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Abstract Motivated by a heteroscedastic random effects setting of meta-analysis, a
general model for the between-study variance is studied from the decision-theoretic
point of view. This model leads to estimation of a linear in the variance reciprocals,
random function or to simultaneous inference on curve-confined natural parameters
of independent heterogeneous χ2-random variables with given degrees of freedom.
A form of the Stein phenomenon for the suggested loss functions is noted; the exact
minimax value is determined, and minimax estimators are derived.

Keywords Bayes estimator · Loss function · Meta-analysis · Minimax value ·
Random effects model · Stein phenomenon

1 Introduction: random effects meta-analysis model and its linear transform

In this work the observed data vector y = (y1, . . . , yn) is supposed to consist of
realizations of independent heterogeneous χ2-random variables with given degrees of
freedom νi ,

yi ∼ (τ 2 + t2i )χ2
νi

, i = 1, . . . , n. (1)

The unknown parameter τ 2, τ 2 ≥ 0, has the meaning of the heterogeneity variance in
the following meta-analysis formulation, while the distinct positive constants t2i , i =
1, . . . , n, are supposed to be given. In the increasingly popular heteroscedastic random
effects model of meta-analysis the treatment effect estimators xk have the form
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572 A. L. Rukhin

xk = μ + λk + εk, k = 1, . . . , K . (2)

Here μ is the unknown common mean (treatment effect), λk is zero mean between-
study random effect with the variance τ 2, and εk represents the independent measure-
ment error of the kth study with variance σ 2

k . By assumed independence the variance
of xk is τ 2 + σ 2

k . In practice σk is often treated as a given constant, sk , which is the
reported standard error or the uncertainty provided by the kth study, and so does this
work.

If τ 2 is known, the best unbiased estimator of μ is the weighted means statistic,

μ̃ =
∑

k

xk
τ 2 + s2k

(
∑

k

1

τ 2 + s2k

)−1

. (3)

Traditionally to estimate the principal parameter μ, one uses a plug-in version of (3),
say γ , where the unknown τ 2 is replaced by an estimate τ̃ 2. All such estimators γ are
unbiased if τ̃ 2 is a shift invariant function of x1, . . . , xK . Then γ = ∑

k ωk xk with
positive normalized weights ωk,

∑
ωk = 1, and the variance of γ (which does not

depend on μ) can be decomposed in the sum of two terms,

Var(γ ) = Var(μ̃) + E(γ − μ̃)2 =
[
∑

k

(τ 2 + s2k )
−1

]−1

+ E(γ − μ̃)2. (4)

Thus this variance is completely determined by E(γ − μ̃)2.
Themodel (2) is related to the setting (1) via a linear transformation (Rukhin 2014a)

which reduces the data {xk} to independent normal statistics z j ∼ N (0, τ 2 + t2j ), j =
1, . . . , p − 1. Here p is the number of distinct s’s whose values determine positive
t’s. For any τ 2, μ̃ = x̄ −∑

j

√
b j z j (τ 2 + t2j )

−1, where b j are positive constants also
determined by s1, . . . , sp, and x̄ = ∑

xk/K is the samplemean.Any γ as above can be
written in the form, γ = x̄ −∑

j

√
b jδ j z j , where δ j = (τ̃ 2 + t2j )

−1 can be interpreted

as an approximation to (τ 2 + t2j )
−1. In particular δ j ≡ 0 for γ = x̄ . The quadratic

discrepancy betweenγ and μ̃ becomes (γ −μ̃)2 =
[∑

j

√
b j z j (δ j − (τ 2 + t2j )

−1)
]2

,

suggesting a new loss function
∑

j b j y j (δ j − (τ 2 + t2j )
−1)2. Here y j = z2j ∼ (τ 2 +

t2j )χ
2
1 , j = 1, . . . , p − 1 and δ’s does not have to be of the form δ j = (τ̃ 2 + t2j )

−1.
In the general setting (1) this argument motivates the definition of the loss,

L(δ, τ 2) =
∑

i

bi yi
νi

(
δi − 1

τ 2 + t2i

)2

, (5)

for fixed non-negative constants b’s. Whereas there are n scaled χ2-variables,
y1, . . . , yn , the number m of strictly positive b’s in (5) is allowed to be smaller so
that possibly a yi (containing some information about the unknown τ 2) is present, but
bi = 0 (as it happens in the meta-analysis setting if the multiplicity of si exceeds one).
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Estimating heterogeneity variance 573

Even if bi = 0, the corresponding yi can be profitably used to decrease the risk as
Theorem 1 in Sect. 3 shows.

The model (1) was considered by Efron and Morris (1973) sec. 8 in an application
of the empirical Bayes approach to multivariate normal mean estimation. Welham and
Thompson (1997) use a similar setting when studying the tests based on the restricted
likelihood in homoscedastic mixed effects model. The joint distribution of y’s forms
a curved exponential family whose natural parameter consists of (τ 2 + t2i )−1, i =
1, . . . , n. An unbiased estimator of τ 2+t2i , i = 1, . . . , n, is yi/νi , whereas an unbiased
estimator of (τ 2 + t2i )−1 does not exist unless νi > 2.

