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Abstract Estimation of the integrated volatility is an important problem in high-
frequency financial data analysis. In this study, we propose a quadratic unbiased esti-
mator of the integrated volatility for stochastic volatility models with microstructure
noise. The proposed estimator minimizes the finite sample variance in the class of
quadratic estimators based on symmetric Toeplitz matrices. We show the proposed
estimator has an asymptotic mixed normal distribution with optimal convergence rate
n−1/4 and achieves themaximum likelihood estimator efficiency for constant volatility
case. Simulation results show that our proposed estimator attains better finite sample
efficiency than state-of-the-art methods. Finally, a real data analysis is conducted for
illustration.

Keywords High-frequency data · Integrated volatility · Microstructure noise ·
Signal-to-noise ratio · Stochastic volatility model

1 Introduction

In security markets, financial data taken at a finer time scale such as tick-by-tick data
have become readily available due to advances in data acquisition and processing
techniques. These high-frequency data provide a rich source for volatility analysis,
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674 L.-C. Lin, M. Guo

which plays an important role in derivative pricing, portfolio allocation, and risk
management. It is usually assumed that the high-frequency efficient log price process
{pt } satisfies the following continuous-time stochastic volatility model (SVM),

dpt = utdt + σtdWt (1)

whereut is the drift term,σt (the spot volatility at time t) is a continuous-time stochastic
process and Wt is a Brownian motion. See for instance, Andersen et al. (2001), Aït-
Sahalia et al. (2005), Zhang (2006), Barndorff-Nielsen et al. (2009), Reiss (2011),
Lee and Guo (2012) and Lin et al. (2013). A leverage effect between the return and
conditional volatility, see for example Model (21) in Sect. 4.1, may be considered in
the models. The integrated volatility of {pt } in the unit interval [0, 1] is defined as the
cumulated volatility in the interval,

∫ 1
0 σ 2

s ds, which under Model (1) is equal to the
quadratic variation of {pt }, i.e.,

[p, p]t = lim
max�ti →0

n∑

i=1

(
pti − pti−1

)2 =
∫ 1

0
σ 2
s ds, (2)

where (t1, t2, · · · , tn) denotes a partition of [0, 1] and �ti = ti − ti−1. By (2), the
sum of the squared efficient returns converges to the integrated volatility as the par-
tition length �ti shrinks to zero. However, empirical evidence shows that sum of the
observed high-frequency squared returns shoots up as the sampling time decreases
to zero, see for example Fan and Wang (2007). To accommodate this empirical fact,
microstructure noise component is encompassed in the price model of high-frequency
data. Specifically, the true (efficient) price is usually assumed to be contaminated by
the market microstructure effects, see for example, Aït-Sahalia et al. (2005) and Bandi
and Russell (2006). Accordingly, in this paper, we assume that the observed log price
process { p̃t } satisfies the following model,

p̃t = pt + ηt , (3)

where pt is the efficient log price at time t satisfying Model (1), the instantaneous
volatility process σt satisfies

E |σs − σt |2q ≤ Cq |t − s|q , q ≤ 2, (4)

whereCq > 0 are constants and {ηt } is a white noise process independent of {pt }with
E(ηt ) = 0, Var(ηt ) = σ 2

η , E
(
η4t
)
/
(
E
(
η2t
))2 = λ and E

(
η8t
)

< ∞. Barndorff-Nielsen
et al. (2008) gave further discussion on the independence assumption between {pt }
and {ηt } and the white noise assumption of {ηt }. The microstructure noise results
from either the information or the non-information-related factors, which include the
bid-ask spread, the differences in trade sizes, informational asymmetries of traders,
inventory control effects, the discreteness of price changes, and others.

Assume p̃t s are observed at the equispaced time points (t1, t2, · · · , tn) where ti =
i/n. For the sake of simplicity, in the sequel we denote pti = pi , p̃ti = p̃i and
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ηti = ηi . Hence, the observed log return at time ti is

r̃i = p̃i − p̃i−1 = ri + εi ,

where ri = pi − pi−1 denotes the nominal return and εi = ηi − ηi−1 is regarded
as the microstructure noise at ti , respectively. Since {ηt } is a white noise process, the
microstructure noise process {εt } is an MA(1) process with variance

Var(εt ) = σ 2
ε = 2σ 2

η . (5)

Define the realized volatility,

RV =
n∑

j=1

r̃2j ,

which represents the aggregate squared observed returns. Under the assumption of
Model (3), the realized volatility

RV =
n∑

j=1

r2j +
n∑

j=1

ε2j + 2
n∑

j=1

r jε j =
∫ 1

0
σ 2
s ds + nE

(
ε2
)

+ op(n) (6)

increases with the sample size (hence also with the sampling frequency), which echoes
the aforementioned empirical fact. In view of (6), the RV of high-frequency data is
mostly composed of the latent market microstructure noise, which hinders the estima-
tion of the integrated volatility in practice.

In the literature, a lot of effort has been devoted to improve the estimation of
integrated volatility. Some of the important contributions include but are not limited
to Barndorff-Nielsen and Shephard (2002), Aït-Sahalia et al. (2005), Zhang et al.
(2005), Zhang (2006), Bandi and Russell (2006), Fan and Wang (2007), Bandi and
Russell (2008), Barndorff-Nielsen et al. (2008), Barndorff-Nielsen et al. (2009), and
Reiss (2011). See also Zhou (1996), Andersen et al. (2000), Hansen and Lunde (2006),
Kalnina and Linton (2008), Jacod et al. (2009), Sun (2006) and Xiu (2010) for related
research in integrated volatility. Bibinger andMykland (2013) discuss some relation of
the aforementioned methods and show their asymptotic equivalence. In these studies,
quadratic estimators of the form R̃′W R̃ is a popular choice, where R̃ = (̃r1, . . . , r̃n)′
and W = (wi j )1≤i, j≤n is a symmetric matrix. Examples include Zhang et al. (2005),
Zhang (2006), Barndorff-Nielsen et al. (2008) and Jacod et al. (2009) which will be
introduced below.

Zhang et al. (2005) proposed a “two-scale estimator” defined as

T (K )
2 = 1

K

∑

j>K

( p̃ j − p̃ j−K )2 − n − K + 1

nK
RV

which is a bias-corrected average of the squared K -period returns and the RV is the
realized volatility based on all the observed returns. The optimal period K is obtained
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by minimizing the asymptotic variance of the estimator T (K )
2 . Zhang et al. (2005)

proved that the two-scale estimator has the convergence rate n−1/6. The two-scale
estimator is a quadratic type estimator and the weights matrix is W = W ∗ − (n −
K + 1)/(nK )In where In is an n × n identity matrix and W ∗ = (w∗

i j )1≤i, j≤n is a
symmetric matrix. When j − i = d ≥ K w∗

i j = 0 and for 0 ≤ j − i = d ≤ K − 1

w∗
i j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i

K
, i = 1, . . . , K − 1 − d,

K − d

K
, i = K − d, . . . , n − K + 1,

n + 1 − d − i

K
, i = n − K + 2, . . . , n − d.

Zhang (2006) generalized the two-scale estimator to the followingmulti-scale realized
volatility using m multiple sampling frequencies (K1, . . . , Km),

Tm =
m∑

i=1

ai T
(Ki )
2 , ai = 12

1

m2

i/m − 1/2 − 1/(2m)

1 − 1/m2 .

The multi-scale estimator has a weak convergence rate n−1/4. Barndorff-Nielsen et al.
(2008) proposed the following realized kernel estimator

Tk =
H∑

h=−H

k

(
h

H + 1

)

Lh,

where the kernel function k(x) is a weight function defined on [0, 1], and

Lh = L−h =
n−h∑

j=1

r̃ j r̃ j+h, (7)

is the lag h(≥ 0) sample autocovariance. Barndorff-Nielsen et al. (2008) showed
that the optimal kernel function minimizing the asymptotic variance is k(x) =
(1 + |x |)e−|x | (see Proposition 1 of page 1498 in Barndorff-Nielsen et al. 2008)

with H = ξn1/2 where ξ2 = σ 2
η /

√∫ 1
0 σ 4

s ds. The realized kernel estimator has a

weak convergence rate n−1/4. Jacod et al. (2009) presented the following generalized
pre-averaging approach

Tp = 1

knψ2

n−kn+1∑

i=0

(r̄ ni )2 − ψ1

2k2nψ2

n∑

i=1

r̃2i , (8)

where kn = c
√
n + o

(
n−1/4

)
,
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r̄ ni =
kn−1∑

j=1

g( j/kn)r̃i+ j ,

ψ1 = ∫ 1
0

(
g′(u)

)2 du and ψ2 = ∫ 1
0 g2(u)du for a given function g. The function g

defined on [0, 1] is continuous, piecewise C1 with a piecewise Lipschitz derivative
g′ and satisfies g(0) = g(1) = 0 and

∫ 1
0 g(s)2ds > 0. A simple choice is g(x) =

min{x, 1−x}which impliesψ1 = 1andψ2 = 1/12.Koike (2014) proposed anoptimal
weight function for pre-averaging covariance estimation. The pre-averaging estimator
has a weak convergence rate n−1/4. Since the multi-scale estimator Tm , the realized
kernel estimator Tk and the pre-averaging estimator Tp all are linear combinations of
r̃i r̃ j , by appropriately rearranging the coefficients, we can show that they are also a
type of quadratic estimators. Moreover, the quasi-maximum likelihood estimation of
Xiu (2010) also behaves like an iterative exponential realized kernel asymptotically
in light of quadratic representation.

