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Abstract It has been well documented that the presence of outliers and/or extreme
data can strongly affect smoothing via splines. This work proposes an alternative
for accommodating outliers in penalized splines considering the maximum penalized
likelihood estimation under the class of scale mixture of normal distributions. This
family of distributions has been an interesting alternative to produce robust estimates,
keeping the elegancy and simplicity of the maximum likelihood theory. The aim of
this paper is to apply a variant of the EM algorithm for computing efficiently the
penalized maximum likelihood estimates in the context of penalized splines. To high-
light some aspects of the robustness of the proposed penalized estimators we consider
the assessment of influential observations through case deletion and local influence
methods. Numerical experiments were carried out to illustrate the good performance
of the proposed technique.

Keywords Cook distance · Local influence · Penalized EM algorithm ·
Scale mixtures of normal distributions

1 Introduction

Regression methods using splines are very attractive because they represent a flexible
approach to fitting curves and are often used to find the underlying tendencies in the
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data. Discussions about smoothing and nonparametric regression can be found, for
example, in Silverman (1985), Eilers and Marx (1996) and Ruppert et al. (2003).

The development of robust methodologies with the objective of attenuating the
effect of outliers and/or influential observations in semiparametric regression has
received considerable attention since the seminal works of Huber (1979) and Utr-
eras (1981). They introduced the robust smoothing considering M-estimators. Their
ideas have since been refined and applied to more general contexts. For example,
Koenker et al. (1994) proposed the quantile smoothing splines, Oh et al. (2004) pro-
posed M-estimation for smoothing periodic functions, while Lee and Oh (2007) and
Oh et al. (2008) developed robust M-type estimation procedures with applications to
additive mixed models and local polynomial regression, respectively. More recently,
Tharmaratnam et al. (2010) and Mateos and Giannakis (2012) have discussed very
efficient methods for computing penalized S- and M-type regression splines estima-
tors, respectively. The appropriate selection of the smoothing parameter is crucial in
the class of penalized spline regression models. It is important to note that this can
also be strongly affected by the presence of outlying observations. To avoid this type
of difficulty, Cantoni and Ronchetti (2001), Wei (2005) and Lee and Cox (2009) have
focused on developing methods of robust selection of the smoothing parameter, while
Staudenmayer et al. (2009) and Ibacache-Pulgar and Paula (2011) have described
approaches for accommodating outliers in semiparametric regressions considering
Student t errors.

With the objective of evaluating the model assumptions and determining whether
outlying or extreme observations can influence the parameter estimates, diagnostic
procedures have been developed in the context of semiparametric regressions (Eubank
1985). For example, Eubank (1984) studied the properties of the prediction matrix for
smoothing splines, while Silverman (1985) discussed definitions for the residuals.
Eubank and Gunst (1986) proposed measures to evaluate influence in penalized least
squares that are useful in contexts like smoothing spline and ridge regression (Hoerl
and Kennard 1970). Studies of influence in the context of ridge regression suggest
that this class of penalized estimators can be very sensitive to extreme observations
(Walker andBirch 1988; Billor and Loynes 1999; Shi andWang 1999). Thomas (1991)
studied influence to evaluate the impact of extreme observations on the selection
of the smoothing parameter considering the local influence procedure proposed by
Cook (1986). Manchester (1996) proposed a graphic tool to evaluate the sensitivity
of some robust smoothing methods through the use of the influence function. Kim
(1996) and Wei (2004) developed diagnostic measures in smoothing splines based
on case deletion procedures. Kim et al. (2002) and Ibacache-Pulgar and Paula (2011)
discussed influence diagnostics using elimination of observations and local influence,
respectively, in partially linear models.

This work proposes an alternative to accommodate outliers in penalized splines,
also known as P-splines (see Eilers and Marx (1996)), considering distributions with
heavier tails than the normal. Specifically, we considered the class of scale mixtures
of normal distributions (SMN), which includes as particular cases exponential power,
contaminated normal, slash and Student t distributions, among others (Andrews and
Mallows 1974). SMN distributions have often been proposed for developing robust
inferences in various statistical models. This class of distribution inherits many of the

123



Influence diagnostics for robust P-splines 591

basic properties of the normal distribution and allows for maintaining the elegance
and optimality of estimating parameters considering the maximum likelihood method
(ML) under normality (Lange and Sinsheimer 1993; Jamshidian 1999). In thisworkwe
apply a penalizedEMalgorithm (Green 1990) to estimation inP-splines.An interesting
characteristic of the proposed procedure is that the estimator of the coefficients adopts
the form of a weighted smoother. The estimation procedure proposed in this work has
been implemented in the heavy package (Osorio 2014), developed as an extension
of the R statistical software (R Core Team 2014). The package is available from
CRAN and the web site http://heavy.mat.utfsm.cl. We studied influence diagnostics to
determine the robustness of the proposed procedure against outlying observations and
some common perturbation schemes considering the approaches of case deletion and
local influence for models with incomplete data as described in Zhu and Lee (2001)
and Zhu et al. (2001).

This article is organized as follows: Sect. 2 introduces P-splines considering heavy-
tailed distributions, a variant of the EM algorithm to obtain the estimators of penal-
ized maximum likelihood (PML) is developed and presents the optimal selection of
the smoothing parameter using a weighted version of the generalized cross-validation
criterion (GCV). Section 3 describes the main results associated with the influence
diagnostics by case deletion and local influence for models with incomplete data and
presents the generalized Cook distance and the normal curvature under several pertur-
bation schemes of the proposed model. The methodology is applied in Sect. 4 to the
dataset of life expectancy in 101 countries (Leinhardt and Wasserman 1979) assum-
ing distributions with heavier tails than the normal, also some simulation results are
discussed. The numerical experiments show the utility of the proposed methodology.
In Sect. 5 we present some final considerations.

2 P-splines under heavy-tailed distributions

In this section, we propose an alternative to accommodating extreme and outlying
observations in penalized splines based on distributions with heavier tails than the
normal. We also describe the PML estimation for P-splines using a penalized EM
algorithm and present the selection of the smoothing parameter through a weighted
version of the GCV criterion. The estimation of the shape parameters of the mixture
variable is also described.