It is shown in Sect. 2 that under the loss L the estimator δ0 = 0 exhibits the
Stein-type phenomenon being inadmissible when

∑
i νi > 2. As was mentioned, in

meta-analysis model (2) δ0 corresponds to the sample mean x̄ , which therefore is
inadmissible when the number of studies exceeds three. Section 2 also suggests some
seemingly reasonable procedures, namely those which cannot be uniformly improved
in the sense of the differential inequality considered there. The normalized risk function
is defined in Sect. 3. where the case of large τ 2 is studied. It is shown there that δ0 is
not minimax.

The main contributions of this work are the surprisingly simple expression for the
minimax value and the form of a minimax estimator. These results obtained in Sect. 5
are motivated by the case of approximately equal uncertainties considered in Sect. 4.
The relationship between our estimation problem and that of positive normal mean as
well as the shape of the risk functions are discussed there. The main technical tool to
establish theminimax value is themultivariate hypergeometric functions (theDirichlet
averages) although the proof as such is based on a very classical approximation by
proper Bayes procedures.

2 Differential inequality and Stein phenomenon

The loss function (5) relates our setting to the differential inequality of a statistical esti-
mation problem. For notational convenience we assume here that b1 > 0, . . . , bm >

0, bm+1 = · · · = bn = 0,m ≤ n.

Proposition 1 Let δ = (δ1, . . . , δm) be a piecewise differentiable estimator of (τ 2 +
t21 , . . . , τ 2 + t2m).

Then for the loss L defined by (5),

EL(δ, τ 2) −
∑

j

b j

τ 2 + t2j
=
∑

j

b j

ν j
Ey j

(
δ2j − 2δ j

τ 2 + t2j

)

= E
∑

j

b j y j
ν j

(
δ2j − 2ν jδ j

y j
− 4

∂

∂y j
δ j

)
.

When M = ∑m
j=1 ν j > 2, δ0 ≡ 0 is an inadmissible estimator under this loss

function.
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We do not give the proof as it is based on the familiar integration by parts formula,

1

τ 2 + t2j
Ey j h = E

(
ν j h + 2y j

∂h

∂y j

)
, y j ∼ (τ 2 + t2j )χ

2
ν j

.

Under the loss L , δ = (δ1, . . . , δm) is better than ξ = (ξ1, . . . , ξm) provided that
for all values y1, . . . , yn,

∑

j

b j y j
ν j

(
δ2j − 2ν jδ j

y j
− 4

∂

∂y j
δ j

)
≤
∑

j

b j y j
ν j

(
ξ2j − 2ν jξ j

y j
− 4

∂

∂y j
ξ j

)
. (6)

When M > 2 and ξ j ≡ 0, there are non-trivial solutions of (6), so that δ0 = 0 cannot
be admissible for the loss L . Indeed by taking ξ j = αν j/

(
b j

∑
ν�y�/b�

)
, we see that

the left-hand side of (6) is α(α − 2M + 4)/
(∑

ν�y�/b�

)
, which is negative when

0 < α < 2(M − 2). The case α = M − 2 corresponds to the crude Stein estimator.
The differential operator in (6) can be written as 2Dδ + δT Bδ with

Dδ = −
∑

j

b j

ν j

(
ν jδ j + 2y j

∂δ j

∂y j

)
,

and B = diag(b1y1/ν1, . . . , bm ym/νm). Brown (1988) gave a necessary and sufficient
condition for (6) not to have non-trivial solutions. If D� is the conjugate (dual) operator
of D acting on scalar functions H = H(y):

D�H = −
(
b1

[
(ν1 − 2)H

ν1
− 2y1

ν1

∂H

∂y1

]
, . . . , bm

[
(νm − 2)H

νm
− 2ym

νm

∂H

∂ym

])
,

for any δ which cannot be improved via (6) there is a differentiable function H(y)

such that δ = −B−1D�H/H , i.e. with G(y) = H2(y)
∏

y
2−ν j
j

δ j = ν j − 2

ν j y j
− 2∂

ν j∂y j
log H(y) = − ∂

ν j∂y j
logG(y).

Since in our problem only functions δ j such that 0 ≤ δ j ≤ t−2
j are viable, and

positive (τ 2 + t2j )
−1 cannot exceed t−2

j , the estimator max[0,min(δ j , t
−2
j )] is better

than δ j . This fact shows that any δ which cannot be improved in the sense of (6) must
have the form

δ j = max

[
0,min

(
− ∂

ν j∂y j
logG,

1

t2j

)]
,

with some differentiable positive function G = G(y). For example, when H =
H(Q) with a positive linear in y1, . . . , yn form Q = ∑

i qi yi , one gets δ j =
−q j H ′(Q)/H(Q).
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The function, H(Q) = Q−α, α > 0, leads to estimators

δ j = min

[
αq j∑
� q�y�

,
1

t2j

]
, (7)

which are considered later. When α = M − 2, q j ∝ b−1
j , the statistic δ+

j =
min

[
(M − 2)ν j/

(
b j

∑
ν�y�/b�

)
, t−2

j

]
, is similar to the positive part of Stein’s nor-

mal vector mean estimator.

3 R-risk and asymptotic optimality

For the loss L in (5) introduce the normalized risk of an estimator δ as

R(δ, τ 2) = EL(δ, τ 2)
∑

j b j (τ 2 + t2j )
−1

.