In this study, we proposed a quadratic estimator based on a symmetric Toeplitz
matrix, i.e., each descending diagonal from left to right is constant. The proposed
estimator is unbiased andminimizes the finite sample variance in the class of quadratic
estimators based on symmetric Toeplitz matrices. Define the signal-to-noise ratio as

Snr =
E
(∫ 1

0 σ 2
s ds
)

nσ 2
ε

,

which represents the ratio of the integrated volatility to the n-folds variance of the
microstructure noise. The optimal weights are functions of Snr solved from fifth order
difference equations. A recursive algorithm, using the Newton method and the Gauss–
Seidel method was developed to solve Snr and the optimal weights. The proposed esti-
mator converges weakly to a mixed normal distribution at the rate n−1/4 and achieves
the MLE efficiency in the constant volatility case. Note that n−1/4 is the optimal con-
vergence rate for integrated volatility estimators, see for example Aït-Sahalia et al.
(2005) and Reiss (2011).

The main differences between the proposed estimator and T (K )
2 , Tm , Tk and Tp are

listed below.

(i) The optimal weights of the proposed estimator are only constrained by unbiased-
ness condition. These data-drivenweights dynamically adjust with the size of Snr .
The weights of T (K )

2 , Tm , Tk and Tp are constrained to be functions of parameters
or kernels, such as K , K1, . . . , Km , k(x) or g.

(ii) The proposed estimator minimizes the finite sample variance in the class of
Toeplitz type quadratic estimators, while T (K )

2 , Tm and Tk aim to minimize the
asymptotic variances in the class of quadratic estimators with aforementioned
constraint weights. In view of the slow n−1/4 convergence rate of these estima-
tors, we expect the proposed estimator attains better efficiency in practical appli-
cation with smallish sample size. Our simulation results in Sect. 4 also support
the advantage of the proposed estimator in both smallish and large samples.
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Sun (2006) also considers the quadratic type estimator R̃′W R̃. The main differ-
ences between the estimators of ours and Sun (2006) are listed below.

(iii) Both Sun’s (2006) and our estimators are obtained to minimize the finite sample
variance based on unbiasedness condition. Sun (2006) derives the optimalweights
under the distributional assumptions that the volatility does not change much
within the sampling period, i.e.,

∫ ti
ti−1

σ 2
s ds = ∫ 1

0 σ 2
s ds/n, ∀i = 1, . . . , n, and

the kurtosis of ηt is 3. Our optimal weights are obtained by assuming that the
weighting matrix is a symmetric Toeplitz matrix; no distributional assumptions
of Sun (2006) are required. Hence, our approach is suitable for estimating the
integrated volatility in either volatile or non-volatile market.

(iv) The optimal weights of Sun (2006) are functions of the ratio λSun =∫ 1
0 σ 2

s ds/(nσ 2
η ), which is estimated by a consistent estimator. And our optimal

weights are functions of Snr , whichwill be recursively estimated via an algorithm.
(v) Since Sun’s (2006) approach is based on a quadratic form of n(n + 1)/2 non-

zero weights, it requires O(n2) arithmetical operations to obtain the integrated
volatility estimator. However, our proposed estimator only depends on 
(
 n)

weights [cf. (9)], which requires only O(n) computational complexity.

The remainder of this paper is organized as follows. In Sect. 2, we describe our
estimator of the integrated volatility, based on a linear function of sample autocovari-
ances. The asymptotic distribution of the proposed estimator is derived. In Sect. 3, a
recursive algorithm is developed to compute the optimal weights. A simulation and an
empirical study are provided in Sect. 4. Finally, in Sect. 5, we draw our conclusions.
Part of the proofs is provided in Appendix A and the figures and the tables are shown
in Appendix B and Appendix C, respectively.

2 Optimal restricted quadratic estimator

Throughout, we assume the efficient log price process {pt : t ≥ 0} satisfies the SVM
(1) and the observed log price p̃t satisfies (3). The notations pi , p̃i , ri and r̃i are
defined as in the previous section. Consider the symmetric Toeplitz type quadratic
estimator SL(θ) = R̃′W R̃ where W = (wi j )1≤i, j≤n with wi i = θ0, i = 1, . . . , n,
wi j = θ|i− j |/2 if 1 ≤ |i − j | ≤ 
 and wi j = 0 if |i − j | > 
. Equivalently, we can
express the proposed estimator SL as a linear function of the sample autocovariances,

SL(θ) = θ0

n+1∑

i=1

r̃2i + θ1

n∑

i=1

r̃i r̃i+1 + θ2

n−1∑

i=1

r̃i r̃i+2 + . . . + θ


n+1−
∑

i=1

r̃i r̃i+


= θ0L0 + θ1L1 + θ2L2 + . . . + θ
L
, (9)

where Lh is the lag h sample autocovariance defined in (7), r̃1 ≡ p̃1 = p1 + η1 and
r̃n+1 ≡ − p̃n = −pn − ηn . We assume 
/n → 0 as n → ∞. The optimal weights
θ∗ = (θ∗

0 , θ∗
1 , θ∗

2 , . . . , θ∗

 )′ are chosen to satisfy the unbiasedness

E

(

SL(θ∗) −
∫ 1

0
σ 2
s ds

)

= 0
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and the minimum variance condition

Var

(

SL(θ∗) −
∫ 1

0
σ 2
s ds

)

= min
θ

Var

(

SL(θ) −
∫ 1

0
σ 2
s ds

)

.

Throughout, we let G denote the σ -field generated by {σt , t ≥ 0} and EG(·) =
E[·|G] denote the conditional expectation with respect to G. The conditional expec-
tation is defined up to almost-sure equivalence. In the following Lemma 1, we derive
the moments of the sample autocovariance function Lh and the estimator SL when the
drift term ut = 0.

Lemma 1 (i) EG (L0) = ∫ 1
0 σ 2

s ds + nσ 2
ε , EG (L1) = − n

2σ 2
ε , and EG (Lh) =

0, ∀ h ≥ 2, where σ 2
ε is defined in (5).

(ii) If θ0 = 1 and θ1 = 2, then EG
(
SL − ∫ 10 σ 2

s ds
)

= 0 and hence SL is an unbiased

estimator of
∫ 1
0 σ 2

s ds, that is E
(
SL − ∫ 10 σ 2

s ds
)

= 0.

Remark 1 When the drift term ut �= 0, the nominal return

rui = ri +
∫ ti

ti−1

usds,

where ri denotes the nominal returnwhen the drift term ut = 0. Then, the observed log
return r̃i = rui + εi and Lh =∑n+1−h

i=1 r̃i r̃i+h , h = 0, . . . , 
. The results of Lemma 1
are modified as follows:

(i) EG (L0) = ∫ 10 σ 2
s ds+nσ 2

ε +O(1/n), EG (L1) = − n
2σ 2

ε +O(1/n), EG (Lh) =
O(1/n), h = 2, . . . , 
.

(ii) If θ0 = 1 and θ1 = 2, then EG
(
SL − ∫ 10 σ 2

s ds
)

= O(
/n) and hence SL is

asymptotically unbiased.

