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Abstract For a truncated exponential family of distributions with a natural parameter
θ and a truncation parameter γ as a nuisance parameter, it is known that the maxi-
mum likelihood estimators (MLEs) θ̂

γ
ML and θ̂ML of θ for known γ and unknown γ ,

respectively, and the maximum conditional likelihood estimator θ̂MCL of θ are asymp-
totically equivalent. In this paper, the stochastic expansions of θ̂

γ
ML, θ̂ML and θ̂MCL are

derived, and their second-order asymptotic variances are obtained. The second-order
asymptotic loss of a bias-adjustedMLE θ̂∗

ML relative to θ̂
γ
ML is also given, and θ̂∗

ML and
θ̂MCL are shown to be second-order asymptotically equivalent. Further, some examples
are given.

Keywords Truncated exponential family · Natural parameter · Truncation
parameter · Maximum likelihood estimator · Maximum conditional likelihood
estimator · Stochastic expansion · Asymptotic variance · Second-order asymptotic
loss

1 Introduction

The first-order asymptotic theory in regular parametric models with nuisance parame-
ters was discussed by Barndorff-Nielsen and Cox (1994). In higher order asymptotics,
under suitable regularity conditions, the concept of asymptotic deficiency discussed
by Hodges and Lehmann (1970) is useful in comparing asymptotically efficient esti-
mators in the presence of nuisance parameters. Indeed, the asymptotic deficiencies of
some asymptotically efficient estimators relative to the maximum likelihood estimator
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470 M. Akahira

(MLE) based on the pooled sample were obtained in the presence of nuisance parame-
ters [see, e.g. Akahira and Takeuchi (1982) and Akahira (1986)]. On the other hand,
in statistical estimation in multiparameter cases, the conditional likelihood method is
well known as a way of eliminating nuisance parameters [see, e.g. Basu (1977)]. The
consistency, asymptotic normality and asymptotic efficiency of the maximum condi-
tional likelihood estimator (MCLE) were discussed by Andersen (1970), Huque and
Katti (1976), Bar-Lev and Reiser (1983), Bar-Lev (1984), Liang (1984) and others.
Further, in higher order asymptotics, asymptotic properties of the MCLE of an inter-
est parameter in the presence of nuisance parameters were also discussed by Cox and
Reid (1987) and Ferguson (1992) in the regular case. However, in the non-regular case
when the regularity conditions do not necessarily hold, the asymptotic comparison of
asymptotically efficient estimators has not been discussed enough in the presence of
nuisance parameters in higher order asymptotics yet.

For a truncated exponential family of distributions which is regarded as a typical
non-regular case, we consider a problem of estimating a natural parameter θ in the
presence of a truncation parameter γ as a nuisance parameter. Let θ̂

γ
ML and θ̂ML be

the MLEs of θ based on a sample of size n when γ is known and γ is unknown,
respectively. Let θ̂MCL be theMCLEof θ . Then itwas shownbyBar-Lev (1984) that the
MLEs θ̂

γ
ML, θ̂ML and the MCLE θ̂MCL have the same asymptotic normal distribution,

hence they are shown to be asymptotically equivalent in the sense of having the same
asymptotic variance. A similar result can be derived from the stochastic expansions of
the MLEs θ̂

γ
ML and θ̂ML in Akahira and Ohyauchi (2012). But, θ̂ γ

ML for known γ may
be asymptotically better than θ̂ML for unknown γ in the higher order, because θ̂

γ
ML

has the full information on γ . Otherwise, the existence of a truncation parameter γ as
a nuisance parameter is meaningless. So, it is a quite interesting problem to compare
asymptotically them up to the higher order.

In this paper, we compare them up to the second order, i.e. the order n−1, in the
asymptotic variance. We show that a bias-adjusted MLE θ̂∗

ML and θ̂MCL are second-
order asymptotically equivalent, but they are asymptotically worse than θ̂

γ
ML in the

second order. We thus calculate the second-order asymptotic losses on the asymptotic
variance among them.

2 Formulation and assumptions

In a similar way to Bar-Lev (1984), we have the formulation as follows. Suppose that
X1, X2, . . . , Xn, . . . is a sequence of independent and identically distributed (i.i.d.)
random variables according to Pθ,γ , having a density

f (x; θ, γ ) =
{

a(x)eθu(x)

b(θ,γ )
for c < γ ≤ x < d,

0 otherwise
(1)

with respect to the Lebesgue measure, where−∞ ≤ c < d ≤ ∞, a(·) is non-negative
and continuous almost surely, and u(·) is absolutely continuous with du(x)/dx �≡ 0
over the interval (γ, d). Let
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Second-order asymptotic comparison 471

�(γ ) :=
{
θ

∣∣∣ 0 < b(θ, γ ) :=
∫ d

γ

a(x)eθu(x)dx < ∞
}

for γ ∈ (c, d). Then, it is shown that for any γ1, γ2 ∈ (c, d) with γ1 < γ2, �(γ1) ⊂
�(γ2). Assume that for any γ ∈ (c, d), � ≡ �(γ ) is a non-empty open interval. A
family P := {

Pθ,γ | θ ∈ �, γ ∈ (c, d)
}
of distributions Pθ,γ [see (1)] with a natural

parameter θ and a truncation parameter γ is called a truncated exponential family of
distributions.

In Bar-Lev (1984), the asymptotic behavior of the MLE θ̂ML and MCLE θ̂MCL of
a parameter θ in the presence of γ as a nuisance parameter was compared and also
done with that of the MLE θ̂

γ
ML of θ when γ is known. As the result, it was shown

there that, for a sample of size n(≥ 2), the θ̂ML and θ̂MCL of θ exist with probability
1 and are given as the unique roots of the appropriate maximum likelihood equations.
These two estimators were also shown to be strongly consistent for θ with the limiting
distribution coinciding with that of the MLE θ̂

γ
ML of θ when γ is known.

