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Abstract Estimation of positive parameters is important in areas including ecology,
biology, medicine, nuclear power, and study of cell membranes. We develop a general
structure for a fixed-accuracy sequential confidence interval estimation methodology
in the spirit of Mukhopadhyay and Banerjee (Sequ Anal, 33:251–285, 2014a) for a
positive parameter of an arbitrary distribution which may be discrete or continuous.
The confidence interval is constructed using a maximum likelihood (ML) estimator of
the unknown parameter. The methodology enjoys attractive properties such as asymp-
totic consistency and asymptotic first-order efficiency (Theorem 1). Three specific
illustrations are included. Comprehensive data analyses from large-scale simulations
have been incorporated which substantiate encouraging performances of the proposed
estimation methodology. These are followed by real data analyses corresponding to
the Bernoulli distribution (odds ratio of poisonous mushrooms), Poisson distribution
(radioactive decay of isotopes), and a Normal distribution with the same mean and
variance (real-time 911 calls dispatch).
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1 Introduction

This paper focuses on developing a general procedure for estimating a positive para-
meter using sequential confidence interval estimation methods. Before elaborating
on the methodology, we first draw attention to the importance of estimating positive
parameters in applications.

1.1 Motivation

The first application that comes to mind requires estimation of infestation in ecol-
ogy. The United States Department of Agriculture (USDA) has performed extensive
research and development in the area of infestation. Recent articles (http://www.fs.
usda.gov/detail/prescott/landmanagement/?cid=fswdev3_009832) from USDA For-
est Service show, for example, that (i) the Ips beetle (sometimes known as “engraver
beetles” within a group of bark beetles) infestation in the Penderosa Pine vegetation
type in Prescott National Forest, and (ii) the mountain pine beetle in the Black Hills
National Forest have reached epidemic levels.

The latter has severely damaged over 1.5 million acres of forest in Northern Col-
orado and SouthernWyoming. Also, there has been extensive research by USDAFood
Safety and Inspection Service on cockroach infestation. In these situations, to min-
imize financial investments and to achieve effective control of potential damages, a
precise estimation of average infestation, which is necessarily positive, is very crucial.
In a recent paper, Mukhopadhyay and Banerjee (2014a) have investigated a practical
methodology of estimating average infestation in overdispersed count data.

Another example comes from the studyof decayof a radioactive isotope ofCaesium,
Cs-137. Decay of Cs-137 yields bariumwhich is used in food irradiation as well as for
radiotherapy of cancer. Cesium is also extensively used in industry, nuclear medicine,
nuclear power production, and cell and membrane biology Chakrabarti and Kanjilal
(2010). With such extensive and critical utilities, one may observe the distribution of
radiation of Cs-137. The parameter of interest here is often the average count of the
number of γ -rays emitted from the source of radiation. In this paper, we will analyze
such a real count dataset consisting of the number of γ -rays emitted where determi-
nation of the half-life of a radioactive isotope is required. There are other examples
frommedicine and bioinformatics where the primary parameter of interest may be the
average number of genes affected by some disease or the average number of genes
under mutation. A parameter of interest is necessarily positive under each scenario.

1.2 Ecology and negative binomial

Having emphasized the importance of estimation of positive parameters in applica-
tions, we should mention that count data generated due to infestation in the area of
entomology are usually over-dispersed andmodeled often by a negative binomial (NB)
distribution Mulekar and Young (2004). Mukhopadhyay and Banerjee (2014a) devel-
oped a fixed-accuracy confidence interval estimation method for the mean μ having
k known in an NB(μ, k) model using sequential sampling.
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Such an estimate informs one of the magnitudes of average infestation with pre-
assigned accuracy. More useful references are found in Mukhopadhyay and Banerjee
(2014b).

1.3 Significance of present research

The kind of fixed-accuracy sequential confidence intervals briefly mentioned in
Sect. 1.2 is not limited to estimation of the mean of a negative binomial model. We
find that the Mukhopadhyay and Banerjee (2014a) methodology can be unified and
the basic concepts can be usefully generalized. The idea is to propose a broad struc-
ture with relevant generalities so that we can ultimately handle as many distributions
and problems as possible in estimating positive parameters of practical importance.
The general methodological research presented in this paper (Sect. 3) is applicable for
many specific distributions of practical importance.

1.4 Layout of this paper

In Sect. 2, we briefly review selected existing sequential methodologies in estimating
parameters that may be of general interest. For brevity, we mention precisely the
notions of asymptotic consistency and asymptotic first-order efficiency in (4).

In Sect. 3, we first explain a new notion of “fixed-accuracy” confidence interval,
especially relevant for estimating a positive parameter, and then describe an appropri-
ately general sequential methodology to achieve our goal asymptotically (to be made
precise soon).

Section 3 does not specifically focus on any particular distribution (such as
Bernoulli, Poisson, NB). Instead, we define our sequential estimation methodology
using amaximum likelihood (ML) estimator of the parameter of interest under any par-
ticular distribution satisfying customary regularity conditions. This procedure works
for both discrete and continuous distributions. We show that our developed methodol-
ogy enjoys the asymptotic consistency and asymptotic first-order efficiency properties
in Theorem 1.

Section 4 includes three illustrations of our proposed general methodology in the
case of three particular distributions: Bernoulli (Sect. 4.1), Poisson (Sect. 4.2), and
Normal with same mean and variance (Sect. 4.3). We explain both implementation
and validity of our theoretical findings in the case of these distributions.

Section 5 presents extensive data analysis using large-scale simulations in the con-
texts of all three illustrations discussed in Sect. 4. Section 6 highlights analysis of
real data corresponding to the Bernoulli distribution (Sect. 6.1: odds ratio of poiso-
nous mushrooms), Poisson distribution (Sect. 6.2: radioactive decay of isotopes), and
Normal distribution with the same mean and variance (Sect. 6.3: real-time 911 calls
dispatch).

Section 7 summarizes some concluding thoughts. It provides additional insights
to show that the general approach introduced here can easily include estimation of
a parameter whose parameter space is R. This adds some additional breadth of the
proposed formulation and methodology.
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2 A brief review

A rich body of work has been developed over the years on both point and interval
estimation using sequential methods. For a broad review, one may refer to many
sources including Ghosh and Sen (1991), Ghosh et al. (1997), Young and Young
(1998), Mukhopadhyay et al. (2004), Mukhopadhyay and de Silva (2005, 2009), and
Mukhopadhyay and Banerjee (2014a, b).

Before mentioning any specific sequential procedure, we define the following:
consider independent random samples X1, . . . , Xn of size n with a common proba-
bility density function (p.d.f.) or a probability mass function (p.m.f.) f (x; θ) where x
belongs to some appropriate space X and the parameter of interest θ may or may not
be positive. One may customarily begin with a confidence set:

Cn = {θ : θ ∈ [Tn − d, Tn + d]}, d > 0 (1)

for θ where Tn ≡ Tn(X1, . . . , Xn) is a point estimator of θ such that Tn
P→ θ as

n → ∞. The width of the confidence interval Cn is 2d where d is fixed in advance.
Now, one may additionally require that such a fixed-width confidence interval Cn

must also have its coverage probability approximately at least 1−α where 0 < α < 1
is fixed in advance. Then, the optimal fixed sample size required may be determined
as follows:

the smallest n ≥ n0d = z2α/2σ
2/d2, (2)

assuming that n1/2(Tn − θ)
L→ N (0, σ 2) as n → ∞ with finite σ 2 ≡ σ 2(θ) > 0,

some parametric function, and zα/2 is the upper 50 α% point of a standard normal
distribution. We tacitly disregard the fact that n0d may not be a (positive) integer.