2.1 Estimation in P-splines using the penalized EM algorithm

Consider the model,
Yi = g(xi ) + εi , i = 1, . . . , n, (1)

where the responses Yi are observed at design points xi and g is a smooth function
defined in [a, b]. It is assumed that the design points are such thata ≤ x1 < · · · < xn ≤
b and the {εi } are random variables with zero position and scale φ > 0. For simplicity,
we consider that g(x) = ∑p

j=1 a j B j (x), where p is the number of known basis
functions B1(x), . . . , Bp(x). B-splines are a common choice for the basis functions.
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The class of SMN distributions (Andrews and Mallows 1974) represents an inter-
esting alternative to the normal distribution in the presence of extreme observations
and has been applied very successfully for statistical modeling by a number of authors,
among themButler et al. (1990), Lange and Sinsheimer (1993) and Jamshidian (1999).
A random variable Y is said to follow an SMN distribution (Andrews and Mallows
1974) with position parameter μ ∈ R and scale φ > 0 if it can be written as

Y
d= μ + τ−1/2Z , where Z ∼ N (0, φ) and τ is a positive random variable with

distribution functionH(τ ; ν) where ν represents a scalar- or vector-valued parameter
that controls the shape of the distribution. The density function of Y is given by

f (y) = (2πφ)−1/2
∫ ∞

0
τ 1/2 exp(− 1

2τD
2)dH(τ ), (2)

where D2 = (y − μ)2/φ represents the distance between y to the center μ scaled
by φ. When Y has a density given by (2) we will denote Y ∼ SMN (μ, φ;H). It is
convenient to write the distribution of the random variable Y alternatively using the
following hierarchical representation:

Y |τ ∼ N (μ, φ/τ), τ ∼ H(ν). (3)

The formulation given in (3) is useful, for example for random number generation
and parameters estimation using missing data formulation through the EM algorithm
(Dempster et al. 1977). In this work the Student t and slash distributions are consid-
ered to illustrate the proposed methodology. In fact, the Student t distribution can be
written using the representation in (3) considering that τ ∼ Gamma(ν/2, ν/2) and
we write Y ∼ t (μ, φ; ν), ν > 0, while that for the slash distribution, denoted by
Y ∼ Slash(μ, φ; ν), ν > 0, we have τ ∼ Beta(ν, 1), ν > 0. For both, the Student t
and slash distributions, ν represents the degrees of freedom and this parameter control
the kurtosis of the distribution. It is interesting to note that when ν → ∞ the normal
distribution is recovered. It should be emphasized that other distributions also can be
considered, such as the contaminated normal (Little 1988) and the Laplace or double
exponential (Phillips 2002).

We will introduce scale mixtures of normal distributions for the model given in (1),
by considering the following distributional assumption

Yi
ind∼ SMN (b�

i a, φ;H), i = 1, . . . , n, (4)

where B = (b1, . . . , bn)� = (Bj (xi )) is a n × p matrix and a = (a1, . . . , ap)�.
Thus, P-splines considering heavy-tailed distributions can be introduced by obtaining
the PML estimates in the following penalized problem,

�λ(θ;Yobs) = �o(θ;Yobs) − λ

2φ

∫ b

a
{g′′(x)}2dx

= �o(θ;Yobs) − λ

2φ
a�K�Ka, (5)
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Influence diagnostics for robust P-splines 593

where θ = (a�, φ)�, λ > 0 represents a smoothing parameter and K�K is the matrix
representation of the penalty described in Eilers and Marx (1996) and K is the k × p
matrix (k ≤ p) of the kth order of differencing. Details about the construction of the
differencematrix K , are discussed inEilers andMarx (1996, 2010). The log-likelihood
function for the class of SMN distributions given in (5) assumes the form

�o(θ;Yobs) = −n

2
log 2πφ −

n∑

i=1

log
∫ ∞

0
τ
1/2
i exp

( − 1
2τi D

2
i (θ)

)
dH(τi),

where D2
i (θ) = (Yi − b�

i a)
2/φ, for i = 1, . . . , n.

The estimation problem given in (5) can be significantly simplified by consider-
ing an incomplete data formulation. Using the hierarchical formulation of a random
variable with an SMN distribution, it is possible to re-write the model proposed in (4)
as

Yi |τi ind∼ N (b�
i a, φ/τi ), τi

ind∼ H(ν), i = 1, . . . , n.

Thus, it is possible to apply the penalized EM algorithm (Green 1990) to estimate
the parameters in (5) by assuming that τ = (τ1, . . . , τn)

� are missing variables.
The penalized log-likelihood function for the model based on complete data Ycom =
(Y�, τ�)� is defined through

�λ(θ;Ycom) = �c(θ;Ycom) − λ

2φ
a�K�Ka,

with

�c(θ;Ycom) = −n

2
logφ − 1

2φ

n∑

i=1

τi (Yi − b�
i a)

2 + log h(n)(τ ; ν)

= −n

2
logφ − 1

2φ
(Y − Ba)�W(Y − Ba) + log h(n)(τ ; ν),

where h(n)(τ ; ν) is the joint density function of the mixture variables τ =
(τ1, . . . , τn)

� and W = diag(τ1, . . . , τn). Assuming that ν is known, it is possible to
show that the conditional expectation of the complete-data-penalized log-likelihood
function considering a current estimate θ (k), given by

Qλ(θ |θ (k)) = E
[
�c(θ;Ycom)|Y , θ (k)

]
− λ

2φ
a�K�Ka,

can be expressed as

Qλ(θ |θ (k)) = −n

2
logφ − 1

2φ

[
(Y − Ba)�W (k)(Y − Ba) + λa�K�Ka

]
, (6)
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whereW (k) = diag(τ (k)
1 , . . . , τ

(k)
n )with τ

(k)
i = E(τi |Yi , θ (k)). In general, it is possible

to show that the weight function, defined by the expectation τ
(k)
i is given by

E(τi |Yi , θ (k)) =
∫ ∞
0 τ

3/2
i exp(− 1

2τi D
2
i (θ))dH(τi)

∫ ∞
0 τ

1/2
i exp(− 1

2τi D
2
i (θ))dH(τi)

∣
∣
∣
∣
θ=θ(k)

.

Note that for most of the distributions in the SMN class, the weight function τ
(k)
i can

be easily computed (see Lange and Sinsheimer (1993)). For the Student t distribution
is well known that

τ
(k)
i = (ν + 1)/(ν + D2

i (θ
(k))), (7)

while for the slash distribution, τ (k)
i assumes the form (Jamshidian 1999)

τ
(k)
i =

(
2ν + 1

D2
i (θ

(k))

)
P(ν + 3

2 , D
2
i (θ

(k))/2)

P(ν + 1
2 , D

2
i (θ

(k))/2)
, (8)

where P(α, z) is the incomplete gamma function of parameter α at z (Abramowitz
and Stegun 1970, p. 260), defined as

P(α, z) = 1

�(α)

∫ z

0
e−t tα−1dt.