In the subsequent sections, we obtain the stochastic expansions of θ̂
γ
ML, θ̂ML and

θ̂MCL up to the second order, i.e. the order op(n−1). We get their second-order asymp-
totic variances, and derive the second-order asymptotic losses on the asymptotic vari-
ance among them. The proofs of theorems are located in appendixes.

3 The MLE θ̂
γ

ML of θ when γ is known

Denote a random vector (X1, . . . , Xn) by X , and let X(1) ≤ · · · ≤ X(n) be the
corresponding order statistics of a random vector X . Here, we consider the case when
γ is known. Then, the density (1) is considered to belong to a regular exponential
family of distributions with a natural parameter θ , hence log b(θ, γ ) is strictly convex
and infinitely differentiable in θ ∈ � and

λ j (θ, γ ) := ∂ j

∂θ j
log b(θ, γ ) (2)

is the jth cumulant corresponding to (1) for j = 1, 2, . . .. For given x = (x1, . . . , xn)
satisfying γ < x(1) := min1≤i≤n xi and x(n) := max1≤i≤n xi < d, the likelihood
function of θ is given by

Lγ (θ; x) := 1

bn(θ, γ )

{
n∏

i=1

a(xi )

}
exp

{
θ

n∑
i=1

u(xi )

}
.

Then, the likelihood equation is

1

n

n∑
i=1

u(xi ) − λ1(θ, γ ) = 0. (3)
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Since there exists a unique solution on θ of (3), we denote it by θ̂
γ
ML which is the MLE

of θ [see, e.g. Barndorff-Nielsen (1978) and Bar-Lev (1984)]. Let λi = λi (θ, γ ) (i =
2, 3, 4) and put

Z1 := 1√
λ2n

n∑
i=1

{u(Xi ) − λ1} , Uγ := √
λ2n

(
θ̂

γ
ML − θ

)
.

Then, we have the following.

Theorem 1 For the truncated exponential family P of distributions with a density (1)
with a natural parameter θ and a truncation parameter γ , let θ̂

γ
ML be the MLE of θ

when γ is known. Then, the stochastic expansion of Uγ is given by

Uγ = Z1 − λ3

2λ3/22
√
n
Z2
1 + 1

2n

(
λ23

λ32
− λ4

3λ22

)
Z3
1 + Op

(
1

n
√
n

)
,

and the second-order asymptotic mean and variance are given by

Eθ

(
Uγ

) = − λ3

2λ3/22
√
n

+ O

(
1

n
√
n

)
,

Vθ

(
Uγ

) = 1 + 1

n

(
5λ23
2λ32

− λ4

λ22

)
+ O

(
1

n
√
n

)
,

respectively.

Since Uγ = Z1 + op(1), it is seen that Uγ is asymptotically normal mean with
mean 0 and variance 1, which coincides with the result of Bar-Lev (1984).

4 The MLE θ̂ML of θ when γ is unknown

For given x = (x1, . . . , xn) satisfying γ < x(1) and x(n) < d, the likelihood function
of θ and γ is given by

L(θ, γ ; x) = 1

bn(θ, γ )

{
n∏

i=1

a(xi )

}
exp

{
θ

n∑
i=1

u(xi )

}
. (4)

Let θ̂ML and γ̂ML be the MLEs of θ and γ , respectively. From (4) it is seen that

γ̂ML = X(1) and L
(
θ̂ML, X(1); X

)
= supθ∈� L

(
θ, X(1); X

)
, hence θ̂ML satisfies the

likelihood equation

0 = 1

n

n∑
i=1

u(Xi ) − λ1

(
θ̂ML, X(1)

)
, (5)
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where X = (X1, . . . , Xn). Let λ2 = λ2(θ, γ ) and put Û := √
λ2n(θ̂ML − θ) and

T := n(X(1) − γ ). Then, we have the following.

Theorem 2 For the truncated exponential family P of distributions with a density (1)
with a natural parameter θ and a truncation parameter γ , let θ̂ML be the MLE of θ

when γ is unknown, and θ̂∗
ML be a bias-adjusted MLE such that θ̂ML has the same

asymptotic bias as that of θ̂ γ
ML, i.e.

θ̂∗
ML = θ̂ML + 1

k
(
θ̂ML, X(1)

)
λ2

(
θ̂ML, X(1)

)
n

{
∂λ1

∂γ

(
θ̂ML, X(1)

)}
, (6)

where k(θ, γ ) := a(γ )eθu(γ )/b(θ, γ ). Then, the stochastic expansion of Û∗ :=√
λ2n(θ̂∗

ML − θ) is given by

Û∗ = Û + 1

k
√

λ2n

(
∂λ1

∂γ

)
− 1

kλ2n

{
δ + 1

k

(
∂k

∂θ

∂λ1

∂γ

)}
Z1 + Op

(
1

n
√
n

)
,

where k = k(θ, γ ),

δ = λ3

λ2

(
∂λ1

∂γ

)
− ∂λ2

∂γ
,

Û = Z1 − λ3

2λ3/22
√
n
Z2
1 − 1√

λ2n

(
∂λ1

∂γ

)
T + δ

λ2n
Z1T + 1

2n

(
λ23

λ32
− λ4

3λ22

)
Z3
1

+ Op

(
1

n
√
n

)
,

and the second-order asymptotic mean and variance are given by

Eθ,γ (Û∗) = − λ3

2λ3/22
√
n

+ O

(
1

n
√
n

)
,

Vθ,γ (Û∗) = 1 + 1

n

(
5λ23
2λ32

− λ4

λ22

)
+ 1

λ2n
{λ1 − u(γ )}2 + O

(
1

n
√
n

)
,

respectively.

Since Û = Û∗ = Z1 + op(1), it is seen that Û and Û∗ are asymptotically normal
with mean 0 and variance 1, which coincides with the result of Bar-Lev (1984). But,
it is noted from Theorems 1 and 2 that there is a difference between Vθ (Uγ ) and
Vθ,γ (Û∗) in the second order, i.e. the order n−1, which is discussed in Sect. 6.