Since EL(δ0, τ 2) = ∑
j b j (τ

2 + t2j )
−1, R(δ0, τ 2) ≡ 1. According to Proposition

1, δ0 typically is inadmissible. A natural query is R-minimaxity of this rule, i.e., if
the minimax value, V = infδ supτ 2 R(δ, τ 2), which is the object of interest in this
work, equals to one. The answer to this question is in negative. The next result gives a
large class of estimators whose largest R-risk is smaller than that of δ0 leading to the
minimaxity theorem in Sect. 5.

Theorem 1 Assume that

N =
n∑

i=1

νi > 2, (8)

and let Q = ∑
i qi yi with non-negative coefficients qi . If for κ → ∞,

κδ j (κy1, . . . , κyn) → α j/Q, 0 < α j < ∞, j = 1, . . . ,m, then

lim
τ 2→∞

R(δ, τ 2) = 1 − 1∑
j b j

∑

j

b j

ν j

[
E

2α jχ
2
ν j∑

i qiχ
2
νi

− E
α2
jχ

2
ν j(∑

i qiχ
2
νi

)2

]
≥ 2

N
, (9)

with independentχ2
ν1

, . . . , χ2
νn

.Equal coefficients qi (andonly they)provide the asymp-
totically optimal form Q for which (9) is an equality. If qi ≡ 1, the optimal choice is
α j ≡ N − 2.

The procedure δ0 is not R−minimax. If N = M, it is improved by the estimator (7)
provided that

0 < α ≤ 2(N − 2)
min b jq j/ν j

max b jq j
. (10)
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Proof One has

R(δ, τ 2) =
⎛

⎝
∑

j

b j

τ 2 + t2j

⎞

⎠
−1

×
∑

j

b j (τ
2 + t2j )E

χ2
ν j

ν j

×
[
δ j

(
(τ 2 + t21 )χ2

ν1
, . . . , (τ 2 + t2n )χ2

νn

)
− 1

τ 2 + t2j

]2

,

with independent random variables χ2
νi

, i = 1, . . . , n. Because of our assumptions if
τ 2 → ∞,

R(δ, τ 2)

∼ 1∑
j b j

∑

j

b j

ν j
Eχ2

ν j

[
(τ 2 + t2j )δ j

(
(τ 2 + t21 )χ2

ν1

ν1
, . . . ,

(τ 2 + t2n )χ2
νn

νn

)
− 1

]2

→ 1∑
j b j

∑

j

b j

ν j
Eχ2

ν j

(
α j∑
i qiχ

2
νi

− 1

)2

,

so that the first formula in (9) holds.
The optimum for large τ 2 is achieved if α j = Eχ2

ν j
(
∑

i qiχ
2
νi

)−1/Eχ2
ν j

(
∑

i qi
χ2

νi
)−2, and then

lim
τ 2→∞

R(δ, τ 2) = 1 − 1∑
j b j

∑

j

b j

ν j

(
E

χ2
ν j∑

i qiχ
2
νi

)2 [
E

χ2
ν j(∑

i qiχ
2
νi

)2

]−1

.

To prove the inequality in (9) we demonstrate that for N > 2 and any j ,

(
E

χ2
ν j∑

i qiχ
2
νi

)2

≤ ν j (N − 2)

N
E

χ2
ν j(∑

i qiχ
2
νi

)2 , (11)

with the equality only when all q’s are equal.
Indeed using the notation and the results in Carlson (1977) Ch. 6, one gets

E
χ2

ν j∑
i qiχ

2
νi

= 1

2

∫ ∞

0
Eχ2

ν j
exp

{
−u

∑

i

qiχ
2
νi

/2

}
du

= ν j

2

∫ ∞

0

du

(1 + q ju)
∏

i (1 + qiu)νi /2
= ν j B(1, N/2)

2
R−1(a j ; q̃).

(12)
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Here B is the beta-function, q̃ = (q1, . . . , qn), anda j = (ν1/2, . . . , ν j−1/2, ν j/2+
1, ν j+1/2, . . . , νn/2). The function R−1 is the average of the function

(∑
qiωi

)−1 =
(q̃ω)−1, ω = (ω1, . . . , ωn)

T , with respect to the Dirichlet distribution Ma corre-
sponding to the parameter vector a = a j , R−1(a; q̃) = ∫ (∑

qiωi
)−1

dMa(ω),

where integration is over the unit simplex.
Similarly, because of (8),

E
χ2

ν j(∑
i qiχ

2
νi

)2 = ν j B(2, N/2 − 1)

4
R−2(a j ; q̃),

with

R−2(a j ; q̃) =
∫

(q̃ω)−2 dMaj (ω)

= 1

B(2, N/2 − 1)

∫ ∞

0

u du

(1 + q ju)
∏

i (1 + qiu)νi /2
≥ [

R−1(a j ; q̃)
]2

,

(13)

which proves (11).
The estimator (7) is better than δ0 if for all τ 2

∑

j

b j

ν j
Ey j

(
αq j∑
i qiχ

2
νi

− 1

τ 2 + t2j

)2

<
∑

j

b j

τ 2 + t2j
.

To prove this inequality when N = M it suffices to demonstrate that

α
∑

j

b j q2j
ν j

E
χ2

ν j(∑
i qiχ

2
νi

)2 < 2
∑

j

b j q j

ν j (τ 2 + t2j )
E

χ2
ν j∑

i qiχ
2
νi

.