The unknown optimal fixed sample size n0d is estimated by a stopping rule of the
form

N ≡ Nd = inf{n ≥ n0 : n ≥ z2α/2σ̂
2
n /d2}, (3)

where σ̂ 2
n ≡ σ̂ 2

n (X1, . . . , Xn) denotes an appropriate estimator for σ 2 and n0 is the
pilot sample size. After termination (under mild regularity conditions guaranteeing
Pθ (Nd < ∞) = 1 for all θ ) of the sequential procedure (3), one would have on hand
the final dataset {X1, . . . , XNd , Nd}. Then, one may finally propose to estimate θ with
CNd in the light of (1).

The performance of such a sequential stopping estimation rule (Nd ,CNd ) is tradi-
tionally evaluated by the following criteria: under appropriate regularity conditions,
for the estimation rule (Nd ,CNd ) associated with the stopping rule (3), onemay expect
to obtain the following properties for all fixed θ as d ↓ 0:

(i) Nd/n
0
d → 1w.p.1;

(ii) Eθ

[

Nd/n
0
d

]

→ 1 [asymptotic (first-order) efficiency];and,
(iii) Pθ {θ ∈ CNd } → 1 − α [asymptotic consistency]; (4)
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where n0d comes from (2) and 0 < α < 1 is fixed in advance. One may review from
Chow and Robbins (1965), Ghosh and Mukhopadhyay (1981), and other sources.

Now, let us take a closer look at the fixed-width confidence interval CN . Obviously
we do not face any significant problem when the parameter space is R. But, when the
parameter space is R+, we will surely feel uneasy if one or more confidence limit(s)
from CNd turn out negative. At this point, one may opt to make usual adjustment by
proposing

C∗
Nd

= [max(TNd − d, 0),max(TNd + d, 0)
]

,

but then the asymptotic consistency property from (4) may be severely compromised
for this estimation rule (Nd ,C∗

Nd
).

To circumvent thismethodological difficulty, onemay adopt the proportional close-
ness criteria from Zacks (1966) and Nadas (1969). Instead of a fixed-width confidence
intervalCn = [Tn −d, Tn +d] for θ, one may work with the following confidence set:

Hn = {θ : |Tn − θ | ≤ δ |θ |}, δ > 0 (5)

for θ where δ is fixed in advance. Having this prefixed δ(> 0), again, (5) may lead to
awkward upper or lower confidence limit for θ, when θ is assumed positive.

In a large number of point estimation problems, the measure of precision is alterna-
tively taken to be the coefficient of variation (CV). An extensive review of the existing
methodologies in estimating parameters of a negative binomial distribution, in par-
ticular, was given by Mukhopadhyay and Banerjee (2014a, b). This elaborated both
sequential and non-sequential procedures.

On the other hand,Khan (1969) proposed a generalmethodof estimating parameters
(not necessarily positive) using sequential methods. Under mild regularity conditions,
Khan (1969) developed a fixed-width confidence interval approach based on the ML
estimator ̂θMLE for the unknown parameter θ . For a fixed number d(>0), the author
began with a confidence interval of the usual form

[

̂θMLE − d,̂θMLE + d
]

, proposed
an appropriate sequential stopping rule to estimate the optimal fixed sample size, and
proved asymptotic first-order efficiency and asymptotic consistency properties defined
in (4). We should emphasize that our proposed confidence interval estimation method-
ology described in Sect. 3 is based on the ML estimator of the unknown parameter
θ(>0) in the light of Mukhopadhyay and Banerjee (2014a).

3 Fixed-accuracy confidence intervals

3.1 The formulation

In Sects. 1.1 and 1.2, we emphasized the importance of estimation of average infes-
tation. Recall that a fixed-width or fixed proportional accuracy confidence interval
procedure may have undesirable properties with d > 0 or δ > 0. Here, we develop a
broad and general structure extendingMukhopadhyay and Banerjee (2014a) notion of
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a fixed-accuracy confidence interval estimation approach in the case of an unknown
parameter θ ∈ � where � ≡ R+.

Let us assume that we have a sequence of independent and identically distributed
(i.i.d.) observations X1, X2, . . . , either discrete or continuous, following a common
p.m.f. or p.d.f. f (x; θ) involving a single parameter θ . Having recorded X1, . . . , Xn,

we let Tn ≡ Tn(X1, . . . , Xn) be an arbitrary point estimator for θ with the following
properties:

(a) 0 < Tn < ∞w.p.1;
(b) n1/2(Tn − θ)

L→ N (0, σ 2) with some 0 < σ 2 < ∞ as n → ∞;where
σ 2 ≡ σ 2(θ) is a continuous function of θ;

(c) Anscombe’s (1952) uniform continuity in probability (u.c.i.p.)

condition: For every ε > 0 and 0 < γ < 1 there exists some δ > 0

such that lim sup
n

Pθ {max|n′−n|≤δn n
1/2 |Tn′ − Tn| > ε} < γ . (6)

We will often require that Tn be some function of the ML estimator of θ . Observe that
under very mild regularity conditions on f (x; θ), the ML estimator of θ would satisfy
all three conditions (a)–(c) listed in (6).

Next, having fixed some preassigned d > 1, we propose to consider the following
fixed-accuracy confidence interval for θ :

Jn = {θ : θ ∈ [d−1Tn, dTn]}, n ≥ 1. (7)

Onemay instead argue in favor of the confidence set Hn from (5) by deliberately fixing
δ to lie in (0, 1).When θ is a positive proportion, such a choice of δ may bemeaningful,
but we do not find such a choice particularly compelling for θ belonging to R. For
example, if θ represents the daily average number of 911 calls or the average monthly
income per family, then allowing any preassigned δ > 0 sounds more appealing to us
when it comes to (5).

One may note that our proposed fixed-accuracy confidence interval Jn is not sym-
metric around Tn . However, symmetry is achieved around ln Tn for the unknown
parameter ln θ . Mukhopadhyay and Banerjee (2014a) illustrated Jn geometrically in
the NB case.

3.2 The basic structure

Appealing to central limit theorem (CLT) for Tn, that is under (6) condition (b), we
have

n1/2(ln Tn − ln θ)
£→ N (0, θ−2σ 2(θ)) as n → ∞,

in view of the delta method or equivalently Mann–Wald theorem (Rao (1973), pp.
385–386; Mukhopadhyay (2000), pp. 261–262). Now, for Jn to include θ with a
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preassigned probability 1−α, 0 < α < 1, the required optimal fixed sample size will
reduce to

the smallest n ≥ n∗
d =

( zα/2

ln d

)2
θ−2σ 2(θ). (8)

This n∗
d is a function of the unknown parameter θ and thus it remains unknown. To

propose a stopping rule, the parameter θ within the expression of n∗
d needs to be

replaced by its estimator. Here, we denote the ML estimator of θ :

Un ≡ Un(X1, . . . , Xn) = ̂θn,MLE, n ≥ n0,

where n0 is the pilot sample size. UsingUn to estimate θ within the expression of n∗
d ,

we write down the following sequential stopping rule:

N ≡ Nd = inf

{

n ≥ n0 : nU 2
n

(

σ 2(Un)
)−1 ≥

( zα/2

ln d

)2
}

. (9)

Remark 1 It is entirely possible thatU 2
n (σ 2(Un))

−1 may be zero with a positive prob-
ability in the case of observations from a discrete population distribution. But we may
note that (9) will not terminate sampling as long as U 2

n (σ 2(Un))
−1 continues to be

zero.

