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Abstract Kullback–Leibler divergence is minimized among finite distributions with
finite state spaces under various constraints of Shannon entropy. Minimization is
closely linked to escort distributions whose main properties related to entropy are
proven. This allows a large deviations principle to be stated for the sequence of plug-in
empirical estimators of Shannon entropy of any finite distributions. Since no closed-
form expression of the rate function can be obtained, an explicit approximating func-
tion is constructed. This approximation is accurate enough to provide good results in
all applications. Tests of entropy level, using both the large deviations principle and
the minimization results, are constructed and shown to have a good behavior in terms
of errors.
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1 Introduction

The concept of entropy has been introduced in the field of probability by Shannon
(1948) through defining
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440 V. Girardin, P. Regnault

S(P) = −
∑

i∈E
P(i) log P(i),

for any P belonging to the set D of all probability distributions on a finite set E , with
the convention 0 log 0 = 0. We will set E = {0, . . . , N } = [[0, N ]], only for the sake
of simplicity.

Kullback and Leibler (1951) introduced the Kullback–Leibler divergence (KL-
divergence) of a distribution Q relative to another P as

K(Q|P) =
∑

i∈E
Q(i) log

Q(i)

P(i)

with the conventions 0 log(0/a) = 0 for 0 ≤ a ≤ 1 and a log(a/0) = +∞, for
0 < a ≤ 1. KL-divergence appears throughK(P|U ) = S(U )−S(P) as a measure of
variation of information from U to P , where U is the uniform distribution on E . See
Cover and Thomas (1991) for a detailed study of Shannon entropy, KL-divergence,
and their fields of application.

The need to minimize the KL-divergence under constraints arises in numerous
applications. Linear constraints on Q are classical; see Csiszár (1975) and the refer-
ences therein. Further, in thermodynamics, the equilibrium distribution of a system
maximizes the entropy, or in other words minimizes the KL-divergence with respect
to the uniform distribution, subject to a given average energy level. In parametric sta-
tistics, the maximum likelihood estimator of the parameter is the minimizer of the
KL-divergence of the empirical distribution with respect to the parametric distribu-
tion. We are here interested in highly non-linear entropic constraints. Precisely, we
will minimize K(Q|P), first subject to S(Q) = s0, then to S(P) = s1, and finally
determine the minimum under both constraints, that is

inf
P∈Ss1

inf
Q∈Ss0

K(Q|P) = K(Ss0 |Ss1), (1)

where Ss = S
−1({s}) = {P ∈ D : S(P) = s}. The minimization process will use

the Lagrange multipliers method and also rely on concepts of information geometry.
Indeed, K(Ss0 |Ss1) appears as the KL-divergence between entropic spheres Ss0 and
Ss1 in information geometry. So doing, an explicit expression will be obtained for
K(Ss0 |Ss1); originally requiring minimization with respect to (|E | − 1)2 variables, it
will be shown to amount to the numerical determination of only two parameters.

The concept of information geometry is associated to the Riemannian manifold
structure induced by the KL-divergence on D. Its metric is Fisher information. The
families of escort distributions defined by

Ek
P (i) = P(i)k∑

j∈E P( j)k
, i ∈ E, (2)

where P ∈ D and k ∈ R
∗ = R\{0}, play a prominent part in the field: they constitute

the geodesics of information geometry with respect to an affine connection naturally

123



Escort distributions minimizing KL-divergence, LDP and tests 441

induced by the KL-divergence; see Amari andNagaoka (2000), Sgarro (1978), Csiszár
(1975), Regnault (2011). They also provide a tool for zooming at different parts of P ,
or for adapting P to constraints through their ability to scan its structure. Initially intro-
duced in Beck and Schlogl (1993), their general properties linked to Tsallis entropy
are proven in Tsallis (2009). Motivated by the applications to follow, first we will
establish many of their entropic properties.

The KL-divergence is naturally involved in large deviations principles; see Dembo
and Zeitouni (1998), Ellis (1985), Csiszár and Shieds (2004). We will establish, study
and apply a large deviations principle (LDP) for the sequence of plug-in estimators
Ŝn = S(P̂n) of S(P) based on the empirical distribution P̂n of an n-sample of a finite
distribution P . The rate function IS involved in the LDP will be shown to depend
on the number m of modes of P; precisely, s �→ IS(s, P) is equal to K(Ek

P |P) for
k > 0 such that S(Ek

P ) = s when s ≥ m, and otherwise to −s − log p, where p is the
modes’ weight of P . Since no closed-form expression is available for k as a function
of the entropy level s, as an alternative, we will build an approximation IM converging
uniformly to IS and valid for all values of s. The original rate function can be replaced
by its approximation in all applications involving the LDP, without significative loss
of accuracy.

Finally, we will develop one of the numerous applications of LDP, to tests of
entropy level. In data compression and coding theory, bounds on entropy level arewell-
known basic tools; see Cover and Thomas (1991). In goodness-of-fit theory, a test of
entropy level of an independent and identically distributed (i.i.d.) sample constitutes
a first approach to decide if it comes from such or such distribution; see Girardin
and Lequesne (2013) and the references therein. Accordingly, we will consider the
following tests of entropy level:

H0 : “S(P) = s0” against H1 : “S(P) = s1”, (3)

H0 : “S(P) = s0” against H1 : “S(P) 	= s0”, (4)

H0 : “S(P) = s0” against H1 : “S(P) < s0”. (5)

The statistics for all above tests strongly rely on both the LDP and the KL-divergence
between entropic spheres. First, a rejection regionwill be obtained for both tests (3) and
(4) by assuming that K(SŜn |Ss0) is greater than a threshold depending on the number
n of observations. The error of the first kind will be shown to decrease linearly with n
while the error of the second kind decreases exponentially fast with K(Ss0 |Ss1). The
procedure is similar for Test (5). Examples will be given for Test (3) with different
entropy level alternatives. The test of uniformity, equivalent to Test (5) with s0 equal
to the entropy of the uniform distribution, will also be illustrated.

The paper is organized as follows. In Sect. 2, the KL-divergence is minimized,
after the main properties of escort distributions linked to entropy have been stated. In
Sect. 3.1, the LDP based on the minimization of KL-divergence by escort distributions
is proven to hold, after the asymptotic properties of the estimators of entropy have been
recalled; the explicit approximation of the rate function is built in Sect. 3.2. Finally,
in Sect. 4, tests of entropy levels are constructed and illustrated, using both the LDP
and the double minimization of the KL-divergence.
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2 Escort distributions and minimization of the KL-divergence

This section mainly aims at obtaining andmaking explicit in Sect. 2.3 the double mini-
mum (1). First, we will establish new properties of the escort distributions in Sect. 2.1,
both interesting in themselves and necessary to prove the results to follow. Then, in
Sect. 2.2, we will determine the minimum under each of the two constraints, sepa-
rately. Escort distributions of P will appear in minimizing K(Q|P) under constraint
S(Q) = s. The minimum of K(Q|P) under constraint S(P) = s will be shown to be
obtained for an implicit function of Q. Both this function and escort distributions will
play a crucial role in the double minimization.

The setD is identified to the simplex {(p1, . . . , pN ) ∈ R
N+ :∑N

i=1 pi ≤ 1} of RN .
Any topological or differential property is thus related to the classical normed vector
space structure on R

N . In particular, the interior of D is the set D◦ = {P ∈ D : ∀i ∈
E, P(i) > 0} of all distributions supported by E . Since

∑N
i=0 P(i) = 1, the entropy

S(P) of any P ∈ D◦ is an explicit smooth function of P ′ = (P(1), . . . , P(N )), in
mathematical words

S(P) = −
N∑

i=1

P(i) log P(i) −
[
1 −

N∑

i=1

P(i)

]
log

[
1 −

N∑

i=1

P(i)

]
= S(P ′). (6)

Still, in order to simplify notation, we will keep on denoting S(P ′) by S(P) when
no confusion can ensue; for instance, differentiating S with respect to P will mean
differentiating S with respect to P ′, with partial derivatives ∂

∂P(i)S(P) = ∂
∂P(i) S(P ′)

for i ∈ [[1, N ]].
The following lemma constitutes a basic tool which will be of use many times

below.

Lemma 1 Let P ∈ D have m modes. Then S(P) ∈ [logm, log ν], where ν is the
cardinal of the support of P.

Proof Let p denote the weight of the modes of P . Let Pm ∈ D have the same modes
and only one other non-zero weight, necessarily 1 − mp. One of the basic properties
of Shannon entropy says that S(P) ≥ S(Pm); see, e.g., Girardin and Limnios (2014).