5 The MCLE θ̂MCL of θ when γ is unknown

First, it is seen from (1) that there exists a random permutation, say Y2, . . . ,Yn of the
(n − 1)! permutations of

(
X(2), . . . , X(n)

)
such that conditionally on X(1) = x(1), the

Y2, . . . ,Yn are i.i.d. random variables with a density

123



474 M. Akahira

g
(
y; θ, x(1)

) = a(y)eθu(y)

b(θ, x(1))
for x(1) < y < d

[see Quesenberry (1975) and Bar-Lev (1984)]. For given X(1) = x(1), the conditional
likelihood function of θ for y = (y2, . . . , yn) satisfying x(1) < yi < d (i = 2, . . . , n)

is

L(θ; y|x(1)) = 1

bn−1(θ, x(1))

{
n∏

i=2

a(yi )

}
exp

{
θ

n∑
i=2

u(yi )

}
.

Then, the likelihood equation is

1

n − 1

n∑
i=2

u(yi ) − λ1(θ, x(1)) = 0. (7)

Since there exists a unique solution on θ of (7), we denote it by θ̂MCL, i.e. the value
of θ for which L

(
θ; y x(1)

)
attains supremum. Let λ̃i := λi (θ, x(1)) (i = 1, 2, 3, 4)

and put

Z̃1 := 1√
λ̃2(n − 1)

n∑
i=2

{
u(Yi ) − λ̃1

}
, Ũ0 := √

λ2n
(
θ̂MCL − θ

)
.

Then, we have the following.

Theorem 3 For the truncated exponential family P of distributions with a density (1)
with a natural parameter θ and a truncation parameter γ , let θ̂MCL be the MCLE of
θ when γ is unknown. Then, the stochastic expansion of Ũ0 is given by

Ũ0 = Z̃1 − λ̃3

2λ̃3/22
√
n
Z̃2
1 + 1

2n

{
1 − 1

λ2

(
∂λ2

∂γ

)
T

}
Z̃1

+ 1

2n

(
λ̃23

λ̃32

− λ̃4

3λ̃22

)
Z̃3
1 + Op

(
1

n
√
n

)
,

and the second-order asymptotic mean and variance are given by

Eθ,γ

(
Ũ0

)
= − λ3

2λ3/22
√
n

+ O

(
1

n
√
n

)
,

Vθ,γ

(
Ũ0

)
= 1 + 1

n

(
5λ23
2λ32

− λ4

λ22

)
+ 1

λ2n
{λ1 − u(γ )}2 + O

(
1

n
√
n

)
.

Remark 1 From Theorems 2 and 3, it is seen that the second-order asymptotic mean
and variance of Ũ0 are the same as those of Û∗ = √

λ2n(θ̂∗
ML − θ). It is noted that

θ̂MCL has an advantage over θ̂ML in the sense of no need of the bias adjustment.
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Remark 2 As is seen from Theorems 1, 2 and 3, the first term of order 1/n in
Vθ (Uγ ), Vθ,γ (Û∗) and Vθ,γ (Ũ0) results from the regular part of the density (1),
which coincides with the fact that the distribution with (1) is considered to belong
to a regular exponential family of distributions when γ is known. The second
term of order 1/n in Vθ,γ (Û∗) and Vθ,γ (Ũ0) follows from the non-regular (i.e.
truncation) part of (1) when γ is unknown, which means a ratio of the variance
λ2 = Vθ,γ (u(X)) = Eθ,γ

[{u(X) − λ1}2
]
to the distance

{
λ1 − u(γ )

}2 from the
mean λ1 of u(X) to u(x) at x = γ .

6 The second-order asymptotic comparison among θ̂
γ

ML, θ̂
∗
ML and θ̂MCL

From the results in the previous sections,we can asymptotically compare the estimators
θ̂

γ
ML, θ̂

∗
ML and θ̂MCL using their second-order asymptotic variances as follows.

Theorem 4 For the truncated exponential family P of distributions with the density
(1) with a natural parameter θ and a truncation parameter γ , let θ̂ γ

ML, θ̂
∗
ML and θ̂MCL

be the MLE of θ when γ is known, the bias-adjusted MLE of θ when γ is unknown and
the MCLE of θ when γ is unknown, respectively. Then, the bias-adjusted MLE θ̂∗

ML
and the MCLE θ̂MCL are second-order asymptotically equivalent in the sense that

dn(θ̂
∗
ML, θ̂MCL) := n

{
Vθ,γ (Û∗) − Vθ,γ (Ũ0)

}
= o(1) (8)

as n → ∞, and they are second-order asymptotically worse than θ̂
γ
ML with the second-

order asymptotic losses of θ̂∗
MLand θ̂MCL relative to θ̂

γ
ML

dn(θ̂
∗
ML, θ̂

γ
ML) := n

{
Vθ,γ (Û∗) − Vθ (Uγ )

}
= {λ1 − u(γ )}2

λ2
+ o(1), (9)

dn(θ̂MCL, θ̂
γ
ML) := n

{
Vθ,γ (Ũ0) − Vθ (Uγ )

}
= {λ1 − u(γ )}2

λ2
+ o(1) (10)

as n → ∞, respectively.

The proof is straightforward from Theorems 1, 2 and 3.

7 Examples

Some examples on the second-order asymptotic loss of the estimators are given for
a truncated exponential distribution, a truncated normal distribution and the Pareto
distribution.

Example 1 (Truncated exponential distribution) Let c = −∞, d = ∞, a(x) ≡ 1
and u(x) ≡ −x for −∞ < γ ≤ x < ∞ in the density (1). Since b(θ, γ ) = e−θγ /θ ,
it follows from (2) that � = (0,∞),
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λ1 = ∂

∂θ
log b(θ, γ ) = −γ − 1

θ
,

λ2 = ∂2

∂θ2
log b(θ, γ ) = 1

θ2
, k(θ, γ ) = θ.