In view of Lemma 1, hereinafter we consider

SL(θ) = L0 + 2L1 +

∑

i=2

θi Li ,

i.e., θ0 = 1 and θ1 = 2, to insure the unbiasedness of SL . We have

Var

(

SL −
∫ 1

0
σ 2
s ds

)

= E

[

VarG
(

SL−
∫ 1

0
σ 2
s ds

)]

+Var

[

EG
(

SL−
∫ 1

0
σ 2
s ds

)]

= E
[
VarG (SL)

]
(10)

=

∑

i=0


∑

j=0

θiθ j E
[
CovG(Li , L j )

]
, (11)
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where (10) is due to Lemma 1 (ii). Since the microstructure noise εi = ηi − ηi−1 is a
zero-mean MA(1) process and is independent of {r j }, thus for k ≥ 3 we have

CovG (Lh, Lh+k)

= CovG

⎛

⎝
n−h+1∑

j=1

(r j + ε j )(r j+h + ε j+h),

n−h−k+1∑

i=1

(ri + εi )(ri+h+k + εi+h+k)

⎞

⎠

= CovG

⎛

⎝
n−h+1∑

j=1

ε jε j+h,

n−h−k+1∑

i=1

εiεi+h+k

⎞

⎠ = 0. (12)

Therefore, given the sigma-field G, the conditional covariance matrix of the vector
variable

(L0, 2L1, θ2L2, . . . , θ
L
)
′

is an (
 + 1) × (
 + 1) symmetric pentadiagonal matrix, with only the main diagonal
and the first two diagonals above and below it are non-zero. To simplify the notation,
we set

μh = E
[
VarG (Lh)

]
, ρh = E

[
CovG (Lh−1, Lh)

]
, νh = E

[
CovG (Lh−2, Lh)

]
,

and � = (
σi j
)
, where σi j = θi−1θ j−1E

[
CovG(Li−1, L j−1)

]
. By (12), we have for

i ≤ j ,

σi j =

⎧
⎪⎪⎨

⎪⎪⎩

θ2i−1μi−1, i = j ≥ 1,
θi−1θiρi , i ≥ 1, j = i + 1,
θi−1θi+1νi+1, i ≥ 1, j = i + 2,
0, j ≥ i + 3,

where θ0 = 1 and θ1 = 2. Thus, by (11)

Var

(

SL −
∫ 1

0
σ 2
s ds

)

= 1′�1, (13)

where 1 = (1, . . . , 1)′(
+1)×1. In the following lemma, for simplicity of derivation, we

derive the expressions for {μi }
i=0, {ρi }
i=1 and {νi }
i=2 when the drift term ut = 0.
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Lemma 2 Let λ = E
(
η4t
)
/
(
E
(
η2t
))2

denote the kurtosis of ηt . Then,

μ0 = 2

n
E

(∫ 1

0
σ 4
s ds

)

+ 4σ 2
ε E

(∫ 1

0
σ 2
s ds

)

+ (λn − 1)σ 4
ε + o(n−1),

μ1 = 1

n
E

(∫ 1

0
σ 4
s ds

)

+ 2σ 2
ε E

(∫ 1

0
σ 2
s ds

)

+ 2A1 + (λ + 4)n − 6

4
σ 4

ε + o(n−1),

ρ1 = −2σ 2
ε E

(∫ 1

0
σ 2
s ds

)

− 2A1 − (λ + 1)n − 2

2
σ 4

ε ,

μh = 1

n
E

(∫ 1

0
σ 4
s ds

)

+ 2σ 2
ε E

(∫ 1

0
σ 2
s ds

)

+ Ah + Bh + 3n − 3h

2
σ 4

ε + o(n−1),

ρh = −σ 2
ε E

(∫ 1

0
σ 2
s ds

)

− 1

2
Ah − 1

2
Bh − 2n − 2h + 1

2
σ 4

ε , 2 � h � 


ν2 = n − 1

2
σ 4

ε , νh = n − h + 1

4
σ 4

ε , 3 � h � 


where Ah = σ 2
ε E
(∫ 1

1−h/n σ 2
s ds
)
and Bh = σ 2

ε E
(∫ h/n

0 σ 2
s ds
)

, 1 � h � 
.

Remark 2 When the drift term ut �= 0, we can show that the expressions of
{μi }
i=0, {ρi }
i=1 and {νi }
i=2 remain unchanged up to the order n−1, yet additional
terms of order n−1 will be included.

Theorem 1 If {μi }
i=0, {ρi }
i=1 and {νi }
i=2 are known, then the proposed estimator of

the integrated volatility is SL(θ∗) = L0 + 2L1 +

∑

h=2

θ∗
h Lh, where θ∗ = (θ∗

2 , . . . , θ∗

 )

are the solutions to the normal equations

∂Var
(
SL(θ) − ∫ 10 σ 2

s ds
)

∂θi
= 0, (14)

i = 2, 3, . . . , 
, see also (16). Then, we have

(

SL(θ∗) −
∫ 1

0
σ 2
s ds

)/√
VSL

d−→ MN (0, 1),

where MN is a mixed normal distribution and

VSL = μ0 + 4(μ1 + ρ1) + θ∗
2 (ν2 + 2ρ2) + 2θ∗

3 ν3, (15)

is the minimum variance of SL .

Proof Since r̃i = ri + εi ,

Lh =
n+1−h∑

i=1

riri+h +
n+1−h∑

i=1

(riεi+h + ri+hεi ) +
n+1−h∑

i=1

εiεi+h .
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If we denote

R1 =
(
n+1∑

i=1

r2i ,

n∑

i=1

riri+1, . . . ,

n+1−
∑

i=1

riri+


)′
,

R2 =
(

2
n+1∑

i=1

riεi ,
n∑

i=1

(riεi+1 + ri+1εi ), . . . ,

n+1−
∑

i=1

(riεi+
 + ri+
εi )

)′
,

R3 =
(
n+1∑

i=1

ε2i ,

n∑

i=1

εiεi+1, . . . ,

n+1−
∑

i=1

εiεi+


)′
,

then (L0, . . . , L
)
′ = R1 + R2 + R3. By Lemma 1, we have

E(R1
∣
∣G) =

(∫ 1

0
σ 2
s ds, 0, . . . , 0

)′
, E(R3) =

(
nσ 2

ε ,−n

2
σ 2

ε , 0, . . . , 0
)′

.

Also, by Lemma 2, we have

CovG(R1) = M1

∫ 1

0
σ 4
s ds, CovG(R2) = M2

∫ 1

0
σ 2
s ds and Cov(R3) = M3,

where M1 = diag
( 2
n , 1

n , · · · , 1
n

)
, M2 = (m(2)

i j )σ 2
ε is a (
 + 1) × (
 + 1) symmetric

matrix with upper triangular entries (i ≤ j), m(2)
11 = 4, m(2)

12 = −2 and

m(2)
i j =

⎧
⎨

⎩

2, i = j ≥ 2,
−1, i ≥ 2, j = i + 1,
0, j ≥ i + 2,

andM3 = (m(3)
i j )σ 4

ε is a (
+1)×(
+1) symmetricmatrixwith upper triangular entries,

m(3)
11 = (λn−1),m(3)

12 = −(λn+n−2)/2,m(3)
13 = (n−1)/2,m(3)

22 = (λn+4n−6)/4
and

m(3)
i j =

⎧
⎪⎪⎨

⎪⎪⎩

(3n − 3i)/2, i = j ≥ 3,
−(2n − 2i − 1)/2, i ≥ 2, j = i + 1,
(n − i + 1)/4, i ≥ 2, j = i + 2,
0, j ≥ i + 3.

Moreover, it is easy to show that EG(Ri R′
j ) = 0, ∀i �= j and i, j = 1, 2, 3. Recall

that ri s are independent normal variables given the sigma-field G and {εi } is a MA(1)
process with finite eighth moment. Hence, conditional on G, we have the following
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results by CLT as n → ∞:

R1
d−→ E

(

R1
∣
∣G
)

+
(∫ 1

0
σ 4
s ds

)1/2

M1/2
1 Z1,

R2
d−→
(∫ 1

0
σ 2
s ds

)1/2

M1/2
2 Z2, R3

d−→ E(R3) + M1/2
3 Z3,

where Z1, Z2 and Z3 are independent standard normal variables. Since the proposed
estimator is a linear combination of R1 + R2 + R3, i.e.,

SL(θ∗) = (θ∗)′ (L0, L1, · · · , L
)
′ = (θ∗)′ (R1 + R2 + R3),

we conclude that SL(θ∗) follows a mixed normal distribution. The variance VSL =
Var
(
SL(θ∗) − ∫ 10 σ 2

s ds
)
is derived below.