To maximize Qλ(θ |θ (k)) given in (6) with respect to θ = (a�, φ)�, we solve the
first-order condition and update θ (k+1) as

a(k+1)
λ = (B�W (k)B + λK�K )−1B�W (k)Y , (9)

φ
(k+1)
λ = 1

n

{
RSSW (k) (a(k+1)

λ ) + λ‖Ka(k+1)
λ ‖2

}
, (10)

where RSSW (a) = (Y − Ba)�W(Y − Ba). The PML estimates for the problem in
(5) are obtained by iterating the E and M steps of the algorithm, described in Eqs. (6),
(9) and (10) until reaching convergence.

It is possible tomodify the estimation procedure delineated above to simultaneously
estimate a, φ and the tuning parameter ν. In this case, the expectation of the complete-
data-penalized log-likelihood function assumes the form

Qλ(θ |θ (k)) = Qλ(a, φ|θ (k)) + Qλ(ν|θ (k)), (11)

with θ = (a�, φ, ν�)�, where Qλ(a, φ|θ (k)) is given in equation (6), while

Qλ(ν|θ (k)) = E[log h(n)(τ ; ν)|Y , θ (k)]. (12)
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For theM stepwe update a(k+1) andφ(k+1) according to Eqs. (9) and (10), respectively,
and we obtain ν(k+1) through

ν(k+1) = arg max
ν

Qλ(ν|θ (k)). (13)

Indeed ν(k+1) can be obtained as the solution of the system of equations

∂Qλ(ν|θ (k))/∂ν = 0.

Hence, the form that conditional expectation (12) and the M step (13) adopt depends
on the specific choice of the distribution of the random variable τi .

To illustrate the estimation of the tuning parameter ν, below we present the esti-
mation of the degrees of freedom for the slash and Student t distributions. Additional
details about this respect can be found in Lange and Sinsheimer (1993), McLachlan
and Krishnan (1997) and Jamshidian (1999).

For the particular case of the Student t distribution, it follows that τi |Yi ind∼
Gamma((ν +1)/2, (ν + D2

i (θ))/2), for i = 1, . . . , n. Using results fromMcLachlan
and Krishnan (1997) we have

E(log τi |Yi , θ (k)) = log τ
(k)
i +

{
ψ

(ν(k) + 1

2

)
− log

(ν(k) + 1

2

)}
,

where τ
(k)
i is defined in (7) and ψ(z) = d log�(z)/dz is the digamma function

(Abramowitz and Stegun 1970, p. 268). Thus, the conditional expectation of the
complete-data-penalized log-likelihood associated with ν, assumes the form

Qλ(ν|θ (k)) = nν

2
log

(ν

2

)
− n log�

(ν

2

)
+ nν

2

{1

n

n∑

i=1

(log(τ (k)
i ) − τ

(k)
i )

+ ψ
(ν(k) + 1

2

)
− log

(ν(k) + 1

2

)}
.

It is possible to update ν(k+1) as the solution to equation ∂Qλ(ν|θ (k))/∂ν = 0 using
an one-dimensional Newton–Raphson method.

Using errors following a slash distribution, the calculation of the conditional expec-
tation in (12), requires evaluating (see Lange and Sinsheimer 1993)

E(log τi |Yi , θ (k)) =
∫ 1
0 log(τi )τ

ν−1/2
i exp(− 1

2τi D
2
i (θ

(k)))dτi
∫ 1
0 τ

ν−1/2
i exp(− 1

2τi D
2
i (θ

(k)))dτi

= ψ(ν + 1
2 ) − log(D2

i (θ
(k))/2) + ∂P(ν + 1

2 , D
2
i (θ

(k))/2)/∂ν

P(ν + 1
2 , D

2
i (θ

(k))/2)
.

The derivative of the incomplete gamma function ∂P(a, x)/∂a can be evaluated using
the algorithm described in Moore (1982). In this case, the conditional expectation in
(12) is given by
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Qλ(ν|θ (k)) = n log ν + ν

n∑

i=1

E(log τi |Yi , θ (k)).

Maximizing Qλ(ν|θ (k)) in relation to ν, we obtain

ν(k+1) = − n
∑n

i=1 E(log τi |Yi , θ (k))
.

Remark 1 In this work, we address the estimation of the shape parameters for the mix-
ture variables using the EM algorithm following the approach proposed for a number
of authors in settings like nonlinear regression models (Lange and Sinsheimer 1993;
Jamshidian 1999) and linear mixed-effects models under Student t errors (Pinheiro
et al. 2001; Lin and Lee 2006). Although the approach of these works has been quite
successful in practice, some authors (see, for instanceLucas 1997; Fernández and Steel
1999) havewarned about potential problems thatmay arise in the estimation of degrees
of freedom for the Student t distribution. Particularly, Lucas (1997) has pointed out
using influence functions for the univariate case that the protection against outliers is
only attained when this parameter is kept fixed. Moreover, when the degrees of free-
dom is estimated by maximum likelihood the influence function for the scale, degrees
of freedom and the change-of-variance of the position parameter is unbounded. Thus,
one alternative is to assume that the parameters associated with the mixture variables
τi are known. To achieve protection against outliers Lange et al. (1989) suggest that
the degrees of freedom of the Student t distribution must be kept fixed in a small
reasonable value such as ν = 4. There is an option in the heavy package that allows
one to keep the shape parameter ν fixed.

2.2 Smoothing parameter selection

Several authors have suggestedmodifications to theGCVcriterion (Craven andWahba
1979) for the appropriate selection of the smoothing parameter λ. For example,
O’Sullivan et al. (1986) and Gu (1992) proposed versions of the GCV criterion for
non-Gaussian data focused mainly on the penalized maximum likelihood for distribu-
tions in the exponential family, while Wei (2005) examined the asymptotic properties
of the criterion of robust cross validation based on M-estimation procedures. In this
work, we choose the smoothing parameter minimizing the weighted cross-validation
criterion as defined by O’Sullivan et al. (1986) as

V (λ) = 1

n

∑n
i=1 τ̂i (Yi − ĝλ(xi ))2

{tr(I − H Ŵ (λ))/n}2 = ‖Ŵ1/2(I − H Ŵ (λ))Y‖2/n
{tr(I − H Ŵ (λ))/n}2 , (14)

with τ̂i = E(τi |Yi , θ̂) and ĝλ = (ĝλ(x1), . . . , ĝλ(xn))� = H Ŵ (λ)Y , where the
prediction matrix assumes the form

HW (λ) = B(B�WB + λK�K )−1B�W . (15)
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Influence diagnostics for robust P-splines 597

As Gu (1992) suggested, it is possible to alternate the minimization of (14) with
the steps of the penalized EM algorithm described in equations (6) and (9)–(10) or
(9)–(13), whichever applies.