From (3), (5), (6) and (7) we have

θ̂
γ
ML = 1/(X̄ − γ ), θ̂ML = 1/

(
X̄ − X(1)

)
,

θ̂∗
ML = θ̂ML − 1

n
θ̂ML, θ̂MCL = 1

/(
1

n − 1

n∑
i=2

X(i) − X(1)

)
.

Note that θ̂∗
ML = θ̂MCL. In this case, the first part in Theorem 4 is trivial, since

dn(θ̂∗
ML, θ̂MCL) = 0. From Theorem 4, we obtain the second-order asymptotic loss

dn(θ̂
∗
ML, θ̂

γ
ML) = dn(θ̂MCL, θ̂

γ
ML) = 1 + o(1)

as n → ∞.

Example 2 (Truncated normal distribution) Let c = −∞, d = ∞, a(x) = e−x2/2

and u(x) = x for −∞ < γ ≤ x < ∞ in the density (1). Since

b(θ, γ ) = √
2πeθ2/2	(θ − γ ),

it follows from (2) and Theorem 2 that � = (−∞,∞),

λ1(θ, γ ) = θ + ρ(θ − γ ),
∂λ1

∂γ
(θ, γ ) = (θ − γ )ρ(θ − γ ) + ρ2(θ − γ ),

λ2(θ, γ ) = 1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ ),

k(θ, γ ) = ρ(θ − γ ),

where ρ(t) := φ(t)/	(t) with

	(x) =
∫ x

−∞
φ(t)dt, φ(t) = 1√

2π
e−t2/2 for − ∞ < t < ∞.

Then, it follows from (3), (5) and (7) that the solutions of θ of the following equations

θ + ρ(θ − γ ) = X̄ , θ + ρ(θ − X(1)) = X̄ ,

θ + ρ(θ − X(1)) = 1

n − 1

n∑
i=2

X(i)

123
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become θ̂
γ
ML, θ̂ML and θ̂MCL, respectively, where X̄ = (1/n)

∑n
i=1 Xi . From (6), the

bias-adjusted MLE is given by

θ̂∗
ML = θ̂ML +

θ̂ML − X(1) + ρ
(
θ̂ML − X(1)

)
1 −

(
θ̂ML − X(1)

)
ρ
(
θ̂ML − X(1)

)
− ρ2

(
θ̂ML − X(1)

) .

From Theorem 4, we obtain the second-order asymptotic losses

dn(θ̂
∗
ML, θ̂MCL) = o(1),

dn(θ̂
∗
ML, θ̂

γ
ML) = dn(θ̂MCL, θ̂

γ
ML) =

{
θ − γ + ρ(θ − γ )

}2
1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ )

+ o(1)

as n → ∞.

Example 3 (Pareto distribution)Let c = 0, d = ∞, a(x) = 1/x and u(x) = − log x
for 0 < γ ≤ x < ∞ in the density (1). Then, b(θ, γ ) = 1/(θγ θ ) for θ ∈ � = (0,∞).
Letting t = log x and γ0 = log γ , we see that (1) becomes

f (t; θ, γ0) =
{

θeθγ0e−θ t for t > γ0,

0 for t ≤ γ0.

Hence, the Pareto case is reduced to the truncated exponential one in Example 1.

8 Concluding remarks

In a truncated exponential family of distributions with a two-dimensional parameter
(θ, γ ), we considered the estimation problem of a natural parameter θ in the presence
of a truncation parameter γ as a nuisance parameter. In the paper of Bar-Lev (1984),
it was shown that the MLE θ̂

γ
ML of θ for known γ , the MLE θ̂ML and the MCLE θ̂MCL

of θ for unknown γ are asymptotically equivalent in the sense that they have the same
asymptotic normal distribution. In this paper, we derived the stochastic expansions of
θ̂

γ
ML, θ̂ML and θ̂MCL. We also obtained the second-order asymptotic loss of the bias-
adjusted MLE θ̂∗

ML relative to θ̂
γ
ML from their second-order asymptotic variances and

showed that θ̂∗
ML and θ̂MCL are second-order asymptotically equivalent in the sense

that their asymptotic variances are same up to the order o(1/n) as in (8). It seems to
be natural that θ̂ γ

ML is second-order asymptotically better than θ̂∗
ML after adjusting the

bias of θ̂ML such that θ̂ML has the same as that of θ̂
γ
ML. The values of the second-order

asymptotic losses of θ̂∗
ML and θ̂MCL given by (9) and (10) are quite simple, which result

from the truncated exponential family P of distributions.
The results of Theorems 1, 2, 3 and 4 can be extended to the case of a two-sided

truncated exponential family of distributions with a natural parameter θ and two trun-
cation parameters γ and ν as nuisance parameters, including an upper-truncated Pareto
distributionwhich is important in applications [seeAkahira et al. (2014)]. Further, they
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478 M. Akahira

may be similarly extended to the case of a more general truncated family of distri-
butions from the truncated exponential family P . In relation to Theorem 2, if two
different bias adjustments are introduced, i.e. θ̂ML + (1/n)ci (θ̂ML) (i = 1, 2), then
the problem whether or not the admissibility result holds may be interesting.

Appendix A

The proof of Theorem 1 Let λi = λi (θ, γ ) (i = 1, 2, 3, 4). Since

Z1 = 1√
λ2n

n∑
i=1

{u(Xi ) − λ1} , Uγ := √
λ2n

(
θ̂

γ
ML − θ

)
,

by the Taylor expansion we obtain from (3)

0 =
√

λ2

n
Z1 −

√
λ2

n
Uγ − λ3

2λ2n
U 2

γ − λ4

6λ3/22 n
√
n
U 3

γ + Op

(
1

n2

)
,

which implies that the stochastic expansion of Uγ is given by

Uγ = Z1 − λ3

2λ3/22
√
n
Z2
1 + 1

2n

(
λ23

λ32
− λ4

3λ22

)
Z3
1 + Op

(
1

n
√
n

)
. (11)

Since

Eθ (Z1) = 0, Vθ (Z1) = Eθ (Z
2
1) = 1,

Eθ (Z
3
1) = λ3

λ
3/2
2

√
n
, Eθ (Z

4
1) = 3 + λ4

λ22n
, (12)

it follows that

Eθ (Uγ ) = − λ3

2λ3/22
√
n

+ O

(
1

n
√
n

)
, (13)

Eθ (U
2
γ ) = 1 + 1

n

(
11λ23
4λ32

− λ4

λ22

)
+ O

(
1

n
√
n

)
, (14)

hence, by (13) and (14)

Vθ (Uγ ) = 1 + 1

n

(
5λ23
2λ32

− λ4

λ22

)
+ O

(
1

n
√
n

)
. (15)
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From (11), (13) and (15) we have the conclusion of Theorem 1.
Before provingTheorem2,we prepare three lemmas (the proofs are given inAppen-

dix B).