By using (12) and (13) now for q̃ = (q1(τ 2 + t21 ), , . . . , qn(τ 2 + t2n )), we see that the
latter fact is equivalent to

α
∑

j

b j q
2
j (τ

2 + t2j )R−2(a j ; q̃) < 2(N − 2)
∑

j

b j q j R−1(a j ; q̃). (14)

With a = (ν1/2, . . . , νn/2),

∑

j

ν j q j (τ
2 + t2j )R−2(a j ; q̃) =

∑

j

ν j R−1(a j ; q̃) = N R−1(a; q̃),

see Relations 5.9-5 in Carlson (1977). Therefore,

α
∑

j

b j q
2
j (τ

2 + t2j )R−2(a j ; q̃) ≤ αmax
j

b j q j

ν j

∑

j

ν j R−1(a j ; q̃).
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Thus (10) implies (14), so that (7) improves upon δ0. 
�
The proof of (9) shows that for an estimator (7) satisfying (10),

1 − lim
τ 2→∞

R(δ, τ 2) > 0,

which establishes lack of minimaxity on the part of δ0 because of the risk continuity.
Theorem 1 demonstrates non-optimality of the traditional estimators (7) with τ̃ 2 =

Q/α for large τ 2 unless Q coincides (up to a positive factor) with Q∞ = ∑
i yi , in

which case α = N − 2. For example, the statistic

δ1j = min

(
N − 2∑

yi
,
1

t2j

)
, j = 1, . . . ,m, (15)

is asymptotically optimal in this sense.

4 Equal variances and positive normal mean estimation problem

If all t2i tend to t2 and δ j → δ (or when n = 1, N = ν1),

R(δ, τ 2) → (τ 2 + t2)2
∫ ∞

0

[
δ(u) − 1

τ 2 + t2

]2
dGN+2

(
u

τ 2 + t2

)

=
∫ ∞

0

[
(τ 2 + t2)δ((τ 2 + t2)z) − 1

]2
dGN+2(z).

Here and furtherGK is the distribution function of χ2-law on K degrees of freedom
with density gK . Thus if ti ≡ t , our estimation problem is that of the reciprocal of the
scale parameter σ = τ 2+t2 under the restriction, σ ≥ t2.The “data” u in this situation
is χ2-distributed, u ∼ σχ2

N+2. The invariant loss function, σ
2(δ−σ−1)2 = (δσ −1)2,

corresponds then to (5).
If N ≤ 2, the minimax value is 1, and for N > 2 the minimax value, 2N−1, is

the same as in the non-restricted (t = 0) parameter case: Efron and Morris (1973),
Theorem 2, Gajek and Kaluszka (1995), Corollary 4.4, Marchand and Strawderman
(2005), Remark 12.Under the invariant quadratic loss the risk of theminimax estimator
of lower-bounded scale parameter σ at σ = t2 equals to the minimax value, 2N−1 as
well, van Eeden (1995). See Kubokawa (2004) for non-quadratic loss function results.

The generalized prior, dσ/σ, σ ≥ t2, or dτ 2/(τ 2 + t2), provides a least favorable
distribution, and the corresponding Bayes estimator for N > 2 is

δB(u) =
∫∞
0 exp{−u/[2(τ 2 + t2)]}(τ 2 + t2)−N/2−1 dτ 2
∫∞
0 exp{−u/[2(τ 2 + t2)]}(τ 2 + t2)−N/2 dτ 2

=
∫ u/t2

0 e−z/2zN/2−1 dz

u
∫ u/t2

0 e−z/2zN/2−2 dz
= (N − 2)GN (u/t2)

uGN−2(u/t2)
= N − 2

u
− 2gN−2(u/t2)

t2GN−2(u/t2)
.

(16)
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Estimating heterogeneity variance 579

The R-risk of δB is a bowl-shaped function taking equal values 2N−1 at τ 2 = ∞
and at τ 2 = 0. Indeed putting z = v/(τ 2+t2), we see that with ζ = (τ 2+t2)/t2 ≥ 1,

R(δB, τ 2) = 2

N
− 4ζ

∫ ∞

0

(
N − 2

z
− 1

)
gN−2(ζ z)

GN−2(ζ z)
dGN+2(z)

+ 4ζ 2
∫ ∞

0

[
gN−2(ζ z)

GN−2(ζ z)

]2
dGN+2(z).

Integration by parts in the latter integral gives

4ζ 2
∫ ∞

0

[
gN−2(ζ z)

GN−2(ζ z)

]2
gN+2(z) dz = 4ζ

∫ ∞

0
gN−2(ζ z)gN+2(z) d

(
− 1

GN−2(ζ z)

)

= 4ζ
∫ ∞

0

[gN−2(ζ z)g′
N+2(z) + ζg′

N−2(z)gN+2(z)] dz
GN−2(ζ z)

= 4ζ
∫ ∞

0

gN−2(ζ z)gN+2(z)

GN−2(ζ z)

(
N − 2

z
− ζ + 1

2

)
dz.