Remark 2 The convergence properties of the penalized EM algorithm proposed in
Sect. 2.1 have been studied in the general context of penalized log-likelihood esti-
mation for λ fixed by Green (1990). However, for varying λ Gu (1992), Xiang and
Wahba (1996) and Gu and Xiang (2001) among others, have discussed that choosing
the smoothing parameter via the indirect method described abovemay not converge. In
our implementation, we follow the suggestions given by Gu (1992). Thus, we did not
find such problems in our numerical experiments. In addition, can be stressed that the
WGCV criterion defined in (14) is similar to the robust GCV used by (Tharmaratnam
et al., 2010, Eq. 2.18). In fact, following Lucas (1997) the relationship between the
criteria WGCV and robust GCV can be highlighted by defining âλ as the solution to

min
a

n∑

i=1

ρ(D2
i ) + λ

2φ
a�K�Ka,

where ρ(D2) = − log f (y; a, φ), with f (y; a, φ) the density function obtained from
Eq. (4). Furthermore, we can also note that the matrix H Ŵ (λ) have the same diagonal
elements than the following matrix

Ŵ1/2B(B�Ŵ B + λK�K )−1B�Ŵ1/2,

which is analogous to the prediction matrix defined by Tharmaratnam et al. (2010).
The implementation available in the heavy package uses two nested singular value
decompositions to efficiently evaluate the weighted GCV criterion, details are pre-
sented in the Appendix A of the supplementary material.

3 Influence diagnostics

Below we describe two of the main procedures to determine the influence of outlying
observations. We consider diagnostic measures suitable for models with incomplete
data, based on the PML estimation using the penalized EMalgorithm. First, we present
the approach of case deletion using the generalized Cook distance (Zhu et al. 2001).
Subsequently, we develop the diagnostic using the local influence method proposed
by Zhu and Lee (2001).

The proofs of Propositions 1–5 are deferred to Appendix B of the supplementary
material.

3.1 Case deletion measures

To evaluate the effect of dropping the i th observation on the PML estimation of the
p∗-dimensional parameter vector θ , it is possible to use the Cook distance, defined as

Ci = (̂θ − θ̂ (i))
�M (̂θ − θ̂ (i)), i = 1, . . . , n,
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598 F. Osorio

where θ̂ (i) represents the PML estimate of θ once the i th observation has been dropped
from the dataset and M is a positive definite matrix of order p∗ × p∗ (see Cook and
Weisberg 1982). Zhu et al. (2001) proposed the generalized Cook distance for models
with incomplete data as defined by

GCi = (̂θ − θ̂ (i))
�{−Q̈λ(̂θ |̂θ)}(̂θ − θ̂ (i)), i = 1, . . . , n,

where Q̈λ(̂θ |̂θ) = ∂2Qλ(θ |̂θ)/∂θ∂θ�|θ=θ̂ . To reduce the computational burden
involved in calculating θ̂ (i), i = 1, . . . , n, the following one-step approximation has
been proposed (Cook and Weisberg 1982; Zhu et al. 2001)

θ̂1(i) = θ̂ + {−Q̈λ(̂θ |̂θ)}−1 Q̇λ(i)(̂θ |̂θ), i = 1, . . . , n,

where

Qλ(i)(θ |̂θ) = E[�c(θ;Ycom(i))|Y (i), θ̂ ] − λJ (θ),

with Ycom(i) = (Y�
(i), τ

�
(i))

� being the complete-data vector when the i th observation

has been deleted and Q̇λ(i)(̂θ |̂θ) = ∂Qλ(i)(θ |̂θ)/∂θ |θ=θ̂ . For a wide variety of sta-
tistical models it is possible to write Qλ(θ |̂θ) = ∑n

i=1 Qλ,i (θ |̂θ). Thus, Qλ(i)(θ |̂θ)

= ∑
j �=i Qλ, j (θ |̂θ), in which case we have

Q̇λ(i)(̂θ |̂θ) + Q̇λ,i (̂θ |̂θ) = Q̇λ(̂θ |̂θ) = 0,

and consequently we consider the following one-step approximation for the general-
ized Cook distance

GC1
i = Q̇�

λ,i (̂θ |̂θ){−Q̈λ(̂θ |̂θ)}−1 Q̇λ,i (̂θ |̂θ), i = 1, . . . , n.

The following proposition gives the analytical form of the Hessian matrix for the
penalized splines under heavy-tailed distributions discussed in Sect. 2.

Proposition 1 For the model given in Eq. (4) from Sect. 2.1 the (p + 1) × (p + 1)
Hessian matrix associated with the penalized Qλ(θ |̂θ) function evaluated at θ = θ̂

assumes the form

Q̈λ(̂θ |̂θ) =
(
Q̈λ(̂a|̂θ) 0
0 Q̈λ(φ̂ |̂θ)

)

= − 1

φ̂

(
B�Ŵ B + λK�K 0
0 n/(2φ̂)

)

.

To obtain the generalized Cook distance in the model described in Sect. 2.1, we
consider Qλ(θ |̂θ) = ∑n

i=1 Qλ,i (θ |̂θ), with

Qλ,i (θ |̂θ) = −1

2
logφ + 1

2φ

{
τ̂i (Yi − b�

i a)
2 + λ

n
‖Ka‖2

}
.
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Influence diagnostics for robust P-splines 599

Using the Proposition 1 follows immediately that the one-step approximation for the
generalized Cook distance is given as GC1

i = GC1
i (̂a) + GC1

i (φ̂), i = 1, . . . , n,
where

GC1
i (̂a) = Q̇�

λ,i (̂a|̂θ){−Q̈λ(̂a|̂θ)}−1 Q̇λ,i (̂a|̂θ),

GC1
i (φ̂) = Q̇�

λ,i (φ̂ |̂θ){−Q̈λ(φ̂ |̂θ)}−1 Q̇λ,i (φ̂ |̂θ), (16)

with

Q̇λ,i (̂a|̂θ) = − 1

φ̂

{
τ̂i (Yi − b�

i â)bi + λφ̂

n
K�K â

}
,

Q̇λ,i (φ̂ |̂θ) = − 1

2φ̂
− 1

2φ̂2

{
τ̂i (Yi − b�

i â)
2 + λ

n
‖K â‖2

}
.

The distances GC1
i (̂a) and GC1

i (φ̂) given in (16) offer an interesting interpretation.
In fact, GC1

i (̂a) allows to assess the influence of the i th observation on the PML
estimate of a and analogously for GC1

i (φ̂). In addition, these measures complement
and extend the results developed byEubank andGunst (1986);Kim (1996);Wei (2004)
and Ibacache-Pulgar and Paula (2011).

