1/ϑ̂
(s)
r−k+1

= min
j≤r−l+1≤r

max
1≤r−t+1≤ j

t − l + 1
∑r−l+1

k=r−t+1 1/ϑ̂
(s)
k

, 1 ≤ j ≤ r.

Substituting r − l + 1 and r − t + 1 by w and v, respectively, the proof of (1) is
completed.

2. Strong consistency of the sequence of unrestricted MLEs [see Theorem 2 (4)]
implies that ϑ̃ (s)

j → min j≤w≤r max1≤v≤ j (w − v + 1)/
∑w

k=v 1/ϑk almost sure,
1 ≤ j ≤ r , and, by elementary calculation, the limit can be computed to ϑ j under
the assumption that ϑ1 ≤ . . . ≤ ϑr .

�
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3.3 Link functions

In small data situations, where simultaneous estimation of ϑ1, . . . , ϑr is problematic,
additional model assumptions may be required. On the other hand, prior information
about the model parameters may happen to be available. In both cases, a link function
could be part of the statistical model.

We assume that the parameters ϑ1, . . . , ϑr are connected via the linear link function

ϑ j = τ1 + τ2y j , j = 1, . . . , r, (8)

where y1, . . . , yr are fixed real numbers, and τ1 and τ2 are unknownmodel parameters.
Under model assumption (8) it turns out that, again, an exponential family structure
in the parameters τ1 and τ2 results, i.e., the right-hand side of equation (6) can be
rewritten as

f̃ (s)
τ

(
x̃(s)

)
= exp

{
τ t T̃

(s)
(
x̃(s)

)
−sκ̃(τ )

} s∏

i=1

b
(
x(i)

)
, x̃(s)=

(
x(1), . . . , x(s)

)
∈X s

r

(9)
with vector τ = (τ1, τ2)

t of model parameters,

κ̃(τ ) = −
r∑

j=1

log(τ1 + τ2y j ),

τ = (τ1, τ2)
t ∈ �̃ =

{
(a1, a2)

t ∈ R
2 : a1 + a2y j > 0, j = 1, . . . , r

}
,

and vector T̃
(s) = (T̃ (s)

1 , T̃ (s)
2 )t of statistics defined via

T̃ (s)
1

(
x̃(s)

)
=

r∑

j=1

T (s)
j

(
x̃(s)

)
, T̃ (s)

2 (x̃(s)) =
r∑

j=1

y j T
(s)
j

(
x̃(s)

)
, x̃(s) ∈ X s

r .

Thus, P̃(s) = { f̃τμs
r : τ ∈ �̃} forms a full and regular two-parameter exponential

family in the natural parameters τ1 and τ2 and the statistics T̃ (s)
1 and T̃ (s)

2 . Since

T (s)
1 , . . . , T (s)

r are jointly independentwith−T (s)
j ∼ 	(s, 1/(τ1+τ2y j )) for 1 ≤ j ≤ r

[see (7)], we obtain

Varτ
(
T̃ (s)
1

)
= s

r∑

j=1

(
τ1 + τ2y j

)−2
, Varτ

(
T̃ (s)
2

)
= s

r∑

j=1

y2j
(
τ1 + τ2y j

)−2
,

and Covτ

(
T̃ (s)
1 , T̃ (s)

2

)
= s

r∑

j=1

y j
(
τ1 + τ2y j

)−2
. (10)

The Cauchy–Schwarz inequality then says that Covτ (T̃
(s)

) is positive definite if and
only if |{y1, . . . , yr }| ≥ 2. In that case, P̃(s) is minimal and of full rank, and, as a
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consequence, T̃
(s)

turns out to be minimal sufficient and complete for P̃(s) by the
same arguments as in the proof of Theorem 1 in Sect. 2.