Differentiating S(Pm) = −mp log p − (1 − mp) log(1 − mp) with respect to p
shows that the function is decreasing on [1/(m + 1), 1/m[. Its infimum is logm,
obtained when p tends to 1/m.

Clearly, themaximumvalue of S(P) is log ν, the entropy of the uniform distribution
U on [[0, ν − 1]]. 
�

2.1 Properties of the escort distributions and their entropy

The ultimate goal of this part is to show that the entropy of an escort distribution
is a bijective function of its parameter. For any non-uniform fixed P ∈ D◦, let sP
be defined on R

∗ by sP (k) = S(Ek
P ). The properties stated in Proposition 1 will

specifically allow us to prove in Proposition 2 that sP restricted to eitherR∗+ orR∗− is an
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Fig. 1 Left escort families ofD for E = {0, 1, 2}.Right distributions with N = 2modes (dashed lines) and
with 1 mode and N = 2 equal weights (plain lines); the center isU and the submits are Dirac distributions

invertible function. Further, the inequalities established inProposition 3 are analogue in
information geometry to the classical Pythagorean inequalities in Euclidean geometry.

For the sake of simplicity, we will state all results for k ∈ R
∗+ – from which

symmetric properties can be deduced for k ∈ R
∗−. Also, all results will be stated for

P ∈ D◦, essentially for differentiability purpose. Actually, they also apply to any
distribution P in the border ∂D = {P ∈ D : ∃i ∈ E, P(i) = 0} of D, by restricting
the metric to the set of probability distributions with the same support as P .

Additional notationwill be of use in the following.LetE be the escort transformation
defined on D × R

∗ by E(P, k) = Ek
P , where Ek

P (i) is given in (2). Clearly, E is
continuous on D ×R

∗ and continuously differentiable on D◦ ×R
∗. For any P ∈ D◦,

let the partial derivatives of E with respect to k ∈ R
∗ be denoted by ∂kEk

P and with
respect to P(i), for i ∈ [[1, N ]], by ∂

∂P(i)E(P, k).

Illustration 1 For E = {0, 1, 2}, the set D is identified to an equilateral triangle in
Fig. 1. The uniform distribution U is the centre of the triangle and the Dirac distrib-
utions are its summits. The families of escort distributions are represented by dashed
curves on the left. The escort distributions with N = 2 equal weights are segments
represented on the right; they will play a special role below in the determination of
the KL-divergence between spheres.

Note that Fig. 1 and all figures below have been generated with a computer algebra
system, so represent the true shapes of escort families and entropy level sets.

First, the escort transformation constitutes a scanning tool on the original distribu-
tion, and does not modify the ordering of weights for k > 0. In particular, the set of
modes

M =
{
i ∈ E : P(i) = max

j∈E P( j) = p

}
,

with cardinal m, is an invariant of the transformation. For m = N + 1, it yields that
for any k > 0, E(U, k) = U .

Proposition 1 Let P ∈ D◦ have m modes.

1. For 0 < k < 1, the escort transformation makes the distribution more uniform,
whereas for k > 1, it concentrates weight on the modes. Asymptotically:
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a. The escort distribution Ek
P converges to the uniform distribution as k tends to

0+;
b. Ek

P converges to
∑

i∈M δi/m as k tends to infinity, where δi is the Dirac
measure at i .

2. Both the escort transformation and its derivative with respect to k ∈ R
∗+ preserve

the weight ordering. Precisely:
a. If P(i) > P( j), then Ek

P (i) > Ek
P ( j) and ∂kEk

P (i) > ∂kEk
P ( j), while if P(i) =

P( j), then Ek
P (i) = Ek

P ( j) and ∂kEk
P (i) = ∂kEk

P ( j).
b. For P 	= U, if i∗ ∈ M and i∗ ∈ E are such that P(i∗) = mini∈E P(i), then

∂kEk
P (i∗) > 0 and ∂kEk

P (i∗) < 0.

Proof 1. a. Since P( j) ∈]0, 1[ for all j ∈ E , clearly P( j)k converges to 1 as k tends
to 0. Thus,

�(k) =
∑

j∈E
P( j)k (7)

converges to N + 1 while Ek
P (i) = P(i)k/�(k) converges to 1/(N + 1).

1. b. We compute

Ek
P (i) = P(i)k

�(k)
= P(i)k/pk∑

j∈E P( j)/pk
= [P(i)/p]k

m +∑ j /∈M[P( j)/p]k .

If i /∈ M, then [P(i)/p]k converges to 0, whereas P(i)/p = 1 for i ∈ M. Hence
Ek
P (i) tends to 1/m if i ∈ M and to 0 otherwise.
2. a. If P(i) > P( j) > 0, then P(i)k > P( j)k > 0 and hence Ek

P (i) > Ek
P ( j).

Moreover,

∂kEk
P (i) = P(i)k

[�(k)]2
∑

l∈E
P(l)k log

[
P(i)

P(l)

]

>
P( j)k

[�(k)]2
∑

l∈E
P(l)k log

[
P( j)

P(l)

]
= ∂kEk

P ( j).

The same arguments apply to prove the second part of the assertion.
2. b. If ∂kEk

P (i∗)was negative, then, according to Point 2. a., ∂kEk
P (i)would also be

negative for all i ∈ E . But, since
∑

i∈E Ek
P (i) = 1, we know that

∑
i∈E ∂kEk

P (i) = 0.
Therefore, ∂kEk

P (i) would be null for all i ∈ E and all k > 0, so that Ek
P = P , which

is impossible since P is neither a uniform nor a Dirac distribution.
The proof for the minimum is similar. 
�
Now we can prove that sP is bijective from R

∗+ to ] log(m), log(N + 1)[. Note that
it can similarly be proven to be bijective from R

∗− to ] log(m), log(N + 1)[.
Proposition 2 Let P ∈ D◦ have m modes, with m 	= N + 1. The function sP defined
on R

∗+ by sP (k) = S(Ek
P ) is a bijection from R

∗+ to ] log(m), log(N + 1)[. Precisely,
sP is twice continuously differentiable on R∗+ with a negative derivative.

123



Escort distributions minimizing KL-divergence, LDP and tests 445

Proof First, sP is clearly infinitely continuously differentiable on R
∗+. Its derivative,

obtained by the chain rule, is

s′P (k) = −
N∑

i=1

∂kEk
P (i) log

[
Ek
P (i)

Ek
P (0)

]
, k ∈ R

∗+. (8)

Let us order the elements of E according to their weights and hence suppose that
P(0) ≥ P(1) ≥ · · · ≥ P(N ). Thanks to Point 1. a. of Proposition 1, Ek

P (0) ≥ · · · ≥
Ek
P (N ) and ∂kEk

P (0) ≥ · · · ≥ ∂kEk
P (N ). Thanks to Point 2., ∂kEk

P (0) > 0 > ∂kEk
P (N ),

so that for all k > 0, some j ∈ E exists such that ∂kEk
P ( j) ≥ 0 > ∂kEk

P ( j + 1). Since
x �→ − log x is a decreasing function, we get

max
i∈[[1, j]] − log

[
Ek
P (i)

Ek
P (0)

]
= − log

[
Ek
P ( j)

Ek
P (0)

]
,

min
i∈[[ j+1,...,N ]] − log

[
Ek
P (i)

Ek
P (0)

]
= − log

[
Ek
P ( j + 1)

Ek
P (0)

]
.

Cutting the sum in (8) into two sums thus yields

s′P (k) ≤ − log

[
Ek
P ( j)

Ek
P (0)

] j∑

i=1

∂kEk
P (i) − log

[
Ek
P ( j + 1)

Ek
P (0)

]
N∑

i= j+1

∂kEk
P (i),

where the sum from 1 to j is empty if j = 0. Since
∑

i∈E Ek
P (i) = 1, we have

∑N
i= j+1 ∂kEk

P (i) = −∑ j
i=1 ∂kEk

P (i) − ∂kEk
P (0), and hence

s′P (k) ≤ log

[
Ek
P ( j)

Ek
P ( j + 1)

]
N∑

i= j+1

∂kEk
P (i) + log

[
Ek
P ( j)

Ek
P (0)

]
∂kEk

P (0)

≤ log

[
Ek
P ( j)

Ek
P ( j + 1)

]
N∑

i= j+1

∂kEk
P (i).

Since Ek
P ( j) ≥ Ek

P ( j + 1), the derivative s′P (k) is negative. Moreover, the three above
inequalities are strict ones as soon as some i ∈ E exists such that P(i) 	= P(i + 1),
that is for any non-uniform P .