Substituting this expression in the formula above, one gets

R(δB, τ 2) = 2

N
− 2(ζ − 1)ζ

∫ ∞

0

gN−2(ζ z)gN+2(z) dz

GN−2(ζ z)

= 2

N
− 2(ζ − 1)

∫ ∞

0

gN−2(z)gN+2(z/ζ ) dz

GN−2(z)
, (17)

which is indeed a bowl-shaped function of τ 2 assuming the value 2N−1 at ζ = 1 or
τ 2 = 0. The same value obtains when τ 2 → ∞.

According to the Central Limit Theorem, when N → ∞ for any real y, GN (N +√
2N y) → �(y) and

√
2NgN (N +√

2N y) → ϕ(y). Therefore if ζ = 1+√
2θ/

√
N

with θ ≥ 0,
N

2
R(δB, τ 2) → 1 − θ

∫ ∞

−∞
ϕ(y − θ)ϕ(y)

�(y)
dy. (18)

The function in the right-hand side of (18) is bowl-shaped attaining itsmaximumat θ =
0 and θ = ∞, with the minimal value 0.58.. at θ = 1.074... Thus, minτ 2 R(δB, τ 2) =
1.1678N−1 + O(N−3/2), is taken on when

τ 2� ≈ 1.5189√
N

t2. (19)

We turn now to the estimators δ(u) = min(αu−1, t−2), for which

R(δ, τ 2) = 1 −
(
1 − τ 4

t4

)
GN+2

(
α

ζ

)
− 2α

N

[
1 − GN

(
α

ζ

)]

+ α2

N (N − 2)

[
1 − GN−2

(
α

ζ

)]
. (20)
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The estimator (15) (with α = N − 2) is minimax when N > 2. Indeed since ζ ≥ 1,

R(δ1, τ
2) =

∫ [
min

(
N − 2

z
, ζ

)
− 1

]2
dGN+2(z) ≤ 2

N
.

The minimal value of R(δ1, τ
2) is seen to be attained at τ 2 = 0. To elucidate the

asymptotic behavior of the risk for large N , observe that with θ = √
Nτ 2/(

√
2t2),

N

2
R(δ, τ 2) →

∫ ∞

−∞
[min(θ,−y)]2 ϕ(y) dy = [1 − �(θ)]θ2 + �(θ) − θϕ(θ).

(21)

The comparison of (18) and (21) shows that the limiting behavior of the R-risk is
that of the quadratic risk corresponding to two different estimators of the positive
normal mean, namely themaximum likelihood estimator and theminimax generalized
Bayes estimator against the uniform prior distribution over θ > 0. The first estimator
corresponding to δ1 (or to δ̂) is not admissible. However it is minimax, and has its
smallest risk value (0.5 at θ = 0) below the smallest risk value of admissible (and
minimax) Bayes estimator δB . Maruyama and Iwasaki (2005) discuss the stability of
these properties when the variance is misspecified. Rukhin (1992) related this problem
to the multivariate variance estimation, and Kubokawa (1999) gave a wide class of
minimax estimators.

A more accurate asymptotic formula for R(δ, 0) = 1 − GN+2(α) − 2α[1 −
GN (α)]/N + α2[1 − GN−2(α)]/[N (N − 2)], can be derived from the Edgeworth
expansion, e.g. Johnson et al. (1994) Ch 18, Sec 4. For a fixed real number a,
GN−2a(N ) = 1/2 + (1 − 3a)/[3√πN ] + O(N−1).

Thus as N → ∞, the risk of estimator (15) admits the following representation,

R(δ1, 0) ∼ 1

N
+ 10

3
√

πN 3/2
. (22)

For the maximum likelihood estimator τ̂ 2, α = N + 2, so that R(τ̂ 2, 0) ∼ N−1 −
26/[3√πN 3/2]. Therefore τ̂ 2 has a smaller risk at the origin than δ1 or δB . However
this risk increases as τ 2 → ∞ to 2(N +6)/[N (N −2)] (which is about twice as large
as its risk at zero).

We summarize now the main results of this section.

Proposition 2 When t2j ≡ t2 and N > 2, the R-risk of the minimax Bayes estimator

(16) is a bowl-shaped function which takes its largest value 2N−1 at τ 2 = ∞ and at
τ 2 = 0, while the smallest value is attained at (19). The risk of estimators δ(u) =
min(αu−1, t−2) can be determined from (20). The estimator (15) (α = N − 2) is
minimax. The asymptotic behavior of the risks of δB and of τ̂ 2 (α = N + 2) is
described by (18) and (21) respectively. The minimal value of R(δ1, τ

2) attained at
the origin satisfies (22).
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Fig. 1 Plots of R-risks of estimators δB (dash-dotted line), δ1 from (15) (line marked by asterisks), and
of δ̂ (line marked by +) when N = 14, t2 = 1. The solid line portrays the value 2N−1
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Fig. 2 Plots of the limiting R-risks lim N R(δ̂, θ)/2 (linemarked by+) and lim N R(δB , θ)/2 (dash-dotted
line)

Figure 1 shows for N = 14 the plots of R-risks of the minimax estimators (15),
(16), and that of τ̂ 2. The latter rule is not minimax but has a smaller risk at the origin
although the interval where it dominates δB shrinks as N increases. Better minimax
generalized Bayes estimators of τ 2 can be found in Maruyama and Strawderman
(2006).