Theorem 4 Let sample situation (9) be given with pre-fixed functions H1, . . . , Hr

and pre-fixed real numbers y1, . . . , yr satisfying |{y1, . . . , yr }| ≥ 2. Then, we find:

1. The MLE τ̂
(s) = (τ̂

(s)
1 , τ̂

(s)
2 )t of τ uniquely exists and is the only solution of the

equations

τ1 = − τ2T̃
(s)
2 + rs

T̃ (s)
1

and
r∑

j=1

s
(
T̃ (s)
2 − y j T̃

(s)
1

)
τ2 + rs

= 1

with respect to τ = (τ1, τ2)
t ∈ �̃.

2. The sequence τ̂
(s), s ∈ N, is strongly consistent and asymptotically efficient, i.e.,√

s(τ̂ (s) − τ ) is asymptotically normal distributed with mean zero and covariance

matrix given by the inverse matrix of Covτ (T̃
(1)

) [see (10)].

Proof 1. Let A ∈ R
r×r be a matrix of rank r with first row (1, . . . , 1) and second

row (y1, . . . , yr ). Due to the density transformation theorem, AT (s) and, in par-

ticular and more important, T̃
(s)

have density functions with respect to r - and
2-dimensional Lebesgue measure, respectively. Consequently, applying Theorem
2.3.2 in Bickel and Doksum (2001) for k = 2, the MLE τ̂

(s) of τ exists and is nec-

essarily a solution of the equation ∇(sκ̃)(τ ) = T̃
(s)

with respect to τ ∈ �̃, where
∇(sκ̃) denotes the gradient of sκ̃ . Note that from a general result for minimal
regular exponential families, ∇(sκ̃) is a (infinitely differentiable) diffeomorphism

from �̃ to the interior of the convex hull of the support of T̃
(s)
, where the latter is

independent of τ (see Kotz et al. 2000, pp. 667–669). Here, ∇(sκ̃)(τ ) = T̃
(s)

is
equivalent to

r∑

j=1

1

τ1 + τ2y j
= − T̃ (s)

1

s
and

r∑

j=1

y j
τ1 + τ2y j

= − T̃ (s)
2

s
, (11)

which implies that

(
− T̃ (s)

1

s

)
τ1 +

(
− T̃ (s)

2

s

)
τ2 = r .

Solving this equation for τ1 and substituting the term in the first equation of (11)
yield statement (1).

2. Strong consistency of the sequence of MLEs is obtained from the representation

τ̂
(s) = (∇κ̃)−1(T̃

(s)
/s) and the continuity of (∇κ̃)−1 by application of the strong

law of large numbers. Asymptotic efficiency of τ̂
(s), s ∈ N, then follows from the

central limit theorem by the usual arguments (see Theorem 6.5.1 in Lehmann and
Casella 1998, cf. Bedbur et al. 2012).

�
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4 Confidence regions

In the previous sections, we addressed point estimation of the vector ϑ of model para-
meters. To derive confidence regions for ϑ , we may proceed as in Vuong et al. (2013)
(see also Bedbur et al. 2013) in the framework of the usual proportional hazard rate
model and choose a setup by means of distance measures between density functions.
Briefly, we illustrate the procedure by exemplarily utilizing the Jeffreys–Kullback–
Leibler distance and the Hellinger distance.

Given densities h1, h2 w.r.t. Lebesgue measure νk, k ∈ N, having the same support
with interior S, then these distance measures are defined by

DJ (h1, h2) =
∫

S

(
h1(x)−h2(x)

) (
log h1(x)−log h2(x)

)
dνk(x) (12)

and

DH (h1, h2) =
(∫

S

(
h1/21 (x) − h1/22 (x)

)2
dνk(x)

)1/2

, (13)

respectively.
Consider two joint density functions of the form (6) with the same underlying

distribution functions F1, . . . , Fr and parameter vector ϑ = (ϑ1, . . . , ϑr )
t and ϑ ′ =

(ϑ ′
1, . . . , ϑ

′
r )

t , respectively. Applying (12) and (13) to these density functions, it turns
out that both expressions are free of F1, . . . , Fr and depend on ϑ and ϑ ′ only bymeans
of componentwise ratios.