Now, let P have m modes. Thanks to Point 2. of Proposition 1, Ek
P has m modes

too, and hence, thanks to Lemma 1, the minimum value of S(Ek
P ) is logm again. 
�

Finally, the sign ofK(Ek
P |U ) +K(U |P) −K(Ek

P |P), for k ∈ R, is given in Propo-
sition 3, depending on the respective positions of P , Ek

P and U .
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Fig. 2 Positions of a
distribution P and two of its

escorts, Q = Ek+
P with k+ > 0

and R = Ek−
P with k− < 0, with

respect to U

Proposition 3 Let P ∈ D and let Ek
P for k ∈ R be its escort distributions. Then

K(Ek
P |U ) + K(U |P) ≤ K(Ek

P |P), k < 0, (9)

K(Ek
P |U ) + K(U |P) ≥ K(Ek

P |P), k > 0, (10)

where U denotes the uniform distribution on E = [[0, N ]].
Proof We compute

K(Ek
P |P) − K(U |P) − K(Ek

P |U ) = −
N∑

i=0

Ek
P (i) log P(i) +

N∑

i=0

1

N + 1
log P(i).

Let us set f (k) =∑i∈E Ek
P (i) log P(i) = �′(k)/�(k), where �(k) is defined in (7).

In dynamical systems theory, this normalizing function� is called the Dirichlet series
of fundamental measures of depth 1; see Vallée (2001). Cauchy–Schwarz inequality
says that� is log-convex. In particular, log�(k+h)+log�(k−h)−2 log�(k) ≥ 0 for
all h ≥ 0.Making h tend to 0,we get that [log�(k+h)+log�(k−h)−2 log�(k)]/h2
converges to (log�)′′(k) = f ′(k), which shows that f ′ is non-negative. There-
fore, f is an increasing function on both R

∗− and R
∗+ so that limk→0 f (k) =∑

i∈E [log P(i)]/(N + 1) is its supremum value for k ∈ R− and its infimum value for
k ∈ R+. Both (9) and (10) are proven. 
�
Illustration 2 Figure 2 shows the positions of a three-state distribution P and two
of its escort distributions, Q = Ek+

P with k+ > 0 and R = Ek−
P with k− < 0, with

respect to U . The analogy between the inequalities of Proposition 3 in information
geometry and the classical Pythagorean inequalities in Euclidean geometry is thus
illustrated, through the interpretation of the families of escort distributions as segments;
see Regnault (2011) for details.

2.2 Minimum of K(Q|P) with either P or Q fixed

On the one hand, minimizing K(Q|P) with fixed P , based on the properties proven
in Sect. 2.1, will highlight the role of escort distributions in information geometry. On
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the other hand, minimizing K(Q|P) with fixed Q will be performed only as much as
used in the double minimization to come in Sect. 2.3.

Even if the KL-divergence is not a distance by lack of symmetry and triangular
inequality, projection can nevertheless be considered; see Csiszár (1975), Amari and
Nagaoka (2000). The escort distributions of any P ∈ D will be proven to be its
projections on the spheres centred at the distributionU uniform on E ; in mathematical
words,

K(Ek
P |P) = inf {K(Q|P) : Q ∈ D such that K(Q|U ) = log(N + 1) − s} ,

for k > 0 such that S(Ek
P ) = s, provided that s > logm, where m is the number of

modes of P . This was first stated in Sgarro (1978), then in theory of tests by Cover
and Thomas (1991) Section 12.7, page 309, in large deviations theory by Dembo and
Zeitouni (1998) Exercice 3.4.14 , and also in relation to Tsallis entropy by Bercher
(2009). Unfortunately, the Lagrangemultipliers method used by all above authors fails
to yield the projection of distributions when s ≤ logm. Indeed, this method provides
local extrema only over an open set of values, hereD◦ for s > logm, while form > 1
and s ≤ logm, the infimum is achieved on ∂D. The following result takes all cases
into account.

Theorem 1 Let P ∈ D have m modes with weight p. Let ν be the cardinal of its
support. Let s ∈ R+ and Ss = {Q ∈ D : S(Q) = s}. Then

inf
Q∈Ss

K(Q|P) =
−s − log p if 0 ≤ s ≤ logm, (11)

K(Ek
P |P) if logm < s ≤ log ν, (12)

+∞ if log ν < s,

where Ek
P is the escort distribution of P such that S(Ek

P ) = s with k > 0.

Proof In order to simplify notation,wewill give the proof for P ∈ D◦, that is supported
by E ; it applies to any P ∈ ∂D, by replacing E by the support EP of P and N + 1
by the cardinal ν of EP . Indeed, the support of any Q ∈ Ss achieving the infimum of
K(Q|P) is included in EP since otherwiseK(Q|P) is infinite, so that all the arguments
developed below easily transpose to the set of distributions supported by EP .

We can assume without loss of generality that the m modes of P ∈ D◦
are at 0, . . . ,m − 1. Let Q be any distribution in Ss . Since K(Q|P) = −s −∑

i∈E Q(i) log P(i), where s is known, the quantity to be minimized is the average
of the quantities − log P(i) weighted by Q, that is

−
N∑

i=0

Q(i) log P(i) = − log p
m−1∑

i=0

Q(i) −
N∑

i=m

Q(i) log P(i).

The infimum is achieved at the distribution Q favoring the smallest of them, that is
− log p. Hence, any Q such that Q(m) = · · · = Q(N ) = 0 is a solution, provided
that S(Q) = s.
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If s ≤ logm, such distributions do exist, so that

inf
Q∈Ss

−
∑

i∈E
Q(i) log P(i) = − log p,

and hence the searched minimum is −s − log p.
If s > logm, the infimum cannot be achieved in this way. Let us use the

Lagrange multipliers method. The constraints are
∑

i∈E Q(i) = 1 and S(Q) =
−∑i∈E Q(i) log Q(i) = s. Differentiating the Lagrangian

−
∑

i∈E
Q(i) log P(i) − η

∑

i∈E
Q(i) log Q(i) − μ

∑

i∈E
Q(i)

with respect to Q(i) yields− log P(i)−η[log Q(i)+1]−μ = 0, fromwhich it follows
that the infimum takes the form Qmin(i) = CP(i)k, for i ∈ E . Since

∑
i∈E Qmin(i) =

1, we get C = 1/
∑

j∈E P( j)k , and hence Qmin is an escort distribution of P .

Finally, let k′ < 0 < k be the two real numbers such that S(Ek′
P ) = S(Ek

P ) = s (see

Proposition 2). We have K(Ek′
P |U ) = S(U ) − s = K(Ek

P |U ), and hence we get from
Proposition 3 that

K

(
Ek
P |P
)

≤ S(U ) − s + K(U |P) ≤ K

(
Ek′
P |P
)

,

which proves that the minimum is obtained for k > 0. 
�
As shown by Illustration 3, Theorem 1 is strongly related to a vector space structure

on D◦, introduced by Sgarro (1978) and detailed in Regnault (2011). Indeed, D◦
equipped with the operations

P ⊕ Q(i) = P(i)Q(i)∑
j∈E P( j)Q( j)

and k � P(i) = Ek
P (i), i ∈ E, (13)

is an N -dimensional vector space, on which the KL-divergence behaves similarly to
the square of the distance induced by a norm.

Illustration 3 In Fig. 3, plain lines represent entropy level sets Ss , for s > log 2 on
the left and s < log 2 on the right. Dashed lines are the segments with respect to the
vector space structure (13)—or geodesics in information geometry, equal to the sets
of all escort distributions of given distributions.

Two distributions, P1 with one mode, and P2 with two modes, are shown together
with their respective projections on Ss . For P1, the infimum K(Ss |P1) is achieved in
D◦, whatever be the entropy level s. For P2, the infimum K(Ss |P2) is also achieved
in D◦ when s > log 2, but in ∂D when s ≤ log 2 since in this case P2 has no escort
distribution in Ss .

Let us now state a necessary condition for a distribution P̃ ∈ D to achieve the
infimumofK(Q|P)withQ fixed, subject to an entropic level constraint. In information
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s ∈] log 2, log 3[ s ∈]0, log 2[

Fig. 3 Respective positions of P1 with one mode, and P2 with two modes, and their projections on Ss
(plain line): Q1 = Ek

P1
∈ D◦ for P1, and Q2 = Ek

P2
∈ D◦ when s > log 2 (left), and Q2 ∈ ∂D when

s ≤ log 2 (right) for P2

geometry, P̃ appears while projecting Q on a Shannon entropic sphere centred at U ,
through

K(Q|P̃) = inf
{
K(Q|P) : P ∈ D such that K(P|U ) = log(N + 1) − s

}
.

Proposition 4 For any Q ∈ D and any s ∈]0, log(N + 1)[, distributions P̃ ∈ Ss =
{P ∈ D : S(P) = s} exist such that

inf
P∈Ss

K(Q|P) = K(Q|P̃).