3.2 Local influence

The local influence method proposed by Cook (1986) allows studying the effect pro-
duced by introducing small perturbations on the model and/or the data. The procedure
was extended by Zhu and Lee (2001) to manipulate situations with incomplete data.
They were focused on assessing the local behavior of the Q-displacement function
given by

fQ(ω) = 2{Qλ(̂θ |̂θ) − Qλ(̂θ(ω)|̂θ)},

where ω = (ω1, . . . , ωq)
� is a vector of perturbations restricted to some open subset

� ⊂ R
q and in the context of this work, θ̂(ω) denotes the PML estimate of θ based

on

Qλ(θ ,ω|̂θ) = E[�c(θ ,ω;Ycom)|Yobs, θ̂ ] − λJ (θ).

It is assumed that there is a vector of null perturbation ω0 ∈ � which satisfies
�o(θ ,ω0;Yobs) = �o(θ;Yobs) and �c(θ,ω0;Ycom) = �c(θ;Ycom).

The objective of the local influence technique is to compare θ̂ and θ̂(ω) by studying
the local behavior of γ (ω) = (ω�, fQ(ω))� around ω0 (Cook 1986; Zhu and Lee
2001). Consider ω = ω0 + εh, where h, ‖h‖ = 1 is an unitary direction and ε ∈ R.
Zhu and Lee (2001) used the same reasoning developed by Cook (1986) and showed
that the normal curvature Ch(θ) can be employed to characterize the local behavior
of fQ(ω0 + εh) around the value ε = 0 for a direction h, given by
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Ch(θ) = 2 h���(ω0){−Q̈λ(̂θ |̂θ)}−1�(ω0)h,

where �(ω) = ∂2Qλ(θ ,ω|̂θ)/∂θ∂ω�|θ=θ̂ (ω).
The direction of maximum curvature hmax, determined by the vector associated

with the largest eigenvalue of the matrix F = ��(ω0){−Q̈λ(̂θ |̂θ)}−1�(ω0) is used
to identify how to perturb the postulated model to obtain the greatest local change in
the Q-displacement function.

Several authors have proposed examining other relevant directions to investigate
local influence. For example Escobar and Meeker (1992) suggested considering the
index plot of Ci (θ) = Chi (θ), i = 1, . . . , n, where hi is a q ×1 vector with one in the
i th position and zeros elsewhere. In fact, Ci (θ) allows the evaluation of the influence
of the i th observation due to the aggregated contribution of all the basic perturbation
vectors (Poon and Poon 1999). Poon and Poon (1999) proposed the conformal normal
curvature Bh(θ) = Ch(θ)/{tr(T2)}1/2 to avoid invariance problems under uniform
changes of scale. The conformal normal curvature satisfies that 0 ≤ Bh(θ) ≤ 1, a
property that allows comparison of curvatures obtained by considering different SMN
models.

Following Thomas (1991) and Shi and Wang (1999) it is possible to determine
the observations that have a strong impact on the smoothing parameter selection in
penalized splines, that is λ̂(ω), obtained by introducing a small perturbation ω ∈ �

on the WGCV criterion given in (14). It is assumed that there is an ω0 ∈ � vector
of no perturbation, such that λ̂(ω0) = λ̂. The direction of the greatest local change is
hmax(V ) ∝ ∂λ̂(ω)/∂ω, which should be evaluated at ω0. Since λ̂(ω) is chosen mini-
mizing a perturbed version of theWGCV criterion, we have ∂V (λ,ω)/∂λ|λ=̂λ(ω) = 0.
Differentiating both sides of this equation with respect to ω and evaluating this deriv-
ative at ω0, gives

{∂2V (λ,ω)

∂ω∂λ
+ ∂2V (λ,ω)

∂λ2

∂λ̂(ω)

∂ω

}∣
∣
∣
ω=ω0,λ=̂λ

= 0.

Thus,

∂λ̂(ω)

∂ω

∣
∣
∣
ω=ω0

=
{

−
(∂2V (λ,ω)

∂λ2

)−1 ∂2V (λ,ω)

∂ω∂λ

}∣
∣
∣
ω=ω0,λ=̂λ

. (17)

Below we consider the scale and response perturbation schemes. Each scheme was
applied on the complete-data-penalized log-likelihood function and the WGCV crite-
rion. To find hmax wemust compute the curvature matrix F = ��(ω0){−Q̈λ(̂θ |̂θ)}−1

�(ω0), where Q̈λ(̂θ |̂θ) was given in Proposition 1 and for each perturbation scheme
�(ω) assumes the partitioned form �(ω) = (��

a (ω),��
φ (ω))�, with

�a(ω) = ∂2Qλ(θ ,ω|̂θ)

∂a∂ω� , �φ(ω) = ∂2Qλ(θ ,ω|̂θ)

∂φ∂ω� .

We should emphasize that the �(ω) matrix is specific for the perturbation scheme
under consideration. Propositions 2 and 3 present analytic expressions for the matrix
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�(ω0), while Propositions 4 and 5 give explicit formulas for ∂λ̂(ω)/∂ω when the
WGCV criterion is perturbed.

3.2.1 Scale perturbation on complete-data-penalized log-likelihood

This perturbation scheme is defined by introducing weights in the scale, that is, the
following distributional assumption is considered

Yi (ω)
ind∼ SMN (b�

i a, φ/ωi ;H), i = 1, . . . , n, (18)

where ω = (ω1, . . . , ωn)
�, with ωi > 0 for i = 1, . . . , n. In this case, the vector of

null perturbation is ω0 = 1n , with 1n = (1, . . . , 1)�. The perturbed log-likelihood
function for the complete-data model assumes the form

�c(θ ,ω;Ycom) = −n

2
logφ − 1

2φ
(Y − Ba)�W1/2diag(ω)W1/2(Y − Ba),

where diag(ω) = diag(ω1, . . . , ωn) is a diagonal matrix, whose diagonal elements are
given by the vector ω. Then the following proposition holds.

Proposition 2 For the penalized splines considering heavy-tailed distributions, under
the scale perturbation schemedefined inEq. (18) andwhen θ = (a�, φ)� are the para-
meters of interest, the�(ω0)matrix can be written as�(ω0) = (��

a (ω0),�
�
φ (ω0))

�,
where

�a(ω0) = 1

φ̂
B�Ŵdiag(e), �φ(ω0) = 1

2φ̂
e�Ŵdiag(e),

with e = Y − Bâλ being the residual vector.

A direct consequence of Proposition 2 is that the curvature matrix F can be written
as F = Fa + Fφ , with

Fa = ��
a (ω0){−Q̈λ(̂a|̂θ)}−1�a(ω0)

= 1

φ̂
diag(e)Ŵ B(B�Ŵ B + λK�K )−1B�Ŵdiag(e),

and

Fφ = ��
φ (ω0){−Q̈λ(φ̂ |̂θ)}−1�φ(ω0) = 1

2n
diag(e)Ŵ ee�Ŵdiag(e).