By (13), the normal equations of (14) reduce to the following equations

⎧
⎨

⎩

μ2θ2 + ρ3θ3 + ν4θ4 = −ν2 − 2ρ2
ρ3θ2 + μ3θ3 + ρ4θ4 + ν5θ5 = −2ν3
νh+2θh + ρh+2θh+1 + μh+2θh+2 + ρh+3θh+3 + νh+4θh+4 = 0

(16)

where 2 � h � 
 − 2 and ν
+1 = ν
+2 = ρ
+1 ≡ 0. Hence, the optimal θ∗ satisfies
the equations of (16), which implies the i th row sum of �(θ∗),


+1∑

j=1

σi j (θ
∗) = θ∗

i−1

(
νi−1θ

∗
i−3 + ρi−1θ

∗
i−2 + μi−1θ

∗
i−1 + ρiθ

∗
i + νi+1θ

∗
i+1

) = 0,

for i ≥ 3. Consequently, together with (13), VSL = 1′�(θ∗)1 =
2∑

i=1

i+2∑

j=1

σi j (θ
∗) as

claimed in (15). 
�

It is difficult to obtain the optimal θ∗ directly from Eq. (16) since (μh, ρh, νh)s are
unknown. In the next section, we obtain a simplified version of Eq. (16) by ignoring
small order terms in Lemma 2 to resolve this problem. The new system of equations
depends only on the signal-to-noise ratio Snr and the ratio

q = Q
(
E
∫ 1
0 σ 2

s ds
)2 ,

where Q = E
(∫ 1

0 σ 4
s ds
)
is called integrated quarticity.
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3 A recursive algorithm for solving SL(θ∗)

If we divide both sides of (16) by nσ 4
ε , plug in μh , ρh and νh of Lemma 2 and ignore

the O(h/n2) terms, then we have the following equations which only depend on Snr
and q,

⎧
⎨

⎩

μ̇2θ2 + ρ̇3θ3 + ν̇4θ4 + ḃ1 = 0
ρ̇3θ2 + μ̇3θ3 + ρ̇4θ4 + ν̇5θ5 + ḃ2 = 0
ν̇h+2θh + ρ̇h+2θh+1 + μ̇h+2θh+2 + ρ̇h+3θh+3 + ν̇h+4θh+4 = 0

(17)

where 2 ≤ h ≤ 
 − 2 and

ḃ1 = ν̇2 + 2ρ̇2, ḃ2 = 2ν̇3, μ̇h = q S2nr + 2Snr + 3n − 3h

2n
,

ρ̇h = −Snr − 2n − 2h + 1

2n
, ν̇2 = n − 1

2n
, ν̇h = n − h + 1

4n
,

for 2 ≤ h ≤ 
. To obtain the optimal θ , we replace E
(∫ 1

0 σ 2
s ds
)
by the SL(θ), and

set Snr = SL(θ)/(nσ 2
ε ) which is a function of θ by (9). Integrating (9) and (17), we

have the following system of equations for θ and Snr ,

F(θ, Snr ) ≡
(

Ȧ(Snr ) 0
L2
nσ 2

ε
· · · L


nσ 2
ε

−1

)(
θ

Snr

)

+
(
b(Snr )
L0+2L1
nσ 2

ε

)

= 0 (18)

where Ȧ(Snr ) is the symmetric matrix with

Ȧ(Snr ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ̇2 ρ̇3 ν̇4 0 · · · 0

μ̇3 ρ̇4 ν̇5
. . .

...

. . .
. . .

. . . 0
. . .

. . . ν̇


• μ̇
−1 ρ̇


μ̇


⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; θ =

⎛

⎜
⎜
⎜
⎝

θ2
θ3
...

θ


⎞

⎟
⎟
⎟
⎠

; b(Snr ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ḃ1
ḃ2
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

It is difficult to solve the system of nonlinear Eq. (18) directly. We employ alternately
the Newton–Raphsonmethod and the Gauss–Seidel method (the method of successive
displacement) to get a numerical solution for (18). The solution at the (k + 1)-th iter-

ate,
(
θ (k+1), S(k+1)

nr

)
of the Newton–Raphson method satisfies the following iterative

equation

Jk

(
θ (k+1)

S(k+1)
nr

)

= Jk

(
θ (k)

S(k)
nr

)

− Fk, (19)
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where Jk ≡ J (θ (k), S(k)
nr ) is the Jacobian matrix of F(θ , Snr ) with respect to

θ2, . . . , θ
 and Snr evaluated at (θ (k), S(k)
nr ) where

J (θ , Snr ) =
(

Ȧ(Snr )
−→μ (θ)

L2
nσ 2

ε
· · · L


nσ 2
ε

−1

)

,

−→μ (θ) = (μ̇′
2θ2 + ρ̇′

3θ3 + ν̇′
4θ4 + ḃ′

1, ρ̇′
3θ2 + μ̇′

3θ3 + ρ̇′
4θ4 + ν̇′

5θ5 + ḃ′
2, · · · , μ̇′




)T

and Fk ≡ F(θ (k), S(k)
nr ).

– The Gauss–Seidel method:
We displace S(k+1)

nr on the LHS of (19) by S(k)
nr and change (19) to the equation

LHS=RHS with

LHS = Jk

(
θ (k+1)

S(k)
nr

)

=
(

Ȧ(S(k)
nr ) −→μ (θ (k))

L2
nσ 2

ε
· · · L


nσ 2
ε

−1

)(
θ (k+1)

S(k)
nr

)

RHS = Jk

(
θ (k)

S(k)
nr

)

− Fk =
(−→μ (θ (k))S(k)

nr − b(S(k)
nr )

− L0+2L1
nσ 2

ε

)

.

– The Newton–Raphson method:
The parameter θ (k+1) is solved by the first (
−1) equations of the above LHS and
RHS.

The remainder question is how to estimate the integrated quarticity Q and the
microstructure noise variance σ 2

ε . For the estimation of Q, we used the following
estimator of Jacod et al. (2009) (Remark 4 on p. 2256),

Q̂ = 1

3c2ψ2
2

n−kn+1∑

i=0

(r̄ ni )4 − ψ1

nc4ψ2
2

n−2kn+1∑

i=0

(r̄ ni )2
i+2kn−1∑

j=i+kn

r̃2j + ψ2
1

4nc4ψ2
2

n−2∑

i=1

r̃2i r̃
2
i+2,

see (8) for definitions of the notations. There are various methods proposed to estimate
themicrostructure noise variance σ 2

ε . For example, the samplemean of squared returns
based on the highest frequency data, σ̂ 2

1 = L0/n has a biased term n−1E
∫ 1
0 σ 2

s ds;
the negative twice lag-1 sample autocovariance divided by n, σ̂ 2

2 = −2L1/n which is
unbiased but may take negative values. Barndorff-Nielsen et al. (2008) also propose
a bias-corrected nonnegative estimator σ̂ 2

3 = exp{log(L0/n) − Tk/L0}. In this study,
we consider the estimator σ̂ 2

4 = L0/(n + nSnr ), which by Lemma 1 (i) is an unbi-
ased nonnegative estimator of σ 2

ε . One advantage of σ̂ 2
4 is that it can be recursively

updated with the Snr , details are given in the following algorithm. We will compare
the performance of the four estimators σ̂ 2

i , i = 1, . . . , 4, in the simulation study of
Sect. 4.1.
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We summarize the proposed estimation procedure in the following. Set the initial
estimators of S(0)

nr and σ 2
ε,0 as

S(0)
nr = T (K )

2

nσ 2
ε,0

,
Tm
nσ 2

ε,0

,
Tk

nσ 2
ε,0

or
Tp

nσ 2
ε,0

with σ̂ 2
ε,0 = L0

n
,

where T (K )
2 , Tm , Tk and Tp are the two-scale, multi-scale, realized kernel and pre-

averaging estimators defined in Sect. 1. The algorithm consists of the following three
steps starting from i = 1.

(step 1) Solve θ (i) from the following equation

Ȧ(S(i−1)
nr )θ (i) = −b(S(i−1)

nr ).

(step 2) Obtain the estimator SL(θ (i)) =∑

j=0 θ

(i)
j L j .

(step 3) Update S(i)
nr = SL(θ (i))

nσ 2
ε,i−1

, σ̂ 2
ε,i = L0/(n + nS(i)

nr ) and q = Q̂

S2L

(
θ (i)
) . If

|SL(θ (i)) − SL(θ (i−1))|
SL(θ (i−1))

< 10−8, then stop and θ∗ = θ (i) and SL(θ∗) =
SL(θ (i)) ; otherwise i = i + 1 and go to (step 1).

For the special constant volatility case, i.e., σt ≡ σ , Aït-Sahalia et al. (2005)
proved that the maximum likelihood estimator (MLE) of σ is n1/4-consistent and has
an asymptotically normal distribution with variance

σ̂ 2
MLE = 4

√
2σ 6σ 2

ε

n
+ σ 8

n2
+ 2σ 4

n
.

In the following proposition, we derive an asymptotic expansion for Var(SL(θ∗)). The
result shows that the leading order term of Var(SL(θ∗)) is the same as σ̂ 2

MLE which
indicates that SL(θ∗) is asymptotically efficient as the MLE for the constant volatility
model.

Proposition 1 If σt ≡ σ ∀t and ut = 0, then we have

Var(SL(θ∗)) = 4

√
2σ 6σ 2

ε

n
+ σ 8

n2
+ 2σ 4 + 6σ 2σ 2

ε

n
+ O

(
n−3/2

)
.

Proof For the constant volatility model, the signal-to-noise ratio Snr = σ 2/(nσ 2
ε ).

By ignoring the O(h/n) term, we can further simplify (17) to the following linear
homogeneous difference equation

θh − (4Snr + 4) θh+1 +
(
4S2nr + 8Snr + 6

)
θh+2 − (4Snr + 4) θh+3 + θh+4 = 0,

(20)
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for h = 2, . . . , 
. The closed-form solution of (20) is

θah =
(

1 + Snr −
√
2Snr + S2nr

)h

(c1 + hc2), ∀ 2 ≤ h ≤ 
,

see Kelley and Peterson (2000). The constants c1 and c2 are obtained by plugging θah
into the first two equations of (17), which gives

c1 = 2 + O
(
n−2
)

, c2 = 2
√
2Snr + S2nr + 2Snr + O

(
n−2
)
.