Moreover, they satisfy

− η P̃(i) log P̃(i) + (1 − ηs)P̃(i) = Q(i), i ∈ E, (14)

where η is such that P̃ ∈ Ss .

Proof Again, we will give the proof for Q ∈ D◦; it extends to any Q ∈ ∂D by
replacing E by the support of Q.

First, since distributions P do exist for which K(Q|P) is finite, the infimum is
finite. This minimum is obtained at some P̃ ∈ D◦, because K(Q|P) is infinite for all
P ∈ ∂D.

Then (14) is a direct application of the Lagrange multipliers method. Indeed,
since K(Q|P) = ∑i∈E Q(i) log Q(i) − ∑i∈E Q(i) log P(i), differentiating the
Lagrangian

−
∑

i∈E
Q(i) log P(i) − η

∑

i∈E
P(i) log P(i) − μ

∑

i∈E
P(i)
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with respect to P(i) yields − Q(i)
P(i) − η(log P(i) + 1) − μ = 0, for i ∈ E, or

Q(i) = −ηP(i) log P(i) − (η + μ)P(i).

Furthermore,

∑

i∈E
Q(i) = −η

∑

i∈E
P(i) log P(i) − (η + μ)

∑

i∈E
P(i),

from which it follows that −(η + μ) = 1 − ηs, and finally (14). 
�
Note that Amari and Nagaoka (2000) Corollary 3.11 provides the projection of Q

on Burg entropic spheres, that is

inf
{
K(Q|P) : P ∈ D such that −

∑

i∈E
log P(i) = c

}
= K(Q|(1 − t)U + t Q),

for t > 0 such that −∑i∈E log((1 − t)U + t Q) = c.

2.3 Double minimization of K(Q|P)

The aim of this section is to determine the KL-divergence K(Ss0 |Ss1) defined in (1).
To the best of our knowledge, this quantity has never been fully explicited, even if
its existence has been proven, for example in Udrişte (1994). The most natural way
would be, using either Theorem 1 or Proposition 4, to minimize, through the Lagrange
multipliers method, either K(Q|P̃) for Q ∈ Ss0 , or both K(Ek

P |P) and −s0 − log p
for P ∈ Ss1 . Unfortunately, since no closed-form expressions are available for k and
η, the related equations lead to nowhere.

For a better understanding of the geometric arguments that will be involved, let us
look closely at the shapes and relative positions of the entropic spheres Ss0 and Ss1
for (s0, s1) ∈]0, log(N + 1)[2. As usual, Fig. 4 provides illustration for the three-state
case.

Let us set
ml = max{m ≤ N : sl > logm}, for l = 0, 1. (15)

First, the nature of Ssl ∩ ∂D depends on ml . If ml = N , then Ssl ⊂ D◦, whereas if
ml ≤ N − 1, the intersection of Ssl with each face of the simplex D is an entropic
sphere of this face. Lemma 1 states that all P ∈ Ssl have at most ml modes. Further,
since the minimum ofK(Q|P) subject to S(Q) = s0 depends on the number of modes
of P , the double minimum highly depends on whether the entropic constraints allow
the existence of P with severalmodes or not. It also depends on the respective positions
of the spheres. If either s0 > s1 (Cases 1 to 3 of Fig. 4) or s0 < s1 andm0 = m1 (Cases
4 and 5), then for all P ∈ Ss1 , some k exists such that Ek

P ∈ Ss0 . Otherwise m0 < m1
(Case 6), and P ∈ Ss1 with more than m0 modes exists, with no escort distributions
in Ss0 ; this will appear as a particular case in the proof of Theorem 2 below.
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1. log 2 < s1 < s0 < log 3

2. 0 < s1 < s0 < log 2

3. 0 < s1 < log 2 < s0

4. log 2 < s0 < s1 < log 3

5. 0 < s0 < s1 < log 2

6. 0 < s0 < log 2 < s1

Fig. 4 Respective positions and forms of entropic spheres Ss0 and Ss1 for s0 > s1 (left), and s0 < s1
(right), with |E | = 3. Cases 1–5 the distance between any P and Ss0 is obtained at one escort of P . Case
6 (s0 < s1 and m0 < m1, with m0 and m1 defined by (15)): the distance between P2 with 2 modes and
Ss0 is obtained at Q2 = Pmin

2 on the border of Ss0

The distributions Pν
m ∈ D, with m modes and ν − m non-zero equal weights, will

play a prominent role in that proof, especially for ν = N + 1 and m = 1. In this aim,
let us define for (ν, p) ∈ [m, N + 1] × [1/(N + 1), 1/m],
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ϕm(ν, p) = −mp log p − (1 − mp) log
1 − mp

ν − m
, (16)

with ϕm(m, 1/m) = logm. Note that ϕm(ν, p) = S(Pν
m) for ν ∈ [[m + 1, N ]].

Basic arguments on entropy show that for all ν, the partial function ϕm(ν, ·) is
decreasing and bijective from [1/ν, 1/m] onto [logm, log ν]. Letψm(ν, ·) be its recip-
rocal; for any s ∈ [logm, log ν], the quantities ψm(ν, s) are the modes’ weights of
the distributions Pν

m such that S(Pν
m) = s. Their determination will be of fundamental

importance in the expression of K(Ss0 |Ss1). Since no closed-form expression can be
obtained for the function ψm , this will finally involve a numerical procedure. The
following technical results will be also of use.

Lemma 2 For m ∈ [[1, N ]], ν ∈ [m + 1, N ] and s ∈ [logm, log ν], let ψm be
the reciprocal of ϕm(ν, ·) defined by (16). Then ψm(ν, s) < ψm(N + 1, s) and
− logψm(ν, s) < s.

Proof Note that ν = m = 1/p if and only if es = m ∈ [[1, N ]]; otherwise ν > m.
First, due to the implicit function theorem, the differential of ψm(ν, s) with respect

to ν is

∂

∂ν
ψm(ν, s)=−

[
∂

∂p
ϕm(ν, p)

]−1
∂

∂ν
ϕm(ν, p)=−

[
m log

(1 − mp)

(ν − m)p

]−1 1 − mp

ν − m
,

and hence ∂
∂ν

ψm(ν, s) > 0, so that ψm(ν, s) is increasing in ν. In particular,
ψm(ν, s) ≤ ψm(N + 1, s), with equality if and only if ν = N + 1.

For proving the second inequality, let us study the function f ν
m definedon [1/ν, 1/m]

by f ν
m(p) = − log p − ϕm(ν, p). For p ∈]1/ν, 1/m[, we compute

( f ν
m)′(p) = − 1

p
+ m log

ν − m
1
p − m

and ( f ν
m)′′(p) = 1

p2
+ m

p(1 − mp)
> 0,

with ( f ν
m)′(1/ν) = −ν and ( f ν

m)′(p) tending to infinity when p tends to 1/m. Since
f ν
m(1/ν) = f ν

m(1/m) = 0, the function f ν
m is negative.

In particular, f ν
m(ψm(ν, s)) = − logψm(ν, s) − s < 0. 
�

We can now state and prove the main result of the section.

Theorem 2 Let s0 	= s1 belong to ]0, log(N +1)[. If es1 /∈ N, then the KL-divergence
between two entropic spheres Ss0 and Ss1 defined in (1) is

K(Ss0 |Ss1) = q∗ log
(
q∗

p∗

)
+ (1 − q∗) log

(
1 − q∗

1 − p∗

)
= K(Q∗|P∗), (17)
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where the distributions P∗ ∈ D◦ and Q∗ ∈ D◦, both with one mode (with respective
weights p∗ and q∗) and N other equal weights, satisfy

S(P∗) = −p∗ log p∗ − (1 − p∗) log 1 − p∗

N
= s1, (18)

S(Q∗) = −q∗ log q∗ − (1 − q∗) log 1 − q∗

N
= s0. (19)

Moreover, K(Ss0 |Ss1) ≤ s1 − s0, with equality if es1 ∈ N.

Note that Q∗ is the escort distribution of P∗ ∈ Ss1 belonging to Ss0 .

Proof The infimum (1) is obviously attained on D2 and hence is non-negative and
finite. Moreover, it is obtained at (P, Q) ∈ D2 such that the support of Q is included
in the support of P , since otherwise K(Q|P) is infinite.

Let us setD−
s0 = {P ∈ D : m ≤ m0}wherem0 is defined in (15), andD+

s0 = D\D−
s0 ,

wherem is the number of modes of P , with weight p. Theorem 1 says that if P ∈ D+
s0

then (11) holds while if P ∈ D−
s0 then (12) holds. Clearly,

K(Ss0 |Ss1) = min

[
inf

P∈Ss1∩D−
s0

inf
Q∈Ss0

K(Q|P), inf
P∈Ss1∩D+

s0

inf
Q∈Ss0

K(Q|P)

]

= min
[
K−,K+] .