This perturbation scheme is equivalent to the case-weights perturbation, where
weights are introduced with the aim to detect which observations have a prominent
contribution on the residual sum of squares, RSSW (a). Indeed, the case-weights (or
scale) perturbation generalizes the concept of influence by means of cases deletion
(see, for instance Thomas 1991).
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3.2.2 Response perturbation on complete-data-penalized log-likelihood

This scheme is defined by introducing additive perturbations in the observed responses
as Y(ω) = Y + ω, where ω = (ω1, . . . , ωn)

� and ω0 = 0 denote the vector of
null perturbation. Under this perturbation scheme, the conditional expectation of the
complete-data-penalized log-likelihood function is given by

Qλ(θ,ω|̂θ) = −n

2
logφ − 1

2φ
[(Y(ω) − Ba)�Ŵ(Y(ω) − Ba) + λa�K�Ka].

To obtain an explicit formulae of the �(ω0) matrix under response variable perturba-
tion consider the following proposition.

Proposition 3 For penalized splines assuming the class of scale mixture of nor-
mal distributions, under the response perturbation scheme and considering that
θ = (a�, φ)� are the parameters of interest, then the �(ω0) matrix can be expressed
as �(ω0) = (��

a (ω0),�
�
φ (ω0))

�, where

�a(ω0) = 1

φ̂
B�Ŵ , �φ(ω0) = 1

φ̂
e�Ŵ ,

and e = Y − Bâλ is the residual vector.

Note that when φ is known, the curvature matrix for the response perturbation
scheme assumes the form

F = ��
a (ω0){−Q̈λ(̂θ |̂θ)}−1�a(ω0)

= 1

φ
Ŵ B(B�Ŵ B + λK�K )−1B�Ŵ = 1

φ
Ŵ H Ŵ (λ).

That is, this perturbation scheme is related to the generalized leverage of âλ (Wei et al.
1998), GL(̂aλ) = ∂ ĝλ/∂Y

� = H Ŵ (λ). In fact, for a fixed or known φ, it is possible
to study the influence of extreme observations on their own fitted values using the
index plot of Bi (a) ∝ ĥi i (λ), i = 1, . . . , n where ĥi i (λ) denotes the i th diagonal
element of the H Ŵ (λ) matrix.

3.2.3 Scale perturbation on the smoothing parameter selection

To evaluate the effect of outlying observations on the smoothing parameter selection,
we consider the perturbation scheme defined in (18), In this way, the perturbedWGCV
criterion assumes the form

V (λ,ω) = RSSŴ (λ,ω)/n

{tr(I − H Ŵ (λ,ω))/n}2 , (19)

where RSSŴ (λ,ω) = ‖diag−1/2(ω)Ŵ1/2(I − H Ŵ (λ,ω))Y‖2, and

H Ŵ (λ,ω)) = B(B�Ŵdiag−1(ω)B + λK�K )−1B�Ŵ .

Note that the first term of ∂λ̂(ω)/∂ω given in Eq. (17) is a scalar that can be ignored,
thus
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hmax(V ) ∝ ∂2V (λ,ω)

∂ω∂λ

∣
∣
∣
ω=ω0,λ=̂λ

.

Based on (19), for the smoothing parameter selection with the scale perturbation
scheme, the following proposition gives the specific form of the direction of largest
local curvature.

Proposition 4 For the smoothing parameter selection procedure based on the WGCV
criterion, under the scale perturbation, the second derivative of V (λ,ω) with respect
to ω and λ evaluated at ω = ω0 and λ = λ̂ can be expressed as

∂2V (λ,ω)

∂ω∂λ

∣
∣
∣
ω=ω0,λ=̂λ

= −3

c
tr(GŴ)

∂V (λ,ω)

∂ω

∣
∣
∣
ω=ω0,λ=̂λ

+ 1

nc3

{1

n
tr(GŴ)diag(e)Ŵ(I − 2Ĥ)e

+ c
[
diag(e)Ŵ(I − 2Ĥ)GŴY

+ 2diag(e)ŴGŴe + diag(GŴY)Ŵ(I − 2Ĥ)e
]

− 2

n

[
RSSŴ (̂λ,ω0) dg((I − 2Ĥ)GŴ)1n

− 2 dg((I − Ĥ)Ĥ)1ne�ŴGŴY
]}

,

where
∂V (λ,ω)

∂ω

∣
∣
∣
ω=ω0,λ=̂λ

= 1

nc3

{
cdiag(e)Ŵ(I − 2Ĥ)e

+ 2

n
RSSŴ (̂λ,ω0) dg((I − Ĥ)Ĥ)1

}
(20)

with dg(Z) = diag(z11, . . . , znn) for Z = (zi j ) a square matrix of order n × n, while
c = 1 − tr(Ĥ)/n, Ĥ = H Ŵ (̂λ), G = BS−1K�KS−1B� where S = B�Ŵ B +
λ̂K�K , e = (I − Ĥ)Y and 1n = (1, . . . , 1)� denote an n-dimensional vector of
ones.

3.2.4 Response perturbation on the smoothing parameter selection

To perturb the response variable we consider Y(ω) = Y+ω, withω = (ω1, . . . , ωn)
�

where the vector of null perturbation is ω0 = 0. The perturbed WGCV criterion
assumes the form

V (λ,ω) = RSSŴ (λ,ω)/n

{tr(I − H Ŵ (λ))/n}2 ,

where RSSŴ (λ,ω) = ‖Ŵ1/2(I − H Ŵ (λ))Y(ω)‖2. The following proposition pro-
vides an explicit expression for ∂2V (̂λ,ω0)/∂ω∂λ.

Proposition 5 Let λ̂ be the selected value of the smoothing parameter according the
procedure described in Sect. 2.2. For the response perturbation scheme we have
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hmax ∝ ∂2V (λ,ω)

∂ω∂λ

∣
∣
∣
ω=ω0,λ=̂λ

= 2

nc2

{
(I − Ĥ)�ŴGŴ + ŴGŴ(I − Ĥ) − 2

nc
tr(GŴ)(I − Ĥ)�Ŵ(I − Ĥ)

}
Y ,

where c = 1 − tr(Ĥ)/n, Ĥ = H Ŵ (̂λ) and G = BS−1K�KS−1B� with S =
B�Ŵ B + λ̂K�K .

Aswe shall see in the confirmatory analysis for life expectancy data, outliers can be
extremely influential on the selection of the smoothing parameter (see Table 2). Thus,
these perturbation schemes applied on the weighted GCV criterion allow us to note
that it is necessary that both, the fitting procedure as the smoothing selection technique
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Fig. 1 Typical dataset for: a Cantoni and Ronchetti (2001), b logistic and c “bump” test functions
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should be based on a robust approach. Moreover, the influence measure hmax obtained
in Propositions 4 and 5 generalizes the work of Thomas (1991).