Figure 2 portrays the plots of limiting normalized R-risk for two estimators δB and
δ̂, i.e. lim N R(δ̂, θ)/2 and lim N R(δB, θ)/2. There is no clear domination, but δ̂ gives
a noticeable gain over δB only for fairly small values of τ 2 (e..g., τ 2 ≤ t2/

√
N ).
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5 Bayes procedures and minimax value

Here we look at the Bayes estimators when � is a (generalized) prior distribution for
τ 2. Let

p(y|τ 2) =
n∏

i=1

1

(τ 2 + t2i )νi /2
exp

{
− yi

2(τ 2 + t2i )

}
(23)

denote the density of the vector y with respect to the measure M, dM(y) =∏
i y

νi /2−1
i /[2νi /2�(νi/2)].

Under the risk R, the Bayes estimator δ� = (δ�
1 , . . . , δ�

n ) has the form

δ�
j =

∫∞
0 (τ 2 + t2j )

−1 p(y|τ 2) d�(τ 2)
∫∞
0 p(y|τ 2) d�(τ 2)

= − 2∂

∂y j
logP(y),

where d�(τ 2) =
[∑

j b j (τ
2 + t2j )

−1
]−1

d�(τ 2), and

P(y) = P(y; t21 , . . . , t2n ) =
∫ ∞

0
p(y|τ 2) d�(τ 2). (24)

Thus δ�
j is merely the posterior mean of (τ 2 + t2j )

−1.

The estimator δ0 ≡ 0 is generalized Bayes against any prior density π(τ 2) =
λ(τ 2)

[∑
j b j (τ

2 + t2j )
−1
]
such that

∫∞
0 p(y|τ 2) λ(τ 2) dτ 2 = ∞, but

∫∞
0 (τ 2 +

t2j )
−1 p(y|τ 2)λ(τ 2) dτ 2 < ∞. For example, the prior density π(τ 2) = (τ 2 + t2)a

with t2 > 0, makes δ0 the generalized Bayes when N/2 − 2 ≤ a < N/2 − 1. If
N > 2, such densities cannot be well approximated by proper prior densities implying
non-minimaxity of δ0 and its inadmissibility.

If� is a probability distribution, thenwith themeasureM defined above, the Bayes
risk can be written as:

∫
R(δ�, τ 2) d�(τ 2)

=
∑

j

b j

ν j

∫
· · ·

∫
y j

(
δ�
j − 1

τ 2 + t2j

)2

p(y|τ 2) dM(y)d�(τ 2)

=
∑

j

b j

ν j

∫
· · ·

∫
y j

⎡

⎢⎣
∫

p(y|τ 2)d�(τ 2)

(τ 2 + t2j )
2

−
[∫

(τ 2 + t2j )
−1 p(y|τ 2)d�(τ 2)

]2

∫
p(y|τ 2)d�(τ 2)

⎤

⎥⎦ dM(y)

= 1 −
∑

j

b j

ν j

∫
· · ·

∫ y j
[∫

(τ 2 + t2j )
−1 p(y|τ 2)d�(τ 2)

]2

∫
p(y|τ 2)d�(τ 2)

dM(y). (25)
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Since � is a probability distribution,

∑

j

b j

∫
d�(τ 2

τ 2 + t2j
= 1. (26)

Our goal is to determine the minimax value, V = infδ supτ 2 R(δ, τ 2) for fixed
positive ν1, . . . νn . According to (25), V can be expressed in terms of the Bayes R-
risk,

V = sup
�

∫
R(δ�, τ 2) d�(τ 2) = 1 − inf

P
∑ 4b j

ν j

∫
· · ·

∫ y j
[

∂
∂y j

P
]2

P(y)
dM(y).

(27)
Here P(y) is defined in (24) with a probability distribution � or � satisfying (26).

Section 4 suggests the form of the anticipated least favorable prior distribution, or
rather of the sequence

d�ε(τ
2) ∝

∑

j

b jλε(τ
2) dτ 2

τ 2 + t2j
, (28)

where as ε → 0, λε(τ
2) → 1, so that

∫
(τ 2 + t2)−1πε(τ

2) dτ 2 < ∞ if t2 > 0.
In the proof of the next Theorem we take for simplicity λε(τ

2) = (τ 2 + t21 )−ε with
t21 = min t2j . Then as ε → 0,

∑
j b j

∫
λε(τ

2)(τ 2 + t2j )
−1 dτ 2 ∼ ∑

j b jε
−1, and

d�(τ 2) = d�ε(τ
2) = C(ε)λε(τ

2) dτ 2 with C(ε) ∼ ε/
(∑

j b j

)
.

For any j , δε
j = ∫∞

0 (τ 2 + t2j )
−1 p(y|τ 2)λε(τ

2) dτ 2/
∫∞
0 p(y|τ 2)λε(τ

2) dτ 2 as
ε → 0 tends to

δBj (y) =
∫∞
0 (τ 2 + t2j )

−1 p(y|τ 2) dτ 2
∫∞
0 p(y|τ 2) dτ 2 , (29)

which corresponds to the generalized prior density
∑

j b j (τ
2 + t2j )

−1. When all
t’s coincide this is the least favorable prior density discussed in Sect. 4 and then
δB coincides with (16). The generalized Bayes estimator δB satisfies the conditions
of Theorem 1 with q j ≡ 1 and α j ≡ N − 2, so that it is optimal for large τ 2,,
i.e. limτ 2→∞ R(δB, τ 2) = 2N−1. Its numerical evaluation is discussed by Rukhin
(2014b).