Lemma 1 The second-order asymptotic density of T is given by

fT (t) = k(θ, γ )e−k(θ,γ )t + k(θ, γ )

a(γ )b(θ, γ )n

{
cθ (γ )b(θ, γ ) + a2(γ )eθu(γ )

}

·
{
t − k(θ, γ )

2
t2
}
e−k(θ,γ )t + O

(
1

n2

)
(16)

for t > 0, where k(θ, γ ) := a(γ )eθu(γ )/b(θ, γ ), and

Eθ,γ (T ) = 1

k(θ, γ )
+ A(θ, γ )

n
+ O

(
1

n2

)
, Eθ,γ (T 2) = 2

k2(θ, γ )
+ O

(
1

n

)
,

(17)

where

A(θ, γ ) := − 1

k2(θ, γ )

{
cθ (γ )

a(γ )
+ k(θ, γ )

}

with cθ (γ ) = a′(γ ) + θa(γ )u′(γ ).

Lemma 2 It holds that

Eθ,γ (Z1T ) = 1

k
√

λ2n

{
u(γ ) − λ1 + 2

k

(
∂λ1

∂γ

)}
+ O

(
1

n
√
n

)
, (18)

where k = k(θ, γ ) and λi = λi (θ, γ ) (i = 1, 2).

Lemma 3 It holds that

Eθ,γ (Z2
1T ) = 1

k
+ O

(
1

n

)
, (19)

where k = k(θ, γ ).

123



480 M. Akahira

The proof of Theorem 2 Since, for (θ, γ ) ∈ � × (c, X(1))

λ1

(
θ̂ML, X(1)

)
= λ1(θ, γ ) +

{
∂

∂θ
λ1(θ, γ )

}
(θ̂ML − θ) +

{
∂

∂γ
λ1(θ, γ )

} (
X(1) − γ

)
+ 1

2

{
∂2

∂θ2
λ1(θ, γ )

}
(θ̂ML − θ)2 +

{
∂2

∂θ∂γ
λ1(θ, γ )

}
(θ̂ML − θ)

(
X(1) − γ

)
+ 1

2

{
∂2

∂γ 2 λ1(θ, γ )

}
(X(1) − γ )2 + 1

6

{
∂3

∂θ3
λ1(θ, γ )

}
(θ̂ML − θ)3

+ 1

2

{
∂2

∂θ2
λ1(θ, γ )

}{
∂

∂γ
λ1(θ, γ )

}
(θ̂ML − θ)2

(
X(1) − γ

) + · · · , (20)

noting Û = √
λ2n

(
θ̂ML − θ

)
and T = n

(
X(1) − γ

)
, we have from (5) and (20)

0 =
√

λ2

n
Z1 −

√
λ2

n
Û − 1

n

(
∂λ1

∂γ

)
T − λ3

2λ2n
Û 2 − 1√

λ2nn

(
∂λ2

∂γ

)
ÛT

− λ4

6λ3/22 n
√
n
Û 3 + Op

(
1

n2

)
,

where λ j = λ j (θ, γ ) ( j = 1, 2, 3, 4) are defined by (2), hence the stochastic expan-
sion of Û is given by

Û = Z1 − 1√
λ2n

(
∂λ1

∂γ

)
T − λ3

2λ3/22
√
n
Û 2 − 1

λ2n

(
∂λ2

∂γ

)
ÛT

− λ4

6λ22n
Û 3 + Op

(
1

n
√
n

)

= Z1 − 1√
λ2n

(
∂λ1

∂γ

)
T − λ3

2λ3/22
√
n
Z2
1 + δ

λ2n
Z1T

+ 1

2n

(
λ23

λ32
− λ4

3λ22

)
Z3
1 + Op

(
1

n
√
n

)
. (21)

It follows from (12) and (21) that

Eθ,γ (Û ) = − 1√
λ2n

(
∂λ1

∂γ

)
Eθ,γ (T ) − λ3

2λ3/22
√
n

+ δ

λ2n
Eθ,γ (Z1T ) + O

(
1

n
√
n

)
.

(22)
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Substituting (17) and (18) for (22), we obtain

Eθ,γ (Û ) = − 1√
λ2n

{
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

}
+ O

(
1

n
√
n

)
, (23)

where k = k(θ, γ ) is defined in Lemma 1. We have from (21)

Eθ,γ (Û 2) = Eθ,γ (Z2
1) − 1√

λ2n

{
2

(
∂λ1

∂γ

)
Eθ,γ (Z1T ) + λ3

λ2
Eθ,γ (Z3

1)

}

+ 1

λ2n

(
∂λ1

∂γ

)2

Eθ,γ

(
T 2

)
+ 1

λ2n

{
λ3

λ2

(
∂λ1

∂γ

)
+ 2δ

}
Eθ,γ (Z2

1T )

+ 1

n

(
5λ23
4λ32

− λ4

3λ22

)
Eθ,γ (Z4

1) + O

(
1

n
√
n

)
. (24)

Substituting (12), (17), (18) and (19) for (24), we have

Eθ,γ (Û 2) = 1 − 2

kλ2n

(
∂λ1

∂γ

){
u(γ ) − λ1 + 1

k

(
∂λ1

∂γ

)}
+ 11λ23

4λ32n

+ 3λ3
kλ22n

(
∂λ1

∂γ

)
− 2

kλ2n

(
∂λ2

∂γ

)
− λ4

λ22n
+ O

(
1

n
√
n

)
. (25)