In particular,

θa2 = 2 − 4Snr + 4Snr
√
Snr (2 + Snr ) − 4S2nr + O

(
n−2
)

θa3 = 2 − 12Snr + 20Snr
√
Snr (2 + Snr ) − 36S2nr +16S2nr

√
Snr (2 + Snr )+O

(
n−2
)
.

When the volatility σt is a constant, the moments given in Lemma 2 have the following
expression,

μ0 = 2

n
σ 4 + 4σ 2

ε σ 2 + (λn − 1)σ 4
ε ,

μ1 = n − 1

n2
σ 4 +

(

2 − 2

n

)

σ 2
ε σ 2 + λn + 4n − 6

4
σ 4

ε ,

ρ1 = −
(

2 − 1

n

)

σ 2
ε σ 2 − λn + n − 2

2
σ 4

ε ,

ρ2 = −
(

1 − 2

n

)

σ 2
ε σ 2 − 2n − 3

2
σ 4

ε ,

ν2 and ν3 are the same as given in Lemma 2. Finally, by (15), we have

Var(SL(θ∗)) = μ0 + 4(μ1 + ρ1) + θa2 (ν2 + 2ρ2) + 2θa3 ν3 + O
(
n−3/2

)

= 4

√
2σ 6σ 2

ε

n
+ σ 8

n2
+ 2σ 4 + 6σ 2σ 2

ε

n
+ O

(
n−3/2

)
,

which completes the proof. 
�
Remark 3 When ut �= 0, the leading term of Var(SL(θ∗)) in Proposition 1,

4
√

2σ 6σ 2
ε

n + σ 8

n2
, remains unchanged.

Although the weights θah s are derived for the constant volatility model, they also
provide good approximation to the optimalweights θ∗

h of SVMobtained from (step 1)–
(step 3). We perform a simulation study to compare θah with θ∗

h . Consider the Heston
SVM defined by (21) with parameters κ = 10, ω = √

κV and (V, σ 2
ε ) satisfying the
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six setting given in Table 1. The maximum of maxh≤35 |θ∗
h −θah |/θ∗

h for the six Heston
models is only 0.12 %when the sample size n = 500 and the relative maximum errors
decrease as the sample size increases. In Fig. 1, we plot ln θ∗

h and ln θah versus h for
the Heston model defined by the first column of Table 1. The result indicates, as h
increases, both θ∗

h and θah decay exponentially fast to zero, and their differences are
negligible when h is small.

The proposed estimator SL(θ∗) and Theorem 1 are also applicable to the case when
the volatility σt is a deterministic function of the time t ∈ [0, 1]. However, in such
case, the quadratic type estimators based on global tuning parameters such as SL(θ∗),
T (K )
2 , Tm , Tk and Tp have larger asymptotic variances than the estimator of Reiss

(2011) (p.17 and Theorem 8.1) based on local tuning parameters.

4 Simulation and empirical studies

In Sect. 4.1, we perform a simulation to compare the root mean squared errors of
the five estimators: the proposed estimator SL(θ∗), the two-scale estimator T (K )

2 ,
the multi-scale estimator Tm , the realized kernel estimator Tk and the pre-averaging
estimator Tp. In Sect. 4.2, the proposed method is applied to estimate the intradaily
integrated volatility of fifteen stocks listed on the NYSE.

4.1 Comparison of the five estimators

The Heston model Heston (1993) is a popular SVM for high frequency transaction
data, which assumes that the efficient log price process {pt } satisfies

{
dpt = σtdWt

dσ 2
t = κ(V − σ 2

t )dt + ω

√
σ 2
t dBt

,Corr(dWt , dBt ) = ϕ (21)

where the instantaneous volatility σt is modeled as a mean-reverting square-root dif-
fusion process, also named the CIR process Cox et al. (1985). The parameter V corre-
sponds to the expected long-term volatility, κ determines the convergence speed of the
adjustment, ω is the volatility of σt , ϕ is the leverage parameter and {Wt , Bt : t ≥ 0}
are scalar Brownian motions. In the simulation study, we consider a generalization
of (21) in which the volatility process satisfies the following constant elasticity of
variance (CEV) model Cox (1975); Chen et al. (2008),

dσ 2
t = κ(V − σ 2

t )dt + ωσ 2α
t dBt , 0 ≤ α < 1. (22)

Model (22) is called the Vasicek model when α = 0 and reduces to the CIR process
when α = 0.5. The parameter settings are κ = 1, ω = √

κV /4 when α = 0, 0.2, 0.4
and κ = 10, ω = √

κV when α = 0.5, 0.6, 0.8 and the values of (V, σ 2
ε ) are

given in Table 1. Since the long run mean of the volatility E(σ 2
t ) = V , nSnr =

V/σ 2
ε which are also given in Table 1. The cases for ϕ = 0 (without leverage effect)

and ϕ = −0.5 (the leverage effect model) are both considered. The sample sizes
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n = 500, 2000, 5000, 8000, 12000, 24000 are considered. All the results are based
on 1000 replications.

The tuning parameters of each estimators are set as follows. For the two-scaled
estimator T (K )

2 , we set K = c∗n2/3 with bias adjustment [see Eq. (64) in Zhang et al.
2005]. For the multi-scale estimator Tm , we set Ki = i , for i = 1, . . . ,m with m
(5 ≤ m ≤ 10) chosen to minimize the MSE. For the realized kernel estimator Tk , we
choose the optimal kernel function k(x) = (1 + |x |)e−|x | (see Proposition 1 of page
1498 in Barndorff-Nielsen et al. 2008) and H = ξn1/2 where ξ2 are chosen among
0.1, 0.01 and σ̂ 2

3 Q̂−1/2 which minimizes the MSE. For the pre-averaging estimator
Tp, we set c = 1/3. For the proposed estimator SL , we choose 
 = 15 for n = 500,

 = 20 for n = 2000, 5000 and 
 = 30 for n = 8000, 12000, 24000.

For the estimation of the microstructure noise variance, the relative errors (the root
MSE divided by the true value) of the four estimators σ̂ 2

i , i = 1, . . . , 4 are reported
in Table 2 for nSnr (×103) = 0.4, 1.2, 1.6, 3.2, 8, 12 and n = 500, 5000, 24000. The
results show that the proposed estimator σ̂ 2

4 has the smallest relative root mean squared
errors for all cases.

For the estimation of the integrated volatility, the RMSE of an estimator T̂ is defined
as

RMSE(T̂ ) =

√√
√
√
√

1

r

r∑

j=1

(

T̂ −
n∑

t=1

σ 2
t, j

)2

,

where {σ 2
t, j }nt=1 denotes the volatility path of the j-th replication, j = 1, . . . , r .

Herein, we use the sum of the volatilities
∑n

t=1 σ 2
t, j to approximate the integrated

volatility of the j th simulated path. And the relative error (RE) of T̂ is defined as

RE(T̂ ) = RMSE(T̂ )/
(
r−1∑r

j=1
∑n

t=1 σ 2
t, j

)
.

In Fig. 2, we plot the RE of the five estimators versus the six nSnr for the Heston
model with κ = 10, ω = √

κV , ϕ = 0 and (V, σ 2
ε ) given in Table 1. For each

nSnr , the REs are shown sequentially from left to right for the sample size n =
500, 2000, 5000, 8000, 12000, 24000. Similarly, in Fig. 3, we plot the RE for the
Heston model with leverage effect (ϕ = −0.5). Both plots show that the proposed
estimator SL(θ∗) attains the smallest RE for all cases. The RE of the other CEV
models with α = 0, 0.2, 0.4, 0.6 and 0.8 is similar to the results of the Heston model
(α = 0.5).

We also experiment on the case of deterministic volatility, which assumes

σt = m

(

0.000035 + 0.01(t − 0.5)4
)

. (23)

The settings of m and σ 2
ε are given in Table 3, which are chosen to produce nSnr the

same as in Table 1. Figure 4 plots the RE of the five estimators versus the six nSnr .
The results show that the proposed estimator SL(θ∗) attains the smallest RE for all
cases.
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We summarize the relative efficiencies of the four estimators with respect to SL by
the boxplots of the following RMSE ratios

RMSE(SL)

RMSE(T (K )
2 )

,
RMSE(SL)

RMSE(Tm)
,

RMSE(SL)

RMSE(Tk)
, and

RMSE(SL)

RMSE(Tp)

in Fig. 5. Each boxplot consists of 468 relative efficiencies corresponding to (i) six α,
two ϕ, six Snr and six n for Model (22) and (ii) six Snr and six n for Model (23). Since
the ranges of the boxplots are all less than or equal to one, the proposed estimator SL
attains a better efficiency than the other four estimators.