The main result shows that V does not depend on t21 , . . . , t2n , and that (29) is indeed
minimax.

Theorem 2 Under condition (8) for any positive t21 , . . . , t2n ,V = 2N−1.The sequence
(28) is least favorable, i.e.,

lim
ε→0

∫
R(δε, τ 2) d�ε(τ

2) = 2

N
,

and the estimator (29) is minimax.
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Proof We start by proving the inequality V ≥ 2N−1. To this end it suffices to show
that

lim
ε→0

ε∑
j b j

∑

j

b j

ν j

∫
· · ·

∫ y j
[∫∞

0 (τ 2 + t2j )
−1 p(y|τ 2)λε(τ

2)dτ 2
]2

∫∞
0 p(y|τ 2)λε(τ 2)dτ 2

× dM(y) = N − 2

N
. (30)

To establish (30), let Uε be a positive sequence such that Uε → ∞, but εUε → 0.
Then

∑

j

b j

ν j

∫
· · ·

∫
∑

yi≤Uε

y j

[∫∞
0 (τ 2 + t2j )

−1 p(y|τ 2)λε(τ
2)dτ 2

]2

∫∞
0 p(y|τ 2)λε(τ 2)dτ 2

dM(y)

≤ max
j

b jUε

ν j

∫
· · ·

∫ ∫ ∞

0

p(y|τ 2)dτ 2 dM(y)
(τ 2 + t21 )2+ε

≤ max
j

b jUε

ν j

∫ ∞

0

dτ 2

(τ 2 + t21 )2+ε
,

so that the contribution of smaller values of
∑

yi to V becomes negligible as ε → 0,
and the behavior of the integrals in (30) when ε → 0 is determined by integrand’s
asymptotics for large

∑
yi ,

For
∑

i yi ≥ Uε , the change of variables, x = (τ 2 + t21 )−1, leads to the following
estimates,

∫ ∞

0
p(y|τ 2)λε(τ

2)dτ 2

≥
∫ t−2

1

0
xN/2+ε−2e−x

∑
yi /2 max

⎡

⎣1 − x
∑

νi (t2i − t21 )

2
,
∏

j

(
t21
t2j

)ν j /2
⎤

⎦ dx

≥ �(N/2 + ε − 1)
(∑

yi/2
)N/2+ε−1

(
1 − C1

Uε

)
,

and

∫ ∞

0
(τ 2 + t2j )

−2 p(y|τ 2)λε(τ
2)dτ 2

≤
∫ t−2

1

0
xN/2+ε−1e−x

∑
yi /2

[
1 + C2

∑
yi (t

2
n − t21 )x2

]
dx

≤ �(N/2 + ε)
(∑

yi/2
)N/2+ε

[
1 + C3

Uε

]
.
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Here and below positive constants Ck, k = 1, . . . , 4, do not depend on ε, x or y’s.
Thus if

∑
i yi ≥ Uε ,

[∫∞
0 (τ 2 + t2j )

−2 p(y|τ 2)λε(τ
2)dτ 2

]2

∫∞
0 p(y|τ 2)λε(τ 2)dτ 2

≤ �(N/2 + ε)(N/2 + ε − 1)

(
∑

yi/2)N/2+ε+1

(
1 + C4

Uε

)
,

so that

1 − V ≤ lim
ε→0

⎛

⎝
∑

j

b j

⎞

⎠
−1

�

(
N

2
+ ε

)(
N

2
+ ε − 1

)(
1 + C4

Uε

)

×
∑

j

b j

∫
· · ·

∫
∑

yi≥Uε

εy jdμ(y)
(∑

yi/2
)N/2+ε+1 .

Since for any j = 1, . . . , n,

lim
ε→0

ε

∫
· · ·

∫
∑

yi≥Uε

y jdM(y)
(∑

yi/2
)N/2+ε+1 = lim

ε→0
ε

∫ ∞

Uε/2

dz

z1+ε

[
�

(
N

2
+ 1

)]−1

=
[
�

(
N

2
+ 1

)]−1

,

(30) is proven.
To demonstrate the reverse inequality, V ≤ 2N−1, let f j = f j (y) be a function of

y such that the expected values g j (τ
2) = ∫ · · · ∫ f j (y)p(y|τ 2) dM(y) and h j (τ

2) =∫ · · · ∫ y−1
j f 2j (y)p(y|τ 2) dM(y) exist for any τ 2. Then

∑ 2b j

ν j

∫
· · ·

∫
∂P
∂y j

f j dM(y) = −
∑ b j

ν j

∫ ∞

0

g j (τ
2) d�(τ 2)

τ 2 + t2j
,

and

∑ b j

ν j

∫
· · ·

∫ P f 2j
y j

dM(y) =
∑ b j

ν j

∫ ∞

0
h j (τ

2) d�(τ 2).

The inequality

∑ 4b j

ν j

∫
· · ·

∫
y j

[
∂

∂y j
P
]2

P(y)
dM(y) ≥

[∑ 2b j
ν j

∫ · · · ∫ f j
∂

∂y j
P dM(y)

]2

∑
b jν

−1
j

∫ · · · ∫ f 2j y
−1
j P dM(y)

,
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implies that

1 − V ≥ inf
�

[∑ b j
ν j

∫∞
0 (τ 2 + t2j )

−1g j (τ
2) d�(τ 2)

]2

∑ b j
ν j

∫∞
0 h j (τ 2) d�(τ 2)

.