4 Numerical experiments

In this section, we evaluate the performance of the proposed methodology through a
simulation study and the analysis of life expectancy data introduced by Leinhardt and
Wasserman (1979). Additional experiments are reported in Appendices C and D from
the supplementary material.

4.1 Simulation study

For our simulation study, we considered the model Y = g(x)+σε, with the following
test functions:
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Fig. 2 Boxplots of MSE under several contamination levels (δ) and variance inflation factor γ = 4
considering the three distributional assumptions for the Cantoni and Ronchetti (2001) test function
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g1(x) = sin(2π(1 − x)2), σ = 0.5,

g2(x) = 1

1 + exp(−20(x − 1/2))
, σ = 0.2,

g3(x) = x + 2 exp(−(16(x − 1/2))2), σ = 0.3.

Function g1 was studied by Cantoni and Ronchetti (2001), Lee and Oh (2007)
and Tharmaratnam et al. (2010), while functions g2 (logistic) and g3 (“bump”) where
considered by Ruppert (2002) is his simulation study. For each of these functions
M = 500 datasets were generated. The sample size in each case was n = 100
with design points x1, . . . , xn generated independently from the uniform distribution
U(0, 1), the random disturbances {εi } were generated from the contaminated normal
distribution

(1 − δ)N (0, 1) + δN (0, γ ),
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Fig. 3 Boxplots of MSE under several contamination levels (δ) and variance inflation factor γ = 10
considering the three distributional assumptions for the Cantoni and Ronchetti (2001) test function
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for δ = 0, 5, 10, 25, 40% and γ = 2, 4, 10. We applied P-splines using B-splines of
third degree and second order of penalty, with selected knots dividing the domain of x
into 20 segments of equal width. The normal, slash and Student t distributions, associ-
ated with theH distribution following point mass at τi , Beta and Gamma, respectively,
were considered. The degrees of freedom of the slash and Student t were fixed at 2 and
4, respectively. To gain more insights into the performance of the proposed procedure,
the mean squared error (MSE) for each simulated dataset j ( j = 1, . . . , M), was
calculated as

MSE j = 1

n

n∑

i=1

(g(xi ) − ĝ j (xi ))
2, j = 1, . . . , M,

where the smoothing parameter λ was chosen according to the strategy outlined in
Sect. 2.2. Figure 1 presents a typical dataset for the case in which the data have not
been contaminated. As well, the real underlying function is presented for the three test
functions considered.
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Fig. 4 Boxplots of MSE under several contamination levels (δ) and variance inflation factor γ = 4
considering the three distributional assumptions for the logistic test function
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Fig. 5 Boxplots of MSE under several contamination levels (δ) and variance inflation factor γ = 10
considering the three distributional assumptions for the logistic test function

The results of the simulation study are presented in Figs. 2–7. The results for γ = 2
are omitted because they are similar to those obtained with γ = 4. As expected, when
there is no contamination, the estimated curves using heavy-tailed distributions are
essentially equivalent to those obtained under Gaussian errors. However, as the per-
centage of contamination increases the estimation under normality worsens, while
with heavy-tailed distributions the adjustment remains robust against outlying obser-
vations. An interesting result in relation to the g3 “bump” function is presented in Figs.
6 and 7, where it is evident that the protection against outliers offered by the use of
heavy-tailed distributions improves only for severe contaminations.

4.2 Life expectancy data

To illustrate the estimation procedure and influence diagnostics described in Sects. 2
and 3, we considered the life expectancy dataset introduced by Leinhardt and Wasser-
man (1979), who reported on per capita income in US dollars and life expectancy for
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Fig. 6 Boxplots of MSE under several contamination levels (δ) and variance inflation factor γ = 4
considering the three distributional assumptions for the “bump” test function

101 countries in 1979. Thomas (1991) studied the local influence on the GCV criterion
in smoothing splines and identified observations 9, 15 and 27 as the most influential
using a scale perturbation scheme.

Figure 8 and Table 1 display the results of the fittedmodel considering normal, slash
and Student t distributions. For this dataset, we observe that the estimation procedure
under distributions with heavier tails than the normal produce an fitted model that is
insensitive to outlying observations. Although there are differences in the estimated
values for the degrees of freedom (̂ν), the smoothing parameter (̂λ) and the WGCV
criterion, it can be noticed that the estimated curves ĝ for the slash and Student t
models are quite similar. It should be stressed that the routine heavyPS from the
heavy package requires less than a tenth of a second to carry out the computations on
an iMac 2,12 Intel Quad Core i5 at 3.1GHz and 16GB of RAM.

It is possible to identify outliers in a simple manner by considering the index
plot of Mahalanobis distances D2

i (θ) = (Yi − b�
i a)

2/φ, i = 1, . . . , n (Lange and
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Fig. 7 Boxplots of MSE under several contamination levels (δ) and variance inflation factor γ = 10
considering the three distributional assumptions for the “bump” test function

Sinsheimer 1993). Under normality, D2
i (θ) follows a Chi-square distribution with one

degree of freedom.We use the quantile valueχ2
1 (ξ)with ξ = 0.975 to obtain the cutoff

shown in the graph in the first panel of Fig. 9. This suggests that under normal errors,
observations 49, 58 and 93 are outliers. The other panels in Fig. 9 indicate that when
distributions with heavier tails than the normal are used the methodology allows the
accommodation of outlying observations (compare with Fig. 8) by attributing small
weights in the estimation procedure. Indeed this property is related with the influence
function of the PML estimation defined by Eq. (5) (see Butler et al. 1990; Lucas 1997).
The weights associated with the normal distribution (̂τi = 1, for i = 1, . . . , n) are
indicated in these panels as a dotted line.

To identify influential observations in the life expectancy dataset we applied the
influence diagnostic methods proposed in this work. Figure 10 presents the index plot
for the generalized Cook distances,GC1

i , for i = 1, . . . , n, considering the three fitted
models. Observations 25 and 27 exercise a strong influence on the PML estimates with
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Fig. 8 Life expectancy data with fitted curve under three distributional assumptions: (solid line) normal,
(dashed line) Student t and (dots) slash models

Table 1 Estimation summary for the life expectancy data under three fitted models

Model ν̂ λ̂ �λ(̂θ;Yobs) WGCV Iterations Time (s)

Normal – 0.1021 −325.4395 48.0393 3 0.002

Slash 1.0966 2.6916 −327.9674 12.8262 104 0.080

Student t 2.5875 4.1905 −326.8620 18.9559 79 0.071

slightly less influence for observations 23 and 35. The influence of those observations
decreases considerably when heavy-tailed distributions are used such as slash and
Student t distributions. When we consider the assessment of local influence applied to
the complete-data-penalized log-likelihood function (Figures 11 and 12) we observe
that under normality, observations 23, 25, 27, 58 and 93 are influential against the
scale perturbation scheme, while the response perturbation scheme indicates that the
fitted model is particularly sensitive when observations 27, 58, and 93 are perturbed.
The group of highlighted points in the center panel may be because a property related
to the weights definition in the Student t distribution (Kent et al. 1994). It is evident
that this influence decreases when we use distributions with heavier tails than the
normal.