4.2 Empirical study

For the empirical application, we consider the ultra-high-frequency tick-by-tick data
of fifteen stocks listed on the NYSE (New York Stock Exchange): ABT, AMD, BAC,
C, GE, JNJ, JPM, KO, MCD, MER, MRK, NOK, PEP, T, XOM. The normal trading
hours of the NYSE is 6.5 hours (23400 s) from 9:30 to 16:00.

Since the intradaily trading times are non-regular, we employ the previous-tick
interpolation scheme, see Dacorogna et al. (2001), to obtain equispaced data. Let
{t j , j = 1, 2, . . . , n} denote the observed transaction times, where n stands for the
total number of transactions in a trading day. Define τ(0) = 0 and τ(is) = max{t j :
t j ≤ is, j = 1, 2, . . . , n}, i = 1, . . . , [23400/s], the closest transaction time before
and including time t , and set the log return at time t to be r̃i = p̃τ(is) − p̃τ((i−1)s),
where s = 10, 5, 1 sec.

The integrated volatilities are estimated based on non-zero log return data. We use
RV (realized volatility), T (K )

2 , Tm, Tk, Tp and SL , to estimate the daily integrated
volatilities for the fifteen stocks based on the intraday high-frequency transaction data
from 2002/01/02 ∼ 2002/01/31. The tuning parameters of Tm and Tk are set to be

M = 10 and ξ2 = σ̂ 2
3 /

√
Q̂, respectively. The monthly average of the six estimators

for each sampling frequencies (s = 10, 5, 1) is given in Table 4. As expected, the
realized volatility (RV ) increases as the sampling frequency increases. Nevertheless,
the other five estimators of the integrated volatility remain steady when the sampling
frequency changes.

For each stock, per day we obtain the estimates T (K )
2 , Tm, Tk, Tp and SL for

each sampling frequency. And (T (K )
2 − SL)/SL , (Tm − SL)/SL , (Tk − SL)/SL and

(Tp − SL)/SL denote the daily relative differences of T (K )
2 , Tm, Tk, Tp with respect

to SL . Figure 6 shows the boxplots of the four daily relative differences. Each boxplot
contains approximately 900–945 daily relative differences of an estimator obtained
from fifteen stocks and three sampling frequencies (s = 10, 5, 1 s) during the
period 2002/01/02 to 2002/01/31. As shown, the two-scaled estimator T (K )

2 and pre-
averaging estimator Tp are close to SL , while the multi-scale estimator Tm and the
kernel estimator Tk tend to be larger than SL . We also found that Tm and Tk can
be closer to SL if we choose different tuning parameters (other than the preset values
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M = 10 and ξ2 = σ̂ 2
3 /

√
Q̂) every day for each company. Nevertheless, the advantages

and disadvantages of adjusting the tuning parameters are not clear which need further
investigation.

5 Conclusion

Stochastic volatility models (SVM) with microstructure noise are prevailing for
ultra-high-frequency data modeling. In this study, we proposed an optimal restricted
quadratic estimators of integrated volatility for SVM with microstructure noise. The
proposed estimator has an asymptotic mixed normal distribution and has the same effi-
ciency as the MLE for the constant volatility model. A practical recursive algorithm
is proposed to obtain the estimate. Both theoretical and simulation results strongly
support the efficiency advantage of the proposed method compared with state-of-the-
art methods including the two-scale estimator, the multi-scale estimator, the realized
kernel estimator and the pre-averaging estimator. In future study, it is worthwhile
to investigate the effects of using different integrated volatility estimates on statis-
tical inference such as hypothesis testing, parameter estimation and portfolio selec-
tion.

Appendix A: Proofs

Proof of Lemma 1

First, we derive some relevant expectations needed in the proof.

n+1∑

j=1

EG
(
r2j

)
=

n+1∑

j=1

EG
(∫ j/n

( j−1)/n
σsdWs

)2

=
n∑

j=1

EG
(∫ j/n

( j−1)/n
σ 2
s ds

)

=
∫ 1

0
σ 2
s ds, (24)

where the second equation is by the Itô isometry (Theorem 4.3.1 of Shreve 2004).
Recall ε j = η j − η j−1, we have

n+1∑

j=1

E(ε2j ) = E(ε21) +
n∑

j=2

E(ε2j ) + E(ε2n+1) = 1

2
σ 2

ε + (n − 1)σ 2
ε + 1

2
σ 2

ε = nσ 2
ε ,

E
(
ε jε j+1

) = E(η j − η j−1)(η j+1 − η j ) = −E
(
η2j

)
= −1

2
σ 2

ε , j ≥ 1,

E
(
ε jε j+h

) = E(η j − η j−1)(η j+h − η j+h−1) = 0, h ≥ 2, j ≥ 1.
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Thus, the expectations of Lhs are

EG(L0) = EG

⎡

⎣
n+1∑

j=1

(r j + ε j )
2

⎤

⎦ =
n+1∑

j=1

EG(r2j ) +
n+1∑

j=1

E(ε2j ) =
∫ 1

0
σ 2
s ds + nσ 2

ε ,

EG(L1) =
n∑

j=1

EG(r j + ε j )(r j+1 + ε j+1) =
n∑

j=1

E
(
ε jε j+1

) = −n

2
σ 2

ε

EG(Lh) =
n−h+1∑

j=1

EG(r j + ε j )(r j+h + ε j+h) = 0, h ≥ 2.

Consequently, by setting θ0 = 1 and θ1 = 2, we have

EG(SL) = θ0

(∫ 1

0
σ 2
s ds + nσ 2

ε

)

+ θ1

(
−n

2
σ 2

ε

)
=
∫ 1

0
σ 2
s ds,

which implies the unbiasness of SL . 
�

Proof of Lemma 2

First, for the variance of microstructure noise, we have Var
(
η2t
) = (λ − 1)σ 4

η since
E(η4t ) = λσ 4

η and then

Var
(
ε2j
) =

{
λ+1
2 σ 4

ε j = 2, . . . , n,
λ−1
4 σ 4

ε j = 1 or n + 1.

Next, let ti = i/n, i = 1, 2, . . . , n be an equispaced partition of the unit interval
[0, 1], and let bi = n1/2σti−1(Wti − Wti−1) and �ni = n1/2

∫ ti
ti−1

(σs − σti−1)dWs , then

n1/2ri = n1/2(pti − pti−1) = n1/2
∫ ti
ti−1

σsdWs = bi + �ni . Due to (4), we have

E |�ni |2q = O(n−q) for q = 1, 2. (25)

For instance, see Lee (2010). Recall from (25), the fourth moment of the nominal
return r j is

EG

⎛

⎝
n+1∑

j=1

r4j

⎞

⎠ = n−2
n+1∑

j=1

EG
(
n1/2r j

)4 = n−2
n+1∑

j=1

EG
(
b4j + 6b2j�

2
nj + �4

nj

)

= n−2
n+1∑

j=1

3σ 4
t j−1

+ 6n−2
n+1∑

j=1

σ 2
t j−1

E(�2
nj ) + n−2

n+1∑

j=1

E(�4
nj )

= 3

n

∫ 1

0
σ 4
s ds + O(n−2) (26)
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where the last equality is by Riemann sum approximation to integral and (25). By (24)
and (26), we have

VarG

⎛

⎝
n+1∑

j=1

r2j

⎞

⎠ = EG

⎛

⎝
n+1∑

j=1

r2j

⎞

⎠

2

−
⎛

⎝
n+1∑

j=1

EGr2j

⎞

⎠

2

=
n+1∑

j=1

EG
(
r4j

)
+

n+1∑

i �= j

EG
(
r2i

)
EG
(
r2j

)
−
(∫ 1

0
σ 2
s ds

)2

= 3

n

∫ 1

0
σ 4
s ds +

⎛

⎝
n+1∑

j=1

EGr2j

⎞

⎠

2

−
n+1∑

j=1

(
Er2j

)2

−
(∫ 1

0
σ 2
s ds

)2

+ O(n−2)

= 3

n

∫ 1

0
σ 4
s ds − 1

n2

n+1∑

j=1

σ 4
t j−1

+ O(n−2)

= 2

n

∫ 1

0
σ 4
s ds + o(n−1). (27)

Also, for h ≥ 1,

VarG

⎛

⎝
n+1∑

j=1

r jr j+h

⎞

⎠ = EG

⎛

⎝
n+1∑

j=1

r jr j+h

⎞

⎠

2

=
n+1∑

j=1

EG
(
r2j r

2
j+h

)

= 1

n2

n+1∑

j=1

σ 4
t j−1

+ O(hn−3/2) = 1

n

∫ 1

0
σ 4
s ds + o(n−1), (28)

where EG(r2j+h) = n−1σ 2
t j+h−1

+ O(n−2) = n−1σ 2
t j−1

+ O(hn−3/2) using (4).
Next, we consider the variance of Lh, h ≥ 0. By (27),

VarG

⎛

⎝
n+1∑

j=1

r̃2j

⎞

⎠ = VarG

⎛

⎝
n+1∑

j=1

(r2j + 2r jε j + ε2j )

⎞

⎠

= VarG

⎛

⎝
n+1∑

j=1

r2j

⎞

⎠+ 4VarG

⎛

⎝
n+1∑

j=1

r jε j

⎞

⎠+ Var

⎛

⎝
n+1∑

j=1

ε2j

⎞

⎠

= 2

n

∫ 1

0
σ 4
s ds + o(n−1) + 4σ 2

ε

∫ 1

0
σ 2
s ds + (λn − 1)σ 4

ε ,
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where

Var

⎛

⎝
n+1∑

j=1

ε2j

⎞

⎠ =
n+1∑

j=1

Var
(
ε2j

)
+ 2

n∑

j=1

Cov(ε2j , ε
2
j+1)

= 2
λ − 1

4
σ 4

ε + (n − 1)
λ + 1

2
σ 4

ε + 2n
λ − 1

4
σ 4

ε = (λn − 1)σ 4
ε

and

Cov(ε2j , ε
2
j+1) = Cov(η2j − 2η jη j−1 + η2j−1, η

2
j+1 − 2η j+1η j + η2j ) = Var(η2j )

= λ − 1

4
σ 4

ε .