Remark 2 On the other hand, one may implement the following stopping time:

N = inf

{

n ≥ n0 : n ≥
( zα/2

ln d

)2 (

U−2
n σ 2(Un) + n−1

)

}

, (10)

so that U−2
n σ 2(Un) + n−1 is positive with probability one and remains consistent for

θ−2σ 2(θ).

The illustrations given in Sect. 4 fall within the category covered by Remark 1 and
hencewecontinue toworkunder the stopping rule (9). Frequently, itmay sohappen that
wemay be able to expressUn as a samplemean of i.i.d. randomvariables for all n ≥ n0.
Thus, we denote Wi = q(Xi ) with some appropriate function q(.), i = 1, . . . , n, and
let Wn = n−1	n

i=1Wi , n ≥ n0.
Now, we rewrite the stopping rule (9) as follows:

N ≡ Nd = inf
{

n ≥ n0 : ng(Wn) ≥ a
}

, (11)

with

a ≡ a(α, d) = (zα/2/ ln d
)2

,

where g(.) is some appropriate function. We assume that g(.) is twice differentiable
and g

′′
(.) is continuous.
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In the illustrations fromSect. 4, onewill see explicit expressions of θ, Tn, σ 2(θ),Un,

q(.) and g(.) in each case under consideration. We will exploit the representation from
(11) to prove Theorem 1 part (ii) using some of the established techniques from non-
linear renewal theory along the lines of Woodroofe (1977, 1982), Siegmund (1985,
pp. 188–208), and Ghosh et al. (1997, pp. 58–65).

Next, we may equivalently rewrite the stopping rule (11) as

N ≡ Nd = inf
{

n ≥ n0 : Zn ≡ ng(Wn) ≥ a
}

. (12)

Comparing (11)–(12) and using Taylor’s expansion, we have

Zn =
n
∑

i=1

Yi + ξn,

where Y1, . . . ,Yn are i.i.d. random variables defined as

Yi = g (Eθ [Wi ]) + g′ (Eθ [Wi ]) (Wi − Eθ [Wi ]) . (13)

Here, {ξn; n ≥ 1} is a sequence of random variables given by

ξn = 1

2
ng

′′
(νn)

(

Wn − Eθ [W1]
)2

, (14)

where {νn; n ≥ 1} is a sequence of random variables such that νn lies between Wn

and Eθ [W1].
Next, we make the following assumptions on the sequence {ξn; n ≥ 1}:

(i) n−1 max1≤i≤n |ξi | Pθ→ 0 as n → ∞;
(ii) 	∞

n=1Pθ {ξn ≤ −nε} < ∞ for some 0 < ε < Eθ [W1] . (15)

Now, we restate the following lemma from Woodroofe (1982, p. 41) and Ghosh et al.
(1997, p. 59) for completeness. We will use this lemma for verifying the conditions
stated in (15) in the case of some specific distributions considered in Sect. 4.

Lemma 1 Consider ξn from (14). If n−1ξn
P→ 0 as n→∞, then n−1 max1≤i≤n |ξi | P→

0 as n → ∞.

We observe that Pθ {Nd < ∞} = 1 for every fixed d, θ, α so that after ter-
mination of the sequential procedure (9), we will have on hand the final set of
data {Nd , X1, . . . , XNd }. Then, we propose the fixed-accuracy sequential confidence
interval

JN ≡ JNd = [d−1TNd , dTNd ] (16)

for estimating the unknown parameter θ(> 0). In Theorem 1 stated in Sect. 3.3,
we prove some important asymptotic first-order properties for the estimation rule
(

Nd , JNd

)

associated with (9).
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3.3 The main result

Theorem 1 With the assumptions stated in (6), (15), and that g(.) is twice differ-
entiable and g′′(.) is continuous, for the estimation rule

(

Nd , JNd

)

under the purely
sequential stopping time (9), for each fixed θ(> 0) and 0 < α < 1, we have as d ↓ 1:

(i) Nd/n∗
d → 1 w.p.1;

(ii) Eθ

[

Nd/n∗
d

]→ 1; and
(iii) Pθ

{

θ ∈ JNd : [d−1TNd , dTNd ]
}→ 1 − α;

where n∗
d comes from (8).

Part (i) is needed in the proofs of parts (ii) and (iii). Part (ii) shows that the
proposed purely sequential procedure (9) is asymptotically efficient or asymptot-
ically first-order efficient according to Chow and Robbins (1965) or Ghosh and
Mukhopadhyay (1981), respectively. Part (iii) verifies asymptotic consistency of the
procedure.

We offer following practical interpretations: (a) Part (ii) indicates that the average
sequential sample size may be expected to hover around the optimal fixed sample size
n∗
d; (b) Part (iii) indicates that the coverage probability for the confidence interval JN

obtained upon termination of the sequential procedure may be expected to be in a
close proximity of the prefixed target, 1 − α. Next, we briefly outline a proof of the
main result.

Proof of Theorem 1
Part (i):
It follows fromChowandRobbins (1965) after noting the following facts: Nd → ∞

w.p.1, UNd → θ w.p.1, UNd−1 → θ w.p.1., σ 2(θ) is a continuous function of θ , and
n0/n∗

d → 0 as d ↓ 1.
Part (ii):
We rely upon Woodroofe (1977, 1982) and Ghosh et al. (1997) using techniques

available from nonlinear renewal theory. Under the stated conditions (6), (15), and
that g(.) is twice differentiable and g′′(.) is continuous, we may appeal to Woodroofe
(1982) or (Ghosh et al., 1997, Theorem 2.9.3, p. 62) to claim that the sequence of
random variables {n∗−1

d Nd; d > 1} is uniformly integrable. Combining this fact with
part (i), our part (ii) follows immediately by applying the dominated convergence
theorem.

Part (iii):
We use Anscombe (1952) random CLT for theML estimator. For more recent work

onAnscombe’s randomCLT, onemay also look atMukhopadhyay andChattopadhyay
(2012) and Gut (2012).

Under conditions (b)–(c) from (6), using Anscombe (1952) random CLT, we can
claim

N 1/2
d (TNd − θ)

σ (θ)

£→ N (0, 1),
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so that we have

n∗1/2
d (TNd − θ)

σ (θ)

£→ N (0, 1) as d ↓ 1, (17)

in view of part (i) and Slutsky’s theorem. Hence, using the Mann–Wald Theorem Rao
(1973, pp. 385–386; Mukhopadhyay (2000), pp. 261–262) on top of (17), we can
conclude the following

QNd ≡ zα/2(ln TNd − ln θ)

ln d
£→ N (0, 1) as d ↓ 1. (18)

Thus, we can express

Pθ

{

θ ∈ JNd

} = Pθ {| ln TN − ln θ | < ln d} = Pθ

{∣

∣QNd

∣

∣ < zα/2
}

,

which converges to 1− α as d ↓ 1 using (18). The proof of part (iii) is now complete.
This completes our proof of Theorem 1. ��

Remark 3 We have not yet handled a proof of the asymptotic (as d ↓ 1) second-order
efficiency property postulated byGhosh andMukhopadhyay (1981), but Sect. 3.2 does
highlight a basic non-linear renewal-theoretic structure of Woodroofe (1977, 1982),
Siegmund (1985, pp. 188–208), andGhosh et al. (1997, pp. 58–65).We expect to show
the asymptotic second-order efficiency property in connection with the illustrations
from Sect. 4.