By choosing f j = y j
(∑

qi yi
)−1, one gets in the notation of Sect. 3,

g j (τ
2) = (τ 2 + t2j )E

χ2
ν j∑

i qi (τ
2 + t2i )χ2

νi

= ν j (τ
2 + t2j )B(1, N/2)

2
R−1(a j ; q̃),

and

h j (τ
2)=(τ 2 + t2j )E

χ2
ν j

[∑
i qi (τ

2 + t2i )χ2
νi

]2 = ν j (τ
2 + t2j )B(2, N/2 − 1)

4
R−2(a j ; q̃).

Here q̃ is the vector whose coordinates are qi (τ 2 + t2i ); R−1, R−2, and the vectors a j

are as in the proof of Theorem 1.
With this choice

1 − V ≥ N − 2

N
inf
�

[∑
b j

∫
R−1(a j ; q̃) d�(τ 2)

]2
∑

b j
∫
(τ 2 + t2j )R−2(a j ; q̃) d�(τ 2)

.

To complete the proof it suffices to notice that for any � under condition (26),

[∑
b j

∫
R−1(a j ; q̃) d�(τ 2)

]2
≤
∑

b j

∫
(τ 2 + t2j )R−2(a j ; q̃) d�(τ 2). (31)

Take d�(τ 2) = d�ε

(
τ 2
) ∝ ε

(∑
j b j

)−1
λε(τ

2)dτ 2, with λε(τ
2) as above. By

using the properties of the Dirichlet averages R−1 and R−2 we see that

lim
ε→0

∫
R−1(a j ; q̃) d�ε(τ

2) = R−1
(
a j ; q1, . . . , qn

)
⎛

⎝
∑

j

b j

⎞

⎠
−1

,

and similarly

lim
ε→0

∫
(τ 2 + t2j )R−2

(
a j ; q̃

)
d�ε(τ

2) = lim
τ 2→∞

(τ 2 + t2j )
2R−2

(
a j ; q̃

)
⎛

⎝
∑

j

b j

⎞

⎠
−1

= R−2(a j ; q1, . . . , qn)
⎛

⎝
∑

j

b j

⎞

⎠
−1

.
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Thus for this sequence, (31) means that

⎡

⎣
∑

j

b j R−1
(
a j ; q1, . . . , qn

)
⎤

⎦
2

≤
∑

j

b j R−2
(
a j ; q1, . . . , qn

)
⎛

⎝
∑

j

b j

⎞

⎠ ,

which [as the inequality (11)] becomes an equality when qi are all equal. Therefore,
(28) indeed provides the least favorable prior. 
�

The estimator (29) is admissible under the loss (5) which can be proven by the
traditional method via approximating its Bayes risk for the prior πε(τ

2). van Eeden
(1995) proves a similar result when ti ≡ t so that δB coincides with (16).

6 Second order minimaxity and concluding remarks

The proof of Theorem 2 indicates the special role played by large values of τ 2 in
the minimaxity issue. Since extremely heterogeneous models are hardly useful in
applications, the importance of these τ 2 values can be questioned.When τ 2 is supposed
to be bounded from above, say 0 ≤ τ 2 ≤ T , the following result holds.

Proposition 3 The Bayes estimator, δT = (δT1 , . . . , δTn ) with

δTj =
∫ T
0 (τ 2 + t2j )

−1 p(y|τ 2) dτ 2
∫ T
0 p(y|τ 2) dτ 2

, j = 1, . . . , n,

corresponding to the prior π proportional to
∑

j b j (τ
2 + t2j )

−1 on the interval, 0 ≤
τ 2 ≤ T , is second order minimax, i.e. it minimizes

lim sup
T→∞

[
inf
δ

sup
0≤τ 2<∞

R(δ, τ 2) − inf
δ

sup
0≤τ 2≤T

R(δ, τ 2)

]
.

If τ 2 is supposed to belong to the interval [e−T , eT ] for large T , one obtains another
sequence of secondorderminimax estimators,whichminimize lim supT→∞ T 2[2N−1

− infδ sup| log τ 2|≤T R(δ, τ 2)]. As in the bounded normal mean problem these pro-
cedures are related to a very different prior probability density π , proportional
to cos2(π log τ 2/T )/τ 2, which minimizes the Fisher information on the interval
| log τ 2| ≤ T (Bickel 1981). Gajek and Kaluszka (1994) have shown that if ti ≡ t , and
T → ∞, these densities form a sequence of the least favorable priors. See Kubokawa
(1999), Marchand and Strawderman (2004) for reviews.

In most of meta-analysis studies small parametric values should not be excluded by
the prior distribution. On the contrary, the priors which give τ 2 = 0 a positive weight
may be quite important in applications although they do not lead to minimax rules.

The key issue in a given practical situation is to decide how wide the possible range
of heterogeneity variance can be. If this range cannot be reliably specified, the use
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of minimax estimators such as δ� can be recommended. If τ 2 is deemed to be fairly
small, arguably the maximum likelihood estimator may be preferable.

The author is grateful to Bill Strawderman and to two anonymous referees for
helpful comments.
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