Thus, μ0 is as claimed. Next, by (28),

VarG

⎛

⎝
n∑

j=1

r̃ j r̃ j+1

⎞

⎠ = VarG

⎛

⎝
n∑

j=1

(r jr j+1 + r jε j+1 + r j+1ε j + ε jε j+1)

⎞

⎠

= VarG

⎛

⎝
n∑

j=1

r j r j+1

⎞

⎠+ 2VarG

⎛

⎝
n∑

j=1

r jε j+1

⎞

⎠

+Var

⎛

⎝
n∑

j=1

ε jε j+1

⎞

⎠

= 1

n

∫ 1

0
σ 4
s ds+o(n−1)+2σ 2

ε

∫ 1

0
σ 2
s ds+A1+ (λ+4)n − 6

4
σ 4

ε ,

where A1 = 2σ 2
ε

∫ 1
1−1/n σ 2

s ds,

Var

⎛

⎝
n∑

j=1

ε jε j+1

⎞

⎠ =
n∑

j=1

Var
(
ε jε j+1

)+ 2
n−1∑

j=1

Cov(ε jε j+1, ε j+1ε j+2)

= 2
λ

4
σ 4

ε + (n − 2)(λ + 2)

4
σ 4

ε + 2n
σ 4

ε

4
= (λ + 4)n − 6

4
σ 4

ε ,

Var(ε jε j+1) =
{
3σ 4

η + Var(η2) = λ+2
4 σ 4

ε j = 2, . . . , n − 1,
σ 4

η + Var(η2) = λ
4σ 4

ε j = 1 or n
(29)

and

Cov
(
ε jε j+1, ε j+1ε j+2

) = E
(
ε jε

2
j+1ε j+2

)
− [E (ε jε j+1

)]2 = 1

4
σ 4

ε . (30)
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For h ≥ 2,

VarG

⎛

⎝
n−h+1∑

j=1

r̃ j r̃ j+h

⎞

⎠ = VarG

⎛

⎝
n−h+1∑

j=1

(r jr j+h + r jε j+h + r j+hε j + ε jε j+h)

⎞

⎠

= 1

n

∫ 1

0
σ 4
s ds + o(n−1) + 2σ 2

ε

∫ 1

0
σ 2
s ds + Ah + Bh

+3n − 3h

2
σ 4

ε ,

where Ah = 2σ 2
ε

∫ 1
1−h/n σ 2

s ds, Bh = 2σ 2
ε

∫ h/n
0 σ 2

s ds and by similar derivation as in
(29) and (30), we have

Var

⎛

⎝
n−h+1∑

j=1

ε jε j+h

⎞

⎠ =
n−h+1∑

j=1

Var
(
ε jε j+h

)+ 2
n−h∑

j=1

Cov(ε jε j+h, ε j+1ε j+h+1)

= 2
λ

2
σ 4

ε + (n − h − 1)σ 4
ε + 2(n − h)

σ 4
ε

4
= 3n − 3h

2
σ 4

ε .

Then, μ1 and μh , h ≥ 2 are as claimed.
In the following, we consider the function ρh = E

[
CovG(Lh−1, Lh)

]
. Note that

CovG

⎛

⎝
n+1∑

j=1

r̃2j ,
n∑

k=1

r̃k r̃k+1

⎞

⎠ =
n∑

j=1

CovG (̃r2j , r̃ j r̃ j+1) +
n−1∑

j=1

CovG (̃r2j , r̃ j+1̃r j+2)

+
n∑

j=1

CovG (̃r2j+1, r̃ j r̃ j+1) +
n−1∑

j=1

CovG (̃r2j+2, r̃ j r̃ j+1),

where CovG (̃r2j+2, r̃ j r̃ j+1) = 0 and

CovG (̃r2j , r̃ j+1̃r j+2)

= CovG
(
r2j + 2r jε j + ε2j , r j+1r j+2 + ε j+1r j+2 + r j+1ε j+2 + ε j+1ε j+2

)

= Cov
(
η2j − 2η jη j−1 + η2j−1, η j+1η j+2 − η2j+1 − η jη j+2 + η jη j+1

)
= 0.

Similarly,

CovG (̃r2j , r̃ j r̃ j+1) = CovG
(
r2j − 2r jε j + ε2j , r jr j+1 − ε j r j+1 − r jε j+1 + ε jε j+1

)

= 2CovG
(
r jε j , r jε j+1

)+ Cov
(
ε2j , ε jε j+1

)

=
{
−EG(r2j )σ

2
ε − (λ+1)

4 σ 4
ε , j = 2, . . . , n,

−EG(r2j )σ
2
ε − (λ−1)

4 σ 4
ε , j = 1,
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where

Cov
(
ε2j , ε jε j+1

)
= Cov

(
η2j − 2η jη j−1+η2j−1, η jη j+1−η2j −η j−1η j+1+η jη j−1

)

= −Var(η2j ) − 2Var(η jη j−1) =
{−(λ + 1)/4σ 4

ε , j = 2, . . . , n,

−(λ − 1)/4σ 4
ε , j = 1.

The result of CovG (̃r2j+1, r̃ j r̃ j+1) can be obtained similarly as above. Thus,

ρ1 = −2E

⎡

⎣
n∑

j=1

EG
(
r2j

)
σ 2

ε + (λ − 1) + (n − 1)(λ + 1)

4
σ 4

ε

⎤

⎦

= −2σ 2
ε E

(∫ 1

0
σ 2
s ds

)

− 2A1 − (λ + 1)n − 2

2
σ 4

ε .

For h ≥ 2,

CovG

⎛

⎝
n−h+2∑

j=1

r̃ j r̃ j+h−1,

n−h+1∑

k=1

r̃k r̃k+h

⎞

⎠

= EG

⎡

⎣

⎛

⎝
n−h+2∑

j=1

r̃ j r̃ j+h−1

⎞

⎠

(
n−h+1∑

k=1

r̃k r̃k+h

)⎤

⎦

=
n−h+1∑

j=1

EG (̃r2j )E(ε j+h−1ε j+h)

+
n−h+1∑

j=1

E(ε jε j+1)EG (̃r2j+h)

=
n−h+1∑

j=1

(∫ j/n

( j−1)/n
σ 2
s ds + E(ε2j )

)(

−1

2
σ 2

ε

)

+
n−h+1∑

j=1

(

−1

2
σ 2

ε

)(∫ ( j+h)/n

( j+h−1)/n
σ 2
s ds + E(ε2j+h)

)

= −σ 2
ε

∫ 1

0
σ 2
s ds − 1

2
σ 2

ε

∫ 1

1−h/n
σ 2
s ds

−1

2
σ 2

ε

∫ h/n

0
σ 2
s ds −

(

n − h + 1

2

)

σ 4
ε .

Thus,

ρh = −σ 2
ε E

(∫ 1

0
σ 2
s ds

)

− 1

2
Ah − 1

2
Bh − 2n − 2h + 1

2
σ 4

ε ,
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for h ≥ 2. Finally, we consider the function νh = E
[
CovG(Lh−2, Lh)

]
.

ν2 = E

⎡

⎣CovG

⎛

⎝
n+1∑

j=1

r̃2j ,
n−1∑

j=1

r̃ j r̃ j+2

⎞

⎠

⎤

⎦ = E

⎡

⎣EG

⎛

⎝
n+1∑

j=1

r̃2j

⎞

⎠

⎛

⎝
n−1∑

j=1

r̃ j r̃ j+2

⎞

⎠

⎤

⎦

=
n−1∑

j=1

E(ε jε
2
j+1ε j+2) =

n−1∑

j=1

E(2η2jη
2
j+1) = 2(n − 1)σ 4

η = n − 1

2
σ 4

ε .