4 Illustrations

Thus far we have elaborated a general methodology of fixed-accuracy confidence
interval estimation for an unknown positive parameter. In the sequential stopping rule
(9), we used the ML estimator, Un ≡ ̂θn,MLE. Under very mild regularity conditions
(see, for example, Rao (1973, pp. 348–350) or Sen and Singer (1993, pp. 202–210)),
we claim the customary CLT for Un :

n1/2(Un − θ)
L→ N (0, I−1

X (θ)) with 0 < IX (θ) < ∞ as n → ∞, (19)

where

IX (θ) = E

[

(

∂

∂θ
ln f (X; θ)

)2
]

, (20)

denotes Fisher Information about θ in a single observation X .
Next, we give some illustrations from specific distributions. Under each scenario,

we have provided analysis of simulated as well as real data in Sects. 5 and 6.
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4.1 Bernoulli distribution: odds ratio estimation

In statistical ecology, many a times, one is interested in observing “presence or
absence” of infestation. We may assume that the proportion (or probability) of infes-
tation is an unknown quantity p, 0 < p < 1, which stays the same for the duration
of an experiment. Then, we are interested in estimating the odds ratio of infestation,
namely the parameter θ ≡ p/(1− p). Odds ratio estimation is also common in other
fields. See, for example, Robbins and Siegmund (1974) and Zacks andMukhopadhyay
(2007).

Consider a random sample X1, X2, . . . from a Bernoulli(p) population. The para-
meter of interest is θ and θ ∈ � = (0,∞).

4.1.1 Estimation of odds-ratio

Based on X1, . . . , Xn , we have

p̂n,MLE = Xn .

Using the invariance property of MLE Zehna (1966), we let

Un ≡ ̂θn,MLE = Xn

1 − Xn
. (21)

Since the probability of Xn = 0 is positive, the probability of Xn = 1 is positive, we
define

Tn = Xn + n−γ

1 − Xn + n−γ
(22)

where γ > 1
2 is a constant. Next, with a preassigned level of accuracy d(>1), we

consider as in (7):

Jn =
{

θ : θ ∈ [d−1Tn, dTn]
}

.

One can verify easily that the expression of the variance in the asymptotic distribution
of n1/2(Tn − θ) will be given by σ 2(θ) ≡ θ(θ + 1)2. Thus, for Jn to include θ with a
preassigned probability 1 − α, 0 < α < 1, the required optimal fixed sample size (8)
reduces to

the smallest n ≥ n∗
d =

( zα/2

ln d

)2
θ−1(θ + 1)2. (23)

This n∗
d is unknown and hence in the light of (9), we arrive at the stopping rule:

N ≡ Nd = inf

{

n ≥ n0 : nUn(Un + 1)−2 ≥
( zα/2

ln d

)2
}

, (24)

where Un comes from (21). Recall Remark 1.
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Now, after implementing the sequential procedure (24), one has the final
dataset {Nd , X1, . . . , XNd } and estimates θ with the confidence interval JNd ≡
[d−1TNd , dTNd ]. At this point, we set out to check the sufficient conditions under
which Theorem 1 holds.

4.1.2 Verification of conditions from (6), (15), and for g(.)

Note that we have 0 < Tn < ∞ w.p.1 which is (6) part (a). Also, as Tn is a suitable
function of Un so that (6) part (b) holds with σ 2(θ) = θ(θ + 1)2 which is continuous
in θ. Anscombe (1952) proved the u.c.i.p. condition for the ML estimator. Thus, Tn
from (22) satisfies the u.c.i.p. condition so that (6) part (c) holds.

The stopping time Nd from (24) can be rewritten as follows:

N ≡ Nd = inf
{

n ≥ n0 : Zn ≡ ng(Xn) ≥ a(α, d)
}

,

where a(α, d) = ( zα/2
ln d

)2
, g(x) = x(1 − x), 0 ≤ x ≤ 1, Zn = 	n

i=1Yi + ξn with

Yi = p(1 − p) + (1 − 2p)(Xi − p), i = 1, . . . , n,

and

ξn = 2−1ng′′(νn)
(

Xn − p
)2 = −n

(

Xn − p
)2

.

Note that the function g(.) is twice differentiable, and g
′′
(.) is continuous; the function

q(.) from (11) is an identity map, that is, we have Wi = Xi for all i = 1, . . . , n and
thus Eθ [W1] = p.

Here, νn lies between Xn and p in the spirits of (13)–(14) so that we get

n
∑

i=1

Yi = np(1 − p) + (1 − 2p)

(

n
∑

i=1

Xi − np

)

.

Note that, as n → ∞, Xn → p w.p.1 so that ξn/n
P→ 0. Using Lemma 1, part (i)

from (15) is verified.
Now, let μ4,n stand for Ep[(	n

i=1Xi − np)4] and ξp(>0) for a constant depending
only on p. Then, for 0 < ε < p, we may write

∞
∑

n=1

Pp (ξn ≤ −nε) ≤
∞
∑

n=1

Pp

{

(

Xn − p
)2 ≥ ε

}

≤ ε−2
∞
∑

n=1

n−4μ4,n

≤ ξpε
−2

∞
∑

n=1

n−2 < ∞. (25)

This verifies (15) part (ii).
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Hence, we conclude right away that our sequential confidence interval method-
ology (Nd , JNd ) where (i) Nd comes from (24) and (ii) JNd ≡ [d−1TNd , dTNd ]
with TNd coming from (22) is asymptotically first-order efficient and asymptotically
consistent.

Remark 4 An alternate way to verify (15) part (ii) may go as follows. For a sequence
of random variables

{

Q∗
n; n ≥ 1

}

and Q∗, the following result is well known:

Q∗
n → Q∗ w.p.1 as n → ∞ if and only if

∞
∑

n=1

P
{∣

∣Q∗
n − Q∗∣

∣ ≥ δ
}

< ∞ for each δ > 0.

One may refer to Jacod and Protter (2003, p. 74). In our context, Xn → p w.p.1 so
that by choosing ε = δ2, we have (25).

4.2 Poisson distribution: mean estimation

A Poisson model is heavily used to study radioactive decay in cancer therapy, biology,
and bioinformatics. In such cases, a parameter of interest is the mean radiation count.
Consider a random sample X1, X2, . . . from a Poisson(θ) population. The parameter
of interest is θ and θ ∈ � = (0,∞).

4.2.1 Estimation of mean

Based on X1, . . . , Xn , we have

Un ≡ ̂θn,MLE = Xn . (26)

Since the probability of Xn = 0 is positive, we define

Tn = Xn + n−γ (27)

where γ > 1
2 . Next, with a preassigned level of accuracy d(>1), we consider as in

(7):

Jn =
{

θ : θ ∈ [d−1Tn, dTn]
}

.

From the asymptotic distribution of n1/2(Tn − θ) we know that σ 2(θ) ≡ θ. Thus, for
Jn to include θ with a preassigned probability 1−α, 0 < α < 1, the required optimal
fixed sample size (8) reduces to

the smallest n ≥ n∗
d =

( zα/2

ln d

)2
θ−1. (28)
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This n∗
d is unknown and hence in the light of (9), we arrive at the stopping rule:

N ≡ Nd = inf

{

n ≥ n0 : nUn ≥
( zα/2

ln d

)2
}

. (29)

where Un comes from (26). Recall Remark 1.
Now, after implementing the sequential procedure (29), one has the final

dataset {Nd , X1, . . . , XNd } and estimates θ with the confidence interval JNd ≡
[d−1TNd , dTNd ]. At this point, we set out to check the sufficient conditions under
which Theorem 1 holds.