Since

√
λ2

∂λ1
∂γ

(θ̂ML, X(1))

k(θ̂ML, X(1))λ2(θ̂ML, X(1))
√
n

=
∂λ1
∂γ

(θ, γ )

k
√

λ2n
+ 1

kλ2n

{
∂λ2

∂γ
(θ, γ ) −

(
λ3

λ2
+ 1

k

∂k

∂θ

)(
∂λ1

∂γ

)}
Û + Op

(
1

n
√
n

)
,

it follows from (6) that the stochastic expansion of Û∗ is given by

Û∗ := √
λ2n(θ̂∗

ML − θ) = √
λ2n(θ̂ML − θ) +

√
λ2

∂λ1
∂γ

(θ̂ML, X(1))

k(θ̂ML, X(1))λ̂2
√
n

= Û + 1

k
√

λ2n

(
∂λ1

∂γ

)
− 1

kλ2n

{
δ + 1

k

(
∂k

∂θ

)(
∂λ1

∂γ

)}
Z1 + Op

(
1

n
√
n

)
,

(26)
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where Û is given by (21), λi = λi (θ, γ ) (i = 1, 2, 3) and k = k(θ, γ ). From (12)
and (23), we have

Eθ,γ (Û∗) = − 1√
λ2n

{
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

}
+ 1

k
√

λ2n

(
∂λ1

∂γ

)
+ O

(
1

n
√
n

)

= − λ3

2λ3/22
√
n

+ O

(
1

n
√
n

)
. (27)

It follows from (23), (25) and (26) that

Eθ,γ

(
Û∗2) = 1 − 2

kλ2n

(
∂λ1

∂γ

){
u(γ ) − λ1 + 3

2k

(
∂λ1

∂γ

)}
+ 11λ23

4λ32n

− λ4

λ22n
− 2

k2λ2n

(
∂λ1

∂γ

)(
∂k

∂θ

)
+ O

(
1

n
√
n

)
,

hence, by (27)

Vθ,γ (Û∗) = Eθ,γ (Û∗2) −
{
Eθ,γ (Û∗)

}2
= 1 + 1

n

(
5λ23
2λ32

− λ4

λ22

)
− 2

kλ2n

(
∂λ1

∂γ

){
u(γ ) − λ1 + 1

k

(
∂k

∂θ

)}

− 3

k2λ2n

(
∂λ1

∂γ

)2

+ O

(
1

n
√
n

)
. (28)

Since, by (2)

λ1(θ, γ ) = ∂

∂θ
log b(θ, γ ) = 1

b(θ, γ )

∫ d

γ

a(x)u(x)eθu(x)dx,

it follows that

∂λ1(θ, γ )

∂γ
= a(γ )eθu(γ )

b(θ, γ )

{
λ1(θ, γ ) − u(γ )

} = k(θ, γ )
{
λ1(θ, γ ) − u(γ )

}
. (29)

Since

∂k

∂θ
(θ, γ ) = k(θ, γ ){u(γ ) − λ1(θ, γ )}, (30)

it is seen from (28), (29) and (30) that

Vθ,γ (Û∗) = 1 + 1

n

(
5λ23
2λ32

− λ4

λ22

)
+ 1

λ2n

{
λ1 − u(γ )

}2 + O

(
1

n
√
n

)
. (31)
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From (26), (27) and (31) we have the conclusion of Theorem 2.
The proof of Theorem 3 Since, from (7)

0 = 1

n − 1

n∑
i=2

{u(Yi ) − λ1(θ, x(1))} − 1√
n
λ2(θ, x(1))

√
n(θ̂MCL − θ)

− 1

2n
λ3(θ, x(1))n(θ̂MCL − θ)2

− 1

6n
√
n
λ4(θ, x(1))n

√
n(θ̂MCL − θ)3 + Op

(
1

n2

)
,

letting

Z̃1 = 1√
λ̃2(n − 1)

n∑
i=2

{
u(Yi ) − λ1(θ, x(1))

}
,

Ũ =
√

λ̃2n(θ̂MCL − θ),

where λ̃i := λi (θ, x(1)) (i = 1, 2, 3, 4), we have

0 =
√

λ̃2

n − 1
Z̃1 −

√
λ̃2

n
Ũ − λ̃3

2λ̃2n
Ũ 2 − λ̃4

6λ̃2
3/2

n
√
n
Ũ 3 + Op

(
1

n2

)
,

hence the stochastic expansion of Ũ is given by

Ũ =
√

n

n − 1
Z̃1 − λ̃3

2λ̃2
3/2√

n
Ũ 2 − λ̃4

6λ̃2
2
n
Ũ 3 + Op

(
1

n
√
n

)

= Z̃1 − λ̃3

2λ̃2
3/2√

n
Z̃1

2 + 1

2n
Z̃1 + 1

2n

(
λ̃3

2

λ̃2
3 − λ̃4

3λ̃2
2

)
Z̃1

3 + Op

(
1

n
√
n

)
.