For h ≥ 3,

νh = E

⎡

⎣CovG

⎛

⎝
n−h+3∑

j=1

r̃ j r̃ j+h−2,

n−h+1∑

k=1

r̃k r̃k+h

⎞

⎠

⎤

⎦

= E

⎡

⎣EG

⎛

⎝
n−h+3∑

j=1

r̃ j r̃ j+h−2

⎞

⎠

(
n−h+1∑

k=1

r̃k r̃k+h

)⎤

⎦

= E

⎛

⎝
n−h+1∑

j=1

ε j+1ε j+h−1ε jε j+h

⎞

⎠ =
n−h+1∑

j=1

E(ε jε j+1)E(ε j+h−1ε j+h)

= n − h + 1

4
σ 4

ε .


�

Appendix B: Figures

See Figs. 1, 2, 3, 4, 5 and 6.

5 10 15 20 25 30 35
h

25

20

15

10

5

Fig. 1 ln θ∗
h (red circle) and ln θah (blue cross) v.s. h
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5

10

15

20

nSnr 0.4 nSnr 1.2 nSnr 1.6 nSnr 3.2 nSnr 8 nSnr 12

Fig. 2 The relative root mean squared errors (RE) of the five estimators (in percentage) for the Heston
model: two-scaled (inverted triangle); multi-scale (square); kernel estimator (cross); pre-averaging
estimator (diamond); SL (circle). For each nSnr , the RE are shown sequentially from left to right for the
sample size n = 500, 2000, 5000, 8000, 12000, 24000

5

10

15

20

nSnr 0.4 nSnr 1.2 nSnr 1.6 nSnr 3.2 nSnr 8 nSnr 12

Fig. 3 The RE of the five estimators (in percentage) for the Heston model with leverage effect (ϕ = −0.5):
two-scaled (inverted triangle); multi-scale (square); kernel estimator (cross); pre-averaging estimator
(diamond); SL (circle). For each nSnr , the RE are shown sequentially from left to right for the sample
size n = 500, 2000, 5000, 8000, 12000, 24000
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5

10

15

20

nSnr 0.4 nSnr 1.2 nSnr 1.6 nSnr 3.2 nSnr 8 nSnr 12

Fig. 4 The RE of the five estimators (in percentage) for the deterministic volatility: two-scaled
(inverted triangle); multi-scale (square); kernel estimator (cross); pre-averaging estimator (diamond);
SL (circle). For each nSnr , the RE are shown sequentially from left to right for the sample size
n = 500, 2000, 5000, 8000, 12000, 24000

RMSE SL

RMSE T2
K

RMSE SL

RMSE Tm

RMSE SL

RMSE Tk

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 5 The boxplots of the relative efficiencies of T (K )
2 , Tm , Tk and Tp with respect to SL based on 468

cases

123



700 L.-C. Lin, M. Guo

Fig. 6 The boxplots of the daily relative differences of T (K )
2 , Tm , Tk and Tp with respect to SL based on

fifteen companies and three sampling frequencies

Appendix C: Table

See Tables 1, 2, 3 and 4.

Table 1 The setting of (V, σ 2
ε ) and nSnr

V (×10−4) 1.6 4.8 1.6 3.2 3.2 4.8

σ 2
ε (×10−7) 4 4 1 1 0.4 0.4

nSnr (×103) 0.4 1.2 1.6 3.2 8 12

Table 2 The RE of σ̂ 2
i , i = 1, . . . , 4

nSnr (×103) 0.4 1.2 1.6 3.2 8 12

n = 500

σ̂ 2
1 0.4356 1.2409 1.6833 3.3540 8.2776 12.6152

σ̂ 2
2 0.1483 0.2254 0.2609 0.4437 0.9782 1.4006

σ̂ 2
3 0.1263 0.3340 0.4751 1.0692 2.8833 4.5186

σ̂ 2
4 0.1199 0.2099 0.2499 0.4233 0.8161 1.0886

n = 5000

σ̂ 2
1 0.0474 0.1274 0.1661 0.3328 0.8208 1.2607

σ̂ 2
2 0.0386 0.0401 0.0395 0.0442 0.0576 0.0704

σ̂ 2
3 0.0273 0.0290 0.0297 0.0517 0.1705 0.3074

σ̂ 2
4 0.0258 0.0281 0.0282 0.0342 0.0504 0.0652

n = 24000

σ̂ 2
1 0.0141 0.0287 0.0363 0.0697 0.1701 0.2595

σ̂ 2
2 0.0175 0.0179 0.0168 0.0183 0.0191 0.0198

σ̂ 2
3 0.0124 0.0125 0.0121 0.0134 0.0187 0.0301

σ̂ 2
4 0.0115 0.0117 0.0111 0.0126 0.0138 0.0155
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Table 3 The setting of (m, σ 2
ε )

m 1 3 1 2 2 3

σ 2
ε (×10−7) 4 4 1 1 0.4 0.4

nSnr (×103) 0.4 1.2 1.6 3.2 8 12

Table 4 The monthly averages (×10−4) of RV and the other five estimators based on fifteen stocks and
three sampling frequencies (s) from 2002/01/02 ∼ 2002/01/31

ABT AMD BAC

s = 1 s = 5 s = 10 s = 1 s = 5 s = 10 s = 1 s = 5 s = 10

RV 2.638 2.520 2.397 12.47 11.61 10.94 3.279 3.094 2.825

T2 1.629 1.640 1.688 9.423 9.679 9.621 2.016 2.023 2.066

Tm 1.651 1.638 1.601 10.51 10.54 10.54 2.182 2.191 2.192

Tk 1.681 1.696 1.719 9.982 10.22 10.16 2.108 2.123 2.166

Tp 1.564 1.547 1.553 9.716 9.774 9.394 2.092 2.085 2.072

SL 1.630 1.641 1.678 9.174 9.471 9.427 2.033 2.010 2.041

C GE JNJ

s = 1 s = 5 s = 10 s = 1 s = 5 s = 10 s = 1 s = 5 s = 10

RV 4.378 4.022 3.657 7.441 5.745 5.140 3.309 2.985 2.579

T2 3.365 3.411 3.503 2.118 2.712 2.840 1.283 1.324 1.405

Tm 3.529 3.566 3.513 3.175 3.261 3.404 1.458 1.463 1.461

Tk 3.499 3.546 3.602 2.692 2.941 3.110 1.386 1.419 1.476

Tp 3.384 3.405 3.376 3.130 3.102 3.107 1.391 1.388 1.401

SL 3.292 3.337 3.448 2.658 2.704 2.798 1.318 1.333 1.390

JPM KO MCD

s = 1 s = 5 s = 10 s = 1 s = 5 s = 10 s = 1 s = 5 s = 10

RV 8.605 7.936 7.192 2.388 2.216 2.014 6.149 5.685 5.144

T2 4.581 4.629 4.750 1.306 1.349 1.391 2.418 2.511 2.531

Tm 4.780 4.832 4.840 1.432 1.421 1.428 2.722 2.716 2.718

Tk 4.821 4.871 4.951 1.416 1.436 1.469 2.621 2.667 2.700

Tp 4.487 4.431 4.422 1.333 1.283 1.329 2.558 2.547 2.525

SL 4.648 4.695 4.793 1.329 1.355 1.381 2.504 2.554 2.559
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Table 4 continued

MER MRK NOK

s = 1 s = 5 s = 10 s = 1 s = 5 s = 10 s = 1 s = 5 s = 10

RV 6.016 5.693 5.282 2.368 2.235 2.084 9.011 8.342 7.453

T2 4.353 4.454 4.501 1.568 1.603 1.654 4.337 4.486 4.646

Tm 4.862 4.918 4.898 1.693 1.683 1.676 4.949 5.072 5.087

Tk 4.604 4.707 4.739 1.652 1.673 1.705 4.637 4.772 4.923

Tp 4.535 4.574 4.426 1.593 1.586 1.570 4.632 4.709 4.638

SL 4.312 4.380 4.369 1.586 1.614 1.651 4.349 4.460 4.598

PEP T XOM

s = 1 s = 5 s = 10 s = 1 s = 5 s = 10 s = 1 s = 5 s = 10

RV 2.206 2.110 1.984 5.488 5.075 4.640 4.725 4.247 3.694

T2 1.357 1.359 1.396 3.044 3.122 3.213 2.132 2.185 2.270

Tm 1.417 1.409 1.407 3.516 3.514 3.468 2.268 2.247 2.203

Tk 1.435 1.440 1.477 3.468 3.519 3.506 2.258 2.292 2.365

Tp 1.343 1.321 1.327 3.149 3.168 3.093 2.181 2.156 2.157

SL 1.354 1.355 1.387 3.001 3.049 3.089 2.144 2.174 2.242
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