4.2.2 Verification of conditions from (6), (15), and for g(.)

Note that we have 0 < Tn < ∞ w.p.1 which is (6) part (a). Also, recall that (6) part
(b) holds with σ 2(θ) = θ which is continuous in θ. Tn from (27) satisfies Anscombe
(1952) u.c.i.p. condition so that (6) part (c) holds.

Along the line of (11), the stopping time Nd from (29) can be rewritten as follows:

N ≡ Nd = inf
{

n ≥ n0 : Zn ≡ ng(Xn) ≥ a(α, d)
}

,

where a(α, d) = ( zα/2
ln d

)2
, g(x) = x , 0 ≤ x < ∞, Zn = 	n

i=1Yi + ξn with Yi =
Xi , i = 1, . . . , n and ξn = 0 for all n.Weobviously have	n

i=1Yi = 	n
i=1Xi . Note that

the function g(.) is twice differentiable, and g
′′
(.) is continuous. Clearly, the function

q(.) from (11) is an identity map. That is, we have Wi = Xi for all i = 1, . . . , n and
thus Eθ [W1] = θ.

Thus, (15) part (ii) holds. Hence, we have verified all sufficient conditions under
whichTheorem1holds.Weconclude right away that our sequential confidence interval
methodology (Nd , JNd )where (i) Nd comes from (29) and (ii) JNd ≡ [d−1TNd , dTNd ]
with TNd coming from (27) is asymptotically first-order efficient and asymptotically
consistent.

4.3 Normal distribution with equal mean and variance

A first attempt to model count data usually proceeds via Poisson distribution. But, we
know that if themean is very large, then a Poisson distributionmay be approximated by
a Normal distribution with equal mean and variance. One may refer toMukhopadhyay
andCicconetti (2004),Bhattacharjee (2011),Mukhopadhyay andBhattacharjee (2011,
2012), and other sources.

Now, consider a random sample X1, X2, . . . from an N (θ, θ) population. The para-
meter of interest is θ and θ ∈ � = (0,∞).
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4.3.1 Estimation of mean

Based on X1, . . . , Xn , we have

Un ≡ ̂θn,MLE = −1

2
+
{

n−1
n
∑

i=1

X2
i + 1

4

}1/2

. (30)

Then, we define

Tn = Un . (31)

Next, with a preassigned level of accuracy d(>1), we consider as in (7):

Jn =
{

θ : θ ∈ [d−1Tn, dTn]
}

.

From the asymptotic distribution of n1/2(Tn−θ)weknow thatσ 2(θ) ≡ 2θ2(2θ+1)−1.

Thus, for Jn to include θ with a preassigned probability 1−α, 0 < α < 1, the required
optimal fixed sample size (8) reduces to

the smallest n ≥ n∗
d =

( zα/2

ln d

)2
2(2θ + 1)−1. (32)

This n∗
d is unknown and hence in the light of (9), we arrive at the stopping rule:

N ≡ Nd = inf

{

n ≥ n0 : 1
2
n(2Un + 1) ≥

( zα/2

ln d

)2
}

, (33)

where Un comes from (30).
Now, after implementing the sequential procedure (33), one has the final

dataset {Nd , X1, . . . , XNd } and estimates θ with the confidence interval JNd ≡
[d−1TNd , dTNd ]. At this point, we set out to check the sufficient conditions under
which Theorem 1 holds.

4.3.2 Verification of conditions from (6), (15), and for g(.)

Note that we have 0 < Tn < ∞ w.p.1 which is (6) part (a). Also, recall that (6) part
(b) holds with σ 2(θ) = 2θ2(2θ + 1)−1 which is continuous in θ. Tn from (31) clearly
satisfies Anscombe (1952) u.c.i.p. condition so that (6) part (c) holds.

Along the line of (11), the stopping time Nd from (33) can be rewritten as follows:

N ≡ Nd = inf

{

n ≥ n0 : ng
(

n−1
n
∑

i=1

X2
i

)

≥ a(α, d)

}

,
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where a(α, d) = ( zα/2
ln d

)2
and g(x) = (x + 1

4 )
1/2, 0 < x < ∞. Note that the function

g(.) is twice differentiable, g
′′
(.) is continuous, and the functionq(.) from (11) amounts

to Wi = q(Xi ) = X2
i for all i = 1, . . . , n so that Eθ [W1] = θ + θ2.

Re-expressing our stopping rule along the line of (12), we have

N ≡ Nd = inf {n ≥ n0 : Zn ≥ a(α, d)} ,

where Zn = 	n
i=1Yi + ξn with

Yi =
(

θ + θ2 + 1

4

)1/2

+ 1

2

(

θ + θ2 + 1

4

)−1/2 (

X2
i −

(

θ + θ2
))

, i = 1, . . . , n,

and for all n,

ξn = 1

2
ng′′(νn)

(

n−1
n
∑

i=1

X2
i −

(

θ + θ2
)

)2

= −1

8
n

(

νn + 1

4

)−3/2
(

n−1
n
∑

i=1

X2
i −

(

θ + θ2
)

)2

.

Here, νn lies between n−1	n
i=1X

2
i and (θ + θ2) in the spirits of (13)–(14) so that we

get

n
∑

i=1

Yi = n

(

θ + θ2 + 1

4

)1/2

+ 1

2

(

θ + θ2 + 1

4

)−1/2
(

n
∑

i=1

X2
i − (θ + θ2)

)

.

Note that, as n → ∞, n−1	n
i=1X

2
i → θ + θ2 w.p.1 so that ξn/n

P→ 0. Using Lemma
1, part (i) from (15) is verified. Also, as n → ∞,̂θn,MLE → θ w.p.1. Now, to verify the
condition in part (ii) of (15), let 0 < ε < θ + θ2 and ξθ (>0) be a constant depending
only on θ. Then, we can express

∞
∑

n=1

Pθ {ξn ≤ −nε}

=
∞
∑

n=1

Pθ

⎧

⎨

⎩

{

n−1
n
∑

i=1

X2
i − (θ + θ2)

}2

≥ 8ε

(

νn + 1

4

)3/2
⎫

⎬

⎭

≤ ε2
∞
∑

n=1

Eθ

{

n−1
n
∑

i=1

X2
i − (θ + θ2)

}4

≤ ε2ξθ

∞
∑

n=1

n−2, (34)

123



Fixed-accuracy confidence intervals for a positive parameter 557

which is obviously finite. The last step in (34) follows readily from the moment-
inequality of Sen and Ghosh (1981, Lemma 2.2). This verifies (15) part (ii).

We conclude right away that our sequential confidence interval methodology
(Nd , JNd ) where (i) Nd comes from (33) and (ii) JNd ≡ [d−1TNd , dTNd ] with TNd

coming from (31) is asymptotically first-order efficient and asymptotically consistent.

5 Data analysis from simulations

In support of the general sequential fixed-accuracy confidence interval methodology
described in Sect. 3, we gave three distinct illustrations in Sect. 4. To evaluate the
moderate sample performances of those procedures, we proceed to data analysis from
extensive sets of simulations.