If s0 > logm1 (Cases 1 to 5 of Fig. 4), then Ss1 ∩D+
s0 is empty so thatK(Ss0 |Ss1)=

K−, which we will determine later on.
Let us assume that s0 ≤ logm1 (and hence m0 < m1, Case 6). Theorem 1

says that infQ∈Ss0
K(Q|P) = −s − log p, for all P ∈ Ss1 ∩ D+

s0 , so that K+ =
minP∈Ss1∩D+

s0
(−s− log p). Writing Ss1 ∩D+

s0 =⋃N+1
ν=m1+1

⋃ν
m=m0+1 Fν

m, whereFν
m

is the subset of Ss1 ∩D+
s0 of distributions with support of cardinal ν and m modes, we

get

K+ = min
ν∈{m1+1,...,N+1} min

m∈{m0+1,...,ν} min
P∈Fν

m

(−s0 − log p).

For all ν ∈ {m1 +1, . . . , N +1}, minm∈{m0+1,...,ν} minP∈Fν
m
(−s0 − log p) is obtained

when p is maximum. Since p < 1/m, this maximum is obtained whenm is minimum,
that is form = m0+1. Applying the Lagrange multipliers method to the minimization
of − log p subject to

∑

i /∈M
P(i) + (m0 + 1)p = 1 and −

∑

i /∈M
P(i) log P(i) − (m0 + 1)p log p=s1,

where M is the set of modes of P , readily yields that all P(i) for i /∈ M are equal.
Finally, Lemma 2 induces that

K+ = min
ν∈{m1+1,...,N+1} −s0 − ψm0+1(ν, s1) = − logψm0+1(N + 1, s1) − s0. (20)
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Now, let K− be obtained at some (P−, Q−) ∈ D−
s0 × D. We will determine P−

and Q− by taking advantage of the symmetric relation

inf
Q∈Ss0

inf
P∈Ss1∩D−

s0

K(Q|P) = inf
P∈Ss1∩D−

s0

inf
Q∈Ss0

K(Q|P).

On the one hand, Theorem 1 says that some k > 0 exists such that Q− = Ek
P− , with

the same support and number of modes as P−. On the other hand, Proposition 4 says
that some η exists such that Q− = −ηP− log P− + (1 − ηs1)P−. Therefore,

P−(i)k

�(k)
= −ηP−(i) log P−(i) + (1 − ηs1)P

−(i), i ∈ E .

Let us solve the equation xk−1 = �(−η log x −ηs1 +1) in x ∈]0, 1[, for any possible
given values of η ∈ R

∗, k ∈ R
∗+ and � ∈ R

∗+. Setting z = log x + s1 < s1, this
is equivalent to solving in z < s1 the equation e−(k−1)s1e(k−1)z = −�ηz + �. The
intersection between the graph of z → e−(k−1)s1e(k−1)z and the line z → � − �ηz
clearly contains at most two points z < s1.

It contains one point if and only if P− ∈ Ss1 is uniform on its support with cardinal
m1 + 1, and es1 = m1 + 1 ∈ N. ThenK(Q−|P−) = S(P−) − S(Q−) = s1 − s0 ≥ 0,
and hence K(Ss0 |Ss1) = K

− = K
+ = s1 − s0.

Otherwise, it contains two points and the searched distribution P− takes exactly two
values, say P−(i) = pν

m ∈]0, 1[ form indices i and P−(i) = (1−mpν
m)/(ν−m) < pν

m
for the ν − m others, where ν is the cardinal of the support of P−. Hence, P− =
Pν
m for some ν and m. Lemma 2 shows that pν

m is uniquely determined through
pν
m = ψm(ν, s1). Lemma 1 implies that ν ≥ max(m0,m1) + 1 and also that m ≤

min(m0,m1). Therefore,

K− = min
ν

min
m

K(Qν
m |Pν

m),

= min
ν

min
m

[
qν
m log

(
qν
m

pν
m

)
+ (1 − qν

m) log

(
1 − qν

m

1 − pν
m

)]
(21)

where ν ∈ {max(m0,m1) + 1, . . . , N + 1} and m ∈ {1, . . . ,min(m0,m1)}, with Qν
m

denoting the escort distribution of Pν
m with entropy s0, and qν

m = ψm(ν, s0) its modes’
weight. Since ψm is an implicit function, the minimization problem (21) has to be
solved numerically, which induces no computational difficulty. We have implemented
a numerical procedure (available upon request) showing that, for any fixed values
of N and s0 	= s1, we have K(Qν

m |Pν
m) > K(Qν

1|Pν
1 ) > K(QN+1

1 |PN+1
1 ) for all

m ∈ [[2,min(m0,m1)]] and ν ∈ [[max(m0,m1) + 1, N ]]. For illustration, Table 1
comparesK(Qν

m |Pν
m) for allm ∈ [[1,min(m0,m1)]] and Table 2 comparesK(Qν

1|Pν
1 )

for all possible values of ν for N = 4.
Therefore, by setting P∗ = PN+1

1 , Q∗ = QN+1
1 , with q∗ = q1m0

= ψm0(N +1, s0)
and p∗ = p1m1

= ψm1(N + 1, s1), we get that K− = K(Q∗|P∗) in (17).
Again, sinceψm is an implicit function, no closed-form expression can be obtained

for p∗, q∗ and ψm0+1(N + 1, s1). Nevertheless, numerical comparison for any fixed
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Table 1 Comparison of
K(Qν

m |Pν
m ) for different

entropic levels s0 and s1 and
ν = |E | = 5

m0 s0 m1 s1 m K(Qν
m |Pν

m )

2 0.82830 2 0.79451 1 0.000472

2 0.82830 2 0.79451 2 0.001571

2 0.82830 3 1.17053 1 0.052755

2 0.82830 3 1.17053 2 0.082430

2 0.82830 4 1.44208 1 0.220048

2 0.82830 4 1.44208 2 0.273061

3 1.19451 2 0.79451 1 0.080862

3 1.19451 2 0.79451 2 0.207856

3 1.19451 3 1.17053 1 0.000342

3 1.19451 3 1.17053 2 0.000499

3 1.19451 3 1.17053 3 0.001333

3 1.19451 4 1.44208 1 0.052137

3 1.19451 4 1.44208 2 0.063211

3 1.19451 4 1.44208 3 0.082316

4 1.46068 2 0.79451 1 0.297856

4 1.46068 2 0.79451 2 0.687013

4 1.46068 3 1.17053 1 0.073658

4 1.46068 3 1.17053 2 0.104428

4 1.46068 3 1.17053 3 0.220123

4 1.46068 4 1.44208 1 0.000499

4 1.46068 4 1.44208 2 0.000599

4 1.46068 4 1.44208 3 0.000746

4 1.46068 4 1.44208 4 0.001536

values N and s0 	= s1 easily shows that K(Q∗|P∗) ≤ − logψm0+1(N + 1, s1) − s0;
for illustration, Table 3 presents the results for 3 ≤ |E | ≤ 7. In other words, by using
(20), we get K(Ss0 |Ss1) = K− ≤ K+.

Finally, if es1 /∈ N, then K(Q∗|P∗) = s1 − s0 − (q∗ − p∗) log[Np∗/(1 − p∗)].
Since q∗ > p∗ by Proposition 1 and p∗ > (1 − p∗)/N by definition, we get that
K(Q∗|P∗) ≤ s1 − s0. 
�

3 LDP for the sequence of plug-in estimators of entropy

Let (X1, . . . , Xn) be an i.i.d. n-sample of P ∈ D. Since only states with positive
probability can be observed and estimated, we will suppose in the following that
P ∈ D◦. A natural estimator Ŝn of S(P) is obtained by plug-in from the empirical
estimator

P̂n(i) = 1

n

n∑

m=1

1{Xm=i}, i ∈ E, (22)

through
Ŝn = S(P̂n) = S(P̂ ′

n), (23)
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Table 2 Comparison of
K(Qν

1 |Pν
1 ) for different entropic

levels s0 and s1 and ν ≤ |E | = 5

m0 s0 m1 s1 ν K(Qν
1 |Pν

1 )

1 0.231049 1 0.173287 2 0.004300

1 0.231049 1 0.173287 3 0.003032

1 0.231049 1 0.173287 4 0.002595

1 0.231049 1 0.173287 5 0.002357

1 0.231049 2 0.794513 3 0.183667

1 0.231049 2 0.794513 4 0.134231

1 0.231049 2 0.794513 5 0.113772

1 0.231049 3 1.17053 4 0.409901

1 0.231049 3 1.17053 5 0.309968

2 0.828302 1 0.173287 3 0.440681

2 0.828302 1 0.173287 4 0.318929

2 0.828302 1 0.173287 5 0.269408

2 0.828302 2 0.794513 3 0.001131

2 0.828302 2 0.794513 4 0.000620

2 0.828302 2 0.794513 5 0.000472

2 0.828302 3 1.17053 4 0.081904

2 0.828302 3 1.17053 5 0.052755

3 1.19451 1 0.173287 4 0.919693

3 1.19451 1 0.173287 5 0.700784

3 1.19451 2 0.794513 4 0.125149

3 1.19451 2 0.794513 5 0.080862

3 1.19451 3 1.17053 4 0.000689

3 1.19451 3 1.17053 5 0.000342

where P̂ ′
n = (P̂n(1), . . . , P̂n(N )) and S is explicitly defined by (6).