(32)

Since

λ̃2 = λ2(θ, X(1)) = λ2(θ, γ ) + 1

n

(
∂λ2

∂γ

)
T + Op

(
1

n2

)
,

we obtain

Ũ =
√

λ̃2n(θ̂MCL − θ)

= √
λ2n(θ̂MCL − θ)

{
1 + 1

2nλ2

(
∂λ2

∂γ

)
T + Op

(
1

n2

)}
, (33)
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where T = n(X(1) − γ ) and λ2 = λ2(θ, γ ). Then, it follows from (32) and (33) that

Ũ0 = √
λ2n(θ̂MCL − θ)

= Z̃1 − λ̃3

2λ̃2
3/2√

n
Z̃1

2 + 1

2n

{
1 − 1

λ2

(
∂λ2

∂γ

)
T

}
Z̃1

+ 1

2n

(
λ̃3

2

λ̃2
3 − λ̃4

3λ̃2
2

)
Z̃1

3 + Op

(
1

n
√
n

)
. (34)

For given X(1) = x(1), i.e. T = t := n(x(1) − γ ), the conditional expectation of Z̃1

and Z̃1
2
is

Eθ,γ (Z̃1|t) = 1√
λ̃2(n − 1)

n∑
i=2

{
Eθ,γ [u(Yi )|t] − λ1(θ, x(1))

} = 0,

Eθ,γ (Z̃1
2|t) = 1

λ̃2(n − 1)

[ n∑
i=2

Eθ,γ

[
{u(Yi ) − λ1(θ, x(1))}2|t

]

+
∑∑

i �= j
2≤i, j≤n

Eθ,γ

[{u(Yi ) − λ1(θ, x(1))}{u(Y j ) − λ1(θ, x(1))} | t]]

= 1, (35)

hence the conditional variance of Z̃1 is equal to 1, i.e. Vθ,γ (Z̃1|t) = 1. In a similar
way to the above, we have

Eθ,γ

(
Z̃1

3|t
)

= λ̃3

λ̃2
3/2√

n − 1
, Eθ,γ

(
Z̃1

4|t
)

= 3 + λ̃4

λ̃2
2
(n − 1)

. (36)

Since, by (34), (35) and (36)

Eθ,γ (Ũ0|T ) = Eθ,γ (Z̃1|T ) − λ̃3

2λ̃2
3/2√

n
Eθ,γ (Z̃1

2|T )

+ 1

2n
Eθ,γ (Z̃1|T ) + 1

2n

(
λ̃23

λ̃32

− λ̃4

3λ̃2
2

)
Eθ,γ (Z̃1

3|T )

− 1

2nλ2

(
∂λ2

∂γ

)
T Eθ,γ (Z̃1|T ) + Op

(
1

n
√
n

)

= − λ̃3

2λ̃2
3/2√

n
+ Op

(
1

n
√
n

)
, (37)

Eθ,γ (Ũ 2
0 |T ) = Eθ,γ (Z̃1

2|T ) − λ̃3

λ̃2
3/2√

n
Eθ,γ (Z̃1

3|T )
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+ 1

n
Eθ,γ (Z̃1

2|T ) + 1

n

(
5λ̃3

2

4λ̃2
3 − λ̃4

3λ̃2
2

)
Eθ,γ (Z̃1

4|T )

− 1

λ2n

(
∂λ2

∂γ

)
T Eθ,γ (Z̃1

2|T ) + Op

(
1

n
√
n

)

= 1 + 1

n
+ 1

n

(
11λ̃3

2

4λ̃2
3 − λ̃4

λ̃2
2

)
− 1

λ2n

(
∂λ2

∂γ

)
T

+ Op

(
1

n
√
n

)
, (38)

where λ̃i = λi (θ, X(1)) (i = 2, 3, 4). Since, for i = 2, 3, 4

λ̃i = λi (θ, X(1)) = λi (θ, γ ) + 1

n

(
∂λi

∂γ

)
n(X(1) − γ ) + Op

(
1

n2

)

= λi (θ, γ ) + Op

(
1

n

)
= λi + Op

(
1

n

)
, (39)

it follows from (37) that

Eθ,γ (Ũ0) = Eθ,γ

[
Eθ,γ (Ũ0|T )

]
= − 1

2
√
n
Eθ,γ

(
λ̃3

λ̃2
3/2

)
+ O

(
1

n
√
n

)

= − λ3

2λ3/22
√
n

+ O

(
1

n
√
n

)
. (40)

It is noted from (13), (27) and (40) that

Eθ,γ (Uγ ) = Eθ,γ (Û∗) = Eθ,γ (Ũ0) = − λ3

2λ3/22
√
n

+ O

(
1

n
√
n

)
.

In a similar way to the above, we obtain from (17), (38) and (39)

Eθ,γ (Ũ 2
0 ) = 1 + 1

n
+ 11λ23

4λ32n
− λ4

λ22n
− 1

kλ2n

(
∂λ2

∂γ

)
+ O

(
1

n
√
n

)
. (41)

Since, by (29) and (30)

1

k

(
∂λ2

∂γ

)
= 1

k

(
∂2λ1

∂θ∂γ

)
= 1

k

∂

∂θ

(
∂λ1

∂γ

)
= 1

k

∂

∂θ

{
k (λ1 − u(γ ))

}
= 1

k

{
∂k

∂θ
(λ1 − u(γ )) + k

(
∂λ1

∂θ

)}
= − (λ1 − u(γ ))2 + λ2,
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it follows from (41) that

Eθ,γ (Ũ 2
0 ) = 1 + 11λ23

4λ32n
− λ4

λ22n
+ 1

λ2n

{
λ1 − u(γ )

}2 + O

(
1

n
√
n

)
,

hence, by (40)

Vθ,γ (Ũ0) = 1 + 1

n

(
5λ23
2λ32

− λ4

λ22

)
+ 1

λ2n

{
λ1 − u(γ )

}2 + O

(
1

n
√
n

)
. (42)

From (34), (40) and (42), we have the conclusion of Theorem 3.