5.1 Bernoulli odds ratio estimation from Sect. 4.1

Tables 1 and 2 summarize simulation results corresponding to the purely sequential
procedure (24) in the case of a Bernoulli distribution. Each row is a summary obtained
from 10000 simulations for p = 0.2, 0.4, 0.5, 0.6, 0.7, 0.9, n∗

d correspondingly com-
puted using (23), γ = 0.7, 1.0, d = 1.10, 1.07, α = 0.05, and n0 = 10, the pilot
sample size. The choice of n0 did not appear to impact findings since the required
sample size updated itself in a sequential manner.

We ran similar simulations with a number of choices of α other than 0.05. But,
the overall features remained similar whatever choices of α we had made. Hence, for
brevity, our tables correspond to α = 0.05.

The n column shows the average sequential sample size from 10000 runs along
with s(n), the estimated standard error of n. The next two columns, that is, the ratio
and difference of n and n∗

d , give us an idea of efficiency measure in practice. The ratio
n/n∗

d is expected to be close to 1 and this is a measure of the first-order efficiency.
One may refer to Theorem 1, parts (i) and (ii). The difference, n−n∗

d , gives us an idea
regarding the status of second-order efficiency in practice. Although we have not yet
proved a theoretical result claiming second-order efficiency for the purely sequential
procedure (24), we try to gauge its possible status via simulations.

Next, suppose that κ is an indicator variable which takes the value 1(0) if the
confidence interval Jn at termination when N = n obtained for each run includes
(does not include) the true value of θ . Then, κ is the average from 10000 such 0/1
observed values of κ. Clearly, κ gives an idea about the achieved coverage probability
which we hope to be close to the preset target, 0.95. The estimated standard error
values for κ, namely s(κ), are also provided.

We are satisfied to observe that n/n∗
d and κ values are respectively very close to 1

and 0.95, with both estimated standard errors small. From columns 7 and 11 in Tables
1 and 2, we have a distinct feeling that perhaps Ep[Nd − n∗

d ] remains bounded for the
purely sequential procedure (24) as d ↓ 1. Recall Remark 3.

Table 3 shows fewer columns, but it highlights performances for a range of values
of
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Table 3 Behavior of n/n∗
d and κ as d goes near 1 in simulations with 10000 replications from a

Bernoulli(p = 0.5) distribution (θ = 1) when α = 0.05

d n0 γ = 0.7 γ = 1.0

n (s(n)) n/n∗
d κ (s(κ)) n (s(n)) n/n∗

d κ (s(κ))

1.11 10 1412.443 (0.015) 1.001 0.952 (0.001) 1412.423 (0.015) 1.001 0.951 (0.002)

1.10 10 1693.020 (0.015) 1.001 0.952 (0.002) 1693.025 (0.014) 1.001 0.952 (0.002)

1.09 10 2070.722 (0.014) 1.001 0.950 (0.002) 2070.723 (0.014) 1.001 0.952 (0.002)

1.08 10 2595.863 (0.015) 1.000 0.949 (0.002) 2595.852 (0.014) 1.000 0.951 (0.002)

1.07 10 3358.215 (0.015) 1.000 0.950 (0.002) 3358.229 (0.015) 1.000 0.949 (0.002)

1.06 10 4527.299 (0.015) 1.000 0.950 (0.002) 4527.271 (0.015) 1.000 0.949 (0.002)

1.05 10 6456.748 (0.013) 1.000 0.950 (0.002) 6456.733 (0.014) 1.000 0.950 (0.002)

d = 1.11, 1.10, 1.09, 1.08, 1.07, 1.06, 1.05

for a more comprehensive understanding of how some important characteristics vary
within a very tight range.

5.2 Poisson mean estimation from Sect. 4.2

Tables 4 and 5 summarize simulation results corresponding to the purely sequential
procedure (29) in the case of a Poisson distribution. Each row is a summary obtained
from 10000 simulations for θ = 1(1)5, n∗

d correspondingly computed using (28),
γ = 0.7, 1.0, d = 1.10, 1.07, α = 0.05, and n0 = 10, the pilot sample size. Again
the choice of n0 did not appear to impact findings.

The overall features we have found remained rather similar whatever choices of α

we had made. Hence, for brevity, our Tables 4, 5, and 6 correspond to α = 0.05.
The columns in Tables 4 and 5 are to be interpreted in the same way we had

interpreted the entries in Tables 1 and 2. The ratio n/n∗
d is expected to be close to 1.

Clearly, the κ column gives an idea about the achieved coverage probability which
we hope to be close to the preset target, 0.95. From column 6 and 10 in Tables 4 and
5, we observe that n − n∗

d values appear to vary within a tight range. That gives us a
distinct feeling that perhaps Eθ [Nd −n∗

d ] remains bounded under the purely sequential
procedure (29).

Table 6 shows fewer columns as in Table 3, but it highlights performances for a
range of values of

d = 1.11, 1.10, 1.09, 1.08, 1.07, 1.06, 1.05

for a more comprehensive understanding of how some important characteristics vary
within a very tight range.
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Table 6 Behavior of n/n∗
d and κ as d goes near 1 in simulationswith 10000 replications from aPoisson(θ =

5) distribution with α = 0.05

d n0 γ = 0.7 γ = 1.0

n (s(n)) n/n∗
d κ (s(κ)) n (s(n)) n/n∗

d κ (s(κ))

1.11 10 71.044 (0.038) 1.007 0.948 (0.001) 71.155 (0.037) 1.008 0.951 (0.002)

1.10 10 85.056 (0.042) 1.005 0.945 (0.002) 85.054 (0.042) 1.006 0.952 (0.002)

1.09 10 104.106 (0.046) 1.006 0.946 (0.002) 104.062 (0.045) 1.005 0.952 (0.002)

1.08 10 130.315 (0.052) 1.004 0.948 (0.002) 130.340 (0.051) 1.004 0.949 (0.002)

1.07 10 168.474 (0.058) 1.003 0.948 (0.002) 168.547 (0.058) 1.004 0.948 (0.002)

1.06 10 226.876 (0.068) 1.002 0.949 (0.002) 226.908 (0.067) 1.002 0.951 (0.002)

1.05 10 323.244 (0.081) 1.001 0.950 (0.002) 323.301 (0.081) 1.001 0.950 (0.002)

Table 7 Simulation results for the sequential procedure (33) in a normal distribution when α = 0.05,
d = 1.10

θ n∗
d n0 n (s(n)) n/n∗

d n − n∗
d κ (s(κ))

3 120.827 10 121.476 (0.050) 1.005 0.648 0.951 (0.002)

5 76.890 10 77.523 (0.034) 1.008 0.633 0.951 (0.002)

7 56.386 10 57.013 (0.026) 1.011 0.627 0.951 (0.002)

10 40.276 10 40.864 (0.019) 1.014 0.588 0.953 (0.002)

15 27.284 10 27.812 (0.013) 1.019 0.528 0.952 (0.002)

Table 8 Simulation results for the sequential procedure (33) in a normal distribution when α = 0.05,
d = 1.07

θ n∗
d n0 n (s(n)) n/n∗

d n − n∗
d κ (s(κ))

3 239.771 10 240.446 (0.071) 1.003 0.674 0.951 (0.002)

5 152.582 10 153.186 (0.048) 1.004 0.604 0.950 (0.002)

7 111.893 10 112.518 (0.036) 1.006 0.625 0.950 (0.002)

10 79.924 10 80.525 (0.026) 1.008 0.601 0.952 (0.002)

15 54.142 10 54.707 (0.018) 1.010 0.565 0.953 (0.002)

5.3 Normal mean estimation from Sect. 4.3

In Tables 7 and 8, we have summarized simulation results for an N (θ, θ) distribution
with θ = 3, 5, 7, 10, 15. All results correspond to 10000 runs. Recall that in this
case, our estimator for θ does not involve any γ . The notions of asymptotic first-order
efficiency and asymptotic consistency are again validated as d moves close to 1.