The aim of this section is to state an LDP for the sequence (Ŝn). It will be based
on the minimum of KL-divergence computed in Theorem 1. First, we will recall
the asymptotic properties of (Ŝn). Then, since no closed-form expression of the rate
function is available, we will construct an explicit approximating function.

3.1 The large deviations principle

The plug-in empirical estimator Ŝn of S(P) has been first considered in the 1950s.
Basharin (1959) proves that it is biased, but strongly consistent and asymptotically
normal. As a particular case of a complicated series scheme of observations, Zubkov
(1973) shows asymptotic normality holds only if P is not uniform on E , that is if
entropy is not maximum; see also Harris (1977) and the references therein. Therefore,
we here present the proof of the asymptotic properties of Ŝn only for the uniform
distribution.

Theorem 3 Let P̂n denote the empirical estimator defined in (22) of P ∈ D◦. The
plug-in estimator Ŝn = S(P̂n) is a strongly consistent estimator of the entropy S(P).
Moreover:
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Table 3 K(QN+1
1 |PN+1

1 ) =
K− ≤ K+ =
− logψm0+1(N + 1, s1) − s0
for different values of |E |, s0
and s1

|E | m1 s1 m0 s0 K− K+

3 2 0.82830 1 0.17328 0.244192 0.558585

4 2 0.82830 1 0.17328 0.178434 0.550442

4 3 1.19451 1 0.17328 0.481118 0.953279

4 3 1.19451 2 0.79451 0.112046 0.332052

5 2 0.82830 1 0.17328 0.151577 0.547245

5 3 1.19451 1 0.17328 0.362760 0.947297

5 3 1.19451 2 0.79451 0.071617 0.326071

5 4 1.46068 1 0.17328 0.678375 1.234900

5 4 1.46068 2 0.79451 0.260531 0.613669

5 4 1.46068 3 1.17053 0.072280 0.237650

6 2 0.82830 1 0.17328 0.136195 0.545395

6 3 1.19451 1 0.17328 0.309936 0.944968

6 3 1.19451 2 0.79451 0.056527 0.323741

6 4 1.46068 1 0.17328 0.523632 1.230170

6 4 1.46068 2 0.79451 0.178933 0.608940

6 4 1.46068 3 1.17053 0.043294 0.232921

6 5 1.67021 1 0.17328 0.844839 1.454140

6 5 1.67021 2 0.79451 0.400629 0.832916

6 5 1.67021 3 1.17053 0.178487 0.456896

6 5 1.67021 4 1.44208 0.053203 0.185349

7 2 0.82830 1 0.17328 0.125955 0.544140

7 3 1.19451 1 0.17328 0.278447 0.943624

7 3 1.19451 2 0.79451 0.048375 0.322397

7 4 1.46068 1 0.17328 0.450619 1.228330

7 4 1.46068 2 0.79451 0.144658 0.607107

7 4 1.46068 3 1.17053 0.032876 0.231088

7 5 1.67021 1 0.17328 0.663920 1.450230

7 5 1.67021 2 0.79451 0.287511 0.829005

7 5 1.67021 3 1.17053 0.116686 0.452985

7 5 1.67021 4 1.44208 0.030603 0.181438

7 6 1.84314 1 0.17328 0.988230 1.633750

7 6 1.84314 2 0.79451 0.527289 1.012520

7 6 1.84314 3 1.17053 0.285612 0.636501

7 6 1.84314 4 1.44208 0.135490 0.364953

7 6 1.84314 5 1.65502 0.042044 0.152015

If P is not uniform, then
√
n[Ŝn − S(P)] converges in distribution to a centered

normal distribution with variance

	2
S

=
N∑

i=1

[
log

P(i)

1 −∑N
j=1 P( j)

]2
P(i)[1 − P(i)].
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If P = U is uniform, then 2n[Ŝn − S(U )] converges to∑N
i=1 βi Yi , where the Yi

are i.i.d. χ2(1)-distributed random variables and βi ∈ R for i ∈ [[1, N ]].

Proof When P = U , the asymptotic distribution of 2n[Ŝn − S(U )] derives from the
second-order Taylor expansion of S at U . Indeed,

Ŝn − S(U ) = DS(U )(P̂n −U ) + 1

2

N∑

i=1

N∑

j=1

(
∂2

∂P(i)∂P( j)
S(P)

∣∣∣∣
P=U

×
[
P̂n(i) − 1

N + 1

] [
P̂n( j) − 1

N + 1

])
+ oP(‖P̂n −U‖2).

Since entropy is maximum at U , the differential DS(U ) is null, and we get

2n[Ŝn − S(U )] =
N∑

i=1

N∑

j=1

[
∂2

∂P(i)∂P( j)
S(U )

]
Pn,iPn, j + oP(‖Pn‖2),

where Pn = (Pn,i )i∈[[1,N ]], with Pn,i = √
n[P̂n(i) − 1/(N + 1)].

The covariancematrix ofPn induces a scalar product overRN , while D2
S
(U ) induces

a quadratic form. Hence the simultaneous diagonalization theorem of quadratic forms
applies: a basisB ofRN exists which is orthonormal for the covariance and orthogonal
for the Hessian quadratic form. Let (αi, j )(i, j)∈[[1,N ]]2 denote the change of basis matrix
from the canonicalmatrix toB and let (βi )i∈[[1,N ]] be the diagonal coefficients of D2

S
(U )

in B. Then 2n[Ŝn − S(U )] = ∑N
i=1 βi Z2

i + oP(‖Pn‖2), where Zi = ∑N
j=1 αi, jPn, j

are uncorrelated random variables with variance 1 for all i ∈ [[1, N ]]. Since Pn is
asymptotically a Gaussian vector, each sum

∑N
j=1 αi, jPn j is asymptotically normal

and hence Yi = Z2
i is asymptotically χ2(1)-distributed.

Finally, thanks to Prohorov’s theorem (see, e.g., Van der Vaart 1998), since Pn is
asymptotically Gaussian with zero mean and diagonal variance, ‖Pn‖2 converges in
distribution to a χ2(N )-distribution with oP(‖Pn‖2) = oP(1). The conclusion follows
from Slutsky’s theorem. 
�

The sequence (Ŝn) satisfies an LDP with good rate function depending on the
number of modes of P: it is either the KL-divergence with respect to P of one of
its escort distributions or minus the entropy level minus the logarithm of the modes’
weight.

Theorem 4 Let (Xn)n∈N∗ be a sequence of i.i.d. random variables taking values in a
finite set E, with distribution P ∈ D◦.

The sequence of estimators (Ŝn)n∈N∗ defined in (23) of the entropy S(P) satisfies
the large deviations principle

lim
n→∞

1

n
logP(Ŝn ∈ A) = − inf

s∈A
IS(s, P), (24)
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for all Borel sets A ⊆ [0, log(N +1)]with non-empty interior, with good rate function
IS defined by

IS(s, P) =

⎧
⎪⎪⎨

⎪⎪⎩

−s − log p if 0 ≤ s ≤ logm,

K(Ek
P |P) if log(m) < s ≤ log(N + 1), with k > 0 such

that S(Ek
P ) = s,

+∞ otherwise,

(25)

where m is the number of modes of P, with weight p.
If P = U is uniform, then IS(s,U ) = log(N + 1) − s.