Appendix B

The proof of Lemma 1 Since the second-order asymptotic cumulative distribution
function of T is given by

FT (t) = Pθ,γ {T ≤ t} = Pθ,γ

{
n(X(1) − γ ) ≤ t

}
= 1 −

{
1 −

∫ γ+ t
n

γ

1

b(θ, γ )
a(x)eθu(x)dx

}n

= 1 −
[
exp

{
−a(γ )eθu(γ )

b(θ, γ )
t

}]

·
[
1 − eθu(γ )t2

2b2(θ, γ )n

{
cθ (γ )b(θ, γ ) + a2(γ )eθu(γ )

}
+ O

(
1

n2

)]

for t > 0, where cθ (γ ) := a′(γ ) + θa(γ )u′(γ ), we obtain (16). From (16), we also
get (17) by a straightforward calculation.
The proof of Lemma 2 As is seen from the beginning of Sect. 5, the Y2, . . . ,Yn are
i.i.d. random variables with a density

g(y; θ, x(1)) = a(y)eθu(y)

b(θ, x(1))
for x(1) < y < d. (43)

Then, the conditional expectation of Z1 given T is obtained by

Eθ,γ (Z1|T ) = 1√
λ2n

n∑
i=1

{
Eθ,γ [u(Xi )|T ] − λ1

}

= 1√
λ2n

{
u(X(1)) +

n∑
i=2

Eθ,γ [u(Yi )|T ] − nλ1

}
, (44)
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where λi = λi (θ, γ ) (i = 1, 2). Since, for each i = 2, . . . , n, by (43)

Eθ,γ [u(Yi )|T ] =
∫ d

X(1)

u(y)
a(y)eθu(y)

b(θ, X(1))
dy

= ∂

∂θ
log b(θ, X(1)) = λ1(θ, X(1)) =: λ̂1 (say),

it follows from (44) that

Eθ,γ (Z1|T ) = 1√
λ2n

{
u(X(1)) + (n − 1)λ̂1

}
− λ1

√
n√

λ2
,

hence, from (17) and (44)

Eθ,γ (Z1T ) = Eθ,γ [T Eθ,γ (Z1|T )]
= 1√

λ2n

{
Eθ,γ [u(X(1))T ] + (n − 1)Eθ,γ (λ̂1T )

}

−
√

n

λ2
λ1

{
1

k
+ A(θ, γ )

n
+ O

(
1

n2

)}
, (45)

where k = k(θ, γ ). Since, by the Taylor expansion

u(X(1)) = u(γ ) + u′(γ )

n
T + u′′(γ )

2n2
T 2 + Op

(
1

n3

)
,

λ̂1 = λ(θ, X(1)) = λ1(θ, γ ) + 1

n

{
∂

∂γ
λ1(θ, γ )

}
T

+ 1

2n2

{
∂2

∂γ 2 λ1(θ, γ )

}
T 2 + Op

(
1

n3

)
,

it follows from (17) that

Eθ,γ

[
u(X(1))T

] = u(γ )

k
+ 1

n

{
Au(γ ) + 2u′(γ )

k2

}
+ O

(
1

n2

)
, (46)

Eθ,γ (λ̂1T ) = λ1

k
+ 1

n

{
λ1A + 2

k2

(
∂λ1

∂γ

)}
+ O

(
1

n2

)
, (47)

where k = k(θ, γ ), A = A(θ, γ ) and λ1 = λ1(θ, γ ). From (45), (46) and (47), we
obtain (18).

123



488 M. Akahira

The proof of Lemma 3 First, we have

Eθ,γ (Z2
1 |T ) = Eθ,γ

⎡
⎣ 1

λ2n

{
n∑

i=1

(u(Xi ) − λ1)

}2 ∣∣∣ T
⎤
⎦

= 1

λ2n

{
u(X(1)) − λ1

}2
+ 2

λ2n

{
u(X(1)) − λ1

} n∑
i=2

Eθ,γ [u(Yi ) − λ1|T ]

+ 1

λ2n

n∑
i=2

Eθ,γ

[
{u(Yi ) − λ1}2 |T

]

+ 1

λ2n

∑∑
i �= j

2≤i, j≤n

Eθ,γ

[{u(Yi ) − λ1}
{
u(Y j ) − λ1

} | T ]. (48)

For 2 ≤ i ≤ n, we have

Eθ,γ [u(Yi ) − λ1|T ] = Eθ,γ [u(Yi )|T ] − λ1 = λ1(θ, X(1)) − λ1(θ, γ )

=
(

∂λ1

∂γ

)
T

n
+ Op

(
1

n2

)
= Op

(
1

n

)
, (49)

and for i �= j and 2 ≤ i, j ≤ n

Eθ,γ

[{u(Yi ) − λ1}
{
u(Y j ) − λ1

} |T ]
= Eθ,γ [u(Yi ) − λ1 | T ] Eθ,γ

[
u(Y j ) − λ1|T

]
=

(
∂λ1

∂γ

)2 T 2

n2
+ Op

(
1

n3

)
= Op

(
1

n2

)
. (50)

Since, for i = 2, . . . , n

Eθ,γ [u2(Yi )|T ] =
∫ d

X(1)

u2(y)
a(y)eθu(y)

b(θ, X(1))
dy

= 1

b(θ, X(1))

∂2

∂θ2
b(θ, X(1))

= λ21(θ, X(1)) + λ2(θ, X(1))

= λ̂1
2 + λ̂2,
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where λ̂i = λi (θ, X(1)) (i = 1, 2), we have for i = 2, . . . , n

Eθ,γ

[
{u(Yi ) − λ1}2 |T

]
= Eθ,γ [u2(Yi )|T ] − 2λ1Eθ,γ [u(Yi )|T ] + λ21

= λ̂1
2 + λ̂2 − 2λ1λ̂1 + λ21

= λ2 + 1

n

(
∂λ2

∂γ

)
T + Op

(
1

n2

)
= λ2 + Op

(
1

n

)
. (51)

From (48), (49), (50) and (51), we obtain

Eθ,γ (Z2
1 |T ) = 1

λ2n

{
u(X(1)) − λ1

}2
+ 2

λ2

{
u(X(1)) − λ1

}(
1 − 1

n

){
Op

(
1

n

)}

+ 1

λ2

(
1 − 1

n

){
λ2 + Op

(
1

n

)}

+ n

λ2

(
1 − 1

n

)(
1 − 2

n

){
Op

(
1

n2

)}

= 1 + Op

(
1

n

)
,

hence, by (17)

Eθ,γ (Z2
1T ) = Eθ,γ [T Eθ,γ (Z2

1 |T )] = Eθ,γ (T ) + O

(
1

n

)
= 1

k
+ O

(
1

n

)
.

Thus we get (19).
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