Figure 13 presents the influence graphs for the scale perturbation scheme applied to
the weighted cross-validation procedure. Under errors normally distributed we iden-
tify that observations 9, 15 and 27 exercise a strong influence on the selection of the
smoothing parameter (see also Thomas 1991). Thus, our results generalize the ones
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Fig. 9 Index plot of the Mahalanobis distances under normality and estimated weights versus distances for
the Student t and slash models

reported by Thomas (1991). Again it can be appreciated that the estimation proce-
dure considering heavy-tailed distributions is an effective approach to accommodate
outliers.

With the objective of investigating the sensitivity in the selection of the smooth-
ing parameter against outlying observations, a confirmatory study was conducted that
consisted of dropping observations from the dataset and obtaining an estimate of
λ by minimizing the WGCV criterion. The results were compared with the origi-
nal estimate. Table 2 presents the estimates and percentages of relative change for
each of the fitted models. This analysis reveals the extreme sensitivity in the selec-
tion of the smoothing parameter under normal errors. In fact, the highest percent-
age change (8,257%) occurs when observations 23, 25 and 27 are removed. The
results evidence the ability of SMN distributions to reduce the influence of extreme
observations. The stability that can be noted in the estimation of the degrees of
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Fig. 10 Index plots of generalized Cook distances

freedom for slash and Student t distributions reveals appropriate protection against
outliers.

5 Discussion

This work describes the estimation of parameters and the influence diagnostics in
smoothing via penalized splines considering the class of scale mixtures of normal
distributions. It also addresses the resistant selection of the parameter that controls
the smoothness of the fitted curve. The results of the numerical experiments high-
light the ability of the proposed procedure to accommodate outlying data. The esti-
mation procedure can be seen as an alternative approach to the works of Cantoni
and Ronchetti (2001), Lee and Cox (2009) and Ibacache-Pulgar and Paula (2011).
It should be stressed that, using the Laplace distribution (Phillips, 2002) our proce-
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Fig. 11 Index plots of hmax under scale perturbation on the penalized log-likelihood function

dure can tackle the median (L1) nonparametric regression (Koenker et al. 1994). The
numerical implementation of the estimation procedure using a penalized EM algo-
rithm is simple and computationally efficient. The routines developed are available in
the R heavy package (Osorio 2014). Although we have not seen this situation in our
numerical experiments, Gu (1992) presented a discussion in which a series of authors
indicated that the procedure delineated in Sect. 2.2 cannot reach convergence. The
author is currently working on an alternative form to carry out the selection of the
smoothing parameter whose convergence is assured.

The proposed methodology can be seen as an M-estimation procedure (see, for
instance Maronna 1976; Lange et al. 1989), thus we can expect that the procedure
performs well for variance inflation models (Cook et al. 1982) like the one used in the
Monte Carlo simulation study. In an additional simulation study (see supplementary
material) we considered an asymmetric contamination scheme varying the percentage
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Fig. 12 Index plots of hmax under response perturbation on the penalized log-likelihood function

of outliers (0, 5, 10, 25 and 40%). This kind of extreme contamination reveals that
the statistical modeling using distributions with heavier tails than the normal one
is not the panacea for all robustness problems (Lange et al. 1989). It is interesting
to note that the penalized EM estimation under heavy-tailed distributions produces
curve estimates very similar to those reported by Tharmaratnam et al. (2010) when
the shape parameters are fixed at very small values. However, models derived under
heavy-tailed symmetric distributions, still can be vulnerable to extreme and influential
observations. The role and definition of outlying and influential observations inmodels
with heavier tails than the normal one have not been completely studied. In our opinion
an avenue for new developments is to use the mean-shift outlier model (Wei and Shih
1994).
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Fig. 13 Index plots of hmax under scale perturbation on the smoothing parameter selection

Explicit expressions have been developed for the necessary matrices required
to diagnose influence considering case deletion techniques and the local influence
method. Interestingly, for the example with real data, all the diagnostic techniques
yielded complementary results. The evaluation of influence in this work extends the
earlier results of, for example, Eubank and Gunst (1986); Kim (1996) andWei (2004),
who considered the deletion methodology, while the study of local influence gener-
alizes the results of Thomas (1991). We plan to develop an R package to implement
the influence diagnostics presented in this work, as a complement to the heavy pack-
age.

The results developed in this work can easily be adapted to the context of the ridge
regression, in which the proposedmethodology extends the works ofWalker and Birch
(1988); Billor and Loynes (1999) and Shi and Wang (1999). It is planned to extend
the parameter estimation as well as the influence assessment considering distributions
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Table 2 Selection of smoothing parameter (with percentage change) for the three fitted models

Obs.
excluded

Normal Slash Student t

λ̂ [Change
(%)]

λ̂ [Change
(%)]

ν̂ λ̂ [Change
(%)]

ν̂

None 0.1021 − 2.6916 − 1.0966 4.1905 − 2.5875

23 0.1356 33 3.0337 13 1.1663 4.5224 8 2.7612

25 2.7099 2,553 2.6519 −1 1.1673 4.0301 −4 2.7524

27 5.6828 5,464 3.1738 18 1.2792 4.6736 12 3.0603

58 0.0787 −22 2.4344 −10 1.1484 4.0399 −4 3.4976

93 0.0805 −21 2.7566 2 1.2137 4.1696 −1 2.8930

9,15 0.0305 −70 2.5415 −6 1.0647 4.6219 10 3.7019

25,27 5.9363 5,712 3.0141 12 1.2988 4.1281 −1 2.8900

9,15,27 5.5264 5,311 2.9576 10 1.2180 4.5460 8 3.0576

23,25,27 8.5358 8,257 3.9123 45 1.7378 4.5902 10 3.3215

9,15,23,25,27 8.3551 8,080 3.3817 26 1.4475 5.0877 21 4.1768

23,25,27,58,93 4.8414 4,640 3.7382 39 3.0355 4.5478 9 4.5478

with heavier tails than the normal for semiparametric nonlinear mixed effects models
according to the approach proposed by Elmi et al. (2011). To reach this objective may
require considering an estimation procedure using a stochastic EM algorithm such as
that presented by Meza et al. (2012).
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