Proof Since S is a continuous function from D to [0, log(N + 1)], a straightforward
application of both Sanov’s theorem and the contraction principle (see, e.g., Dembo
and Zeitouni 1998) yields

P(Ŝn ∈ A) ≤
(
n + N

N

)
exp

[
−n inf

s∈A
IS(s, P)

]
(26)

where IS(s, P) = K(Ss |P), so

lim sup
n→∞

1

n
logP
(
Ŝn ∈ A

) ≤ − inf
s∈A

IS(s, P), (27)

and also

− inf
s∈A◦ IS(s, P) ≤ lim inf

n→∞
1

n
logP
(
Ŝn ∈ A

)
, (28)

and hence Theorem 1 gives (25).
Proposition 2 says that sP is a bijection from R

∗+ to ]γ, �[=] log(m), log(N + 1)[
with twice continuously differentiable inverse s−1

P . Since for all s ∈]γ, �[, we have
IS(s, P) = K

(
E(P, s−1

P (s))|P
)
, we get that IS too is twice continuously differen-

tiable with respect to s on ]γ, �[.
In particular, IS is continuous on ]γ, �[. It is continuous on [0, γ [ too, as a linear

mapping, and finally at log(m) as a straightforward consequence of Proposition 1 and
continuity of the function Q → K(Q|P). The continuity of IS induces that IS is a
good rate function and also that infs∈A◦ IS(s, P) = infs∈A IS(s, P) so that the lower
and upper bounds in (27) and (28) are equal, and hence (24) follows. 
�

Note thatChazottes andGabrielli (2005)Proposition3.3gives thegood rate function
governing the LDP of the plug-in estimators of Shannon entropy of the so-called g-
measures. This may be applied to distributions on a finite set E . Nevertheless, even if
this rate function is shown to be linear for small values, neither the threshold nor the
role of the escort distributions are explained.

123



460 V. Girardin, P. Regnault

3.2 Approximation of the rate function

To obtain an explicit expression of the rate function IS, it would be necessary to obtain
first an explicit expression of the inverse of sP . As an alternative, we will build an
approximation of this function. For simplification, we will denote IS(s, P) by IS(s)
in this section.

Since S(Ek
P ) is a decreasing function of k from � to γ , the equation S(Ek

P ) = s
has a unique solution for any s ∈]γ, �[. In other words, the infimum IS(s) is achieved
at a unique escort distribution. Let us set yl = γ + l(� − γ )/M , thus defining
a uniformly distributed finite set {y1, . . . , yM−1} in ]γ, �[. Since sP is monotonic
and smooth, numerous numerical methods are available which provide approximated
solutions of sP (k) = yl , for l ∈ [[1, M − 1]]. We are interested here in the effect
of this approximation on the LDP, and not in discussing the best possible method
of approximation; the point is that approximated solutions k̃1, . . . , k̃M−1 as close as
necessary to the true solutions k1, . . . , kM−1 can be obtained. If ξ > 0 is the required
accuracy given in (33) below, we will choose k̃l such that |̃kl − kl | < ξ for all l.

An approximation IM (yl) of IS(yl) is obtained by setting IM (yl) = K(E k̃l
P |P) for

l ∈ [[1, M − 1]]. The approximation of IS will be the interpolating piece-wise affine
and continuous function IM built from the above points.

Proposition 5 Set α ∈ [0, 1] and yl = γ + l(� − γ )/M, for l ∈ [[1, M − 1]]. Let IM
be defined:

for s = αy1 + (1 − α)γ by

IM (s) = α IM (y1) −(1−α)

(
log

[
max
i∈E {P(i)}

]
+ γ

)
;

for s = α� +(1−α)yM−1 by

IM (s) = −α

[
� + 1

N + 1

∑

i∈E
log P(i)

]
+ (1 − α)IM (yM−1);

and for s = αyl +(1−αyl−1) by

IM (s) = α IM (yl) + (1 − α)IM (yl−1).

Then, for all s ∈ [y1, yM−1],

|IM (s) − IS(s)| ≤ 2

M
, (29)

with M ≥ (� − γ )2 max{1, sups∈[y1,yM−1] I
′′
S
(s)/8}, where I ′′

S
(s) is the second order

derivative of IS.
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Proof For getting an upper bound for |IM (s) − IS(s)| for all s ∈ [y1, yM−1], let us
consider the linear interpolation ĨS of IS built from IS(yl) for l ∈ [[1, M − 1]]. We
have

|IM (s) − IS(s)| ≤ |IM (s) − ĨS(s)| + | ĨS(s) − IS(s)|.

We will separately bound | ĨS(s)− IS(s)|, the loss inherent to linear interpolation, and
|IM (s) − ĨS(s)|, resulting from solving S(Ek

P ) = yl numerically.
First, since IS is twice continuously differentiable with respect to s,

| ĨS(s) − IS(s)| ≤ (� − γ )2

8M2 C, s ∈ [y1, yM−1], (30)

where C = sups∈[y1,yM−1] |I ′′
S
(s)|.

Second, s = αyl+1 + (1 − α)yl for some l ∈ [[1, M − 2]], and hence,

|IM (s) − ĨS(s)| = |α(IM (yl+1) − IS(yl+1)) + (1 − α)(IM (yl) − IS(yl))|
≤ α|IM (yl+1) − IS(yl+1)| + (1 − α)|IM (yl) − IS(yl)|. (31)

We compute |IM (yl) − IS(yl)| = |K(E k̃l
P |P) − K(Ek

P |P)| for l ∈ [[1, M − 1]], with
k such that S(Ek

P ) = s. Since K(E(P, .)|P) is twice continuously differentiable with
respect to k on R

∗+, it is a Lipschitz function and

D = sup
(k,k′)∈s−1

P ([y1,ym−1])2
1

|k − k′| |K(Ek
P |P) − K(Ek′

P |P)|

is finite, so that |IM (yl) − IS(yl)| ≤ Dξ for l ∈ [[1, M − 1]], where ξ is the accuracy
to be fixed of the numerical method used for solving the equations S(Ekl

P ) = yl . This
in turn gives in (31)

|IM (s) − ĨS(s)| ≤ αDξ + (1 − α)Dξ = Dξ. (32)

Inequalities (30) and (32) together lead to

|IM (s) − IS(s)| ≤ (� − γ )2

8M2 C + Dξ, s ∈ [y1, yM−1].

For M ≥ (� − γ )2C/8, the left term of the above sum is upper bounded by 1/M .
Finally, choosing

ξ ≤ 1/DM, (33)

we get the searched inequality (29). 
�
We have illustrated this approximation through simulation. For showing how IM

depends on P , we have chosen five distributions on a space E with four elements.
The first three ones have one mode: P1 = (0.5, 0.1, 0.05, 0.35) is taken at random,
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P2 = (0.2, 0.3, 0.22, 0.28) is closed to uniform and P3 = (0.95, 0.04, 0.007, 0.003)
is closed to a Dirac. The fourth distribution, P4 = (0.4, 0.4, 0.15, 0.05), has two
modes and the fifth one, P5 = (0.3, 0.3, 0.3, 0.1), has three modes. The function IM
is constructed by computing the solutions of the equations sP (k) = yl thanks to the
dichotomy method.

Proposition 5 states that IS lies between IM + 2/M and IM − 2/M for M large
enough. Figure 5 shows on the left the curves IM + 1/M and IM − 1/M for P1 and
M = 50 (top) and M = 500 (bottom); actually, the approximation is so good for
M = 500 that differentiating between the two curves is impossible. In the middle IM
is shown for M = 500 for P2 (top) and P3 (bottom) and finally on the right for P4
with two modes (top) and P5 with three modes (bottom). As expected, the shapes of
the different curves are significantly different.

4 Application to entropy level testing

For showing one possible application, let us construct tests of entropy levels based
on both the LDP and the double minimization of KL-divergence. Other statistical
applications of LDP may be found in Birgé et al. (1979).

In goodness-of-fit testing, statistics based on difference of entropy of distributions
are usual for discriminating between distributions. Now applied to all classical distrib-
utions, they have been developed fromVasicek (1976) for testing normality, in relation
with the maximum entropy principle; see Lequesne (2015) for details and fields of
application.

In data compression theory, the entropy of a distribution P is well known to be
the lower bound of the average length per symbol of any encoded i.i.d. sequence of
symbols drawn according to P; see Cover and Thomas (1991). Several codes, such as
Huffman code, achieve asymptotically that lower bound, provided that P is known. If
P is unknown, universal codes still compress the sequence up to a limit rate s, provided
that s is more than the entropy of P . It may then be necessary to decide, according
to observation of an i.i.d. sample, whether S(P) < s or not. Such a decision can be
taken from testing the entropy level of P . The entropy level tests are also classical in
testing random numbers for randomness; see Rukhin et al. (2010)1.