Lemma 1 For density functions as in (6), Jeffreys–Kullback–Leibler and Hellinger
distance are given by

DJ

(
f (s)
ϑ , f (s)

ϑ ′
)

= s
r∑

j=1

(
ϑ j

ϑ ′
j

+ ϑ ′
j

ϑ j
− 2

)
= D(s)

J (ϑ,ϑ ′), say, (14)

and

DH

(
f (s)
ϑ , f (s)

ϑ ′
)

=
⎛

⎝2 − 2rs+1
r∏

j=1

⎛

⎝
(

ϑ j

ϑ ′
j

)1/2

+
(

ϑ ′
j

ϑ j

)1/2
⎞

⎠
−s⎞

⎠
1/2

= D(s)
H (ϑ,ϑ ′), say. (15)

Proof Since we have exponential family structure, we find with (7)

DJ

(
f (s)
ϑ , f (s)

ϑ ′
)

= (ϑ − ϑ ′)t
(
Eϑ T (s) − Eϑ ′T (s)

)

= s(ϑ − ϑ ′)t
( (

1/ϑ ′
1, . . . , 1/ϑ

′
r

)− (1/ϑ1, . . . , 1/ϑr )
)

which leads to formula (14) (cf. Kullback 1959, p. 45).
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Representation (15) directly follows with (5) by exploiting

∫

X s
r

(
f (s)
ϑ (x̃(s)) f (s)

ϑ ′ (x̃(s))
)1/2

dμs
r (x̃

(s))

=
(
exp

{
κ

(
ϑ + ϑ ′

2

)
− κ(ϑ) + κ(ϑ ′)

2

})s

.

�

The results in Lemma 1 can be applied to derive simultaneous confidence regions
for ϑ1, . . . , ϑr based on data as in (6). From Theorem 2 (1), the MLEs of the ϑs
are independent and inverse gamma distributed. Hence, a direct approach to a joint
confidence region for ϑ1, . . . , ϑr is to consider an r -dimensional rectangle. Then,
however, confidence levels for all r axis have to be chosen in advance. To avoid this
restriction, we propose an alternative procedure.

In the above situation, with D ∈ {DJ , DH }, and the MLE ϑ̂
(s)

of ϑ as in Theorem
2 (1), we consider balls

R(s)(c) =
{
ϑ ∈ R

r+ : D(s)
(
ϑ̂

(s)
,ϑ
)

≤ c
}

with radius c > 0 about the MLE. Since, from Theorem 2 (1), the distribution of

the componentwise ratios ϑ̂ j
(s)

/ϑ j do neither depend on F1, . . . , Fr nor on ϑ j for

1 ≤ j ≤ r , the same holds for the distribution of D(s)(ϑ̂
(s)

,ϑ) and its (1 − p)-
quantile c1−p, p ∈ (0, 1), which can be determined numerically without much effort
by generating random samples from gamma distributions.

Thus, by introducing the notation P(s)
ϑ = f (s)

ϑ μs
r for ϑ ∈ R

r+, we conclude that

P(s)
ϑ

(
ϑ ∈ R(s)(c1−p)

)
= P(s)

ϑ

(
D(s)(ϑ̂ (s)

,ϑ
) ≤ c1−p

)
= 1 − p , ϑ ∈ R

r+ ,

and R(s)(c1−p) is a (1 − p)-confidence region for the vector ϑ of model parameters.
When assuming ascendingly ordered parameters, i.e., ϑ1 ≤ . . . ≤ ϑr , as done

in Sect. 3.2, the construction of confidence regions for ϑ taking into account this
information in advance is not straightforward. Here, we content ourselves with the
remark that the intersection R(s)(c1−p) ∩ �, where � is defined as in the proof of
Theorem 3, represents a (1 − p)-confidence region for ϑ ∈ � since

P(s)
ϑ

(
ϑ ∈ R(s)(c1−p) ∩ �

)
= P(s)

ϑ

(
ϑ ∈ R(s)(c1−p)