Table 9 shows fewer columns as in Table 3, but it highlights performances when
θ = 5 for a range of values of

d = 1.11, 1.10, 1.09, 1.08, 1.07, 1.06, 1.05
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Table 9 Behavior of n/n∗
d and

κ as d goes near 1 in simulations
with 10000 replications from a
Normal(θ, θ) distribution when
θ = 5, α = 0.05

d n0 n (s(n)) n/n∗
d κ (s(κ))

1.11 10 64.735 (0.031) 1.008 0.951 (0.001)

1.10 10 77.531 (0.034) 1.007 0.947 (0.002)

1.09 10 94.655 (0.038) 1.006 0.948 (0.002)

1.08 10 118.632 (0.042) 1.006 0.948 (0.002)

1.07 10 153.200 (0.048) 1.004 0.950 (0.002)

1.06 10 206.321 (0.055) 1.002 0.951 (0.002)

1.05 10 294.109 (0.067) 1.002 0.949 (0.002)

for a more comprehensive understanding of how some important characteristics vary
within a very tight range.

6 Real data analysis

Now, we summarize analysis from implementing the proposed methodologies from
Sect. 4 with the help of some available real data. We will briefly explain what exactly
we have done and what it is that we have found in these illustrations.

6.1 Bernoulli distribution: odds ratio of poisonous and edible mushrooms

Mushroom records were gathered from the Audubon Society of Field Guide to North
American Mushrooms (1981). In the context of Sect. 4.1, under a Bernoulli distri-
bution, we consider a dataset on poisonous and edible mushrooms. This dataset is
publicly available from the following website: http://archive.ics.uci.edu/ml/datasets/
Mushroom.

This dataset includes observations corresponding to 23 species of gilledmushrooms
from the Agaricus and Lepiota family. We consider two particular groups—edible
mushrooms and non-edible (poisonous) mushrooms. The parameter of interest is the
odds ratio of poisonousmushrooms. The total size of this dataset is 8124.AChi-square
goodness-of-fit test gave the p value 1. Also, qq-plots were very encouraging.

To have some idea of p, the proportion of poisonous mushrooms, we found its
ML estimator, p̂MLE = 0.482, from the whole dataset. Hence, the ML estimator
for our parameter of interest θ, the odds of poisonous mushrooms in the data set is
̂θMLE = 0.931 based on the whole dataset. For purposes of illustration alone, we may
reasonably treat 0.931 as the “ true value” of θ, especially since the size of this data
(viewed as a Bernoulli population) is very large.

Table 10 summarizes our findings from implementing the sequential procedure (24)
on the mushroom dataset. Each row corresponds to a single run. In column 2, we show
n∗
d obtained using the most plausible value of θ, namely 0.931. Once this sequential

procedure terminated when N = n with the observations (N = n, x1, . . . , xn), we
formed the corresponding estimator Tn from (22).We considered a number of accuracy
values of d(>1) near 1 and observed that in each case, except in the case d = 1.11, γ =
0.7, the constructed confidence interval Jn included the most plausible value of θ,
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Table 10 Illustration usingmushroom data withML estimate 0.931 treated as “ true” θ under the procedure
(24) for a Bernoulli distribution when α = 0.05 with TN from (22)

d n̂∗
d n0 N N /̂n∗

d N − n̂∗
d

[

d−1TN , dTN
]

γ = 0.7

1.11 1412.750 10 1412 0.999 −0.750 (0.932, 1.148)

1.10 1693.772 10 1693 1.000 −0.772 (0.877, 1.061)

1.09 2071.781 10 2071 1.000 −0.781 (0.869, 1.032)

1.08 2597.716 10 2598 1.000 0.284 (0.868, 1.013)

1.07 3361.142 10 3359 1.000 −2.142 (0.891, 1.020)

1.06 4531.686 10 4530 1.000 −1.686 (0.890, 1.000)

1.05 6463.519 10 6464 1.000 0.481 (0.885, 0.976)

γ = 1.0

1.11 1412.750 10 1419 1.004 6.250 (0.777, 0.957)

1.10 1693.772 10 1696 1.001 2.228 (0.827, 1.001)

1.09 2071.781 10 2073 1.000 1.219 (0.845, 1.004)

1.08 2597.716 10 2601 1.001 3.284 (0.842, 0.983)

1.07 3361.142 10 3366 1.001 4.858 (0.844, 0.966)

1.06 4531.686 10 4538 1.001 6.314 (0.852, 0.957)

1.05 6463.519 10 6467 1.000 3.481 (0.875, 0.965)

namely 0.931. In the case when d = 1.11, γ = 0.7, the most plausible value of θ,

namely 0.931, missed the confidence interval Jn narrowly.
All other columns in Table 10 have similar meanings as explained in Section 5.1.

Results are shown for both γ = 0.7 and γ = 1.0. The ratios of the sequential and
optimal fixed sample size, N/n∗

d , appear close to 1. For each value of d, we observe
that the difference n − n∗

d has a higher magnitude when γ = 1.0 than when γ = 0.7.
This could be a good theoretical problem to precisely address in the future.

6.2 Poisson distribution: average decay of a radioactive isotope

To illustrate Poisson mean estimation in the context of Sect. 4.2, we considered a
radioactive decay dataset. The importance of radioactive isotopes is widespread in
health studies. Determination of the half-life of such isotopes using γ -ray emission is
crucial in many areas including industry, medicine, and biology.

For determining the half-life of radioactive isotopes, it is important to know what
the background radiation may be in a given detector over a period of time. The dataset
analyzed here was recorded in a γ -ray detection experiment over 300 one-second
intervals. The source of these data is Hogg and Tanis (2006, Exercise 2.6–12, pp.
122–123). A Chi-square goodness-of-fit test gives a p value 1. Also, qq-plots were
very encouraging.

The mean parameter θ would denote the average count of γ -rays emitted from the
source. Once again we found the ML estimator of the parameter of interest, namely
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Table 11 Illustration using radioactive decay data with ML estimate 3.030 treated as “ true” θ under the
procedure (29) for a Poisson distribution when α = 0.05 with TN from (27)

d n̂∗
d n0 N N /̂n∗

d N − n̂∗
d [d−1TN , dTN ]

γ = 0.7

1.11 116.413 10 116 0.996 −0.413 (2.774, 3.418)

1.10 139.570 10 138 0.989 −1.570 (2.835, 3.431)

1.09 170.718 10 171 1.002 0.282 (2.810, 3.338)

1.08 214.056 10 222 1.037 7.944 (2.740, 3.196)

1.07 276.964 10 278 1.004 1.036 (2.845, 3.258)

γ = 1.0

1.11 116.413 10 117 1.005 0.587 (2.734, 3.368)

1.10 139.570 10 141 1.010 1.430 (2.740, 3.316)

1.09 170.718 10 169 0.990 −1.718 (2.834, 3.367)

1.08 214.056 10 209 0.976 −5.056 (2.884, 3.364)

1.07 276.964 10 274 0.989 2.964 (2.868, 3.284)

̂θMLE = 3.030 from the whole dataset. For purposes of illustration alone, we may
reasonably treat 3.030 as the “ true value” of θ, especially since the size of this data
(viewed as a Poisson population) is very large.