In biology, the potential application of Shannon entropy as a measure of diversity
has early been acknowledged, for example in Pielou (1967). Indeed, an obvious anal-
ogy exists between a biological collection consisting of various numbers of different
species of organisms, and a coded message consisting of various numbers of different
kinds of symbols. Identifying the members of a collection to the right species is for-
mally identical to identifying the symbols in a message, one by one. The total diversity
of a collection of n individuals belonging to N + 1 species with Nn(i) individuals in
the i th species is given by Brillouin’s formula

B = log
n!

Nn(0)! . . .Nn(N )! ,

1 see also http://www.random.org/analysis/.
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P1 = (0.5, 0.1, 0.05, 0.35)

with M = 50

P1 = (0.5, 0.1, 0.05, 0.35)

with M = 500

P2 = (0.2, 0.3, 0.22, 0.28) P3=(0.95, 0.04, 0.007, 0.003)

P4 = (0.4, 0.4, 0.15, 0.05) P5 = (0.3, 0.3, 0.3, 0.1)

Fig. 5 The original and approximating rate functions for different distributions
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which can be approximated through Stirling’s formula by the plug-in estimator Ŝn
of Shannon entropy of the population under study. A test on the entropy level of the
collection then constitutes a first approach to decide whether it comes from a known
population or not.

For tests of entropy level (3) to (5),we consider rejection regionsC1
n andC

2
n obtained

by assuming that the divergenceK(SŜn |Ss0) between the entropic sphereswith entropy
levels Ŝn and the null hypothesis s0 is greater than a threshold depending on the

number of observations. The error of the first kind, namely α
j
n = supP∈Ss0

Pn
(
C j
n

)
,

will be shown to decrease with 1/n. For the test (3), the error of the second kind
β1
n = supP∈Ss1

Pn(En\C1
n) will be shown to decrease exponentially fast with the

KL-divergence K(Ss0 |Ss1). The proofs will derive from a slight modification of the
classical proof of Sanov’s theorem; see Csiszár and Shieds (2004). The tests are thus
proven to be consistent.

Theorem 5 Let (X1, . . . , Xn) be an n-sample of a random variable X with distribu-
tion P supported by E = [[0, N ]].

For both tests (3) and (4), let the critical region be

C1
n = {K(SŜn |Ss0) ≥ δn

}
, (34)

where Ŝn is defined in (23), with

δn = 1

n
log

[
n

(
n + N

N

)]
. (35)

The error of the first kind α1
n satisfies

α1
n ≤ 1/n. (36)

For the test (3), the error of the second kind β1
n linked to C1

n satisfies

lim sup
n→∞

1

n
logβ1

n ≤ −K(Ss0 |Ss1). (37)

For the test (5), let the critical region be

C2
n =
{{

K(SŜn |Ss0) ≥ δn
}

if Ŝn < s0,
∅ if Ŝn ≥ s0.

The error of the first kind satisfies α2
n ≤ 1/n, with δn given by (35).

Proof Let P ∈ Ss0 . Obviously, P
n(C1

n) ≤ P(Ŝn ∈ An),where An = {s ∈ [0, log(N+
1)] : IS(s, P) ≥ δn}. Thanks to (26), by definition of δn ,

Pn(C1
n) ≤
(
n + N

N

)
exp (−nδn) = 1

n
.
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Since this relation holds for all P ∈ Ss0 , (36) is shown.
It remains to prove (37). Since the empirical distribution P̂n built from any sequence

of observations xn1 = (x1, . . . , xn) clearly belongs to the set

Q = {Q ∈ D : Q(i) = ki/n, i ∈ E, ki ∈ N} ,

the only possible values for the estimators Ŝn = S(P̂n) are S(Q), with Q ∈ Q. Let
R ∈ Ss1 , with s1 	= s0. Then

Rn
(
En \C1

n

)
= Rn

⎛

⎝
⋃

Q∈Q(δn)

TQ

⎞

⎠ =
∑

Q∈Q(δn)

Rn(TQ),

whereQ(δn) = {Q ∈ Q : K(SS(Q)|Ss0) < δn
}
and TQ = {xn1 = (x1, . . . , xn) ∈ En :

P̂n = Q}.
For any xn1 ∈ TQ , the number of xk such that xk = i is nQ(i), so that

Rn(xn1 )

Qn(xn1 )
=
∏

i∈E

[
R(i)

Q(i)

]nQ(i)

= e−nK(Q|R),

and hence for all Q ∈ Q(δn),

Rn(TQ) ≤ Qn(TQ)e−nK(Q|R) ≤ exp

[
−n inf

R∈Ss1

K(Q|R)

]
≤ e−nηn ,

where ηn = infQ∈Q(δn) inf R∈Ss1
K(Q|R).

Using some simple combinatorics, we get

Rn
(
En \C1

n

)
≤ |Q(δn)|e−nηn ≤

(
n + N

N

)
e−nηn .

For all Q ∈ Q(δn), when n tends to infinity, S(Q) converges to s0, and hence ηn
converges to infQ∈Ss0

inf R∈Ss1
K(Q|R) = K(Ss0 |Ss1). Therefore,

lim sup
n→∞

1

n
log Rn

(
En \C1

n

)
≤ −K(Ss0 |Ss1),

and the searched inequality is proven.
The proof for the test (5) follows the same lines. 
�
Finally, let us give illustrative examples of entropy level tests. For the test (4), the

rejection region is simply given in (34). For the test (3) of entropy level s0 = log 2/2 �
0.347 for N = 3, with significance level 0.05, we have chosen to take as alternatives
the entropy levels of distributions P1 to P5 already considered in Sect. 3.2 and another
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Table 4 Critical sample sizes for Test (4) for different alternatives, with signification level 0.05, from 1,000
simulated samples

Sampled distribution Entropy of Pj Divergence Critical sample size n

P1 = (0.5, 0.1, 0.05, 0.35) 1.094 0.399 38

P2 = (0.2, 0.3, 0.22, 0.28) 1.373 0.829 12

P3 = (0.95, 0.04, 0.007, 0.003) 0.23 0.00866 3192

P4 = (0.4, 0.4, 0.15, 0.05) 1.167 0.489 29

P5 = (0.3, 0.3, 0.3, 0.1) 1.314 0.713 18

P6 = (0.5, 0.167, 0.167, 0.167) 0.94 0.284 64

distribution P6 = (0.7, 0.1, 0.1, 0.1)with one mode and all other equal weights. Their
entropy levels are given in Table 4.

Samples of increasing size n ≥ 10 are drawn through simulation according to
each distribution P1 to P6, yielding the related plug-in estimator Ŝn . The divergence
K(SŜn |Ss0) is then computed through (17), by first numerically solving (18) in p∗ with
s1 = s0 and (19) in q∗ with s0 = Ŝn , as stated in Theorem 2. Applying inequality (26)
gives the following upper bound B(n) for the p values,

B(n) =
(
n + N

N

)
e
−nK
(
SŜn

|Ss0

)

, (38)

that becomes of use only if less than 1.
Table 4 gives numerical values ofK(SS(Pi )|Ss0) for i ∈ [[1, 6]] – denoted by Diver-

gence, and the (critical) sample sizes obtained by the Monte Carlo method, through
simulation of 1,000 samples of increasing size for P1 to P6. These critical sample sizes
are minimum required for the upper-bound B(n) to be less than 0.05, that is for the
test to rightly reject the null hypothesis at the chosen significance level. Note that the
sample size obtained for P3 differs greatly from the others. Indeed, S(P3) = 0.23 is
very close to s0, so that K(SS(P3)|Ss0) is very close to 0 and the exponential factor in
B(n) hardly overcomes the polynomial factor. This upper bound is to be refined in a
further study, for smaller critical sample sizes to be obtained for moderate deviations
from the null hypothesis. However, tests based on large deviations such as developed
above are known to bemore powerful than tests based on asymptotic normality mainly
for small significance levels; see Dembo and Zeitouni (1998).

We also present simulation results for a test of uniformity deduced from the test
(5). Indeed, since Slog(N+1) = {U } and S(P) < S(U ) for all P 	= U , this test for
s0 = log(N + 1) is equivalent to the goodness-of-fit test

H0 : “P = U” against H1 : “P 	= U”. (39)

Table 5 presents the critical sample sizes obtained for this test from 200 simulated
samples drawn according to probability distributions with one mode and all other
equal weights (yielding the KL-divergence between spheres), whose supports have
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Table 5 Critical sample size for the uniformity test (39) with signification level 0.05

State space size N + 1 s0 = log(N + 1) Sample’s entropy Critical sample size n

4 1.39 0.795 15

10 2.3 1.83 39

50 3.91 3.4 165

cardinal either 4, 10 or 50. Again, the p values are upper-bounded by B(n) in (38),
where Ss0 = Slog(N+1), and K(SŜn |Slog(N+1)) = log(N + 1) − Ŝn , according to
Theorem 1.
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