)
= 1 − p , ϑ ∈ �,

which contains only parameter vectors with ascendingly ordered components.
In the situation of Sect. 3.3, where theϑs are connected via a linear link function, the

Jeffreys–Kullback–Leibler distance D(s)
J (τ , τ ′) = DJ ( f̃

(s)
τ , f̃ (s)

τ ′ ) and the Hellinger

distance D(s)
H (τ , τ ′) = DH ( f̃ (s)

τ , f̃ (s)
τ ′ ) are obtained by setting ϑ j = τ1 + τ2y j and

ϑ ′
j = τ ′

1 + τ ′
2y j , 1 ≤ j ≤ r , in formula (14) and (15), respectively. Similarly as
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above, one may consider the distances D(s)
J (τ̂

(s)
, τ ) and D(s)

H (τ̂
(s)

, τ ) to construct
simultaneous confidence regions for τ1 and τ2. Here, however, the explicit form of
the MLE τ̂

(s) of τ and its distribution theoretical properties are not available (see
Theorem 3.3) which makes it difficult to determine the radius c of a ball about τ̂

(s)

for a desired confidence level. However, asymptotical results can be stated. In what
follows, let D• = D(s)• to simplify notation.

The Jeffreys–Kullback–Leibler distance belongs to the broader class of φ-
divergence measures and results from the general definition by choosing the function
φ according to φ(x) = (x−1) log(x) (cf. Pardo 2006, pp. 3–6). Hence, by application
of Theorem 9.1 in Pardo (2006), p. 409, we obtain that the asymptotic distribution of
2sDJ (τ̂

(s)
, τ )/φ′′(1) = sDJ (τ̂

(s)
, τ ) is an exponential distribution with mean 2. We

conclude that

{
τ ∈ �̃ : sDJ

(
τ̂

(s)
, τ
)

≤ −2 log(p)
}

forms a confidence region for τ with asymptotic confidence level 1 − p.
The Hellinger distance is closely related to another φ-divergence measure, i.e.,

the Cressie–Read power divergence DCR−1/2(τ , τ ′) = 2DH (τ , τ ′)2 with parameter
−1/2 which is obtained by setting φ(x) = −4(x1/2 − x + (x −1)/2) (cf. Pardo 2006,
pp. 5-7). Again, Theorem 9.1 in Pardo (2006) then states that 2sDCR−1/2(τ̂

(s)
, τ ) is

asymptotically exponentially distributed with mean 2, and the confidence region

{
τ ∈ �̃ : DH

(
τ̂

(s)
, τ
)

≤
(

− log(p)

2s

)1/2
}

(16)

for τ turns out to have asymptotic confidence level 1 − p.
Alternatively and in a similar manner, one may use the relationship between

the Hellinger distance and the Rényi divergence DR1/2(τ , τ ′) = −4 log(1 −
DH (τ , τ ′)2/2)with parameter 1/2, where the latter is known to be a particular (h, φ)-
divergence measure with functions h and φ specified as h(x) = −4 log(−x/4 + 1)
and φ(x) = −4(x1/2 − (x − 1)/2 − 1) [(cf. Pardo 2006, formula (1.3), and pp. 7/8].
From Remark 9.1 in Pardo (2006) then follows that 2sDR1/2(τ̂

(s)
, τ )/(h′(0)φ′′(1)) =

2sDR1/2(τ̂
(s)

, τ ) is asymptotically exponentially distributed with mean 2. Hence,

{
τ ∈ �̃ : 2sDR1/2

(
τ̂

(s)
, τ
)

≤ −2 log(p)
}

=
{
τ ∈ �̃ : DH

(
τ̂

(s)
, τ
)

≤
(
2
(
1 − p1/(4s)

))1/2}

provides another confidence region for τ with asymptotic confidence level 1 − p
which, as the power series expansion of log(p1/(4s)) shows, forms a subset of the one
specified in formula (16) and, thus, has smaller area along with a correspondingly
smaller actual confidence level.
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