Table 11 summarizes our findings from implementing the sequential procedure (29)
on the decay dataset. Each row corresponds to a single run. In column 2, we show
n∗
d obtained using the most plausible value of θ, namely 3.030. Once this sequential

procedure terminated with the observations (N = n, x1, . . . , xn), we formed the
corresponding estimator Tn from (27). We considered a number of accuracy values of
d(> 1) near 1 and observed that in each case, the constructed confidence interval Jn
included the most plausible value of θ, namely 3.030.

All the other columns in Table 11 have similar meanings as explained in Section
6.1. Results are shown for both γ = 0.7 and γ = 1.0. The ratios of the sequential and
optimal fixed sample size, N/n∗

d , appear close to 1. For each value of d, we observe
that the difference n − n∗

d has similar magnitudes whether γ = 1.0 or 0.7. We hope
to return to address this feature with some theoretical probe in the future.

6.3 Normal distribution: 911 calls dispatching emergency help

To illustrate mean θ estimation in the context of Sect. 4.3, we considered real-time 911
calls dispatch dataset. In the event of an emergency, one dials 911 to seek help. The
time taken to dispatch help (for example, ambulance, police, fire-trucks, emergency
medical technicians) after a 911 call to such callers is of great interest.

The data set is based on “ Real-time 911 Dispatch” in Seattle, Washington. Records
were maintained in Seattle for every day fromAugust 25–30, 2009. In the case of each
call, time taken to dispatch help was recorded. The size of the dataset is 144. We fitted
a Normal distribution to this data. The p value from Anderson–Darling test came out
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Table 12 Illustration using hourly 911 dispatch data with ML estimate 3.922 treated as “ true” θ under the
procedure (33) for a normal distribution when α = 0.05 with TN from (31)

d n̂∗
d n0 N N /̂n∗

d N − n̂∗
d

[

d−1TN , dTN
]

1.15 44.469 10 46 1.034 1.530 (3.380,4.470)

1.14 50.595 10 52 1.028 1.405 (3.357,4.363)

1.13 58.153 10 61 1.049 2.847 (3.410,4.355)

1.12 67.633 10 71 1.049 3.367 (3.319,4.164)

1.11 79.758 10 80 1.003 0.242 (3.586,4.418)

1.10 95.623 10 94 0.983 −1.623 (3.664,4.433)

1.09 116.963 10 115 0.983 −1.963 (3.695,4.340)

0.121. The qq-plot of the data showed a good fit. This datum is publicly available from
http://www2.seattle.gov/fire/realTime911/getDatePubTab.asp.

For more details, one is referred to Bhattacharjee (2011). The dataset agreed with a
N (ξ, cξ) distribution with c = 2.5. Bhattacharjee (2011) used a scaled version of the
dataset (scaled by c = 2.5) for analysis. In other words, from the original data Y, we
formed a scaled new data X ≡ 2

5Y which may be assumed to follow a N (θ, θ) where
θ ≡ 2

5ξ.

We proceed in the same way as earlier to implement the sequential procedure (33)
on the dataset corresponding to X . We found the ML estimator of the parameter of
interest, namely ̂θMLE = 3.922 from the whole dataset. For purposes of illustration
alone, we may reasonably treat 3.922 as the “ true value” of θ, especially since the
size of these data (viewed as a normal population) is very large.

Table 12 summarizes our findings from implementing the sequential procedure (33).
Each row corresponds to a single run. In column 2, we show n∗

d obtained using the
most plausible value of θ, namely 3.922. Once this sequential procedure terminated
with the observations (N = n, x1, . . . , xn),we formed the corresponding estimator Tn
from (31). We considered a number of accuracy values of d(>1) near 1 and observed
that in each case, the constructed confidence interval Jn included the most plausible
value of θ, namely 3.922.

All other columns in Table 12 have similar meanings as explained in Sect. 6.1. The
ratios of the sequential and optimal fixed sample size, N/n∗

d , appear close to 1. We
note that for each value of d, the difference n − n∗

d has similar magnitudes. We hope
to return to address this feature with some theoretical probe in the future.

Remark 5 We may emphasize couple of important points. In each illustration from
Section 6, the real dataset were treated as a population for practical purposes. In the
implementation of a sequential methodology, the knowledge of true θ (which remains
unknown) or ̂θMLE obtained from full data has played no role at all. However, in the
expression of n∗

d (column 2 in Tables 10, 11, 12), ̂θMLE was plugged in place of θ

just so that n∗
d and n (from a single run) may be readily compared. We also checked

whether ̂θMLE belonged to each constructed confidence interval (column 7 in Tables
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10, 11, 12) from the viewpoint of a purely suggestive guideline knowing fully well
that̂θMLE may not coincide with the “ true” unknown θ .

7 Final thoughts

Ourmainmotivation for this researchwas to broaden the basicmethodology of sequen-
tial fixed-accuracy confidence intervals, initially developedMukhopadhyay andBaner-
jee (2014a) for an NB distribution to estimate mean infestation in statistical ecology.
In doing so, we encountered a number of other practical situations where one would
like to estimate a parameter that is positive. We saw the need to propose a general
structure under which a large breadth of sequential fixed-accuracy confidence interval
estimation problems could be addressed.

The proposed sequential methodology so developed is easy to implement and
enjoys both asymptotic consistency and asymptotic first-order efficiency properties.
The extensive analyses of data obtained from large-scale simulations and our analyses
of real data from a number of health studies and safety studies assure us that the pro-
posed sequential methodology is interesting and attractive in numerous applications
of today’s statistical science.

Weare looking into developing appropriate two-stage (along the lines ofMukhopad-
hyay anddeSilva (2005)) and accelerated sequential (along the lines ofMukhopadhyay
(1996)) fixed-accuracy confidence interval estimation methodologies under a general
structure analogous to what has been introduced in the present paper. It is our hope to
wrap this up in the near future in a sequel.

7.1 A unified treatment

This brief outline brings out the true flexibility of the present formulation. Suppose
that X1, X2, . . . , Xn, . . . are i.i.d. with a common p.m.f. or p.d.f. given by f (x;ψ)

where ψ is a single unknown parameter and belongs to R. We may want to estimate
ψ, but our general methodology from Sect. 3 is not readily applicable.

Under verymild regularity conditions, however, let̂ψn ≡ ̂ψn,MLE, theMLestimator
for ψ. According to (20), under very mild regularity conditions, according to (19) we

have n1/2
(

̂ψn − ψ
) £→ N (0, I−1

X (ψ)), as n → ∞ assuming that 0 < IX (ψ) < ∞.
Next, we define a new parameter θ ≡ exp(ψ) which is a one–one function of ψ,

and clearly θ is positive. Now, we let Tn ≡ exp(̂ψn), the ML estimator of θ . Thus, we
can propose the fixed-accuracy confidence interval Jn = [d−1Tn, dTn] from (7) for θ

with d > 1. But, we draw attention to the following (using (19)):

Pψ {θ ∈ Jn} = Pψ

{− ln d ≤ ̂ψn,MLE − ψ ≤ ln d
} ≈ 2�

(

n1/2 IX (ψ) ln d
)

− 1,

(35)

for large n.
Hence, we can find an expression for the associated n∗

d(≡ z2α/2 I
−2
X (ψ)(ln d)−2)

so that the coverage probability from (35) will be approximately at least 1 − α with
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0 < α < 1 preassigned. Then, the associated sequential stopping rule can be easily
incorporated in the spirit of Khan (1969). Theorem 1 would hold under appropriate
conditions.
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